
ar
X

iv
:2

20
6.

08
20

5v
1

 [
m

at
h.

O
C

]
 1

6
Ju

n
20

22

Doubly iteratively reweighted algorithm for constrained

compressed sensing models

Shuqin Sun ∗ Ting Kei Pong †

June 16, 2022

Abstract

We propose a new algorithmic framework for constrained compressed sensing models that

admit nonconvex sparsity-inducing regularizers including the log-penalty function as objec-

tives, and nonconvex loss functions such as the Cauchy loss function and the Tukey biweight

loss function in the constraint. Our framework employs iteratively reweighted ℓ1 and ℓ2

schemes to construct subproblems that can be efficiently solved by well-developed solvers for

basis pursuit denoising such as SPGL1 [6]. We propose a new termination criterion for the sub-

problem solvers that allows them to return an infeasible solution, with a suitably constructed

feasible point satisfying a descent condition. The feasible point construction step is the key

for establishing the well-definedness of our proposed algorithm, and we also prove that any

accumulation point of this sequence of feasible points is a stationary point of the constrained

compressed sensing model, under suitable assumptions. Finally, we compare numerically our

algorithm (with subproblems solved by SPGL1 or the alternating direction method of multi-

pliers) against the SCPls in [41] on solving constrained compressed sensing models with the

log-penalty function as the objective and the Cauchy loss function in the constraint, for badly-

scaled measurement matrices. Our computational results show that our approaches return

solutions with better recovery errors, and are always faster.

1 Introduction

Compressed sensing [9, 19] is the problem of recovering (approximately) sparse signals from (pos-

sibly noisy) measurements that have been compressed for fast transmission. A classical model for

compressed sensing is the basis pursuit denoising, which is minimizing the ℓ1 norm subject to a

constraint concerning noisy measurements:

min
x∈Rn

‖x‖1
s.t. ‖Ax− b‖ ≤ σ,

(1.1)

where A ∈ R
m×n is the measurement matrix, b ∈ R

m is the noisy measurement and σ ∈ [0, ‖b‖)
is a parameter that allows one to incorporate prior knowledge (if any) of the noise level. Model

(1.1) is a convex optimization problem and many efficient off-the-shelf solvers have been developed

over the past decade for solving it. These include the SPGL1 [6] that suitably applies the spectral

∗School of Mathematics Education, China West Normal University, Nanchong, Sichuan, People’s Republic of

China. Email: sunshuqinsusan@163.com
†Department of Applied Mathematics, the Hong Kong Polytechnic University, Hong Kong, People’s Republic

of China. This author was supported in part by Hong Kong Research Grants Council PolyU153000/20p. E-mail:

tk.pong@polyu.edu.hk

1

http://arxiv.org/abs/2206.08205v1

projected gradient method for solving a sequence of ℓ1 constrained optimization problems, the

YALL1 [37] that applies the alternating direction method of multipliers (ADMM) to a suitable

reformulation of (1.1), and a specialized routine in the general purpose first-order method solver

package TFOCS [5], which applies Nesterov’s smoothing and acceleration techniques [28–30], to

name but a few. These solvers, taking advantage of convex duality theory and proximal mapping

computations, can deal with problems of reasonably large dimension efficiently.

While the convex model (1.1) has been widely used for sparse recovery, it has now become

a folklore (see, for example, [14]) that nonconvex sparsity inducing regularizers such as the log-

penalty function [10, 31] can be used in place of the ℓ1 norm in the objective of (1.1) to better

induce sparsity in the solution. In this regard, the log-penalty function together with an iteratively

reweighted ℓ1 (IRL1) technique was introduced in [10] for noiseless compressed sensing, and the

IRL1 technique resulted in a sequence of convex optimization problems that minimize weighted

ℓ1 norms over an affine set. Another generalization for (1.1) is to replace the ℓ2 norm in the

constraint by other loss functions to reflect different noise models or robustness requirements in

the noisy measurement b; see, for example, [11, 12, 23, 32, 42]. Concrete examples of alternative

loss functions include the Cauchy loss function [11], the Huber loss function [22], and the Tukey

biweight loss function [27], again to name but a few. We list in Table 1 as l(y) some commonly

used loss functions, where δ > 0 in the table and the function Iδ : R+ → R is defined by

Iδ(t) :=
{

1 if 0 ≤ t ≤ δ,
0 if t > δ,

and the Geman-McClure, Welsh and Pseudo-Huber loss functions are written as in [2] for nota-

tional consistency. Notice that all the functions l in Table 1 satisfy l(y) =
∑m
i=1 φ(y

2
i) with the

corresponding φ.

Table 1: Examples of loss functions

Loss functions Expression of l(y) φ(t)

Cauchy [11,12]

m
∑

i=1

log

(

1 +
y2
i

δ2

)

log

(

1 +
t

δ2

)

Geman-McClure [20]
m
∑

i=1

2y2
i

y2
i
+ 4δ2

2t

t+ 4δ2

Welsh [17]

m
∑

i=1

(

1− exp

(

− y2
i

2δ2

))

1− exp

(

− t

2δ2

)

Pseudo-Huber [13]
m
∑

i=1

(
√

1 +
y2
i

δ2
− 1

)

√

1 +
t

δ2
− 1

Huber [22]

m
∑

i=1

(

y2
i

2
Iδ(|yi|) + δ

(

|yi| − δ

2

)

(1− Iδ(|yi|))
)

{

t

2
if

√
t ≤ δ,

δ(
√
t− δ

2
) if

√
t > δ

Tukey biweight [27]
m
∑

i=1

(

δ2

6

[

1−
(

1− y2
i

δ2

)3

Iδ(|yi|)
]) {

δ
2

6
(1− (1− t

δ2
)3) if

√
t ≤ δ,

δ
2

6
if

√
t > δ

In this paper, we consider the following optimization problem:

min
x∈Rn

n∑

i=1

ψ(|xi|)

s.t.

m∑

i=1

φ((bi − aTi x)2) ≤ σ,
(1.2)

2

where the functions ψ, φ, the matrix A ∈ R
m×n (with the ith row being aTi), the vector b ∈ R

m,

and the parameter σ > 0 satisfy the following assumption:

Assumption 1.1. (i) The function ψ : R+ → R+ is continuous and strictly concave with ψ(0) =

0 and limt→∞ ψ(t) = ∞. It is differentiable on (0,∞) with ψ′(t) > 0 for all t > 0, and

limt↓0 ψ′(t) exists and belongs to (0,∞).

(ii) The function φ : R+ → R+ is continuous and concave with φ(0) = 0. It is differentiable on

(0,∞) with φ′(t) ≥ 0 for all t > 0 and limt↓0 φ′(t) exists and belongs to (0,∞).

(iii) The matrix A has full row rank and σ ∈ (0,
∑m
i=1 φ(b

2
i)).

Note that Assumption 1.1(iii) implies that 0 does not belong to the feasible set of (1.2). Moreover,

Assumptions 1.1(ii) and (iii) imply that A†b belongs to the feasible set of (1.2); hence, the feasible

set of (1.2) is nonempty. Finally, this assumption also implies that the right-hand derivative

functions φ′+ : R+ → R and ψ′
+ : R+ → R are continuous functions, and that x 7→ ∑m

i=1 φ((bi −
aTi x)

2) is continuously differentiable. One can check that Assumption 1.1 is general enough to

include the choice of ψ(t) = log(1 + t/ǫ) for some ǫ > 0 (i.e., the log penalty function proposed

in [10]) and all the φ’s listed in Table 1.

Observe that, under Assumption 1.1, the constraint function in (1.2) is smooth. Moreover,

letting ιψ := limt↓0 ψ′(t), one can observe from Assumption 1.1 that the function t 7→ ιψ|t| −ψ(|t|)
is convex. Hence, the objective of (1.2) admits the following difference-of-convex decomposition:

n∑

i=1

ψ(|xi|) = ιψ

n∑

i=1

|xi| −
(

n∑

i=1

[ιψ|xi| − ψ(|xi|)]
)
.

As a consequence, one may suitably adapt difference-of-convex based algorithms such as SCPls [41]

and other variants described in [24] and references therein to solve (1.2) under Assumption 1.1.

However, compared with those various well-established solvers for (1.1) that can take advantage

of convex or gauge duality theory as well as Nesterov’s smoothing and acceleration techniques for

efficiency, techniques for accelerating the aforementioned algorithms for (1.2) are relatively limited.

In view of this, it is tempting to ask the following question:

Can we build an algorithmic framework for (1.2) that leverages solvers for (1.1)?

Our point of departure here is the IRL1 technique, which was used in [10] for solving a variant

of (1.2) in which the constraint in (1.2) is replaced by an affine one. The basic version of our

proposed framework can be described as follows: in each iteration, we replace ψ and φ in (1.2) by

their affine majorants at the current iterate. This results in a subproblem of the form

min
x∈Rn

n∑

i=1

ψ′
+(|xki |)|xi|

s.t.

m∑

i=1

{φ((bi − aTi xk)2) + φ′+((bi − aTi xk)2)[(bi − aTi x)2 − (bi − aTi xk)2]} ≤ σ;
(1.3)

the next iterate is then generated as a minimizer of (1.3). This framework can be viewed as a

generalization of the iteratively reweighted schemes in [10,15] where we apply the IRL1 technique to

the objective of (1.2) and the iteratively reweighted ℓ2 technique in [15] to the constraint function

in (1.2). Since φ′+ ≥ 0 and ψ′
+ > 0 thanks to Assumption 1.1, as long as xk is feasible for (1.2) (so

that σ−∑m
i=1 φ((bi− aTi xk)2) ≥ 0), problems (1.3) can be equivalently transformed into problems

of the form (1.1) with suitably defined A, b and σ, and hence can be solved (approximately) by

solvers for (1.1).

3

While simple and natural, there are issues when it comes to implementing the above framework,

and its convergence behavior is also not clear. First, following the above discussion, one has to

guarantee feasibility of xk for (1.2) so that (1.3) becomes an instance of (1.1). Although one can

show inductively that exact minimizers of (1.3) will be feasible for (1.2) as long as x0 is feasible

based on the concavity of φ (see Section 3 for details), guaranteeing feasibility in practice is not a

trivial task. This is because (1.3) is only solved inaccurately and approximately in each iteration in

practice, and typical solvers such as SPGL1 may return approximate solutions that (slightly) violate

the constraint. Second, even if we assume that (1.3) are solved exactly for all k, the convergence

behavior of {xk} is still unclear. Indeed, classical convergence analysis of iteratively reweighted

schemes relies heavily on the strong convexity of subproblems or the realization of the algorithm

as an instance of (block-)coordinate minimization scheme (see [25] and references therein). It is

not clear whether these approaches can be readily adapted to analyze the basic framework above,

where the subproblems (1.3) are in general not strongly convex and the constraint sets can vary

across iterations.

In this paper, we adjust the aforementioned framework by incorporating an inexact criterion for

solving the subproblems (1.3) approximately, and establish the well-definedness and convergence of

the sequence generated by the resulting algorithm, under mild assumptions. Note that commonly

used inexact criteria in the literature are typically based on ǫ-subdifferential (see, for example, [36])

or maintaining summable error to the exact proximal mapping (see, for example, [16]); adapted

to our subproblems (1.3), these conditions will require exact projections onto the feasible set. In

contrast, our inexact criterion allows the solver of (1.3) to return an infeasible approximate solution

x̃k+1, but it requires additionally that the objective value at a suitably constructed retraction xk+1

of x̃k+1 onto the feasible set of (1.3) does not exceed the objective value at xk too much; and we

construct the next subproblem based on xk+1. We show that every accumulation point of {xk}
is a stationary point of (1.2) under mild assumptions, even though the subproblems (1.3) are not

strongly convex in general. We also demonstrate how our proposed inexact criterion can be realized

by subproblem solvers such as ADMM and SPGL1. Finally, we compare our proposed framework

(equipped with ADMM or SPGL1 as subproblem solvers) and the SCPls on solving compressed

sensing problems modeled as (1.2) with the log-penalty function as the objective and the Cauchy

loss function in the constraint, for badly scaled measurement matrices A. In our experiments, our

approaches yield solutions with better recovery errors, and are always faster.

The rest of this paper is organized as follows. We present notation and some preliminary

materials in Section 2. In Section 3, we present our algorithmic framework with the aforementioned

inexact criterion, and establish its well-definedness and convergence. We discuss in Section 4 how

the inexact criterion in our algorithmic framework can be realized by two popular solvers for (1.1):

an ADMM-based solver and the SPGL1. Numerical results are presented in Section 5.

