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Abstract

This paper deals with Riemannian optimization on the unit sphere in terms of p-norm

with general p > 1. As a Riemannian submanifold of the Euclidean space, the geometry

of the sphere with p-norm is investigated, and several geometric tools used for Rieman-

nian optimization, such as retractions and vector transports, are proposed and analyzed.

Applications to Riemannian optimization on the sphere with nonnegative constraints and

Lp-regularization-related optimization are also discussed. As practical examples, the for-

mer includes nonnegative principal component analysis and the latter is closely related

to the Lasso regression and box-constrained problems. Numerical experiments verify that

Riemannian optimization on the sphere with p-norm has substantial potential for such

applications, and the proposed framework provides a theoretical basis for such optimiza-

tion.

Keywords: p-norm, Sphere, Riemannian optimization, Nonnegative PCA, Lasso regression,
Box-constrained optimization

1 Introduction

In the Euclidean space R
n, the p-norm of a vector a ∈ R

n whose ith element is ai ∈ R is
defined by

‖a‖p := p

√

√

√

√

n
∑

i=1

|ai|p, (1)

where p ≥ 1 is a real value. When p = ∞, the ∞-norm, or maximum norm, is defined by

‖a‖∞ := max {|a1|, |a2|, . . . , |an|} . (2)

In optimization and related fields, discussions are usually based on the 2-norm. The 1-norm
is also important in, e.g., Lasso regression for sparse estimation [7]. Furthermore, for x ∈ R

n,
the constraint ‖x‖∞ ≤ c for some c ≥ 0 is equivalent to the box constraint −c ≤ xi ≤ c for all
elements xi of x.
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Riemannian Optimization on Unit Sphere with p-norm

For p ≥ 1 or p = ∞, we define the unit sphere with p-norm in R
n as

Sn−1
p := {x ∈ R

n | ‖x‖p = 1}. (3)

A particularly important and well-studied example is the case of p = 2, which reduces to the
standard (hyper)sphere Sn−1

2 = {x ∈ R
n | ‖x‖2 = 1} in the sense of the Euclidean norm. In

terms of optimization, as we discuss in Section 7, the case of p = 2p′ can be used to implicitly
impose the nonnegativity constraints on x ∈ Sn−1

p′ . A practical example of this is the case

of p = 4 and p′ = 2, which leads to a constrained optimization on the standard unit sphere S2
2

with the constraint x ≥ 0. Furthermore, the case of p = 1 is closely related to L1 regularization
in, e.g., Lasso [7], and the case of p = ∞ is closely related to the box constraint.

In this paper, we address the geometry of Sn−1
p with p ∈ (0,∞) and provide several

mathematical tools required for Riemannian optimization, i.e., optimization on Riemannian
manifolds, such as retractions and vector transports [1,15]. A natural and practical retraction
is defined through normalization in terms of p-norm, and we provide mathematical support for
the validity of this retraction. Furthermore, we discuss projective and orthographic retractions
on Sn−1

p . Although it may be harder to use such retractions practically than the retraction
based on normalization, their inverses are efficient and easy to implement. Thus, discussing
them is meaningful. We also provide an explicit expression for the vector transport defined as
the differentiated retraction associated with the retraction by normalization. Other contribu-
tions of this paper include applications of the sphere Sn−1

p to practical optimization problems
related to, e.g., the nonnegative principal component analysis (PCA) and Lasso regression.

This paper is organized as follows. In Section 2, we introduce the notations used. We also
review the differentiability and derivative of the p-norm, which are used throughout this paper.
In Section 3, we prove that Sn−1

p is a Riemannian submanifold of Rn and, as such, investigate
its geometry. Section 4 provides a retraction on Sn−1

p based on normalization and its inverse.
The respective formulas for the inverses of projective and orthographic retractions are also
provided. In Section 5, we discuss a vector transport on Sn−1

p derived by differentiating
a retraction. We also remark another vector transport based on the orthogonal projection.
Section 6 is a reference to the geometric results in this paper. We present two types of
applications of Riemannian optimization on Sn−1

p in Section 7. One is the application to
Riemannian optimization problems on the sphere with the nonnegative constraint, which
include nonnegative PCA as an important example. The other is the application to Lp-
regularization-related optimization problems, which include the Lasso regression and box-
constrained problems. Section 8 concludes the paper.

2 Preliminaries

In this section, we provide preliminaries for the discussion in the later sections.

2.1 Notation

Throughout the paper, we use the following notation. The vector space of n-dimensional real
column vectors is denoted by R

n. We use the notation ·T to indicate transposition. The n-
dimensional real vector whose ith element is ai ∈ R is denoted by (ai) ∈ R

n, and we denote
the ith element of b ∈ R

n by bi or (b)i. For a = (ai) ∈ R
n, we denote the element-wise

power of r ∈ R by ar := (ari ) ∈ R
n and the element-wise absolute value by |a| := (|ai|) ∈ R

n.

2
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Furthermore, the binary relation ≤ (resp. ≥) for vectors a = (ai), b = (bi) ∈ R
n means

the element-wise relation ≤ (resp. ≥), i.e., a ≤ b (resp. a ≥ b) is equivalent to ai ≤ bi
(resp. ai ≥ bi) for i = 1, 2, . . . , n. In particular, a ≥ 0 means that all elements of a are
nonnegative. We define the all-one vector as 1 := (1, 1, . . . , 1)T ∈ R

n. Then, the condition
‖x‖p = 1 is equivalent to ‖x‖pp = 1 and rewritten as 1

T |x|p = 1. The identity matrix of nth
order is denoted by I. For 1 ∈ R

n and I ∈ R
n×n, the size n is determined by context.

We denote the sign function by sgn, i.e.,

sgn(w) :=











1 if w > 0,

0 if w = 0,

−1 if w < 0

(4)

for w ∈ R. Note that sgn(w)|w| = w always holds. We also use the same notation for the
element-wise application of sgn, i.e., for a = (ai) ∈ R

n, we define sgn(a) := (sgn(ai)) ∈ R
n.

The operator ⊙ denotes the Hadamard product, which is the element-wise product, i.e.,
for a = (ai), b = (bi) ∈ R

n, we define a ⊙ b := (aibi) ∈ R
n. We consider the Hadamard

product only for vectors in this paper. It is clear that the commutative law a⊙ b = b⊙ a
holds. Furthermore, for c = (ci) ∈ R

n, we have aT (b ⊙ c) = (a ⊙ b)T c because both
sides are equal to

∑n
i=1 aibici. Using these facts, we can rewrite the condition ‖x‖pp = 1

as xT (sgn(x)⊙ |x|p−1) = 1 because we have

xT (sgn(x)⊙ |x|p−1) = (sgn(x)⊙ x)T |x|p−1 = |x|T |x|p−1 = 1
T |x|p = ‖x‖pp. (5)

Although R
n can be equipped with the p-norm to be a normed vector space, no inner

product is associated with the p-norm unless n = 1 or p = 2. Therefore, we equip R
n with

the standard inner product 〈a, b〉 := aT b and the induced norm ‖a‖ :=
√

〈a, a〉 = ‖a‖2, which
coincides with the 2-norm, even when we discuss the sphere Sn−1

p for general p. As discussed
in Section 3, we regard R

n as a Riemannian manifold with the Riemannian metric induced by
the standard inner product and consider Sn−1

p for p ∈ (1,∞) as a Riemannian submanifold
of Rn.

For a manifold M, we denote the tangent space of M at x ∈ M by TxM. Further-
more, when the manifold M is a Riemannian manifold with a Riemannian metric 〈·, ·〉,
each tangent space TxM is endowed with the inner product 〈·, ·〉x via the Riemannian met-
ric 〈·, ·〉, and the Riemannian gradient grad f(x) of a C1 function f : M → R at x is defined
as the unique tangent vector at x satisfying Df(x)[ξ] = 〈grad f(x), ξ〉x for all ξ ∈ TxM,
where Df(x) : TxM → Tf(x)R ≃ R is the derivative of f at x ∈ M. For R

n as a Riemannian

manifold with the Riemannian metric 〈ξ, η〉x := ξT η for any x ∈ R
n and ξ, η ∈ TxR

n ≃ R
n,

the Riemannian gradient of a function f̄ : Rn → R coincides with the standard Euclidean
gradient ∇f̄ , i.e., ∇f̄(x) := (∂f̄(x)/∂xi) ∈ TxR

n ≃ R
n for x ∈ R

n.

2.2 Derivatives of p-norm functions

Here, we investigate the derivative or Euclidean gradient of the p-norm-related functions in R
n.

First, although the p-norm is defined for any p ∈ [1,∞], it is of class C1 only for p ∈ (1,∞).
In the remainder of this section, we assume p ∈ (1,∞). Then, it is easy to verify that

d|w|p

dw
= p sgn(w)|w|p−1 (6)

3
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for w ∈ R. Regarding the p-norm of x ∈ R
n, because ‖x‖pp = 1

T |x|p, its partial derivative
with respect to the variable xi for i ∈ {1, 2, . . . , n} is

∂‖x‖pp
∂xi

=
∂|xi|

p

∂xi
= p sgn(xi)|xi|

p−1. (7)

Therefore, the gradient of the function x → ‖x‖pp is equal to

∇(x 7→ ‖x‖pp)(x) = (p sgn(xi)|xi|
p−1) = p sgn(x)⊙ |x|p−1. (8)

In the subsequent sections, we exploit the fact that the conditions ‖x‖p = 1 and ‖x‖pp = 1—
both of which characterize the unit sphere Sn−1

p —are equivalent to each other. Further-
more, ‖x‖pp usually seems to be easier to handle than ‖x‖p. For example, the gradient of
the p-norm function is computed as

∇(x 7→ ‖x‖p)(x) = ∇
(

x 7→
(

‖x‖pp
)

1

p

)

(x)

=
1

p
(‖x‖pp)

1

p
−1 · p sgn(x)⊙ |x|p−1

=
sgn(x)⊙ |x|p−1

‖x‖p−1
p

. (9)

We prefer to use (8), which provides a simpler expression, rather than (9), unless (9) is essential
in the discussion.

Note that h(x) := ‖x‖pp is not necessarily a C∞ function in R
n. For example, consider

the case p = 3 and n = 2, where h(x) = |x1|
3 + |x2|

3. Then, we have ∇h(x) = 3

(

|x1|x1
|x2|x2

)

and ∇2h(x) = 6

(

|x1| 0
0 |x2|

)

. Hence, h is of class C2 in R
2. However, since ∂2h(x)/∂x21 = 6|x1|

(resp. ∂2h(x)/∂x22 = 6|x2|) is not partially differentiable with respect to x1 (resp. x2) at
any (0, x2)

T ∈ R
2 (resp. (x1, 0)

T ), h is not of class C3 in R
2. This causes nonsmoothness

of S2
3 , which includes the points (±1, 0)T and (0,±1)T , as a submanifold of R2. In the next

section, we will prove that Sn−1
p with p ∈ (1,∞) is still at least a C1 submanifold of R

n

(Theorem 3.1).

3 Geometry of Sn−1
p and tools for Riemannian optimization

In this section, we discuss the geometry of the unit sphere with p-norm, i.e.,

Sn−1
p = {x ∈ R

n | ‖x‖p = 1}, (10)

where 1 < p < ∞. We use the following equivalent conditions interchangeably:

‖x‖p = 1 ⇐⇒ ‖x‖pp = 1 ⇐⇒ 1
T |x|p = 1 ⇐⇒ xT (sgn(x)⊙ |x|p−1) = 1. (11)

As expected, many properties of the Euclidean sphere Sn−1
2 analogically hold for Sn−1

p

with any p ∈ (1,∞), especially even integer p, while some do not hold for Sn−1
1 or Sn−1

∞ .
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3.1 Sn−1
p as a Riemannian submanifold of Rn

First, we prove that Sn−1
p is an embedded submanifold of Rn.

Theorem 3.1. For p ∈ (1,∞), the unit sphere Sn−1
p with p-norm is an (n-1)-dimensional Cr

embedded submanifold of R
n, where r = ∞ if p is an even integer, r = p− 1 if p is an odd

integer, and r = ⌊p⌋, which is the largest integer less than p, if p is not an integer.1

Proof. We define h : Rn → R as h(x) := ‖x‖pp. We can observe that h is a Cr func-
tion in R

n, where r is the integer in the statement of the theorem, as follows: If p is an
even integer, h(x) =

∑n
i=1|xi|

p =
∑n

i=1 x
p
i is clearly a C∞ function. If p is an odd inte-

ger, h(x) =
∑n

i=1|xi|
p is of class Cp−1 because ∂p−1h(x)/∂xp−1

i = (p!)|xi| is continuous for
any i ∈ {1, 2, . . . , n}. Similarly, if p is not an integer, h is of class C⌊p⌋ because we have

∂⌊p⌋h

∂x
⌊p⌋
i

(x) =p(p− 1) · · · (p − ⌊p⌋+ 1) sgn(x)⌊p⌋|xi|
p−⌊p⌋

=
Γ(p+ 1)

Γ(p+ 1− ⌊p⌋)
sgn(x)⌊p⌋|xi|

p−⌊p⌋, (12)

which is continuous because p − ⌊p⌋ > 0 in this case, where Γ(·) is the gamma function.
Therefore, h is of class Cr in every case.

Using the formula (8), the Jacobian matrix of h at x ∈ R
n − {0}, which is defined

as (Jh)x := (∂h(x)/∂xi)
T ∈ R

1×n, is computed as

(Jh)x = ∇h(x)T = p(sgn(x)⊙ |x|p−1)T . (13)

For any x ∈ R
n satisfying h(x) = 1, we have (Jh)x 6= 0 because such x is not 0. This implies

that 1 is a regular value of h. Therefore, it follows from the regular level set theorem [19,
Theorem 9.9] that h−1({1}) = Sn−1

p is a Cr embedded submanifold of Rn, whose dimension
is n− dimR = n− 1. This completes the proof.

Remark 3.1. Note that the integer r in Theorem 3.1 is not less than 1 in every case. There-
fore, Sn−1

p with p ∈ (1,∞) is always a C1 submanifold of Rn. In contrast, if p = 1 or p = ∞,
the unit sphere Sn−1

p is not a C1 embedded submanifold of Rn because of their corners. Indeed,
the above proof fails if p = 1 or p = ∞ because x 7→ ‖x‖p is not a C1 function in such cases.

In what follows, we assume p ∈ (1,∞) and define smoothness regarding Sn−1
p as Cr

with r ≥ 1 in Theorem 3.1. For example, we say that a function f on Sn−1
p is smooth if f is

of class Cr.
We endow the sphere Sn−1

p with the Riemannian metric as

〈ξ, η〉x := ξT η, ξ, η ∈ TxS
n−1
p , x ∈ Sn−1

p , (14)

which is induced from the Riemannian metric (the standard inner product)

〈a, b〉x := aT b, a, b ∈ TxR
n ≃ R

n, x ∈ R
n (15)

in the ambient space R
n. Thus, Sn−1

p is a Riemannian submanifold of Rn.

1The statement can be rewritten as follows: for any positive integer k, Sn−1

p is a C
2k−1 submanifold of Rn

if 2k − 1 < n < 2k, C∞ submanifold if n = 2k, and C
2k submanifold if 2k < n ≤ 2k + 1.
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3.2 Tangent space, normal space, and orthogonal projection

Defining h(x) := ‖x‖pp, the tangent space TxS
n−1
p of Sn−1

p = h−1({1}) at x is equal to the
kernel of the linear map Dh(x) : Rn ≃ TxR

n → Th(x)R ≃ R, i.e., (Dh(x))−1({0}). Here, it
follows from (13) that the derivative Dh(x) acts on y ∈ R

n as

Dh(x)[y] = (Jh)x(y) = p(sgn(x)⊙ |x|p−1)T y. (16)

Therefore, we have

TxS
n−1
p = (Dh(x))−1({0}) = {ξ ∈ R

n | ξT (sgn(x)⊙ |x|p−1) = 0}. (17)

Since Sn−1
p is a Riemannian submanifold of Rn, we can define the normal space NxS

n−1
p of Sn−1

p

at a point x as the orthogonal complement of TxS
n−1
p ⊂ TxR

n ≃ R
n in R

n with respect to the
Riemannian metric in R

n, i.e., the standard inner product. From the expression (17), we can
observe that TxS

n−1
p is a hyperplane orthogonal to the vector sgn(x) ⊙ |x|p−1 ∈ R

n. Hence,
we have

NxS
n−1
p := (TxS

n−1
p )⊥ = {α sgn(x)⊙ |x|p−1 | α ∈ R}. (18)

For minimizing a smooth function f : Sn−1
p → R on Sn−1

p , the Riemannian gradient of f
is important. Here, the Riemannian gradient grad f(x) of f at x ∈ Sn−1

p can be obtained by
orthogonally projecting ∇f̄(x) ∈ R

n onto the tangent space TxS
n−1
p at x, where f̄ is a smooth

extension of f to the ambient space R
n and ∇f̄(x) := (∂f̄(x)/∂xi) ∈ R

n is the Euclidean
gradient. That is, we have

grad f(x) = Px(∇f̄(x)), (19)

where Px is the orthogonal projection to the tangent space TxS
n−1
p at x. The projection

Px : R
n → TxS

n−1
p acts on any d ∈ R

n so that d − Px(d) ∈ NxS
n−1
p holds. From (18), the

normal vector d− Px(d) is written as α sgn(x) ⊙ |x|p−1 for some α ∈ R. Thus, we obtain the
decomposition of d as

d = Px(d) + α sgn(x)⊙ |x|p−1. (20)

By noting the expression (17) and multiplying (20) by (sgn(x) ⊙ |x|p−1)T from the left, we
obtain α = ((sgn(x)⊙ |x|p−1)Td)/‖|x|p−1‖22, where we used the relation

(sgn(x)⊙ |x|p−1)T (sgn(x)⊙ |x|p−1) = ((sgn(x))2)T (|x|p−1)2 = ‖|x|p−1‖22 6= 0. (21)

Substituting the expression of α to (20), we obtain

Px(d) = d−
(sgn(x)⊙ |x|p−1)Td

‖|x|p−1‖22
sgn(x)⊙ |x|p−1

=

(

I −
(sgn(x)⊙ |x|p−1)(sgn(x)⊙ |x|p−1)T

‖|x|p−1‖22

)

d. (22)

In other words, the linear map Px is represented as the matrix

Px = I −
(sgn(x)⊙ |x|p−1)(sgn(x)⊙ |x|p−1)T

‖|x|p−1‖22
. (23)
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4 Retractions and their inverses

In an iterative Riemannian optimization algorithm on a Riemannian manifold M, to compute
the next point from the current point x ∈ M and search direction η ∈ TxM, a retraction
on M is important [1, 3, 18]. A map R : TM → M is said to be a retraction on M if the
restriction Rx := R|TxM of R to TxM for x ∈ M satisfies Rx(0x) = x and DRx(0x) = idTxM,
where 0x is the zero vector in TxM and idTxM is the identity map in TxM. Although
retractions are usually discussed on C∞ manifolds, the manifold Sn−1

p is a Cr submanifold of
R
n, where r is in Theorem 3.1 and may not be ∞. Therefore, we define a retraction on Sn−1

p

as a Cr, which we say smooth, map on Sn−1
p satisfying the above properties.