2 Notation and preliminaries

Throughout this paper, we let R
n and R

n
+ denote the Euclidean space of dimension n and its

nonnegative orthant, respectively. For an x ∈ R
n, we let |x| denote the vector whose ith entry

is |xi|, and let ‖x‖ denote the norm of x; we also let Diag(x) denote the n × n diagonal matrix

whose ith diagonal entry equals xi. For an x ∈ R
n
+, we let

√
x denote the vector whose ith entry

is
√
xi. For two vectors x, y ∈ R

n, we let x ◦ y denote their Hadamard (entry-wise) product and

write x ≤ y if xi ≤ yi for each i = 1, 2, · · · , n. Finally, for a symmetric matrix A, we let λmin(A)

and λmax(A) denote the smallest and largest eigenvalues of A, respectively.

We say that an extended-real-valued function f : Rn → (−∞,+∞] is proper if its domain

dom f := {x ∈ R
n : f(x) < ∞} is nonempty. A proper function is said to be closed if it is lower

4

semicontinuous. For a proper function f , the regular subdifferential and (limiting) subdifferential

[34, Definition 8.3] of f at an x̄ ∈ dom f are defined, respectively, as

∂̂f(x̄) :=

{
v ∈ R

n : lim inf
x→x̄,x 6=x̄

f(x)− f(x̄)− vT (x− x̄)
‖x− x̄‖ ≥ 0

}
,

and

∂f(x̄) :=
{
v ∈ R

n : ∃xk → x̄ and vk ∈ ∂̂f(xk) such that f(xk)→ f(x̄) and vk → v
}
.

We set ∂̂f(x) = ∂f(x) = ∅ if x /∈ dom f by convention, and write dom ∂f := {x ∈ R
n : ∂f(x) 6= ∅}.

When f is proper and convex, the limiting subdifferential of f at an x ∈ dom f reduces to the

classical notion of subdifferential in convex analysis, i.e.,

∂f(x) =
{
ξ ∈ R

n : ξT (y − x) ≤ f(y)− f(x) ∀y ∈ R
n
}
;

see [34, Proposition 8.12]. For a nonempty set S, the indicator function δS is defined as

δS(x) :=

{
0 if x ∈ S,
∞ if x /∈ S.

The normal cone (resp., regular normal cone) of S at an x ∈ S is defined as NS(x) := ∂δS(x) (resp.,

N̂S(x) := ∂̂δS(x)), and the distance from any x ∈ R
n to S is defined as dist(x, S) := infy∈S ‖x−y‖.

We now discuss optimality conditions for (1.2) under Assumption 1.1. For notational simplicity,

from now on, for (1.2), we write

Ψ(u) :=
n∑

i=1

ψ(ui), Φ(v) :=
m∑

i=1

φ(vi), F := {x ∈ R
n : Φ((b−Ax) ◦ (b−Ax)) ≤ σ},

Ψ′
+(u) := (ψ′

+(u1), . . . , ψ
′
+(un)) ∈ R

n, and Φ′
+(v) := (φ′+(v1), . . . , φ

′
+(vm)) ∈ R

m;

(2.1)

specifically, F denotes the feasible set of (1.2). Note that the function x 7→ Φ((b−Ax) ◦ (b−Ax))
is continuously differentiable everywhere under Assumption 1.1(ii). We first recall the following

standard constraint qualification for F, which is a level set of a continuously differentiable function.

Definition 2.1 (MFCQ). Consider (1.2) under Assumption 1.1 (with notation (2.1)). We say

that the Mangasarian-Fromovitz constraint qualifications (MFCQ) holds for (1.2) if for every x ∈ F,

the following implication holds

Φ((b −Ax) ◦ (b −Ax)) = σ =⇒
m∑

i=1

φ′+((bi − aTi x)2)(bi − aTi x)ai 6= 0.

We also consider the following assumption on the choice of σ in (1.2).

Assumption 2.1. Consider (1.2) under Assumption 1.1. We assume that

σ /∈ {kφ : k = 1, . . . ,m},

where φ := supt∈R+
φ(t) ∈ (0,∞].1

We show in the next proposition that Assumption 2.1 is a sufficient condition for MFCQ.

Proposition 2.1 (Assumption 2.1 implies MFCQ). Consider (1.2) and suppose that Assump-

tions 1.1 and 2.1 hold. Then the following statements hold.

1Note that φ > 0 because limt↓0 φ
′(t) > 0 and φ(0) = 0 in view of Assumption 1.1(ii).

5

(i) If y ∈ R
m satisfies

∑m
i=1 φ(y

2
i) = σ, then there exists i0 such that yi0 6= 0 and φ′(y2i0) > 0.

(ii) The MFCQ holds for (1.2).

Proof. (i): Suppose that
∑m

i=1 φ(y
2
i) = σ. In view of Assumption 2.1, we conclude that there must

exist i0 such that 0 < φ(y2i0) < φ, where φ was defined in Assumption 2.1. In particular, since

φ(0) = 0, we must have yi0 6= 0. Then φ is differentiable at y2i0 > 0 by Assumption 1.1(ii). Since

φ(y2i0) < φ and φ is concave with nonnegative derivative on (0,∞), we conclude that φ′(y2i0) > 0.

(ii): Fix any x ∈ F satisfying
∑m
i=1 φ((bi−aTi x)2) = σ. Then we have from (i) that there exists

an i0 such that

φ′+((bi0 − aTi0x)2) > 0 and (bi0 − aTi0x)2 > 0. (2.2)

Since the matrix A has full row rank, we can find a d̂ 6= 0 such that Ad̂ = ei0 , where ei0 is the

vector whose i0th entry is one and is zero otherwise. Let d := (bi0 − aTi0x)d̂. Then

aTi d = (bi0 − aTi0x)aTi d̂ =

{
bi0 − aTi0x if i = i0,

0 otherwise.

Hence, combining the above display with (2.2), we deduce further that

m∑

i=1

φ′+((bi − aTi x)2)(bi − aTi x)aTi d = φ′+((bi0 − aTi0x)2)(bi0 − aTi0x)2 > 0;

in particular, it must hold that
∑m

i=1 φ
′
+((bi−aTi x)2)(bi−aTi x)ai 6= 0. This completes the proof.

We next recall the following standard notion of stationarity for (1.2).

Definition 2.2 (Stationary point). Consider (1.2) under Assumption 1.1 (with notation (2.1)).

An x ∈ R
n is called a stationary point of (1.2) if there exists λ ∈ R+ such that the following

conditions are satisfied for (x, λ):

λ(Φ((b −Ax) ◦ (b−Ax)) − σ) = 0, (2.3)

Φ((b−Ax) ◦ (b−Ax)) ≤ σ, (2.4)

0 ∈ Ψ′
+(|x|) ◦ ∂‖x‖1 − 2λ

m∑

i=1

φ′+((bi − aTi x)2)(bi − aTi x)ai. (2.5)

Finally, we show that, under Assumptions 1.1 and 2.1, every local minimizer of (1.2) is station-

ary in the sense of Definition 2.2.

Proposition 2.2. Consider (1.2) and suppose that Assumptions 1.1 and 2.1 hold. If x∗ is a local

minimizer of (1.2), then it is a stationary point of (1.2).

Proof. Since x∗ is a local minimizer of (1.2), it is feasible and thus satisfies (2.4) in place of x. Next,

using the notation in (2.1) and [34, Theorem 10.1], we have 0 ∈ ∂(Ψ(| · |) + δF(·))(x∗). Noticing
that x 7→ Ψ(|x|) is locally Lipschitz continuous, we deduce further from [34, Exercise 10.10] that

0 ∈ ∂Ψ(| · |)(x∗) + ∂δF(x
∗) = Ψ′

+(|x∗|) ◦ ∂‖x∗‖1 +NF(x
∗), (2.6)

where the equality follows from [40, Lemma 2.3] (Applied with f = 0 and C = R
n) and the

definition of normal cone. Now, since the MFCQ holds in view of Proposition 2.1, we can obtain

6

from [34, Theorem 6.14] that

NF(x
∗) =

{
−2λ

m∑

i=1

φ′+((bi − aTi x∗)2)(bi − aTi x∗)ai : λ ∈ N−R+
(Φ((b −Ax∗) ◦ (b −Ax∗))− σ)

}

=

{
−2λ

m∑

i=1

φ′+((bi − aTi x∗)2)(bi − aTi x∗)ai : λ ≥ 0, λ(Φ((b−Ax∗) ◦ (b−Ax∗))− σ) = 0

}
,

where the second equality follows from the definition of normal cone. The desired conclusion now

follows upon combining (2.6) with the above display.

3 Doubly iteratively reweighted algorithm

In this section, we present our algorithmic framework for solving (1.2), which involves convex

subproblems that minimize (weighted) ℓ1 norms subject to (weighted) least squares constraints: as

mentioned in the introduction, this kind of convex optimization problems have been widely studied

in the literature and there are many well-developed solvers we can take advantage of.

Our approach for solving (1.2) is motivated by the huge literature of iteratively reweighted

techniques for handling functions ψ and φ that satisfy Assumption 1.1; see, for example, [10,

15]. The basic idea is to make use of the following majorization inequalities, which are direct

consequences of the concavity assumptions on ψ and φ: for all s, t ∈ R+, it holds that

ψ(s) ≤ ψ(t) + ψ′
+(t)(s− t) and φ(s) ≤ φ(t) + φ′+(t)(s− t). (3.1)

Using the simplifying notation in (2.1), we now outline our approach for solving (1.2) under As-

sumptions 1.1 and 2.1. Suppose we start with an xk ∈ F in the kth iteration. We then construct

the following subproblem:

min
x∈Rn

n∑

i=1

ψ′
+(|xki |)|xi|

s.t. Φ((b −Axk) ◦ (b −Axk)) +
m∑

i=1

φ′+((bi − aTi xk)2)[(bi − aTi x)2 − (bi − aTi xk)2] ≤ σ.
(3.2)

Notice that the feasible set of (3.2) is nonempty (and contains xk) because xk ∈ F. Moreover,

since ψ′
+(t) > 0 for all t ∈ R+ by assumption, we see that the solution set of (3.2) is nonempty

and we then define xk+1 to be any optimal solution of (3.2). Since xk+1 is in particular feasible

for (3.2), we deduce from (3.1) that

Φ((b−Axk+1) ◦ (b−Axk+1))

≤ Φ((b−Axk) ◦ (b −Axk)) +
m∑

i=1

φ′+((bi − aTi xk)2)[(bi − aTi xk+1)2 − (bi − aTi xk)2] ≤ σ,

showing that xk+1 ∈ F. Inductively, we can obtain a sequence {xk} feasible for (1.2) with each

xk+1 being a solution of the convex problem (3.2): as we mentioned before, since problem (3.2)

is minimizing a weighted ℓ1 norm subject to a weighted least squares constraint, there are many

readily available solvers for approximately solving it.

While the scheme described above looks simple and natural, it is far from a practical algorithm,

and there are issues in terms of both implementation details and theoretical analysis.

• The discussion above assumes that xk+1 is a global minimizer of (3.2) while in practice

(3.2) can only be solved approximately by iterative solvers. Note that typical algorithms for

7

solving (3.2) approximately (such as the alternating direction method of multipliers and the

SPGL1 that we will describe in Section 4) usually return an infeasible approximate solution.

However, the feasibility of xk+1, as noted above, is used in guaranteeing the nonemptiness of

the feasible set of the (k+1)th subproblem, and hence the well-definedness of the subproblem.

It is not immediately clear how the next subproblem can be constructed if xk+1 is infeasible.

• From the theoretical perspective, even if we assume (3.2) are solved exactly for all k, the

convergence behavior of {xk} is still unclear. Indeed, classical convergence analysis of itera-

tively reweighted schemes either makes use of the strong convexity of the subproblem or the

identification of the algorithm as a (block-)coordinate minimization scheme applied to a suit-

able potential function; see, for example, [25] and references therein. The subproblem (3.2)

is not strongly convex, and it is not obvious whether the approach outlined above is related

to coordinate minimization since the constraint set of subproblem (3.2) cannot be written as

the product of (one-dimensional) intervals and is changing from iteration to iteration. It is

not clear how to extend classical convergence analysis to study the above scheme.