Furthermore, the inverse of a retraction can be used in, e.g., the Riemannian conjugate
gradient method [22]. In the following, we discuss three types of retractions on Sn−1

p and their
respective inverses.

4.1 Retraction by normalization and its inverse

Intuitively, for any x ∈ Sn−1
p and η ∈ TxS

n−1
p , x + η ∈ R

n appears to be outside Sn−1
p

unless η = 0. This is actually true from the following proposition. However, its proof for
general p > 1 is not as easy as in the case of p = 2.

Proposition 4.1. Assume that p ∈ (1,∞). For any x ∈ Sn−1
p and η ∈ TxS

n−1
p , if η 6= 0,

then ‖x+ η‖p > 1 holds.

Proof. Note that the function h(y) := ‖y‖pp is not of class C2 in the entire R
n when 1 < p < 2.

Therefore, we avoid using the Hessian matrix in the following discussion to address the general
case.

We first show that h is a strictly convex function in R
n. For y, z ∈ R

n with y 6= z
and α ∈ (0, 1), Minkowski’s inequality (the triangle inequality for the p-norm) as well as
convexity and monotonicity of the function w 7→ wp on R+ := {w ∈ R | w ≥ 0} yield that

‖αy + (1− α)z‖pp ≤ (α‖y‖p + (1− α)‖z‖p)
p ≤ α‖y‖pp + (1− α)‖z‖pp. (24)

We now assume that both equalities in (24) simultaneously hold. Then, the first equality
implies that y = cz for some c ≥ 0 or z = 0 from Minkowski’s inequality theory for p ∈
(1,∞). Furthermore, from the second equality and the strict convexity of w 7→ wp on R+, we
have ‖y‖p = ‖z‖p. If y = cz with c ≥ 0, then ‖y‖p = ‖z‖p implies c = 1 or ‖y‖p = ‖z‖p = 0.
Otherwise, we have z = 0; and ‖y‖p = ‖z‖p then means y = z = 0. In any case, we have
y = z, which contradicts the assumption that y 6= z. Therefore, both equalities in (24) do not
hold at the same time, meaning

h(αy + (1− α)z) = ‖αy + (1− α)z‖pp < α‖y‖pp + (1− α)‖z‖pp = αh(y) + (1− α)h(z). (25)

This proves that h is strictly convex.
By using the strict convexity of h, we can show that φ(t) := h(x + tη) = ‖x + tη‖pp is

a strictly convex function on R for x ∈ Sn−1
p and η ∈ TxS

n−1
p with η 6= 0. Indeed, for any

s, t ∈ R with s 6= t and α ∈ (0, 1), it follows from the strict convexity of h and the fact

7
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x+ sη 6= x+ tη that

φ(αs + (1− α)t) = h(x+ (αs+ (1− α)t)η)

= h(α(x + sη) + (1− α)(x+ tη))

< αh(x+ sη) + (1− α)h(x+ tη)

= αφ(s) + (1− α)φ(t). (26)

Subsequently, we show that t = 0 is the unique minimizer of φ. Since φ is strictly convex,
it suffices to prove that φ′(0) = 0, which is shown as

φ′(0) = ∇h(x)T η = p(sgn(x)⊙ |x|p−1)T η = 0 (27)

from (8) and (17).
In conclusion, we obtain ‖x+ tη‖pp = φ(t) > φ(0) = ‖x‖pp = 1 for all t 6= 0, where the case

of t = 1 implies that the desired inequality ‖x+ η‖p > 1 holds.

Considering Proposition 4.1, we propose a retraction R on Sn−1
p as

Rx(η) :=
x+ η

‖x+ η‖p
, η ∈ TxS

n−1
p , x ∈ Sn−1

p . (28)

This is simply the normalization (with respect to the p-norm) of x+ η, which is not on Sn−1
p

when η 6= 0. Note that the denominator in (28) is ensured to be nonzero from Proposition 4.1.

Proposition 4.2. Assume that p ∈ (1,∞). The map R defined by (28) is a retraction
on Sn−1

p .

Proof. It is clear that ‖Rx(η)‖p = 1 and Rx(0x) = x hold for any x ∈ Sn−1
p and η ∈ TxS

n−1
p .

To prove that DRx(0x) = idTxS
n−1
p

holds, we use (9), i.e., the fact that the gradient of x 7→ ‖x‖p

is written as ‖x‖1−p
p sgn(x)⊙ |x|p−1. Then, we can compute DRx(0x)[η] for η ∈ TxS

n−1
p as

DRx(0x)[η] =
d

dt
Rx(tη)

∣

∣

∣

∣

t=0

=
η‖x+ tη‖p − (x+ tη)

(

‖x+ tη‖1−p
p sgn(x+ tη)⊙ |x+ tη|p−1

)T
η

‖x+ tη‖2p

∣

∣

∣

∣

t=0

= η − x(sgn(x)⊙ |x|p−1)T η = η, (29)

where we used ‖x‖p = 1 and (sgn(x)⊙ |x|p−1)T η = 0 from (17).

To derive the inverse of R, we fix x, y ∈ Sn−1
p and assume that η ∈ TxS

n−1
p satis-

fies Rx(η) = y. Then, η should satisfy x + η = αy for some α > 0. Multiplying the
equality by (sgn(x) ⊙ |x|p−1)T from the left and noting that x ∈ Sn−1

p and η ∈ TxS
n−1
p , we

obtain α = 1/((sgn(x)⊙ |x|p−1)T y). Therefore, η should satisfy

η = αy − x =
y

(sgn(x)⊙ |x|p−1)T y
− x. (30)

However, this is necessary but not sufficient for Rx(η) = y. In fact, for certain x, y ∈ Sn−1
p ,

there may not exist η such that Rx(η) = y. The following proposition elaborates on this issue.

8
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Proposition 4.3. Assume that p ∈ (1,∞). For any x ∈ Sn−1
p , the inverse of Rx defined

in (28) is given by

R−1
x (y) =

y

(sgn(x)⊙ |x|p−1)T y
− x, y ∈ Dx (31)

where the domain Dx of R−1
x is Dx = {y ∈ Sn−1

p | (sgn(x)⊙ |x|p−1)T y > 0}.

Proof. For y satisfying (sgn(x)⊙|x|p−1)T y = 0, the right-hand side of (31) is not defined. We
assume that (sgn(x)⊙ |x|p−1)T y 6= 0 and denote the right-hand side of (31) by ηx,y, which is
in TxS

n−1
p because (sgn(x)⊙ |x|p−1)T ηx,y = 1− 1 = 0. Then, we have

Rx(ηx,y) =
x+ ηx,y

‖x+ ηx,y‖p
=

y

sgn((sgn(x)⊙ |x|p−1)T y)

=

{

y if (sgn(x)⊙ |x|p−1)T y > 0

−y if (sgn(x)⊙ |x|p−1)T y < 0
. (32)

Furthermore, if η ∈ TxS
n−1
p satisfies Rx(η) = y, then η should be equal to ηx,y, as discussed

in (30). Therefore, Rx(η) = y holds if and only if (sgn(x)⊙ |x|p−1)T y > 0 and η = ηx,y. This
completes the proof.

4.2 Inverse of projective retraction

Another natural retraction is the projective retraction [2]. The projective retraction Rproj

on Sn−1
p is given by

Rproj
x (η) = arg min

y∈Sn−1
p

‖(x+ η)− y‖2, η ∈ TxS
n−1
p , x ∈ Sn−1

p . (33)

Remark 4.1. Note that the projection onto any closed convex set in R
n regarding the 2-norm

is unique [5, Section 8.1]. Therefore, because the unit ball Bn
p := {x ∈ R

n | ‖x‖p ≤ 1} with p-
norm is obviously a closed convex set in R

n, vector y ∈ Bn
p that minimizes the distance

‖(x+η)−y‖2 uniquely exists for a given x ∈ Sn−1
p and η ∈ TxS

n−1
p . Since x+η is outside Bn−1

p

unless η = 0 from Proposition 4.1, the right-hand side in (33) is equal to the uniquely existing
projection of x+ η onto Bn

p (clearly, we have Rproj
x (η) = x when η = 0).

The vector Rproj
x (η) satisfies (x + η) − Rproj

x (η) ∈ NxS
n−1
p , which is implied by [2] or is

a direct consequence of the Lagrange multiplier method. Therefore, there exists α ∈ R such
that

Rproj
x (η) = x+ η − α sgn(Rproj

x (η)) ⊙ |Rproj
x (η)|p−1, (34)

where α is determined such that Rproj
x (η) ∈ Sn−1

p holds, i.e.,

‖x+ η − α sgn(Rproj
x (η)) ⊙ |Rproj

x (η)|p−1‖p = 1. (35)

However, it may be difficult to explicitly express Rproj
x (η) by solving (34) and (35).

Remark 4.2. When p = 2, Eq. (34) is reduced to Rproj
x (η) = x + η − αRproj

x (η), i.e., we
have (α+ 1)Rproj

x (η) = (x+ η). Then, ‖Rproj
x (η)‖2 = 1 implies |α+ 1| = ‖x+ η‖2. Hence, we

obtain (x+ η)/(α+1) = ±(x+ η)/‖x+ η‖2, among which (x+ η)/‖x+ η‖2 is closer to x+ η.
In summary, when p = 2, we have Rproj

x (η) = (x+η)/‖x+η‖2, which is equal to the retraction
by normalization in Section 4.1.

9
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Although the above discussion implies that the projective retraction on Sn−1
p for gen-

eral p ∈ (1,∞) may not provide as successful a result as the retraction by normalization, the
inverse of Rproj

x can be discussed more practically. For given x, y ∈ Sn−1
p , if η ∈ TxS

n−1
p sat-

isfies Rproj
x (η) = y, then x + η − y ∈ NyS

n−1
p should hold. Therefore, there exists αx,y ∈ R

such that x+ η− y = αx,y sgn(y)⊙ |y|p−1. From x ∈ Sn−1
p and η ∈ TxS

n−1
p , we can obtain an

explicit expression for αx,y as in Proposition 4.4. Furthermore, it seems that αx,y should be
nonnegative by analogy with the discussion of the case p = 2 in Remark 4.2. We discuss these
rigorously in the proof of the proposition using the Karush–Kuhn–Tucker (KKT) conditions.

Proposition 4.4. Assume that p ∈ (1,∞). For any x ∈ Sn−1
p , the inverse of Rproj

x in (33) is
given by

(Rproj
x )−1(y) = y − x+ αx,y sgn(y)⊙ |y|p−1

=

(

I −
(sgn(y)⊙ |y|p−1)(sgn(x)⊙ |x|p−1)T

(sgn(y)⊙ |y|p−1)T (sgn(x)⊙ |x|p−1)

)

(y − x), y ∈ Dx, (36)

where

αx,y :=
1− (sgn(x)⊙ |x|p−1)T y

(sgn(x)⊙ |x|p−1)T (sgn(y)⊙ |y|p−1)
(37)

and the domain of (Rproj
x )−1 is

Dx = {y ∈ Sn−1
p | (sgn(x)⊙ |x|p−1)T (sgn(y)⊙ |y|p−1) 6= 0, αx,y ≥ 0}. (38)

Proof. The second equality in (36) directly follows from (sgn(x)⊙ |x|p−1)Tx = 1. We de-
fine ηx,y := y − x + αx,y sgn(y) ⊙ |y|p−1 with αx,y in (37). Then, what we need to prove is

that Rproj
x (η) = y holds for η ∈ TxS

n−1
p if and only if y belongs to the right-hand side of (38)

and η = ηx,y.
To see this in light of (33) and Remark 4.1, we must verify that z = y is the optimal

solution to the following optimization problem with a fixed η ∈ TxS
n−1
p if and only if αx,y

in (37) is well-defined and nonnegative and η = ηx,y:

minimize ‖(x+ η)− z‖22
subject to ‖z‖pp ≤ 1, z ∈ R

n,

where the decision variable vector is z. This is a convex optimization problem because
both z 7→ ‖(x + η) − z‖22 and z 7→ ‖z‖pp − 1 are convex. Furthermore, the problem satis-
fies Slater’s condition [5, Section 5.2.3], i.e., it is strictly feasible (e.g., with z = 0). Therefore,
the condition that z = y is optimal for the optimization problem is equivalent to saying that
there exists λ ∈ R such that z = y and λ satisfy the KKT conditions for the problem, which
are written as

2(y − (x+ η)) + λp sgn(y)⊙ |y|p−1 = 0, (39)

‖y‖pp ≤ 1, (40)

λ ≥ 0, (41)

λ(‖y‖pp − 1) = 0. (42)

10
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Since ‖y‖p = 1, they are equivalent to

η = y − x+
p

2
λ sgn(y)⊙ |y|p−1, (43)

λ ≥ 0. (44)

Noting that x ∈ Sn−1
p and η ∈ TxS

n−1
p , we multiply (43) by (sgn(x) ⊙ |x|p−1)T from the left

to obtain

2(1− (sgn(x)⊙ |x|p−1)T y) = pλ(sgn(x)⊙ |x|p−1)T (sgn(y)⊙ |y|p−1). (45)

If (sgn(x)⊙|x|p−1)T (sgn(y)⊙|y|p−1) = 0 holds, 1−(sgn(x)⊙|x|p−1)T y = 0 should hold, and λ
can be any value. However, it then follows from (43) that y = 0, contradicting y ∈ Sn−1

p .

Hence, we have (sgn(x)⊙ |x|p−1)T (sgn(y)⊙ |y|p−1) 6= 0, and λ is written as

λ =
2

p

1− (sgn(x)⊙ |x|p−1)T y

(sgn(x)⊙ |x|p−1)T (sgn(y)⊙ |y|p−1)
=

2

p
αx,y. (46)

Therefore, there exists λ ∈ R such that z = y and λ satisfy the KKT conditions (43) and (44)
if and only if η = y − x+ αx,y sgn(y)⊙ |y|p−1 = ηx,y and αx,y is well-defined and nonnegative.
This completes the proof.

4.3 Inverse of orthographic retraction

Other possibilities of retractions on Sn−1
p include the orthographic retraction. See [2] for a

discussion of orthographic retractions on general Riemannian submanifolds.
For x ∈ Sn−1

p and η ∈ TxS
n−1
p , the orthographic retraction Rorth is defined to sat-

isfy Rorth
x (η) = x + η + ζ ∈ Sn−1

p for some ζ ∈ NxS
n−1
p with the smallest norm among

all normal vectors in {ξ ∈ NxS
n−1
p | x + η + ξ ∈ Sn−1

p }. Since we can express ζ ∈ NxS
n−1
p

as ζ = −α sgn(x) ⊙ |x|p−1 for some α ∈ R, the relation ‖Rorth
x (η)‖p = 1 yields the equation

on α as
‖x+ η − α sgn(x)⊙ |x|p−1‖pp = 1. (47)

Remark 4.3. When p = 2, Eq. (47) is reduced to (1 − α)2 + ηT η = 1, the smaller solution
(with smaller absolute value) of which is given by α = 1 −

√

1− ηT η if ‖η‖2 ≤ 1. This gives
the expression Rorth

x (η) =
√

1− ηT η x+ η, which is a well-known result.

For general p ∈ (1,∞), we have

Rorth
x (η) = x+ η − α sgn(x)⊙ |x|p−1, η ∈ TxS

n−1
p , x ∈ Sn−1

p , (48)

where η should be a tangent vector such that Eq. (47) has a solution and α is the one with
the smallest absolute value of the solutions. Unfortunately, as in the projective retraction in
Section 4.2, it may be difficult to explicitly express such α for general p.

However, the discussion on this retraction is still important because its inverse can be
practically computed. Subsequently, we assume that η ∈ TxS

n−1
p satisfies Rorth

x (η) = y for
given x, y ∈ Sn−1

p . Then, there exists αx,y ∈ R such that x + η − αx,y sgn(x) ⊙ |x|p−1 = y.

Since η ∈ TxS
n−1
p , multiplying both sides by (sgn(x)⊙ |x|p−1)T from the left yields

αx,y =
1− (sgn(x)⊙ |x|p−1)T y

(sgn(x)⊙ |x|p−1)T (sgn(x)⊙ |x|p−1)
=

1− (sgn(x)⊙ |x|p−1)T y

‖|x|p−1‖22
. (49)

Note that the denominator is nonzero because of x 6= 0. This observation, together with the
discussion on when (49) is sufficient for Rorth

x (η) = y, leads to the following proposition.

11
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Proposition 4.5. Assume that p ∈ (1,∞). For any x ∈ Sn−1
p , the inverse of the retrac-

tion Rorth
x is given by

(Rorth
x )−1(y) = y − x+ αx,y sgn(x)⊙ |x|p−1, y ∈ Dx, (50)

where

αx,y :=
1− (sgn(x)⊙ |x|p−1)T y

‖|x|p−1‖22
(51)

and the domain of (Rorth
x )−1 is

Dx = {y ∈ Sn−1
p | αx,y is the solution to (47) with the smallest absolute value}. (52)

Proof. Let ηx,y := y−x+αx,y sgn(x)⊙ |x|p−1 be the right-hand side of (50) with αx,y in (51).
From the above discussion on (49), for a given x ∈ Sn−1

p , if η ∈ TxS
n−1
p satisfies Rorth

x (η) = y,
then y should belong to the right-hand side of (52) and η = ηx,y should hold.

To prove the converse, we show that Rorth
x (η) = y holds if y belongs to the right-hand

side of (52) and η = ηx,y holds. Assume that y and η be such vectors, i.e., α = αx,y is the
solution to (47) with the smallest absolute value and η = ηx,y. Then, from the definition of
the orthographic retraction and the expression of ηx,y, we have

Rorth
x (η) = Rorth

x (ηx,y) = x+ ηx,y − αx,y sgn(x)⊙ |x|p−1 = y. (53)

This completes the proof.

4.4 Discussion on exponential retraction

On a general Riemannian manifold, another important retraction is the exponential retrac-
tion R := Exp, where Exp is the exponential map. However, it may be difficult to use
practically. Here, we discuss this issue. In the following discussion, we assume that p ≥ 2,
which ensures that Sn−1

p is a C2 submanifold of Rn from Theorem 3.1.
The exponential map Exp is defined as

Expx(η) := γx,η(1), η ∈ TxS
n−1
p , x ∈ Sn−1

p , (54)

where γx,η is the geodesic on Sn−1
p emanating from x in the direction of η. The geodesic

satisfies the geodesic equation, which is derived from the condition γ̈x,η(t) ∈ Nγx,η(t)S
n−1
p . For

simplicity, we denote γx,η(t) by x(t). Then, x(t) ∈ Sn−1
p implies 1T |x(t)|p = 1. Differentiating

both sides, we obtain (sgn(x(t)) ⊙ |x(t)|p−1)T ẋ(t) = 0. We further differentiate both sides to
get

(p− 1)(|x(t)|p−2 ⊙ ẋ(t))T ẋ(t) + (sgn(x(t))⊙ |x(t)|p−1)T ẍ(t) = 0. (55)

From ẍ(t) ∈ Nx(t)S
n−1
p , there exists α(t) ∈ R such that ẍ(t) = α(t) sgn(x(t)) ⊙ |x(t)|p−1.