In the next subsection, we will present our proposed algorithm, which is based on inexactly solving

(3.2) in each iteration, with explicitly specified termination criteria for the subproblem solvers. We

call our algorithm “doubly iteratively reweighted algorithm with inexact subproblems” (IRℓ1
ℓ2

for

short). Convergence of the sequence generated will be established under suitable assumptions.

3.1 Doubly iteratively reweighted algorithm with inexact subproblems

Our doubly iteratively reweighted algorithm with inexact subproblems (IRℓ1
ℓ2
) is presented as Al-

gorithm 1 below. In this algorithm, in each iteration, the subproblem (3.3) (which is the same

as (3.2)) is solved approximately to obtain (x̃k+1, ũk+1) that satisfies (3.4), (3.5) and (3.6). The

first two conditions (3.4) and (3.5) are approximate Karush-Kuhn-Tucker conditions: notice that

x̃k+1 is not necessarily feasible for (3.3). The “splitting of variables” in the stopping criterion (3.4)

is inspired by the recent works [38, 39], which used a similar strategy for their inexact Bregman

proximal gradient algorithm. The third condition (3.6) requires that the objective value of (3.3)

at the feasible point Pk(x̃
k+1) generated by x̃k+1 does not exceed the objective value at xk too

much. We then update the next iterate as Pk(x̃
k+1).

We next argue that IRℓ1
ℓ2

is well defined. To this end, it suffices to show that if an xk ∈ F is

given at some iteration k ≥ 0, then the corresponding subproblem (3.3) has a nonempty feasible

set and a pair (x̃k+1, ũk+1) satisfying (3.4), (3.5) and (3.6) can be found; moreover, xk+1 ∈ F. To

establish these properties, we first collect some facts concerning {σk} and Pk from IRℓ1
ℓ2

in the next

lemma.

Lemma 3.1. Consider (1.2) under Assumptions 1.1 and 2.1. Suppose that an xk ∈ F is generated

at the beginning of the kth iteration of IRℓ1
ℓ2

for some k ≥ 0. Then the following statements hold:

(i) It holds that 0 < σk ≤ σ.

(ii) For any x ∈ R
n, it holds that Pk(x) ∈ F.

Proof. (i): Since xk ∈ F, we have Φ(yk ◦yk) = Φ((b−Axk)◦(b−Axk)) ≤ σ. If Φ(yk ◦yk) < σ, then

we see immediately from the definition of σk that σk > 0. Otherwise, suppose that Φ(yk ◦ yk) = σ.

Then we see from Proposition 2.1(i) that there exists i0 such that

(bi0 − aTi0xk)2 > 0 and φ′+((bi0 − aTi0xk)2) > 0. (3.8)

8

Algorithm 1 IRℓ1
ℓ2
: Doubly iteratively reweighted algorithm with inexact subproblems for (1.2)

under Assumptions 1.1 and 2.1 (See (2.1) for notation)

Step 0. Pick a positive sequence {τk} with τk ↓ 0 and a summable positive sequence {µk}.
Choose x0 ∈ F. Set k = 0.

Step 1. Compute the following quantities

wk = Ψ′
+(|xk|), yk = b−Axk, vk =

√
Φ′

+(y
k ◦ yk),

Ak = Diag(vk)A, bk = vk ◦ b, σk = σ + ‖bk −Akxk‖2 − Φ(yk ◦ yk).

Step 2. Pick any ǫk ∈ (0,min{σk,
√
σk, τk}] and approximately solve the subproblem

min
x∈Rn

‖wk ◦ x‖1
s.t. ‖Akx− bk‖2 ≤ σk,

(3.3)

by finding a pair (x̃k+1, ũk+1) such that the following three conditions are satisfied:

dist(0, wk ◦ ∂‖x̃k+1‖1 +ATkN‖·‖2≤σk
(ũk+1)) ≤ ǫk, (3.4)

‖Akx̃k+1 − bk − ũk+1‖ ≤ ǫk, (3.5)

‖wk ◦ Pk(x̃k+1)‖1 ≤ ‖wk ◦ xk‖1 + µk, (3.6)

where Pk is defined as

Pk(x) :=




x if ‖Akx− bk‖2 ≤ σk,(
1−

√
σk

‖Akx−bk‖

)
A†b+

√
σk

‖Akx−bk‖x otherwise.
(3.7)

Step 3. Set xk+1 = Pk(x̃
k+1). Update k ← k + 1 and go to Step 1.

Using the fact that φ′+(t) ≥ 0 for all t ∈ R+, we obtain further that

Φ(yk ◦ yk)− ‖bk −Akxk‖2 =

m∑

i=1

φ((bi − aTi xk)2)−
m∑

i=1

φ′+((bi − aTi xk)2)(bi − aTi xk)2

≤
m∑

i=1

φ((bi − aTi xk)2)− φ′+((bi0 − aTi0xk)2)(bi0 − aTi0xk)2 <
m∑

i=1

φ((bi − aTi xk)2) = σ,

where the strict inequality follows from (3.8). The above display together with the definition of σk
shows that σk > 0.

Next, we show that σk ≤ σ. In fact, one has from (3.1) that

m∑

i=1

φ((bi − aTi A†b)2) ≤
m∑

i=1

φ((bi − aTi xk)2) +
m∑

i=1

φ′+((bi − aTi xk)2)[(bi − aTi A†b)2 − (bi − aTi xk)2].

Since AA†b = b and φ(0) = 0, we deduce from the above display that

m∑

i=1

φ′+((bi − aTi xk)2)(bi − aTi xk)2 −
m∑

i=1

φ((bi − aTi xk)2) ≤ 0.

Thus,

σk = σ +

m∑

i=1

φ′+((bi − aTi xk)2)(bi − aTi xk)2 −
m∑

i=1

φ((bi − aTi xk)2) ≤ σ.

9

(ii): Notice that AkA
†b = Diag(vk)AA†b = Diag(vk)b = bk. Using this and the definition of

Pk(x), we obtain that

m∑

i=1

φ′+((bi − aTi xk)2)(bi − aTi Pk(x))2 = ‖AkPk(x)− bk‖2 ≤ σk (3.9)

Now, we have from (3.1) that

m∑

i=1

φ((bi − aTi Pk(x))2)

≤
m∑

i=1

φ((bi − aTi xk)2) +
m∑

i=1

φ′+((bi − aTi xk)2)[(bi − aTi Pk(x))2 − (bi − aTi xk)2]

(a)
= σ − σk +

m∑

i=1

φ′+((bi − aTi xk)2)(bi − aTi Pk(x))2 ≤ σ,

where (a) follows from the definition of σk, and the last inequality follows from (3.9). This completes

the proof.

Remark 3.1 (Well-definedness of IRℓ1
ℓ2
). We now discuss the well-definedness of IRℓ1

ℓ2
. Suppose

that an xk ∈ F is given at some iteration k ≥ 0. Then we have σk > 0 according to Lemma 3.1(i).

This means that the corresponding subproblem (3.3) has a nonempty feasible set: indeed, A†b is a

Slater point of the feasible set because AkA
†b = bk. In addition, the tolerance ǫk > 0 is well defined.

Under the Slater condition and the positivity of wk and ǫk, as we will discuss later in Section 4,

there are many algorithms one can apply to solve (3.3) approximately to obtain a pair (x̃k+1, ũk+1)

that satisfies (3.4), (3.5) and (3.6). Finally, Lemma 3.1(ii) shows that Pk(x̃
k+1) ∈ F and hence

xk+1 ∈ F. These together with an induction argument establish the well-definedness of IRℓ1
ℓ2
.

Remark 3.2 (The role of Pk). On passing, we would like to point out that the proof of Lemma 3.1(i)

does not rely on whether the conditions (3.4), (3.5) and (3.6) are satisfied. Thus, as long as an

xk ∈ F is available, we will have σk > 0 so that the corresponding subproblem (3.3) is well defined.

Moreover, regardless of how (in)accurately this subproblem is solved, applying Pk to the approximate

solution obtained will return a point in F, which guarantees the well-definedness of the subproblem

in the next iteration. This observation is important for practical implementation when black-box

solvers, whose termination conditions are preset / not easy to adjust, are invoked for solving the

subproblems (3.3).

Proposition 3.1. Consider (1.2) under Assumptions 1.1 and 2.1. Let {xk}, {x̃k}, {ǫk}, {µk}
and {σk} be as in IRℓ1

ℓ2
. Then the following statements hold.

(i) The sequences {xk} and {x̃k} are bounded, and it holds that for all k,

Ψ(|xk+1|)−Ψ(|xk|) ≤ µk.

Moreover, the sequence {Ψ(|xk|)} is convergent.

(ii) There exists M > 0 such that for all k,

‖xk+1 − x̃k+1‖ ≤ ǫk√
σk
‖A†b− x̃k+1‖ ≤ √ǫk‖A†b− x̃k+1‖ ≤M√ǫk.

(iii) It holds that limk→∞ ‖|x̃k+1| − |xk|‖ = 0.

10

Proof. (i): Note that

Ψ(|xk+1|)−Ψ(|xk|) =
n∑

i=1

(ψ(|xk+1
i |)− ψ(|xki |))

(a)

≤
n∑

i=1

ψ′
+(|xki |)(|xk+1

i | − |xki |)
(b)

≤ µk,

where (a) follows from (3.1) and (b) holds because of (3.6). In particular, for every k, we have

Ψ(|xk|) ≤ Ψ(|x0|)+∑k−1
i=0 µi ≤ Ψ(|x0|)+∑∞

i=0 µi <∞ since {µk} is summable. This together with

the assumption limt→∞ ψ(t) =∞ in Assumption 1.1(i) implies that the sequence {xk} is bounded.
In addition, the above display together with the summability of {µk} implies that

Ψ(|xk+1|) +
∞∑

i=k+1

µi ≤ Ψ(|xk|) +
∞∑

i=k

µi,

showing that the sequence {Ψ(|xk|)+∑∞
i=k µi} is nonincreasing. Since this sequence is also bounded

from below (by zero), it is convergent. This together with the summability of {µk} further implies

that {Ψ(|xk|)} is convergent.
We next prove the boundedness of {x̃k}. If ‖Akx̃k+1−bk‖2 ≤ σk for all large k, then x̃k+1 = xk+1

for all large k and the boundedness of {x̃k} follows from the boundedness of {xk}.
Now, suppose that ‖Akx̃k+1 − bk‖2 > σk infinitely often. Define

I := {k : ‖Akx̃k+1 − bk‖2 > σk} and θk := 1−
√
σk

‖Akx̃k+1 − bk‖ ∀k ∈ I.

Observe that {θk : k ∈ I} ⊆ (0, 1) thanks to the fact that σk > 0 (see Lemma 3.1(i)). We claim

that supk∈I θk < 1. Suppose to the contrary that supk∈I θk = 1. Then there exists a subsequence

{kj} ⊆ I such that limj→∞ θkj = 1. In view of the definition of θk, this means

lim
j→∞

√
σkj

‖Akj x̃kj+1 − bkj‖ = 0. (3.10)

On the other hand, using (3.5) and the fact that ‖ũk+1‖2 ≤ σk (see (3.4)), we have ‖Akj x̃kj+1 −
bkj‖ ≤ ‖Akj x̃kj+1 − bkj − ũkj+1‖+ ‖ũkj+1‖ ≤ ǫkj +

√
σkj . Then

1
(a)
= lim

j→∞
1

1 + ǫkj/
√
σkj

= lim
j→∞

√
σkj√

σkj + ǫkj
≤ lim

j→∞

√
σkj

‖Akj x̃kj+1 − bkj‖ ,

where (a) holds because ǫk ↓ 0 and 0 < ǫk√
σk
≤ ǫk√

ǫk
=
√
ǫk (thanks to the fact that ǫk ≤ σk). This

contradicts (3.10). Thus, we must have supk∈I θk < 1, which means r := infk∈I(1− θk) > 0. This

together with the fact that {θk : k ∈ I} ⊆ (0, 1) yields

1 ≤ 1

1− θk
≤ 1

r
<∞ ∀k ∈ I. (3.11)

Now, from the definition of θk and xk+1, we have xk+1 = θkA
†b+(1− θk)x̃k+1 for all k ∈ I. Thus,

we have for k ∈ I that

‖x̃k+1‖ =
∥∥∥∥

1

1− θk
(xk+1 − θkA†b)

∥∥∥∥ ≤
1

r
(‖xk+1‖+ ‖A†b‖),

where the inequality follows from (3.11). Combining this with the boundedness of {xk} and the

fact that x̃k+1 = xk+1 when k /∈ I gives the boundedness of {x̃k}.
(ii): If ‖Akx̃k+1 − bk‖2 ≤ σk, then the desired conclusion obviously holds because xk+1 = x̃k+1.

11

Now, suppose ‖Akx̃k+1 − bk‖2 > σk. Then we have from the definition of xk+1 that

xk+1 = A†b+
√
σk

x̃k+1 −A†b

‖Akx̃k+1 − bk‖ .

Therefore,

‖xk+1 − x̃k+1‖ =
∥∥∥∥A†b − x̃k+1 +

√
σk

x̃k+1 −A†b

‖Akx̃k+1 − bk‖

∥∥∥∥
(a)
=

(
1−

√
σk

‖Akx̃k+1 − bk‖

)
‖A†b − x̃k+1‖ = ‖Akx̃

k+1 − bk‖ − √σk
‖Akx̃k+1 − bk‖ ‖A†b− x̃k+1‖

(b)

≤ ‖Akx̃
k+1 − bk‖ − √σk√

σk
‖A†b− x̃k+1‖.

(3.12)

where (a) and (b) hold because ‖Akx̃k+1 − bk‖ > √σk. Finally, notice that

‖Akx̃k+1 − bk‖ − √σk ≤ ‖Akx̃k+1 − bk‖ − ‖ũk+1‖
≤ ‖Akx̃k+1 − bk − ũk+1‖ ≤ ǫk,

where the first inequality follows from ‖ũk+1‖ ≤ √σk (thanks to (3.4)) and the last inequality

holds because of (3.5). Combining this with (3.12) gives

‖xk+1 − x̃k+1‖ ≤ ǫk√
σk
‖A†b− x̃k+1‖ ≤ √ǫk‖A†b− x̃k+1‖ ≤M√ǫk,

where the second inequality holds because ǫk ≤ σk, and the last inequality holds with M :=

‖A†b‖+ supk ‖x̃k+1‖, which is finite thanks to item (i). This proves (ii).

(iii): Let {xkj} and {x̃kj+1} be two convergent subsequences of {xk} and {x̃k+1} respectively
such that limj→∞ xkj = x∗ and limj→∞ x̃kj+1 = x̄ for some x∗ and x̄ ∈ R

n. We will show that

|x̄| = |x∗|.
Suppose to the contrary that |x̄| 6= |x∗|, then

Ψ(|x̄|) < Ψ(|x∗|) +
n∑

i=1

ψ′
+(|x∗i |)(|x̄i| − |x∗i |) = Ψ(|x∗|) + lim

j→∞

n∑

i=1

ψ′
+(|x

kj
i |)(|x̃

kj+1
i | − |xkji |)

= Ψ(|x∗|) + lim
j→∞

n∑

i=1

ψ′
+(|x

kj
i |)(|x̃

kj+1
i | − |xkj+1

i |+ |xkj+1
i | − |xkji |)

≤ Ψ(|x∗|) + lim sup
j→∞

n∑

i=1

ψ′
+(|x

kj
i |)(|x̃

kj+1
i | − |xkj+1

i |) + lim sup
j→∞

n∑

i=1

ψ′
+(|x

kj
i |)(|x

kj+1
i | − |xkji |)

≤ Ψ(|x∗|), (3.13)

where the first inequality follows from the strict concavity of ψ, and the last inequality holds because

lim supj→∞
∑n

i=1 ψ
′
+(|x

kj
i |)(|x̃

kj+1
i |−|xkj+1

i |) = 0 (a consequence of items (i) and (ii), the continuity

of ψ′
+, and the fact that ǫk ↓ 0) and (3.6) (which gives

∑n
i=1 ψ

′
+(|x

kj
i |)(|x

kj+1
i | − |xkji |) ≤ µkj).

On the other hand, notice from limj→∞ x̃kj+1 = x̄ and item (ii) that limj→∞ xkj+1 = x̄. Then

limj→∞(Ψ(|x̃kj+1|)−Ψ(|xkj+1|)) = 0 by the continuity of Ψ. Moreover, we have

Ψ(|x∗|) = lim
j→∞

Ψ(|xkj |) = lim
j→∞

(Ψ(|xkj |) + Ψ(|x̃kj+1|)−Ψ(|xkj+1|)−Ψ(|x̃kj+1|) + Ψ(|xkj+1|))

= lim
j→∞

Ψ(|x̃kj+1|) + lim
j→∞

(Ψ(|xkj |)−Ψ(|xkj+1|)) − lim
j→∞

(Ψ(|x̃kj+1|)−Ψ(|xkj+1|))

= Ψ(|x̄|),

where we also used in the last equality the fact that {Ψ(|xk|)} is convergent (see item (i)). This

contradicts (3.13). Thus, we must have |x̄| = |x∗|. This completes the proof.

12

Remark 3.3 (Boundedness of some auxiliary sequences). Consider (1.2) under Assumptions 1.1

and 2.1. As an immediate consequence of Proposition 3.1(i), the sequences {wk}, {Ak}, {bk} and
{σk} generated by IRℓ1

ℓ2
are all bounded. In addition, the sequence {Akx̃k+1 − bk} is also bounded.

From (3.4), we see that for every k, there exists a ξk ∈ R
n with ‖ξk‖ ≤ ǫk such that

ξk ∈ wk ◦ ∂‖x̃k+1‖1 +ATkN‖·‖2≤σk
(ũk+1).

From the definition of normal cone and noting that σk > 0 (see Lemma 3.1), we deduce that there

exists a λ̃k ≥ 0 such that

ξk ∈ wk ◦ ∂‖x̃k+1‖1 + λ̃kA
T
k ũ

k+1 and λ̃k(‖ũk+1‖2 − σk) = 0. (3.14)

Moreover, if we define

ṽk+1 := Akx̃
k+1 − bk − ũk+1, (3.15)

then we see from (3.5) and the definition of ǫk that

‖ṽk+1‖ ≤ ǫk ≤ min{σk,
√
σk}. (3.16)

Furthermore, we can deduce from (3.14) and the definition of ṽk+1 that

x̃k+1 ∈ Argmin
{
(wk)T |x| − (ξk)Tx+ 0.5λ̃k(‖Akx− bk − ṽk+1‖2 − σk)

}
(3.17)

and

λ̃k(‖Akx̃k+1 − bk − ṽk+1‖2 − σk) = 0. (3.18)

The next theorem exploits the above observations to study properties of {λ̃k} and establish the

subsequential convergence of the sequence {xk} generated by IRℓ1
ℓ2
.

Theorem 3.1 (Subsequential convergence of IRℓ1
ℓ2
). Consider (1.2) under Assumptions 1.1 and

2.1. Let {xk} and {x̃k} be the sequences generated by IRℓ1
ℓ2

and let λ̃k be defined in (3.14). Then

the following statements hold.

(i) It holds that lim infk→∞ λ̃k > 0.

(ii) We have limk→∞ φ′+((bi − aTi xk)2)(aTi (x̃k+1 − xk)) = 0 for all i.

(iii) Every accumulation point x∗ of {xk} satisfies Φ((b −Ax∗) ◦ (b−Ax∗)) = σ.

(iv) The sequence {λ̃k} is bounded.

(v) Every accumulation point of {xk} is a stationary point of (1.2).

Proof. (i): Suppose to the contrary that lim infk→∞ λ̃k = 0. Then there exists a subsequence

{λ̃kj} of {λ̃k} such that λ̃kj → 0 with λ̃kj ≥ 0 for all j. Since {xk} and {x̃k} are bounded in view

of Proposition 3.1(i), by passing to further subsequences if necessary, we assume without loss of

generality that xkj → x∗ and x̃kj+1 → x̂ for some x∗ and x̂. Passing to the limit as j → ∞ in

(3.14) with kj in place of k, and recalling ǫk ↓ 0 and the boundedness of {ATk ũk+1} (see Remark 3.3

and note that ‖ũk+1‖2 ≤ σk), we obtain

0 ∈ Ψ′
+(|x∗|) ◦ ∂‖x̂‖1,

which means 0 ∈ ∂‖x̂‖1 since Ψ′
+(|x∗|) > 0. This implies that x̂ = 0. On the other hand, since

x̃kj+1 → x̂, we have from Proposition 3.1(ii) and ǫk ↓ 0 that limj→∞ xkj+1 = x̂. Since {xk} ⊆ F

13

(thanks to Lemma 3.1(ii)), 0 /∈ F and F is closed, we conclude that x̂ 6= 0, leading to a contradiction.

Therefore, we must have lim infk→∞ λ̃k > 0.

(ii): With ṽk+1 defined in (3.15) and noting (3.16), we have

∆k := [(ṽk+1)T (Akx
k − bk)]2 − ‖Akxk − bk‖2(‖ṽk+1‖2 − σk)

= (σk − ‖ṽk+1‖2)‖Akxk − bk‖2 + [(ṽk+1)T (Akx
k − bk)]2

≥ [(ṽk+1)T (Akx
k − bk)]2 ≥ 0.

(3.19)

Now, define

qk :=





(ṽk+1)T (Akx
k − bk) +√∆k

‖Akxk − bk‖2
if ‖Akxk − bk‖ > 0,

1 otherwise.

(3.20)

Then we see from (3.19) that qk is well defined and qk ≥ 0 for all k. Next, define

tk := min {1, qk} and x̂k := tkx
k + (1− tk)A†b. (3.21)

Then tk ∈ [0, 1] and we have

‖Akx̂k − bk − ṽk+1‖2 − σk
=‖Ak(tkxk + (1− tk)A†b)− (tkb

k + (1− tk)bk)− ṽk+1‖2 − σk
=‖tk(Akxk − bk) + (1− tk)(AkA†b− bk)− ṽk+1‖2 − σk
=‖tk(Akxk − bk)− ṽk+1‖2 − σk ≤ 0,

(3.22)

where the third equality follows from the fact AA†b = b and the definitions of Ak and bk, while

the inequality holds because of the definition of qk: indeed, if Akx
k− bk = 0, the inequality follows

directly from (3.16), while if Akx
k − bk 6= 0, the inequality holds true because qk is defined to be

the larger root of the quadratic function t 7→ ‖t(Akxk− bk)− ṽk+1‖2−σk. Moreover, we have from

(3.21) and the boundedness of {xk} (see Proposition 3.1(i)) that {x̂k} is also bounded.

Let J := {k : ‖Akxk − bk‖ > 0}. Then, writing ỹk := Akx
k − bk for notational simplicity, we

have from (3.19), (3.20) and the fact ǫk ↓ 0 that

lim inf
J∋k→∞

qk = lim inf
J∋k→∞

(ṽk+1)T (Akx
k − bk) +√∆k

‖Akxk − bk‖2

= lim inf
J∋k→∞

(ṽk+1)T ỹk +
√
(σk − ‖ṽk+1‖2)‖ỹk‖2 + [(ṽk+1)T ỹk]2

‖ỹk‖2
(a)

≥ lim inf
J∋k→∞

−‖ṽk+1‖‖ỹk‖+
√
(σk − ‖ṽk+1‖2)‖ỹk‖2 −

√
[(ṽk+1)T ỹk]2

‖ỹk‖2
(b)

≥ lim inf
J∋k→∞

−2‖ṽk+1‖‖ỹk‖+
√
σk − ‖ṽk+1‖2‖ỹk‖

‖ỹk‖2

= lim inf
J∋k→∞

−2‖ṽk+1‖+
√
σk − ‖ṽk+1‖2

‖ỹk‖
(c)

≥ lim inf
J∋k→∞

√
σk − 3‖ṽk+1‖
‖Akxk − bk‖

(d)

≥ lim inf
J∋k→∞

(1− 3
√
ǫk)

√
σk

‖Akxk − bk‖
= lim inf
J∋k→∞

√
σk

‖Akxk − bk‖
≥ 1,

where: (a) follows from the Cauchy-Schwartz inequality and the elementary relation that
√
a+ b ≥√

a −
√
b for all a, b ≥ 0, (b) follows from the Cauchy-Schwartz inequality, (c) follows from the

relation
√
a− b ≥ √a −

√
b for all a ≥ b ≥ 0, (d) holds because ǫk ≤ σk so that (3.16) implies

‖ṽk+1‖ ≤ ǫk =
√
ǫk
√
ǫk ≤

√
ǫk
√
σk, and the last inequality holds because ‖Akxk−bk‖2 ≤ σk, which

14

is a consequence of the definition of σk and the fact xk ∈ F (see Lemma 3.1(ii)). Consequently,

we can deduce from the definition of tk in (3.21) that limk→∞ tk = 1. This together with the

boundedness of {xk} (see Proposition 3.1(i)) yields

lim
k→∞

‖x̂k − xk‖ = lim
k→∞

‖tkxk + (1 − tk)A†b− xk‖ = 0. (3.23)

With the help of the auxiliary sequence {x̂k}, we are now ready to prove that

lim
k→∞

φ′+((bi − aTi xk)2)(aTi (x̃k+1 − xk)) = 0.