Substituting this into (55), we obtain α(t) = −(p− 1)((|x(t)|p−2)T ẋ(t)2)/‖|x(t)|p−1‖22. There-
fore, x(t) satisfies the geodesic equation

ẍ(t) +
(p− 1)(|x(t)|p−2)T ẋ(t)2

‖|x(t)|p−1‖22
sgn(x(t)) ⊙ |x(t)|p−1 = 0. (56)

Solving this equation for the case p 6= 2 may be difficult. Thus, this will be dealt in a future
work.

Remark 4.4. When p = 2, Eq. (56) is reduced to ẍ(t) + (ẋ(t)T ẋ(t))x(t) = 0, whose solution
is x(t) = x cos(‖η‖2t) + (η/‖η‖2) sin(‖η‖2t), where x(0) = x and ẋ(0) = η, as shown in [1,
Example 5.4.1].
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5 Vector transports

In addition to a retraction, a vector transport is also an important geometric tool in Rie-
mannian optimization methods, e.g., Riemannian conjugate gradient methods [1, 12–14, 16],
Riemannian quasi-Newton methods [8, 9], and Riemannian stochastic optimization meth-
ods [17, 21]. Let M be a Riemannian manifold and TM⊕ TM := {(η, ξ) | η, ξ ∈ TxM, x ∈
M} be the Whitney sum. A map T : TM ⊕ TM → M is called a vector transport on M
if there exists a retraction R on M and the following conditions are satisfied for any x ∈ M:
(i) Tη(ξ) ∈ TRx(η)M for any η, ξ ∈ TxM; (ii) T0x = idTxM; (iii) Tη is a linear transformation
in TxM for any η ∈ TxM.

5.1 Differentiated retraction

An important vector transport is the differentiated retraction T R [1, Section 8.1.2] associated
with a retraction R on Sn−1

p defined by

T R
η (ξ) := DRx(η)[ξ], η, ξ ∈ TxS

n−1
p , x ∈ Sn−1

p . (57)

The differentiated retraction appears in the Riemannian (strong) Wolfe conditions and is thus
used for line search in various algorithms.

Here, we derive the expression of T R with the retraction R defined in (28). Noting (9), an
analogous computation to (29) gives

T R
η (ξ) = DRx(η)[ξ] =

d

dt
Rx(η + tξ)

∣

∣

∣

∣

t=0

=
ξ‖x+ η‖p − (x+ η)

(

‖x+ η‖1−p
p sgn(x+ η)⊙ |x+ η|p−1

)T
ξ

‖x+ η‖2p

=
ξ

‖x+ η‖p
−

(sgn(x+ η)⊙ |x+ η|p−1
)T

ξ

‖x+ η‖p+1
p

(x+ η). (58)

5.2 Vector transport based on orthogonal projection

Since Sn−1
p is a Riemannian submanifold of R

n, another vector transport T P on Sn−1
p is

defined by the orthogonal projection [1, Section 8.1.3] as

T P
η (ξ) := PRx(η)(ξ), η, ξ ∈ TxS

n−1
p , x ∈ Sn−1

p , (59)

where the orthogonal projection P is provided by (23). Specifically, if we use the retrac-
tion (28), we have

T P
η (ξ) =

(

I −
(sgn(Rx(η)) ⊙ |Rx(η)|

p−1)(sgn(Rx(η))⊙ |Rx(η)|
p−1)T

‖|Rx(η)|p−1‖22

)

ξ (60)

= ξ −
(sgn(x+ η)⊙ |x+ η|p−1)T ξ

‖|x+ η|p−1‖22
sgn(x+ η)⊙ |x+ η|p−1. (61)

6 Summary of theoretical results

We investigated the geometry of Sn−1
p and proposed several retractions and their inverses and

vector transports. These results are summarized in Table 1.
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Table 1: Summary of theoretical results. The sphere Sn−1
p is defined for p ∈ [1,∞]. However,

the above results are for the case of p ∈ (1,∞), where Sn−1
p is a C1 submanifold of Rn. In

addition, we assume x, y ∈ Sn−1
p and ξ, η ∈ TxS

n−1
p .

Sphere with p-norm Sn−1
p = {x ∈ R

n | ‖x‖p = 1}.

Riemannian metric on Sn−1
p 〈ξ, η〉x = ξT η.

Induced norm in TxS
n−1
p ‖ξ‖x = ‖ξ‖2 =

√

ξT ξ.

Tangent space at x TxS
n−1
p = {ξ ∈ R

n | ξT (sgn(x)⊙ |x|p−1) = 0}.

Normal space at x NxS
n−1
p = {α sgn(x)⊙ |x|p−1 | α ∈ R}.

Orthogonal projection onto TxS
n−1
p Px = I −

(sgn(x)⊙ |x|p−1)(sgn(x)⊙ |x|p−1)T

‖|x|p−1‖22
.

Retraction by normalization Rx(η) =
x+ η

‖x+ η‖p
.

Inverse of Rx R−1
x (y) =

y

(sgn(x)⊙ |x|p−1)T y
− x,

where y satisfies (sgn(x)⊙ |x|p−1)T y > 0.

Inverse of projective retraction (Rproj
x )−1(y) = y − x+ α sgn(y)⊙ |y|p−1,

where α =
1− (sgn(x)⊙ |x|p−1)T y

(sgn(x)⊙ |x|p−1)T (sgn(y)⊙ |y|p−1)

and y is such that α ≥ 0.

Inverse of orthographic retraction (Rorth
x )−1(y) = y − x+ α sgn(x)⊙ |x|p−1

where α =
1− (sgn(x)⊙ |x|p−1)T y

‖|x|p−1‖22

and y is such that α is the solution to

‖x+ η − α sgn(x)⊙ |x|p−1‖pp = 1

with the smallest absolute value.

Differentiated retraction of R T R
η (ξ) = DRx(η)[ξ]

=
ξ

‖z‖p
−

(sgn(z) ⊙ |z|p−1
)T

ξ

‖z‖p+1
p

z,

where z = x+ η.

Vector transport by projection T P
η (ξ) = PRx(η)(ξ)

= ξ −
(sgn(z)⊙ |z|p−1)T ξ

‖|z|p−1‖22
sgn(z)⊙ |z|p−1,

where z = x+ η.
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7 Applications

In this section, we discuss two types of applications of Sn−1
p for optimization.

7.1 Nonnegative constraints on spheres

In nonlinear optimization, we can introduce squared slack variables to handle nonnegative
constraints [6]. Specifically, the constraint v ≥ 0 for v ∈ R

n is equivalent to v = x2 with x ∈ R
n.

This idea can be used to address optimization problems on the sphere whose decision variable
vector is constrained to be nonnegative.

7.1.1 Unconstrained and constrained optimization problems on spheres with dif-

ferent norms

For p′ ≥ 1 and p = 2p′, Sn−1
p can be used to handle the variable on Sn−1

p′ with the nonnegative
constraint. To see this, we consider the following problem:

minimize g(v)

subject to v ≥ 0, v ∈ Sn−1
p′ ,

where g : Sn−1
p′ → R is the objective function. This is a constrained Riemannian optimization

problem on Sn−1
p′ with the constraint v ≥ 0. Defining v := x2 ≥ 0 with x = (xi) ∈ R

n, we

can observe that the conditions v ∈ Sn−1
p′ and v ≥ 0 are equivalent to ‖x2‖p′ = 1. Regarding

the left-hand side, we have the relation ‖x2‖p
′

p′ =
∑n

i=1|x
2
i |
p′ =

∑n
i=1|xi|

2p′ = ‖x‖2p
′

2p′ = ‖x‖pp.

Therefore, ‖x2‖p′ = 1 is equivalent to ‖x‖p = 1, i.e., x ∈ Sn−1
p . Hence, the aforementioned

optimization problem is equivalent to the following problem:

minimize f(x) := g(x2)

subject to x ∈ Sn−1
p ,

which is an unconstrained Riemannian optimization problem on Sn−1
p .

7.1.2 Application to nonnegative PCA

As a particular case of p′ = 2 and p = 4, we can deduce from the above discussion that
solving an optimization problem on Sn−1

2 with the nonnegative constraint on the decision vari-
able vector is equivalent to solving the corresponding optimization problem on Sn−1

4 without
constraint. An important example within this framework is the nonnegative PCA [20].

In [10], the nonnegative PCA is formulated as follows:

minimize − vTAv

subject to v ≥ 0, v ∈ Sn−1
2 , (62)

where A corresponds to the variance–covariance matrix of the data to be analyzed. We assume
that A is an n×n symmetric positive definite matrix. The above problem is equivalent to the
following unconstrained problem on the sphere Sn−1

4 with 4-norm:

minimize f(x) := −(x2)TA(x2)

subject to x ∈ Sn−1
4 . (63)
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For an optimal solution x∗ to the latter problem, v∗ := x2∗ is an optimal solution to the former
problem.

We can further show that any critical point of f in Problem (63) satisfies the first-order
optimality conditions for Problem (62). First, we show that the KKT conditions are first-order
necessary conditions for Problem (62) and investigate the conditions.

Proposition 7.1. Let v∗ be an optimal solution to Problem (62) with an n × n symmetric
positive definite matrix A. Then, v∗ satisfies

v∗ ≥ 0, vT∗ v∗ = 1, (I − v∗v
T
∗ )Av∗ ≤ 0. (64)

Specifically, the ith element (Av∗)i of Av∗ satisfies (Av∗)i = 0 if (v∗)i > 0, and (Av∗)i ≤ 0
if (v∗)i = 0. In particular, if v∗ > 0, then Av∗ = (vT∗ Av∗)v∗ holds, i.e., vT∗ Av∗ and v∗ are an
eigenvalue and associated eigenvector of A, respectively.