To this end, we note from (3.18) that

(wk)T |x̃k+1| − (ξk)T x̃k+1

= (wk)T |x̃k+1| − (ξk)T x̃k+1 + 0.5λ̃k(‖Akx̃k+1 − bk − ṽk+1‖2 − σk)
(a)

≤ (wk)T |x̂k| − (ξk)T x̂k + 0.5λ̃k(‖Akx̂k − bk − ṽk+1‖2 − σk)− 0.5λ̃k‖Akx̃k+1 −Akx̂k‖2
(b)

≤ (wk)T |x̂k| − (ξk)T x̂k − 0.5λ̃k‖Akx̃k+1 −Akx̂k‖2,

(3.24)

where (a) follows from (3.17) and convexity, and (b) follows from (3.22) and the fact that λ̃k ≥ 0.

Now, using the concavity of ψ and recalling the definition of {wk} in IRℓ1
ℓ2
, we have

Ψ(|xk+1|) ≤ Ψ(|xk|) + (wk)T (|xk+1| − |xk|)
= Ψ(|xk|) + (wk)T (|xk+1| − |x̃k+1|) + (wk)T (|x̃k+1| − |x̂k|) + (wk)T (|x̂k| − |xk|)
≤ Ψ(|xk|) + (wk)T (|xk+1| − |x̃k+1|) + (ξk)T (x̃k+1 − x̂k)− 0.5λ̃k‖Akx̃k+1 −Akx̂k‖2

+ (wk)T (|x̂k| − |xk|),

where the last inequality follows from (3.24). Upon rearranging terms in the above inequality, we

obtain further that

0.5λ̃k‖Akx̃k+1 −Akx̂k‖2 ≤ Ψ(|xk|)−Ψ(|xk+1|) + (wk)T (|xk+1| − |x̃k+1|)
+ (ξk)T (x̃k+1 − x̂k) + (wk)T (|x̂k| − |xk|).

(3.25)

Recall from Proposition 3.1(i) that {Ψ(|xk|)} is convergent. In addition, we have from the bounded-

ness of {x̂k} and {x̃k+1} (see (3.21) and Proposition 3.1(i)) and the fact limk→∞ ξk = 0 (see (3.14)

and note that ǫk ↓ 0) that limk→∞(ξk)T (x̃k+1 − x̂k) = 0. Thus, passing to the limit as k → ∞
on both sides of (3.25) and noting the boundedness of {wk} (see Remark 3.3), Proposition 3.1(ii),

item (i) and (3.23), we conclude that

lim
k→∞

‖Akx̃k+1 −Akx̂k‖2 = 0.

Invoking (3.23) again and noting that {Ak} is bounded (see Remark 3.3), we deduce further that

lim
k→∞

‖Akx̃k+1 −Akxk‖2 = 0.

This together with the definition of Ak further implies

lim
k→∞

√
φ′+((bi − aTi xk)2)(aTi (x̃k+1 − xk)) = 0 ∀i.

Finally, this relation together with the boundedness of {xk} and the continuity of φ′+ (and hence

the boundedness of {φ′+((bi − aTi xk)2)}) implies that

lim
k→∞

φ′+((bi − aTi xk)2)(aTi (x̃k+1 − xk)) = 0 ∀i.

15

(iii): Let x∗ be an arbitrary accumulation point of {xk} and let {xkj} be a convergent subse-

quence such that limj→∞ xkj = x∗. Since {x̃k} is bounded in view of Proposition 3.1(i), by passing

to a further subsequence if necessary, we assume without loss of generality that limj→∞ x̃kj+1 = x̄

for some x̄.

Then, for each i satisfying limj→∞ φ′+((bi − aTi xkj)2) = φ′+((bi − aTi x∗)2) > 0, we have from

item (ii) that

aTi (x̄− x∗) = lim
j→∞

aTi (x̃
kj+1 − xkj) = 0. (3.26)

Next, noting item (i), we assume without loss of generality that λ̃kj > 0 for all sufficiently large j.

Using this and (3.18), we deduce further that for all large j,

0 = ‖Akj x̃kj+1 − bkj − ṽkj+1‖2 − σkj
= ‖Akj x̃kj+1 − bkj‖2 − 2(ṽkj+1)T (Akj x̃

kj+1 − bkj) + ‖ṽkj+1‖2 − σkj .

Invoking the definition of σk, Ak and bk, we can rewrite the above relation as

0 = Φ(ykj ◦ ykj) +
m∑

i=1

{φ′+((bi − aTi xkj)2)[(bi − aTi x̃kj+1)2 − (bi − aTi xkj)2]} − σ

− 2(ṽkj+1)T (Akj x̃
kj+1 − bkj) + ‖ṽkj+1‖2.

Passing to the limit as j → ∞ in the above relation, we have upon noting limj→∞ ‖ṽkj+1‖2 = 0

(see (3.16)) and limj→∞(ṽkj+1)T (Akj x̃
kj+1 − bkj) = 0 (thanks to Remark 3.3) that

0 = Φ(y∗ ◦ y∗) +
m∑

i=1

{φ′+((bi − aTi x∗)2)[(bi − aTi x̄)2 − (bi − aTi x∗)2]} − σ, (3.27)

where y∗ := b−Ax∗. Now, if φ′+((bi−aTi x∗)2) = 0, then φ′+((bi−aTi x∗)2)[(bi−aTi x̄)2−(bi−aTi x∗)2] =
0 holds. Otherwise, if φ′+((bi−aTi x∗)2) > 0, then we still have φ′+((bi−aTi x∗)2)[(bi−aTi x̄)2− (bi−
aTi x

∗)2] = 0 from (3.26). Thus, we deduce further from (3.27) that Φ(y∗ ◦ y∗) = σ as desired.

(iv): Suppose to the contrary that {λ̃k} is unbounded. Then there exists a subsequence such

that λ̃kj > 0 for all j and limj→∞ λ̃kj = ∞. Since the sequences {xk} and {x̃k} are bounded

(thanks to Proposition 3.1(i)), by passing to further subsequences if necessary, we assume without

loss of generality that limj→∞ xkj = x∗ and limj→∞ x̃kj+1 = x̄ for some x∗ and x̄ ∈ R
n.

Dividing both sides of the inclusion in (3.14) by {λ̃kj}, we see that

ξkj

λ̃kj
∈ w

kj ◦ ∂‖x̃kj+1‖1
λ̃kj

+ATkj ũ
kj+1.

Note that ‖ξk‖ ≤ ǫk, {wk} is bounded in view of Remark 3.3, and the subdifferential of the ℓ1
norm is contained in the unit ℓ∞ norm ball. Since limj→∞ λ̃kj =∞, we have upon passing to the

limit on both sides of the above display that limj→∞ ATkj ũ
kj+1 = 0. We can further rewrite this

limit as

lim
j→∞

m∑

i=1

φ′+((bi − aTi xkj)2)(bi − aTi x̃kj+1)ai +ATkj ṽ
kj+1 = 0, (3.28)

where ṽk+1 is defined as in (3.15). Now, notice from (3.16) and the boundedness of the sequence

{ATkj} (thanks to Remark 3.3) that limj→∞ ATkj ṽ
kj+1 = 0. This together with (3.28) gives

lim
j→∞

m∑

i=1

φ′+((bi − aTi xkj)2)(bi − aTi x̃kj+1)ai = 0. (3.29)

16

Next, observe from item (ii) that

lim
j→∞

φ′+((bi − aTi xkj)2)(bi − aTi x̃kj+1)

= lim
j→∞

φ′+((bi − aTi xkj)2)(bi − aTi xkj) = φ′+((bi − aTi x∗)2)(bi − aTi x∗).

Combining the above display with (3.29), we obtain

m∑

i=1

φ′+((bi − aTi x∗)2)(bi − aTi x∗)ai = 0.

This leads to a contradiction because Proposition 2.1 asserts that the MFCQ holds for (1.2) and

we have from item (iii) that Φ((b−Ax∗)◦(b−Ax∗)) = σ. Therefore, the sequence {λ̃k} is bounded.
(v): Let x∗ be an arbitrary accumulation point of {xk} and let {xkj} be a subsequence such

that limj→∞ xkj+1 = x∗. Then we see from Proposition 3.1(ii) that

lim
j→∞

x̃kj+1 = x∗. (3.30)

Moreover, since {xk} is bounded in view of Proposition 3.1(i), by passing to a further subsequence

if necessary, we assume that

lim
j→∞

xkj = x̄ (3.31)

for some x̄ ∈ R
n. Then both x∗ and x̄ are accumulation points of {xk}. Furthermore, since {λ̃k}

is a nonnegative sequence and is bounded in view of item (iv), by passing to a further subsequence

if necessary, we assume without loss of generality that limj→∞ λ̃kj = λ∗ for some λ∗ ≥ 0. Then

we see immediately from item (iii) that

Φ((b−Ax∗) ◦ (b−Ax∗)) ≤ σ and λ∗(Φ((b −Ax∗) ◦ (b−Ax∗))− σ) = 0,

which means that both (2.3) and (2.4) hold with (x∗, λ∗) (and hence (x∗, λ∗/2)) in place of (x, λ).

Thus, to complete the proof, it remains to show that (x∗, λ∗/2) satisfies (2.5) in place of (x, λ). To

this end, we first observe from item (ii) that

lim
j→∞

φ′+((bi − aTi xkj)2)(bi − aTi x̃kj+1) = lim
j→∞

φ′+((bi − aTi xkj)2)(bi − aTi xkj) ∀i.

Let I := {i : φ′+((bi − aTi x̄)2) > 0}. If i ∈ I, we deduce immediately from the above display that

aTi x
∗ = aTi x̄. On the other hand, for those i /∈ I, we claim that φ′+((bi − aTi x∗)2) = 0. Suppose to

the contrary that φ′+((bi0 − aTi0x∗)2) > 0 for some i0 /∈ I. Then by the concavity of φ, we know

that (bi − aTi x̄)2 is a maximizer of φ for any i /∈ I and hence

φ((bi0 − aTi0x∗)2) < φ((bi0 − aTi0 x̄)2) and φ((bi − aTi x∗)2) ≤ φ((bi − aTi x̄)2) ∀i /∈ I ∪ {i0}.

Also, recall that φ((bi − aTi x∗)2) = φ((bi − aTi x̄)2) for all i ∈ I. Thus, we have

Φ((b −Ax∗) ◦ (b−Ax∗)) =
m∑

i=1

φ((bi − aTi x∗)2)

= φ((bi0 − aTi0x∗)2) +
∑

i6=i0,i/∈I
φ((bi − aTi x∗)2) +

∑

i∈I
φ((bi − aTi x∗)2)

= φ((bi0 − aTi0x∗)2) +
∑

i6=i0,i/∈I
φ((bi − aTi x∗)2) +

∑

i∈I
φ((bi − aTi x̄)2)

≤ φ((bi0 − aTi0x∗)2) +
∑

i6=i0,i/∈I
φ((bi − aTi x̄)2) +

∑

i∈I
φ((bi − aTi x̄)2)

< φ((bi0 − aTi0 x̄)2) +
∑

i6=i0
φ((bi − aTi x̄)2) = Φ((b −Ax̄) ◦ (b−Ax̄)).

17

Since both x∗ and x̄ are accumulation points of {xk}, the above display contradicts item (iii). Thus,

we have shown that,

{
aTi x

∗ = aTi x̄ if φ′+((bi − aTi x̄)2) > 0,

φ′+((bi − aTi x̄)2) = φ′+((bi − aTi x∗)2) = 0 otherwise.
(3.32)

Also, with ṽk+1 defined as in (3.15), one can notice from (3.16) and the boundedness of the sequence

{ATkj} (thanks to Remark 3.3) that

lim
j→∞

ATkj ṽ
kj+1 = 0. (3.33)

Finally, we deduce from (3.14), (3.15), and the definitions of {wk} and {Ak} in Algorithm 1 that

ξkj ∈ wkj ◦ ∂‖x̃kj+1‖1 + λ̃kjA
T
kj (Akj x̃

kj+1 − bkj − ṽkj+1)

= Ψ′
+(|xkj |) ◦ ∂‖x̃kj+1‖1 − λ̃kj

(
m∑

i=1

φ′+((bi − aTi xkj)2)(bi − aTi x̃kj+1)ai +ATkj ṽ
kj+1

)

= Ψ′
+(|x̃kj+1|+ δkj) ◦ ∂‖x̃kj+1‖1 − λ̃kj

(
m∑

i=1

φ′+((bi − aTi xkj)2)(bi − aTi x̃kj+1)ai +ATkj ṽ
kj+1

)
,

where δkj := |xkj | − |x̃kj+1|, with δkj → 0 as j →∞ in view of Proposition 3.1(iii). Passing to the

limit as j → ∞ in the above display and noting (3.30), (3.31), λ̃kj → λ∗, (3.32), (3.33) and the

closedness of subdifferential, we conclude that (2.5) holds with (x∗, λ∗/2) in place of (x, λ). This

completes the proof.

4 Subproblem solvers and termination criteria

Recall from Remark 3.1 that the feasible set of (3.3) is nonempty and the Slater condition holds.

Moreover, it holds that wki > 0 for each k and i in view of Assumption 1.1. Thus, the optimal

solution set of the subproblem (3.3) is nonempty for each k, and we have in view of [33, Corol-

lary 28.2.1, Theorem 28.3] that a Lagrange multiplier exists for this problem. Consequently, the

subproblem (3.3) can be approximately solved by a wide range of first-order methods; see, for

example, [3, 5, 30] and references therein.

In this section, we will discuss two specific methods for solving subproblem (3.3) for each k,

namely the alternating direction method of multipliers (ADMM) and SPGL1. Moreover, we will

investigate how a tuple (x̃k+1, ũk+1) satisfying the inexact criteria (3.4), (3.5) and (3.6) can be

found by the subproblem solvers.

For notational convenience, for the rest of this section, we fix any k ≥ 0 and define

Ā := Ak, b̄ := bk, σ̄ :=
√
σk, v̄ := vk, w̄ := wk (4.1)

so that we can rewrite the corresponding subproblem (3.3) simply as

min
x∈Rn

‖w̄ ◦ x‖1
s.t. ‖b̄− Āx‖ ≤ σ̄.

(4.2)

4.1 Alternating direction method of multipliers

Alternating direction method of multipliers (ADMM) is a classical method for minimizing the sum

of two proper closed convex functions whose variables are coupled only by a linear constraint;

18

see [8, 18] and references therein for more discussions. This method is also the basis for the solver

YALL1 [37] for problems of the form (4.2). A basic form of ADMM applied to solving (4.2) can

be described as follows: Initialize at some suitable (x̄0, ū0, λ̄0) and compute for l = 0, 1, 2, . . .,




x̄l+1 ∈ Argmin
x∈Rn

{
Lβ(x, ū

l; λ̄l) +
1

2
(x − x̄l)T (λ̃I − βĀT Ā)(x − x̄l)

}
, (4.3a)

ūl+1 ∈ Argmin
u∈Rm

{
Lβ(x̄

l+1, u; λ̄l)
}
, (4.3b)

λ̄l+1 = λ̄l − γβ(Āx̄l+1 − b̄− ūl+1), (4.3c)

where β > 0, γ ∈ (0, 1+
√
5

2), λ̃ > 0 satisfies λ̃I − βĀT Ā � 0, and Lβ is the augmented Lagrangian

function defined by

Lβ(x, u;λ) = ‖w̄ ◦ x‖1 + δ‖·‖≤σ̄(u)− λT (Āx− b̄− u) +
β

2
‖Āx− b̄− u‖2.

Notice that the x̄-update and ū-update in (4.3a) and (4.3b) have closed form solutions in terms of

the soft-thresholding operator [4] and the projection onto the Euclidean norm ball of radius σ̄ > 0,

respectively. Moreover, in view of the positivity of w̄i as guaranteed by Assumption 1.1 and the

Slater’s condition discussed in Remark 3.1, we deduce from [18, Theorem B.1] that the sequence

{x̄l, ūl, λ̄l} is well-defined, {x̄l} converges to an optimal solution x̄∗ of (4.2), and furthermore,

‖λ̄l − λ̄l+1‖ → 0, ‖x̄l+1 − x̄l‖ → 0, ‖ūl+1 − ūl‖ → 0 and ‖w̄ ◦ x̄l‖1 → ‖w̄ ◦ x̄∗‖1 as l→∞. (4.4)

We now argue that the criteria (3.4), (3.5) and (3.6) can be achieved with (x̃k+1, ũk+1) =

(x̄l+1, ūl+1) for some large enough l (depending on k). To this end, observe from the optimality

conditions of the minimization problems (4.3a) and (4.3b) that




0 ∈ w̄ ◦ ∂‖x̄l+1‖1 − ĀT λ̄l + βĀT (Āx̄l+1 − b̄− ūl) + (λ̃I − βĀT Ā)(x̄l+1 − x̄l),
0 ∈ N‖·‖≤σ̄(ū

l+1) + λ̄l − β(Āx̄l+1 − b̄− ūl+1),

λ̄l+1 − λ̄l = −γβ(Āx̄l+1 − b̄− ūl+1).

This implies that
{
−βĀT (ūl+1 − ūl)− (λ̃I − βĀT Ā)(x̄l+1 − x̄l) ∈ w̄ ◦ ∂‖x̄l+1‖1 + ĀTN‖·‖≤σ̄(ū

l+1), (4.5)

λ̄l+1 − λ̄l = −γβ(Āx̄l+1 − b̄− ūl+1). (4.6)

Combining (4.4), (4.5) and (4.6) and recalling that ǫk > 0, we deduce that for all sufficiently large

l,

dist(0, w̄ ◦ ∂‖x̄l+1‖+ ĀTN‖·‖≤σ̄(ū
l+1))

≤ ‖ − βĀT (ūl+1 − ūl)− (λ̃I − βĀT Ā)(x̄l+1 − x̄l)‖ ≤ ǫk (4.7)

and

‖Āx̄l+1 − b̄− ūl+1‖ = (γβ)−1‖λ̄l − λ̄l+1‖ ≤ ǫk, (4.8)

which means that the pair (x̄l+1, ūl+1) satisfies the criteria (3.4) and (3.5) (in place of (x̃k+1, ũk+1))

for all sufficiently large l. As for criterion (3.6), note that µk > 0 and we have liml→∞ ‖w̄ ◦
Pk(x̄

l+1)‖1 = ‖w̄ ◦ x̄∗‖1 in view of (4.4), the fact that {x̄l} converges to an optimal solution x̄∗ of

(4.2), and the definition of Pk in (3.7). Thus, we also have for all large l that

‖w̄ ◦ Pk(x̄l+1)‖1 < ‖w̄ ◦ x̄∗‖1 + µk ≤ ‖w̄ ◦ xk‖1 + µk,

where the second inequality holds because xk is feasible for (4.2) and x̄∗ is an optimal solution of

(4.2). Hence, the criterion (3.6) is also satisfied by (x̄l+1, ūl+1) (in place of (x̃k+1, ũk+1)) for all

large enough l.

19

4.2 Spectral projected-gradient algorithm for L1 minimization

SPGL1 [6] is a standard solver for problems of the form (4.2). The basic idea behind SPGL1 is a

root-finding procedure for the following nonsmooth equation

ϕ(τ) = σ̄, where ϕ(τ) := inf
‖w̄◦x‖1≤τ

‖Āx− b̄‖. (4.9)

Notice that ‖b̄‖ > σ̄ (because 0 is not feasible for (1.2) and hence is also not feasible for (4.2)),

σ̄ > 0 (see Lemma 3.1) and ϕ(‖w̄ ◦ (A†b)‖1) = 0. One can seen from [6, Section 2] that the optimal

value of (4.2), denoted by τσ̄, is the unique solution of the above equation. In each iteration of the

SPGL1, the function ϕ and its gradient are approximately evaluated at the currently available τ

value, and the Newton’s method (with inexact gradient and function value) is applied to solving

the above equation. Specifically, starting with a τ0 = 0, for each l = 0, 1, 2, . . ., one computes

τl+1 = τl +
σ̄ − ϕ̃l(τl)
ϕ̃′
l(τl)

, (4.10)

where ϕ̃l(τl) and ϕ̃
′
l(τl) are approximations of ϕ(τl) and ϕ

′(τl), respectively, that are constructed to

satisfy technical assumptions such as the affine minorant oracles in [1, Algorithm 2.2] (see also [6,

Section 3.1]); specifically, their constructions are based on a “sufficiently accurate” approximate

solution of the following optimization problem

min
‖w̄◦x‖1≤τl

‖b̄− Āx‖, (4.11)

which is solved approximately by the spectral projected-gradient (SPG) method described in [6,

Algorithm 1]. From [1, Theorem 2.3] (see also [6, Section 3]) and recalling ‖b̄‖ > σ̄, we know that

the sequence {τl} generated from (4.10) converges to τσ̄, the unique solution of (4.9). Moreover,

since σ̄ > 0 in view of Lemma 3.1, we can deduce from [6, Theorem 2.1] (see also the discussion at

the beginning of [6, Section 3]) that

lim
l→∞

ϕ(τl) = σ̄ and lim
l→∞

τl = τσ̄ < τBP , (4.12)

where τBP > 0 is the smallest positive root of ϕ. Furthermore, we also have τσ̄ > 0 because

ϕ(0) = ‖b̄‖ > σ̄. The above observations show that there exists l0 > 0 such that

ϕ(τl) > 0 and τl > 0 ∀l ≥ l0. (4.13)

We next argue that the criteria (3.4), (3.5) and (3.6) can be achieved when l is sufficiently large

based on sufficiently accurate solutions of (4.11); note that we may need more accurate solutions

than those used for constructing ϕ̃l and ϕ̃′
l (and hence τl+1) above. To this end, we first recall

some facts concerning the SPG method used for solving (4.11). Recall from [6, Algorithm 1] that

the SPG method can be described as follows: For each l, we initialize x̄l,0 suitably and compute,

for t = 0, 1, 2, . . .,

x̄l,t+1 ∈ Argmin
‖w̄◦x‖1≤τl

1

2
‖x− (x̄l,t + αl,tĀ

T (b̄− Āx̄l,t))‖2, (4.14)

where αl,t ∈ (0, αmax] is found by backtracking starting from “uniformly positive” initial stepsizes

to satisfy an Armijo-type nonmonotone linesearch condition, with αmax being a fixed positive

parameter. It is standard to show that inft,l αl,t ≥ αmin for some positive constant αmin; see, for

example, [35, Lemma 5(b)]. Based on the existence of such a lower bound on {αl,t}, one can further

show that for each l,

lim
t→∞

‖x̄l,t+1 − x̄l,t‖ = 0; (4.15)

20

see, for example, [26, Lemma 3.8]. Moreover, one has from [7, Theorem 2.4] that any accumulation

point of {x̄l,t} (as a sequence in t) is a global minimizer of (4.11). In view of this and (4.9), we

have for each l,

lim
t→∞

‖Āx̄l,t+1 − b̄‖ = ϕ(τl). (4.16)

Now, from the first-order optimality condition of (4.14), we deduce for each l ≥ l0 (recall that

l0 is given in (4.13)) and each t ≥ 0 that

0 ∈ x̄l,t+1 − x̄l,t + αl,tĀ
T (Āx̄l,t − b̄) +NCl

(x̄l,t+1),

where Cl := {x : ‖w̄ ◦ x‖1 ≤ τl}. Since αl,t ≥ αmin > 0, we further have

0 ∈ 1

αl,t
(x̄l,t+1 − x̄l,t) + ĀT (Āx̄l,t − b̄) +NCl

(x̄l,t+1).