Proof. Problem (62) is equivalent to the following Euclidean optimization problem:

minimize − vTAv

subject to v ≥ 0, vT v = 1, v ∈ R
n. (65)

Throughout this proof, let A(v∗) := {i1, i2, . . . , im} ⊂ {1, 2, . . . , n} be the set of indices for
the active inequality constraints at v∗ among the n constraints v1 ≥ 0, v2 ≥ 0, . . . , vn ≥ 0,
and Ā(v∗) := {1, 2, . . . , n} − A(v∗) be the complement of A(v∗) in {1, 2, . . . , n}, i.e.,

(v∗)i1 = (v∗)i2 = · · · = (v∗)im = 0, (66)

and (v∗)i 6= 0 for all i ∈ Ā(v∗). Then, letting ei ∈ R
n be the vector whose ith element

is 1 and the others are 0, the gradients of the m functions defining the active inequality
constraints are ei1 , ei2 , . . . , eim . Since vT∗ v∗ = 1, v∗ is not 0; and Ā(v∗) is not empty, i.e, there
exists i0 6= i1, i2, . . . , im such that (v∗)i0 6= 0. Hence, the gradient of the equality constraint
function vT v − 1 at v∗, which is 2v∗, and ei1 , ei2 , . . . , eim are linearly independent. This
means that the linear independent constraint qualification (LICQ) [11] holds at v∗, and the
KKT conditions for (65) are necessary optimality conditions.

Writing the KKT conditions explicitly, there exist λ ∈ R
n and µ ∈ R such that

−2Av∗ − λ+ 2µv∗ = 0, (67)

v∗ ≥ 0, (68)

vT∗ v∗ = 1, (69)

λ ≥ 0, (70)

λ⊙ v∗ = 0. (71)

Under (68) and (70), Eq. (71) is equivalent to the condition λT v∗ = 0. Using this and (69),
and multiplying (67) by vT∗ from the left, we obtain µ = vT∗ Av∗. Therefore, (67) yields
that λ = 2((vT∗ Av∗)I −A)v∗ ≥ 0, which implies (I − v∗v

T
∗ )Av∗ ≤ 0. Thus, the conditions (64)

are verified to hold.
Here, I − v∗v

T
∗ is the orthogonal projection matrix to the orthogonal complement of the

span of v∗ ≥ 0 with respect to the 2-norm. Therefore, from (66), the intersection of the
image Im(I − v∗v

T
∗ ) of I − v∗v

T
∗ and the nonpositive orthant R

n
− := {x ∈ R

n | x ≤ 0} is

Im(I − v∗v
T
∗ ) ∩ R

n
− = {x = (xi) ∈ R

n
− | xi = 0, i ∈ Ā(v∗)}. (72)
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It follows from (64) and (72) that the ith element of (I − v∗v
T
∗ )Av∗ is

((I − v∗v
T
∗ )Av∗)i

{

= 0 if i ∈ Ā(v∗),

≤ 0 if i ∈ A(v∗).
(73)

Rewriting this, we obtain the relations (Av∗)i = (vT∗ Av∗)(v∗)i if i ∈ Ā(v∗), i.e., (v∗)i > 0,
and (Av∗)i ≤ (vT∗ Av∗)(v∗)i = 0 if i ∈ A(v∗), i.e., (v∗)i = 0.

In particular, if v∗ > 0, then A(v∗) = ∅, and (Av∗)i = (vT∗ Av∗)(v∗)i for all i ∈ {1, 2, . . . , n},
which is equivalent to Av∗ = (vT∗ Av∗)v∗. This completes the proof.

Remark 7.1. Conversely, it can be readily checked that if v∗ ∈ R
n satisfies the conditions (64),

then v∗, λ = 2((vT∗ Av∗)I − A)v∗, and µ = vT∗ Av∗ satisfy the KKT conditions (67)–(71). In
summary, there exist λ and µ such that the KKT conditions (67)–(71) are satisfied if and only
if v∗ satisfies (64).

Remark 7.2. From the last statement of Proposition 7.1, if there does not exist an eigenvector v
associated with the largest eigenvalue of A such that v > 0, then at least one inequality
constraint is active at an optimal solution v∗ to Problem (62), i.e., v∗ contains at least one
zero element.

If v∗ is an optimal solution to Problem (62), x∗ satisfying v∗ = x2∗ is an optimal solution
to Problem (63). Therefore, such x∗ satisfies grad f(x∗) = 0 on Sn−1

4 . More generally, as
the following proposition claims, if v∗ satisfies the first-order necessary conditions (64) for
Problem (62), then x∗ that satisfies v∗ = x2∗ is a critical point of f in (63).

Proposition 7.2. Consider Problem (63) with an n × n symmetric positive definite matrix
A. The gradient of the objective function f on Sn−1

4 satisfies

grad f(x) = −4

(

(Ax2)⊙ x−
(x4)TAx2

‖x3‖22
x3

)

(74)

for any x ∈ Sn−1
4 . Furthermore, if v∗ ∈ Sn−1

2 satisfies (64) and x∗ ∈ Sn−1
4 satisfies x∗ = v2∗,

then grad f(x∗) = 0.

Proof. We first derive Eq. (74) for grad f . Let f̄(x) := −(x2)TA(x2) in R
n, which is a smooth

extension of f to R
n. For any d ∈ R

n, the directional derivative of f̄ at x in the direction of
d is computed as

Df̄(x)[d] = −4(x2)TA(x⊙ d) = −4(Ax2)T (x⊙ d) = −4((Ax2)⊙ x)Td. (75)

Hence, we obtain ∇f̄(x) = −4(Ax2) ⊙ x. The Riemannian gradient grad f is then obtained
by using the orthogonal projection (23) as

grad f(x) = Px(∇f̄(x)) (76)

= −4

(

I −
(sgn(x)⊙ |x|3)(sgn(x)⊙ |x|3)T

‖x3‖22

)

((Ax2)⊙ x) (77)

= −4

(

(Ax2)⊙ x−
(x4)TAx2

‖x3‖22
x3

)

, (78)

where we used sgn(x)⊙ |x|3 = x⊙ |x|2 = x3. Thus, (74) is proved.

17



Riemannian Optimization on Unit Sphere with p-norm

Subsequently, we assume that v∗ satisfies (64) and x∗ satisfies v∗ = x2∗. As in the
proof of Proposition 7.1, let A(v∗) = {i1, i2, . . . , im} ⊂ {1, 2, . . . , n} be the set of indices
such that (v∗)i1 = (v∗)i2 = · · · = (v∗)im = 0 holds and Ā(v∗) := {1, 2, . . . , n} − A(v∗). Defin-
ing µ := vT∗ Av∗, it follows from (73) that

(v2∗)
TAv∗ =

∑

i∈Ā(v∗)

(v∗)
2
i (Av∗)i =

∑

i∈Ā(v∗)

(v∗)
2
iµ(v∗)i = µ

∑

i∈Ā(v∗)

(v∗)
3
i = µ‖v∗‖

3
3. (79)

Here, from (73), we have ((I − v∗v
T
∗ )Av∗) ⊙ v∗ = 0, which, together with v∗ 6= 0 and (79),

yields (Av∗) ⊙ v∗ = (v∗v
T
∗ Av∗) ⊙ v∗ = µv2∗ = ((v2∗)

TAv∗/‖v∗‖
3
3)v

2
∗ . Substituting v∗ = x2∗, this

is written as

(Ax2∗)⊙ x2∗ =
(x4∗)

TA(x2∗)

‖x2∗‖
3
3

x4∗ =
(x4∗)

TA(x2∗)

‖x3∗‖
2
2

x4∗. (80)

In general, for any a, b, c ∈ R, ac2 = bc4 is equivalent to ac = bc3. Therefore, (80) is reduced
to

(Ax2∗)⊙ x∗ =
(x4∗)

TA(x2∗)

‖x3∗‖
2
2

x3∗, (81)

which shows that grad f(x∗) = 0 in light of (74). This completes the proof.

7.1.3 Numerical experiments for nonnegative PCA

Here, we demonstrate numerical experiments for the nonnegative PCA. To solve the con-
strained Problem (62) on Sn−1

2 , we solve the unconstrained Problem (63) on Sn−1
4 to ob-

tain xproposedn ∈ Sn−1
4 . Then, we obtain vproposedn := (xproposedn )2 as a solution to the original

Problem (62) based on the proposed framework. For comparison, we also solve the constrained
Euclidean optimization Problem (65), which is equivalent to Problem (62), using MATLAB’s
fmincon function, to obtain vfmincon

n .
We consider the two cases of n = 10 and n = 1000. For each n, we constructed an n × n

symmetric positive definite matrix A with randomly generated elements. Implementing the
orthogonal projection (23) and retraction (28) based on Manopt [4], we applied the Riemannian
conjugate gradient method on Sn−1

4 to Problem (63) with n = 10 and n = 1000. The initial
point x0 for solving Problem (63) was also randomly constructed, and we used v0 := x20 as the
initial point for solving Problem (65) by fmincon.

For n = 10, each elements of the two solutions vproposed10 and vfmincon
10 are the same to

the third decimal place, as (0.000, 0.604, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.116, 0.788)T .
Furthermore, they are sparse. This is consistent with the discussion in Remark 7.2.