Since τl > 0 in view of (4.13) and l ≥ l0, the above display together with Theorem 1.3.5 in [21,

Section D] further implies that there exists a λl,t ≥ 0 such that

0 ∈ 1

αl,t
(x̄l,t+1 − x̄l,t) + ĀT (Āx̄l,t − b̄) + λl,tw̄ ◦ ∂‖x̄l,t+1‖1 and λl,t(‖w̄◦x̄l,t+1‖1−τl) = 0. (4.17)

Using the first relation in (4.17) and recalling that αl,t ∈ [αmin, αmax], we deduce that for all t,

dist(0, λl,tw̄ ◦ ∂‖x̄l,t+1‖1 + ĀT (Āx̄l,t+1 − b̄))
≤ ‖α−1

l,t (x̄
l,t − x̄l,t+1) + ĀT Ā(x̄l,t+1 − x̄l,t)‖ ≤ M̂‖x̄l,t+1 − x̄l,t‖,

where M̂ := λmax(Ā
T Ā) + α−1

min. The above display together with (4.15) implies that for each

l ≥ l0,
lim
t→∞

dist(0, λl,tw̄ ◦ ∂‖x̄l,t+1‖1 + ĀT (Āx̄l,t+1 − b̄)) = 0. (4.18)

We are now ready to show that the criteria (3.4), (3.5) and (3.6) can be achieved.

• On criterion (3.4): Let ūl,t+1 denote a projection of Āx̄l,t+1− b̄ onto the sphere {x : ‖x‖ =
σ̄}. Then from (4.12) and (4.16), we deduce that there exists l1 such that for all l ≥ l1, there
exists sl such that

‖Āx̄l,t+1 − b̄− ūl,t+1‖ < ǫk ∀t ≥ sl.
This shows that (3.4) is satisfied by (x̄l,t+1, ūl,t+1) (in place of (x̃k+1, ũk+1)) for all large l

and the correspondingly large t.

• On criterion (3.5): We start by noting from (4.12), (4.16), (4.18) and the definition of ul,t+1

that

lim
l→∞

lim
t→∞

dist(0, λl,tw̄ ◦ ∂‖x̄l,t+1‖1 + ĀT ūl,t+1) = 0. (4.19)

We next derive a uniform lower bound on the magnitude of {λl,t} for all large l and all

correspondingly large t. To this end, given any l ≥ l0, upon rearranging terms in the first

relation in (4.17) and noting that ∂‖ · ‖1 is contained in the infinity norm ball of radius 1, we

obtain the following lower bound for |λl,t| whenever l ≥ l0:

|λl,t| ≥
1

max1≤i≤n w̄i

∥∥∥∥
1

αl,t
(x̄l,t+1 − x̄l,t) + ĀT (Āx̄l,t − b̄)

∥∥∥∥
∞
.

21

Hence, in view of (4.15) and recalling that αl,t ∈ [αmin, αmax], we have

Λ := lim inf
l→∞

lim inf
t→∞

|λl,t| ≥
1

max1≤i≤n w̄i
lim inf
l→∞

lim inf
t→∞

∥∥ĀT (Āx̄l,t − b̄)
∥∥
∞

≥ 1

nmax1≤i≤n w̄i
lim inf
l→∞

lim inf
t→∞

∥∥ĀT (Āx̄l,t − b̄)
∥∥

(a)
=

1

nmax1≤i≤n w̄i
lim inf
l→∞

lim inf
t→∞

∥∥ATDiag(v̄)(Āx̄l,t − b̄)
∥∥

≥
√
λmin(AAT)

nmax1≤i≤n w̄i
lim inf
l→∞

lim inf
t→∞

∥∥Diag(v̄)(Āx̄l,t − b̄)
∥∥

(b)

≥
√
λmin(AAT)

nmax1≤i≤n w̄i
· min
v̄i>0

v̄i · lim inf
l→∞

lim inf
t→∞

∥∥Āx̄l,t − b̄
∥∥ > 0,

where (a) holds because Ā = Diag(v̄)A (see (4.1) and Step 1 of IRℓ1
ℓ2
), (b) holds because

Ā = Diag(v̄)A and b̄ = Diag(v̄)b, and the last strict inequality follows from the facts that A

has full row rank (Assumption 1.1(iii)) and that liml→∞ limt→∞ ‖Āx̄l,t− b̄‖ = σ̄ > 0, thanks

to (4.12), (4.15) and (4.16). Thus, there exists l2 ≥ l0 such that for all l ≥ l2, there exists γl
such that whenever t ≥ γl, we have

λl,t ≥ Λ/2 > 0. (4.20)

Equipped with this lower bound, we can now invoke (4.19) to deduce the existence of l3 ≥ l2
such that for all l ≥ l3, there exists ζl ≥ γl such that whenever t ≥ ζl, we have

dist(0, λl,tw̄ ◦ ∂‖x̄l,t+1‖1 + ĀT ūl,t+1) ≤ Λǫk/2 ≤ λl,tǫk.

This shows that

dist(0, w̄ ◦ ∂‖x̄l,t+1‖1 + λ−1
l,t Ā

T ūl,t+1) ≤ ǫk.
The above display together with the normal cone formula in Theorem 1.3.5 of [21, Section D]

and the fact that ‖ūl,t+1‖ = σ̄ > 0 shows that (3.5) is satisfied by (x̄l,t+1, ūl,t+1) (in place of

(x̃k+1, ũk+1)) for all l ≥ l3 and t ≥ ζl.

• On criterion (3.6): We note from (4.20), (4.12) and (4.17) that

lim
l→∞

lim
t→∞

‖w̄ ◦ x̄l,t+1‖1 = τσ̄.

Moreover, we see from (4.12) and (4.16) that

lim
l→∞

lim
t→∞

‖Āx̄l,t+1 − b̄‖ = σ̄.

Using the above two displays, the definition of Pk in (3.7) and the positivity of µk, we deduce

that the criterion (3.6) is also satisfied by (x̄l,t+1, ūl,t+1) (in place of (x̃k+1, ũk+1)) for all

sufficiently large l and all correspondingly large t.

Remark 4.1. For SPGL1, as discussed above, theoretically, a tuple satisfying the criteria (3.4),

(3.5) and (3.6) exists. However, for each subproblem instance, it can be difficult to estimate the

thresholds for l and t, and other parameters of the solver might need to be carefully adjusted as well

to obtain such a tuple efficiently. In our numerical experiments in the next section, we will simply

treat SPGL1 as a black-box solver with its default parameter settings, and invoke the adjustment

discussed in Remark 3.2. We will give more details in the next section.

22

5 Numerical experiments

In this section, we perform numerical experiments to study the behavior of IRℓ1
ℓ2
. Specifically, we

consider the following constrained optimization problem

min
x∈Rn

∑n
i=1 log(1 + |xi|/ǫ)

s.t.
∑m
i=1 log(1 + (bi − aTi x)2/δ2) ≤ σ,

(5.1)

where m ≪ n, ǫ > 0, δ > 0, b ∈ R
m, σ ∈ (0,

∑m
i=1 log(1 + b2i /δ

2)), and {a1, . . . , am} is linearly

independent. The above model is a special case of (1.2) with A being a matrix with its ith-row

being aTi for all i, and ψ and φ being the log-penalty and Cauchy loss functions, respectively; recall

that these ψ and φ satisfy Assumption 1.1 as mentioned in Section 1). Notice that Assumption 2.1

also holds because φ̄ = ∞ in this case. Then we see from Theorem 3.1 that every accumulation

point of the sequence {xk} generated by IRℓ1
ℓ2

is a stationary point of (5.1).

As a benchmark, we also consider solving (5.1) using the SCPls in [41]. Specifically, we rewrite

(5.1) into the following form:

min
x∈Rn

F (x) := lψ

m∑

i=1

|xi| −
(

m∑

i=1

[lψ|xi| − ψ(|xi|)]
)

+ δ∑m
i=1

φ((bi−aTi ·)2)≤σ(x), (5.2)

where lψ := limt↓0 ψ′(t), and we recall that ψ and φ are the log-penalty and Cauchy loss function

as in (5.1) respectively. Writing P1(x) := lψ
∑m

i=1 |xi|, P2(x) :=
∑m
i=1[lψ|xi| − ψ(|xi|)] and g(x) :=∑m

i=1 φ((bi − aTi x)
2) − σ for notational simplicity, one can see that P1 and P2 are convex and

continuous on R
n, and g has Lipschitz continuous gradient. Moreover, the level-boundedness

of ψ implies that of F , and we also have {x : g(x) ≤ 0} 6= ∅ since A has full row rank and

σ ∈ (0,
∑m

i=1 log(1 + b2i /δ
2)). Finally, since φ̄ = ∞, we deduce from Proposition 2.1 that the

MFCQ holds. Thus, one can apply the SCPls in [41] with f = 0 and the P1, P2 and g defined above,

and [41, Theorem 3.2] guarantees that any accumulation point of the sequence {xk} generated by

SCPls is stationary in the sense of [41, Definition 2.2].

In our experiments below, we solve (5.1) by SCPls and a version of IRℓ1
ℓ2

with its subproblems

approximately solved by ADMM (see Section 4.1 for discussions of ADMM). We refer to this latter

algorithm as IRℓ1
ℓ2ADMM. We also consider a variant of IRℓ1

ℓ2
where the subproblems are solved by

SPGL1 with default parameters (see Section 4.2 for discussions of SPGL1) such that (3.4), (3.5)

and (3.6) may not be satisfied. We refer to this algorithm as vIRℓ1
ℓ2SPGL1. Our codes are written

in MATLAB and all numerical experiments are conducted in MATLAB 2019b on a 64-bit PC with

an Intel Core i7-6700 CPU (3.40GHz) and 32GB of RAM.

Parameter settings: For IRℓ1
ℓ2ADMM and vIRℓ1

ℓ2SPGL1, we set L = λmax(AA
T).2 We initialize

both algorithms at xfeas := A†b, where A†b is computed via the MATLAB commands:

[Q,R] = qr(A’,0); xfeas = Q*(R’\b);

and terminate them when the stopping criterion ‖xk+1−xk‖
max{‖xk‖,1} ≤ 10−4 is satisfied.3

• IRℓ1
ℓ2ADMM: We let τk = max{5−k−1, 10−8} and µk = max{1.2−k−1, 10−8} for IRℓ1

ℓ2ADMM.

Its subproblem solver is based on ADMM in Section 4.1. Using the notation in Section 4.1,

2In our numerical experiment, L = λmax(AAT) is computed using the MATLAB commands: if m > 2000

opts.issym = 1; L = eigs(A*A’,1,’LM’,opts); else L = norm(A*A’); end.
3It is indeed not known whether limk→∞ ‖xk+1 − xk‖ = 0 for the sequence {xk} generated by these algorithms.

We use this criterion as a heuristic and it appears to work well.

23

we set γ = 0.99(1+
√
5)

2 , β = L̄− 1
2 and λ̃ = L̄β, where L̄ := max

i
{φ′+((bi − aTi xk)2)}L. With

this choice of L̄, one can see from the definition of Ā in (4.1) that L̄ ≥ λmax(Ā
T Ā), and thus

λ̃I − βĀT Ā = β(L̄I − ĀT Ā) � 0.

We initialize the ADMM at x̄0 = 0, ū0 = 0, λ̄0 = 0 when k = 0, and at each (outer) iteration

k, we warm-start it using the (x̄l, ūl, λ̄l) obtained from the previous (outer) iteration. As for

termination, following the discussion in Section 4.1 (see especially (4.7) and (4.8)), for each

k ≥ 0, we terminate the ADMM when all of the following three conditions are satisfied:

‖ − βĀT (ūl+1 − ūl)− (λ̃I − βĀT Ā)(x̄l+1 − x̄l)‖ ≤ min{ǭk, τkΓ̄l},

‖λ̄l − λ̄l+1‖ ≤ γβmin{ǭk, τk(‖λ̄l+1‖+ 1)},
and

‖w̄ ◦ Pk(x̄l+1)‖1 ≤ ‖w̄ ◦ xk‖1 + µk,

where ǭk = min{σk,
√
σk} and Γ̄l := β‖ĀT ūl+1 + (L̄I − ĀT Ā)x̄l+1‖ + 1. We then set

(x̃k+1, ũk+1) := (x̄l+1, ūl+1).

• vIRℓ1
ℓ2SPGL1: We call the spg-bpdn function from the source code of SPGL1 for solving the

subproblems.4 We use the default parameters and termination criteria of this solver. As the

point x̆k+1 generated by SPGL1 may violate the constraint slightly, we apply the function

Pk(·) in (3.7) and set xk+1 = Pk(x̆
k+1). From Remark 3.2, this variant of IRℓ1

ℓ2
(where the

criteria (3.4), (3.5) and (3.6) may be violated) is well defined.5

For SCPls, we use a terminating tolerance of 10−5 instead of the 10−8 used in [41, Section 5.3],

and the other parameter settings and subproblem solver are the same as described in [41, Sec-

tion 5.3].