Subsequently, for n = 1000, we have ‖vproposed1000 − vfmincon
1000 ‖2 = 1.307. Furthermore, the

values of the function g(v) := −vTAv, which should be minimized in Problems (62) and (65),

are g(vproposed1000 ) = −2.963 × 103 < −1.805× 103 = g(vfmincon
1000 ). In addition, vproposed1000 is sparse

because 479 of 1000 elements of vproposed1000 are less than 10−6, while no element of vfmincon
1000 is less

than 10−6. Therefore, the proposed framework yielded a much better solution in this case.

7.2 Lp-regularization-related optimization

In certain applications, Lp regularization is a frequently used technique, which considers an
objective function as the weighted sum of the original objective function and the p-norm
of the decision variable vector. In particular, L1 regularization is used in Lasso for sparse
estimation [7].
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7.2.1 Relationship between regularized, constrained, and manifold optimization

problems

We consider the following regularized optimization problem with p ∈ [1,∞]:

minimize L(w) + λ‖w‖p

subject to w ∈ R
n, (82)

where L : Rn → R is a convex function, and λ ≥ 0 is a predefined constant called a regulariza-
tion parameter.

Intuitively, Lp regularization is closely related to considering the constraint that the p-
norm of the decision variable vector is not larger than a predefined nonnegative constant.
Specifically, the corresponding constrained optimization problem is written as follows:

minimize L(w)

subject to ‖w‖p ≤ C, w ∈ R
n, (83)

where C ≥ 0 is a constant. For example, while Lasso regression is performed by solving the
former unconstrained Problem (82), the latter Problem (83) is sometimes used to explain why
Lasso tends to find a sparse solution [7]. This intuition is justified even for general p ∈ [1,∞]
through the following proposition:

Proposition 7.3. Assume that p ∈ [1,∞], and let L : Rn → R be a convex function. If w∗

is an optimal solution to Problem (82) with a predefined constant λ ≥ 0, then there exists
C ≥ 0 such that w∗ is an optimal solution to Problem (83) with C. Conversely, if w∗ is an
optimal solution to Problem (83) with a predefined constant C ≥ 0, then there exists λ ≥ 0
such that w∗ is an optimal solution to Problem (82).

Proof. First, we fix λ ≥ 0 and let w∗ be an optimal solution to Problem (82). Then, for
any w ∈ R

n, we have
L(w∗) + λ‖w∗‖p ≤ L(w) + λ‖w‖p. (84)

We show that w∗ is an optimal solution to Problem (83) with C := ‖w∗‖p. For any feasible
solution w ∈ R

n to Problem (83), we have ‖w‖p ≤ C = ‖w∗‖p. Combining this and (84),
we have L(w∗) + λ‖w∗‖p ≤ L(w) + λ‖w∗‖p, which means L(w∗) ≤ L(w). Furthermore, w∗

is clearly a feasible solution to Problem (83) since ‖w∗‖p = C. Therefore, w∗ is an optimal
solution to Problem (83).

Conversely, we fix C ≥ 0 and let w∗ be an optimal solution to Problem (83). Here, we
additionally consider the Lagrange dual problem of (83):

maximize inf
w∈Rn

(L(w) + µ(‖w‖p −C))

subject to µ ≥ 0, µ ∈ R. (85)

If C > 0, then Slater’s condition for Problem (83), which is that there exists w ∈ R
n

with ‖w‖p < C, clearly holds with w = 0. If C = 0, then the constraint ‖w‖p ≤ C in
Problem (83) is rewritten as the equality constraint w = 0, and Slater’s condition (which in
this case is that a feasible solution exists) holds by taking w = 0. In each case, Slater’s con-
dition for Problem (83) holds. Furthermore, Problem (83) is a convex optimization problem.
Therefore, it follows from Slater’s theorem [5, Section 5.2.3] that strong duality holds. Hence,
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the optimal value L(w∗) of Problem (83) and the optimal value of the dual problem (85)
coincide. Letting µ∗ ≥ 0 be an optimal solution to (85), we have

L(w∗) = inf
w∈Rn

(L(w) + µ∗(‖w‖p − C)). (86)

Since ‖w∗‖p ≤ C and µ∗ ≥ 0, we obtain L(w∗) ≤ L(w∗) + µ∗(‖w∗‖p − C) ≤ L(w∗).
Thus, L(w∗) = L(w∗) + µ∗(‖w∗‖p − C) holds, and w = w∗ attains the minimum value of
L(w) + µ∗(‖w‖p − C) over all w ∈ R

n. Since µ∗C is a constant, w = w∗ also attains the
minimum value of L(w) + µ∗‖w‖p over R

n. This implies that w∗ is an optimal solution to
Problem (82) with λ = µ∗, thereby completing the proof.

Remark 7.3. Although we focus on the p-norm here, Proposition 7.3 can be straightforwardly
generalized to the case with a general norm in R

n. Indeed, in the proof of Proposition 7.3, we
do not exploit any specific property of the p-norm but properties of a general norm.

From Proposition 7.3, we can observe the importance of Problem (83) in dealing with
Problem (82). Furthermore, Problem (83) is closely related to the following problem:

minimize L(w)

subject to ‖w‖p = C, w ∈ R
n, (87)

where C is the constant in Problem (83). Indeed, if a minimum point w∗ of L over the
entire R

n lies in the ball {w ∈ R
n | ‖w‖p ≤ C}, then w∗ is also an optimal solution to (83).

Therefore, a practically more important case we focus on is when all minimum points of L
over R

n are outside the ball. In this case, we can show that there exists an optimal solution
to Problem (83) that is on the sphere {w ∈ R

n | ‖w‖p = C} as the following proposition:

Proposition 7.4. Assume p ∈ [1,∞], let L : Rn → R be convex, and consider Problem (83)
with a constant C ≥ 0. Assume that any minimum point y∗ of L over R

n satisfies ‖y∗‖p > C.
Then, there exists an optimal solution w∗ to Problem (83) that satisfies ‖w∗‖p = C.

Proof. Let y∗ and z∗ be a minimum point of L over R
n and optimal solution to Problem (83),

respectively. If ‖z∗‖p = C, then we can take z∗ as w∗ in the statement of the proposition.
In the remainder of the proof, we assume ‖z∗‖ < C. From the assumption, we have

‖z∗‖p < C < ‖y∗‖p and L(y∗) ≤ L(z∗). Since L is convex, for α ∈ [0, 1], we have

L(αy∗ + (1− α)z∗) ≤ αL(y∗) + (1− α)L(z∗) ≤ αL(z∗) + (1− α)L(z∗) = L(z∗). (88)

Note that the function ϕ(α) := ‖αy∗+(1−α)z∗‖p is continuous with respect to α, where ϕ satis-
fies ϕ(0) = ‖z∗‖p < C and ϕ(1) = ‖y∗‖p > C. Therefore, from the intermediate value theorem,
there exists α∗ ∈ (0, 1) such that ϕ(α∗) = C. With this α∗, defining w∗ := α∗y∗ + (1− α∗)z∗,
we have ‖w∗‖p = ϕ(α∗) = C, implying that w∗ is feasible for Problem (83). Since z∗ is opti-
mal for (83), we have L(z∗) ≤ L(w∗). On the contrary, Eq. (88) yields that L(w∗) ≤ L(z∗).
Thus, we obtain L(w∗) = L(z∗), which means that w∗ is an optimal solution to Problem (83)
with ‖w∗‖p = C. This completes the proof.

From this proposition, if no minimum point of L over Rn lies in the ball {w ∈ R
n | ‖w‖p ≤ C},

then any optimal solution to Problem (87) is also an optimal solution to Problem (83), i.e.,
it is sufficient to solve Problem (87) for obtaining an optimal solution to Problem (83). Fur-
thermore, upon scaling w 7→ w/C and L 7→ L ◦ CI and writing w/C and L ◦ CI newly as x
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and f , respectively, i.e., f(x) := L(Cx) = L(w), Problem (87) essentially becomes equivalent
to the following problem on the unit sphere Sn−1

p with p-norm:

minimize f(x)

subject to x ∈ Sn−1
p . (89)

The important cases p = 1 and p = ∞ do not lie within the scope of the discussion in
the previous sections. Therefore, we approximate Sn−1

1 and Sn−1
∞ by Sn−1

p with p = 1 + ε,
where ε > 0 is sufficiently small, and Sn−1

p with sufficiently large p, respectively.

7.2.2 Numerical experiment for Lasso regression

Here, we consider the Lasso regression with simple artificial data. The data size is set as m =
100 and the number of variables as n = 13. We construct a data matrix X ∈ R

m×n with ran-
domly generated elements, set w∗ = (−5,−4,−3,−2,−1, 1, 2, 3, 4, 5, 0, 0, 0)T ∈ R

n, and com-
pute y = Xw∗ + ǫ, where each element of ǫ ∈ R

n is randomly generated from a uniform
distribution on the interval [−1, 1]. This means that, among n = 13 variables, the first 10
are essential and the last 3 have no effect in the data y. We now estimate the coefficient
parameter vector w∗ without any information on it, i.e., by using only the observed data X
and y. An appropriate sparse estimation should yield a coefficient parameter vector whose
last 3 elements are close to 0.

With the data X and y, we consider Problem (87) with L(w) := ‖Xw − y‖22 and a con-
stant C > 0, i.e., with the equality constraint ‖w‖p = C. Note that we exclude the case when
C = 0 since it yields the trivial solution w = 0. Solving this problem is equivalent to minimiz-
ing f(x) := L(Cx) = ‖CXx − y‖22 with respect to x ∈ Sn−1

p , i.e., solving Problem (89), and
multiplying the resultant solution x∗ by C to obtain the solution w∗ = Cx∗ to Problem (87).

The case of p = 1 corresponds to the Lasso regression. However, we can handle Sn−1
p with

p > 1 using the Riemannian optimization techniques developed in the previous sections. There-
fore, we adopt p = 1.000001 = 1 + 10−6 and expect that solving the problem on Sn−1

p yields
a sparse solution. Implementing the projection (23) and retraction (28) based on Manopt, we
applied the Riemannian conjugate gradient method for Problem (89) on Sn−1

p .

In Table 2, wnonreg := (XTX)−1XT y is the solution to the nonregularized optimization
problem of minimizing L, i.e., Problem (82) with λ = 0. As expected, this is not sparse.
Then, we applied the Riemannian conjugate gradient method in the proposed framework
with several C and obtained the solution wproposed

C to Problem (87) for each C. The results
for C = 1, 5, 10, 20, 22, 25, 30, 50, 100 are shown in the table. For small C such as C = 1, 5, 10,
the resultant solutions are sparse but do not provide a good estimation because the 5th and
6th entries are almost zero and the 11th and 13th are nonzero. On the contrary, large C does
not contribute to sparse estimation at all. Although finding the best value of C is difficult,
we observe that the case of C = 22 yields an appropriate solution in this experiment, which
is a sparse solution with appropriate values.

For comparison, we also applied MATLAB’s lasso function, which successively increases
the value of λ and solves Problem (82) for each λ. For small λ’s, the corresponding solutions
are dense, whereas the solution is 0 for a sufficiently large λ. We focus on the λ’s and
corresponding solutions wLasso

λ ∈ R
n such that only the last 3 elements of wLasso

λ are 0. The
lasso function yielded several λ’s satisfying this condition. Among them, wLasso

0.029 and wLasso
0.746

correspond to the smallest and largest values of λ, respectively. We can observe that wproposed
22

and wLasso
0.746 are close to each other.
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Table 2: Results obtained upon solving the Lasso-related optimization problems. The ith row shows the ith element of each solution.

1 2 3 4 5 6 7 8 9 10 11 12 13

wnonreg −5.055 −3.904 −3.022 −2.039 −1.036 0.967 1.972 3.028 4.036 5.060 −0.008 −0.032 0.052

wproposed
1 −0.167 −0.081 −0.150 −0.095 0.000 0.000 0.137 0.000 0.048 0.257 0.005 −0.000 −0.059

wproposed
5 −0.874 −0.631 −0.727 −0.329 −0.000 0.003 0.685 0.044 0.370 1.334 0.004 −0.000 −0.000

wproposed
10 −1.683 −1.335 −1.359 −0.709 0.000 0.002 1.051 0.537 0.984 2.268 0.000 0.000 −0.071

wproposed
20 −3.357 −2.790 −2.452 −1.330 −0.048 0.255 1.564 1.765 2.437 3.907 0.076 −0.000 −0.018

wproposed
22 −3.779 −3.234 −2.537 −1.202 −0.119 0.294 1.819 1.914 2.829 4.272 0.000 0.000 −0.000

wproposed
25 −4.193 −3.422 −2.791 −1.599 −0.510 0.587 1.787 2.391 3.203 4.504 0.008 0.004 0.000

wproposed
30 −5.027 −3.895 −3.014 −2.016 −1.021 0.952 1.967 3.010 4.012 5.042 0.000 −0.013 0.030

wproposed
50 −8.040 −5.762 −4.521 −3.657 −2.872 −0.979 −0.608 5.474 6.346 7.002 −2.290 0.979 −1.471

wproposed
100 −15.03 0.127 −10.70 −9.352 −5.748 −7.317 −7.698 11.94 0.913 12.70 −7.959 4.992 −5.526

wLasso
0.029 −4.989 −3.881 −3.023 −1.986 −0.993 0.939 1.959 2.976 3.981 5.037 0 0 0

wLasso
0.746 −3.727 −3.212 −2.712 −1.192 −0.002 0.224 1.831 1.890 2.791 4.314 0 0 0
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7.2.3 Numerical experiment for box-constrained problem

Here, we consider the following box-constrained optimization problem:

minimize L(w)

subject to l ≤ w ≤ u, w ∈ R
n, (90)

where l = (li), u = (ui) ∈ R
n are given constant vectors with l < u.2 The constraint

l ≤ w ≤ u means the box constraint li ≤ wi ≤ ui for i = 1, 2, . . . , n. Defining a :=
(u − l)/2 > 0 and b := (l + u)/2, this constraint is rewritten as −a ≤ w − b ≤ a, which
is equivalent to −1 ≤ D−1(w − b) ≤ 1, i.e., ‖D−1(w − b)‖∞ ≤ 1, with D being the n × n
diagonal matrix with diagonal elements a1, a2, . . . , an > 0. Therefore, with the transforma-
tion x := D−1(w − b) ∈ Sn−1

∞ and f(x) := L(a⊙ x+ b) = L(Dx+ b) = L(w), solving Prob-
lem (90) is essentially equivalent to minimizing f in the unit ball Bn

∞ = {x ∈ R
n | ‖x‖∞ ≤ 1}.

Consider a practical case where no minimum point of f over the entire R
n is in the ball Bn

∞.
Then, as discussed in Section 7.2.1, we only have to solve Problem (89) on the sphere Sn−1

p

with p = ∞. However, since p = ∞ was excluded from the discussion in the previous sec-
tions, we instead need to consider a sufficiently large finite value p when solving the problem
numerically.

We performed a numerical experiment for the following problem with n = 10:

minimize L(w) :=
1

2
wTAw + cTw

subject to l ≤ w ≤ u, w ∈ R
n, (91)

where the elements of the n × n symmetric positive definite matrix A and vector c ∈ R
n

are randomly generated. We set l = (−1,−2, . . . ,−10)T and u = (1, 2, . . . , 10)T . Note
that ∇L(w) = Aw + c and the minimum point of L over the entire R

n is −A−1c. We checked
that wunconst := −A−1c is not feasible for Problem (91) in this case. Therefore, as discussed
above, if we minimize f(x) := L(a ⊙ x + b) with a := (u − l)/2 and b := (l + u)/2 on the
sphere Sn−1

∞ to obtain x∗, then w∗ := a⊙ x∗ + b is an optimal solution to Problem (91). We
approximated Sn−1

∞ by Sn−1
p with p = 5, 10, 50, 100, 500, 1000, 5000, 10000, 50000, and solved

Problem (89) by the Riemannian conjugate gradient method based on Manopt. We denote

the resultant approximate solution to the original Problem (91) by wproposed
p for each p and

the solution to Problem (91) obtained using MATLAB’s fmincon function by wfmincon. The
results are shown in Table 3. As expected, the larger the value of p, the more accurate is the
obtained solution.

2If li = ui for some i, then the constant li is the only value that the corresponding wi can take. By
eliminating such a constant variable in advance if necessary, we can assume l < u without loss of generality.
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Table 3: Results of solving box-constrained-optimization-related problems. The ith row shows the ith element of each solution, and
the rightmost column shows the distance between the resultant vectors and wfmincon.

1 2 3 4 5 6 7 8 9 10 ‖w − wfmincon‖2

wunconst −3.335 4.331 −1.575 −0.383 −1.127 5.731 −3.268 −0.024 2.072 −1.885 5.971

wproposed
5 −0.725 1.912 −0.629 −0.187 −0.693 1.697 −0.863 −0.011 0.500 −0.570 0.4488

wproposed
10 −0.855 1.954 −0.644 −0.243 −0.728 1.797 −0.931 0.008 0.576 −0.536 0.2357

wproposed
50 −0.969 1.991 −0.657 −0.294 −0.761 1.882 −0.989 0.026 0.643 −0.503 4.952 × 10−2

wproposed
100 −0.985 1.995 −0.658 −0.301 −0.765 1.893 −0.997 0.028 0.652 −0.499 2.493 × 10−2

wproposed
500 −0.997 1.999 −0.659 −0.306 −0.769 1.902 −1.003 0.030 0.659 −0.495 5.012 × 10−3

wproposed
1000 −0.998 2.000 −0.660 −0.307 −0.769 1.903 −1.004 0.030 0.660 −0.494 2.508 × 10−3

wproposed
5000 −1.000 2.000 −0.660 −0.308 −0.770 1.904 −1.004 0.030 0.660 −0.494 5.014 × 10−4

wproposed
10000 −1.000 2.000 −0.660 −0.308 −0.770 1.904 −1.004 0.030 0.660 −0.494 2.508 × 10−4

wproposed
50000 −1.000 2.000 −0.660 −0.308 −0.770 1.904 −1.004 0.031 0.660 −0.494 5.030 × 10−5

wfmincon −1.000 2.000 −0.660 −0.308 −0.770 1.904 −1.004 0.031 0.660 −0.494 0
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8 Concluding remarks

In this paper, we investigated the geometry of the unit sphere defined via the p-norm as
Sn−1
p := {x ∈ R

n | ‖x‖p = 1} with p ∈ [1,∞], especially p ∈ (1,∞), in detail. In particular,
we derived formulas for retractions, their inverses, and vector transports, which can be used
in Riemannian optimization algorithms. The results are summarized in Table 1 of Section 6.

Furthermore, we discussed two types of applications of optimization on Sn−1
p . The first

was for optimization problems on the sphere with the nonnegative constraint, which include
the nonnegative PCA problem. The second was for Lp-regularization-related optimization
problems, which are closely related to the Lasso regression and box-constrained problems. To
this end, we provided mathematical support for the applications and performed numerical
experiments to verify the validity of the theory.

The applications addressed in this paper are examples of the proposed theory, and the cor-
responding numerical experiments are preliminary ones. Therefore, developing more efficient
algorithms by combining the present theory and existing Riemannian optimization theory
than state-of-the-art algorithms for specific problems, e.g., the nonnegative PCA and Lasso
problems, are left for future work.
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