Test instances: We consider randomly generated problems in our experiments below. We first

generate an m × n matrix A with i.i.d standard Gaussian entries. We then randomly choose a

support set S of size s from {1, 2, . . . , n} and generate an s-sparse vector xorig ∈ R
n with i.i.d.

standard Gaussian entries on S. We further set b = Axorig + 0.01η, where η ∈ R
m has i.i.d.

standard Cauchy entries. Finally, we let σ = 1.2
∑m
i=1 log(1 + (0.01ηi)

2/δ2), with δ = 0.05.

Numerical results: In our numerical experiments, we set ǫ = 0.1 in (5.1) and choose (m,n, s) =

(540i, 2560i, 80i) with i = {2, 4, 6, 8, 10}. For each i, we generate 30 random instances as described

above and report in Table 2 the average value of L (L), the average CPU time (in seconds) for

generating L (TimeL) and A
†b (Timeslater), and the average CPU time (in seconds) for computing

QR decomposition of AT (TimeQR). Then, in Table 3, we present the computational results

for IRℓ1
ℓ2ADMM, vIRℓ1

ℓ2SPGL1 and SCPls. These computational results include the average total

number of (inner) iterations (Iters),
6 the average CPU time in seconds (CPUs) and the average

recovery error (RecErrs) among the successful instances; here, we declare the random instance to

be successfully solved if recovery error :=
‖ζk−xorig‖

max{‖xorig‖,1} ≤ 0.01, where k is the terminating iteration

and

ζk :=

{
x̃k for IRℓ1

ℓ2ADMM and vIRℓ1
ℓ2SPGL1,

xk for SCPls.

4The codes were downloaded from https://github.com/mpf/spgl1.
5Nevertheless, there is no guarantee that the {xk} thus generated will cluster at a stationary point of (5.1). We

include this version in our experiment as a demonstration of how our framework can be used when only a black-box

subproblem solver is available.
6For fair comparison, we report the total number of inner iterations for IR

ℓ1

ℓ2
ADMM and vIR

ℓ1

ℓ2
SPGL1, i.e., the

total number of iterations used by the subproblem solvers to solve the subproblems.

24

We also report the corresponding data for failed cases, which are denoted by Iterf , CPUf and

RecErrf, respectively. Furthermore, we list the success rate (Success), and the maximum and

minimum values of the residual (Resmax and Resmin) at termination, where

residual :=
1

σ

(
m∑

i=1

log(1 + (bi − aTi ζk)2/δ2)− σ
)
.

One can see from the computational results in Table 3 that IRℓ1
ℓ2ADMM and vIRℓ1

ℓ2SPGL1 can return

solutions of (5.1) with better recovery errors, and are always faster than SCPls.

Table 2: The value of L, the CPU time needed for generating L and A†b and for computing QR

decomposition of AT

i L TimeL TimeQR Timeslater

2 1.08e+04 0.2 0.3 0.0

4 2.18e+04 0.6 1.6 0.0

6 3.27e+04 1.7 5.0 0.0

8 4.36e+04 3.7 12.0 0.1

10 5.44e+04 6.6 20.8 0.1

Table 3: Comparison of the performance of IRℓ1
ℓ2ADMM, vIRℓ1

ℓ2SPGL1 and SCPls

i IR
ℓ1

ℓ2
ADMM

Success(%) Iters Iterf CPUs CPUf RecErrs RecErrf Resmin Resmax

2 100 4408 - 14.4 - 2.0e-03 - -3.7e-04 -4.3e-05

4 100 5254 - 77.6 - 1.4e-03 - -6.6e-04 -6.4e-05

6 100 5646 - 188.4 - 1.1e-03 - -8.6e-04 -1.0e-04

8 100 5927 - 351.3 - 9.9e-04 - -1.2e-03 -1.3e-04

10 100 6631 - 612.0 - 9.0e-04 - -1.4e-03 -1.2e-04

i vIR
ℓ1

ℓ2
SPGL1

Success(%) Iters Iterf CPUs CPUf RecErrs RecErrf Resmin Resmax

2 100 1566 - 10.4 - 2.0e-03 - -2.7e-04 3.5e-05

4 100 1873 - 48.2 - 1.4e-03 - -5.2e-04 -2.5e-06

6 100 1880 - 103.4 - 1.1e-03 - -7.7e-04 -6.2e-06

8 100 1910 - 186.8 - 9.9e-04 - -1.2e-03 -8.9e-05

10 100 1929 - 285.7 - 9.0e-04 - -1.3e-03 -3.8e-05

i SCPls

Success(%) Iters Iterf CPUs CPUf RecErrs RecErrf Resmin Resmax

2 100 12757 - 111.6 - 2.0e-03 - -1.5e-05 -9.0e-08

4 50 22347 8299 666.1 238.1 1.4e-03 8.1e-01 -3.2e-05 -2.4e-07

6 0 - 6533 - 380.6 - 8.4e-01 -5.3e-05 -2.1e-05

8 0 - 5070 - 507.1 - 8.5e-01 -6.1e-05 -2.6e-05

10 0 - 4529 - 693.3 - 8.6e-01 -7.1e-05 -3.9e-05

25

References

[1] A. Y. Aravkin, J. V. Burke, D. Drusvyatskiy, M. P. Friedlander and S. Roy. Level-set methods

for convex optimization. Math. Program., 174, pp. 359–390 (2019).

[2] J. T. Barron. A general and adaptive robust loss function. In: IEEE/CVF Conf. Comput.

Vis. Pattern Recognit., pp. 4331–4339 (2019).

[3] A. Beck. First-order Methods in Optimization. SIAM (2017).

[4] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse

problems. SIAM J. Imaging Sci., 2, pp. 183–202 (2009).

[5] S. Becker, E.J. Candès, and M.C. Grant. Templates for convex cone problems with applications

to sparse signal recovery. Math. Program. Comput., 3, pp. 165–218 (2011).

[6] E. van den Berg and M. P. Friedlander. Probing the pareto frontier for basis pursuit solutions.

SIAM J. Sci. Comput., 31, pp. 890–912 (2008).

[7] E. G. Birgin, J. M. Marétinez and M. Raydan. Nonmonotone spectral projected gradient

methods on convex sets. SIAM J. Optim., 10, pp. 1196–1211 (2000).

[8] S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein. Distributed optimization and statisti-

cal learning via the alternating direction method of multipliers. Found. Trends Mach. Learn.,

3, pp. 1–122 (2010).

[9] E. J. Candès and T. Tao. Decoding by linear programming. IEEE Trans. Inf. Theory 51, pp.

4203–4215 (2005).

[10] E. J. Candès, M. B. Wakin and S. P. Boyd. Enhancing sparsity by reweighted ℓ1 minimization.

J. Fourier Anal. Appl., 14, pp. 877–905 (2008).

[11] R. E. Carrillo, K. E. Barner and T. C. Aysal. Robust sampling and reconstruction methods

for sparse signals in the presence of impulsive noise. IEEE J. Sel. Topics Signal Process., 4,

pp. 392–408 (2010).

[12] R. E. Carrillo, A. B. Ramirez, G. R. Arce, K. E. Barner and B. M. Sadler. Robust compressive

sensing of sparse signals: a review. EURASIP J. Adv. Signal Process., 108, pp. 1–17 (2016).

[13] P. Charbonnier, L. Blanc-Feraud, G. Aubert and M. Barlaud. Deterministic edge-preserving

regularization in computed imaging. IEEE Trans. Image Process., 6, pp. 298–311 (1997).

[14] R. Chartrand. Exact reconstruction of sparse signals via nonconvex minimization. IEEE

Signal Process. Lett., 14, pp. 707–710 (2007).

[15] R. Chartrand and W. Yin. Iteratively reweighted algorithms for compressive sensing. In:

IEEE Int. Conf. Acoust. Speech Signal Process., pp. 3869–3872 (2008).

[16] P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward splitting.

Multiscale Model. Simul., 4, pp. 1168–1200 (2005).

[17] J. E. Dennis Jr. and R. E. Welsch. Techniques for nonlinear least squares and robust regression.

Commun. Statist.-Simula. Computa., 7, pp. 345–359 (1978).

[18] M. Fazel, T. K. Pong, D. Sun and P. Tseng. Hankel matrix rank minimization with applications

to system identification and realization. SIAM J. Matrix Anal. Appl., 34, pp. 946–977 (2013).

26

[19] S. Foucart and H. Rauhut. A Mathematical Introduction to Compressive Sensing. Springer,

New York (2013).

[20] S. Geman and D. E. McClure. Bayesian image analysis: An application to single photon

emission tomography. Proc. Statist. Comput. Sect. Amer. Stat. Assoc., pp. 12–18 (1985).

[21] J.-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of Convex Analysis. Springer, New

York (2001).

[22] P. J. Huber. Robust estimation of a location parameter. Ann. Math. Statist., 35, pp. 73–101

(1964).

[23] S. A. Kassam and H. V. Poor. Robust techniques for signal processing: a survey. Proc. IEEE,

73, pp. 433-481 (1985).

[24] H. A. Le Thi and P. D. Tao. DC programming and DCA: thirty years of developments. Math.

Program., 169, pp. 5–68 (2018).

[25] Z. Lu. Iterative reweighted minimization methods for lp regularized unconstrained nonlinear

programming. Math. Program., 147, pp. 277–307 (2014).

[26] Z. Lu and Y. Zhang. An augmented Lagrangian approach for sparse principal component

analysis. Math. Program., 135, pp. 149–193 (2012).

[27] F. Mosteller and J. W. Tukey. Data Analysis and Regression: a Second Course in Statistics.

Addison-Wesley, Sydney (1977).

[28] Y. Nesterov. A method for solving a convex programming problem with convergence rate

O(1/k2). Soviet Math. Dokl., 27, pp. 372–376 (1983).

[29] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Aca-

demic Publishers, Boston (2004).

[30] Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program., 103, pp. 127–152

(2005).

[31] M. Nikolova, M. K. Ng, S. Zhang and W.-K. Ching. Efficient reconstruction of piecewise

constant images using nonsmooth nonconvex minimization. SIAM J. Imaging Sci., 1, pp.

2–25 (2008).

[32] M. Riani, A. Cerioli, A. C. Atkinson and D. Perrotta. Monitoring robust regression. Electron.

J. Statist., 8, pp. 646–677 (2014).

[33] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, NJ. (1970).

[34] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis. Springer, Berlin (1998).

[35] P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth separable mini-

mization. Math. Program., 117, pp. 387–423 (2009).

[36] S. Villa, S. Salzo, L. Baldassarre and A. Verri. Accelerated and inexact forward-backward

algorithms. SIAM J. Optim., 23, pp. 1607–1633 (2013).

[37] J. Yang and Y. Zhang. Alternating direction algorithms for ℓ1-problems in compressive sensing.

SIAM J. Sci. Comput., 33, pp. 250–278 (2011).

27

[38] L. Yang and K.-C. Toh. Bregman proximal point algorithm revisited: A new inexact version

and its variants. Preprint (2020). Available at https://arxiv.org/abs/2105.10370.

[39] L. Yang and K.-C. Toh. An inexact Bregman proximal gradient method and its inertial

variants. Preprint (2021). Available at https://arxiv.org/abs/2109.05690.

[40] P. Yu and T. K. Pong. Iteratively reweighted ℓ1 algorithms with extrapolation. Comput.

Optim. Appl., 73, pp. 353–386 (2019).

[41] P. Yu, T. K. Pong and Z. Lu. Convergence rate analysis of a sequential convex programming

method with line search for a class of constrained difference-of-convex optimization problems.

SIAM J. Optim., 31, pp. 2024–2054 (2021).

[42] A. M. Zoubir, V. Koivunen, Y. Chakhchoukh and M. Muma. Robust estimation in signal

processing: a tutorial-style treatment of fundamental concepts. IEEE Signal Process. Mag.,

29, pp. 61–80 (2012).

28

	1 Introduction
	2 Notation and preliminaries
	3 Doubly iteratively reweighted algorithm
	3.1 Doubly iteratively reweighted algorithm with inexact subproblems

	4 Subproblem solvers and termination criteria
	4.1 Alternating direction method of multipliers
	4.2 Spectral projected-gradient algorithm for L1 minimization

	5 Numerical experiments

