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Abstract

In this paper, we study possible extensions of the main ideas and meth-
ods of constrained DC optimization to the case of nonlinear semidefinite
programming problems and more general nonlinear and nonsmooth cone
constrained optimization problems.

In the first part of the paper, we analyse two different approaches
to the definition of DC matrix-valued functions (namely, order-theoretic
and componentwise), study some properties of convex and DC matrix-
valued mappings and demonstrate how to compute DC decompositions of
some nonlinear semidefinite constraints appearing in applications. We also
compute a DC decomposition of the maximal eigenvalue of a DC matrix-
valued function. This DC decomposition can be used to reformulate DC
semidefinite constraints as DC inequality constrains. Finally, we study
local optimality conditions for general cone constrained DC optimization
problems.

The second part of the paper is devoted to a detailed convergence
analysis of two extensions of the well-known DCA method for solving
DC (Difference of Convex functions) optimization problems to the case
of general cone constrained DC optimization problems. We study the
global convergence of the DCA for cone constrained problems and present
a comprehensive analysis of a version of the DCA utilizing exact penalty
functions. In particular, we study the exactness property of the penalized
convex subproblems and provide two types of sufficient conditions for the
convergence of the exact penalty method to a feasible and critical point of
a cone constrained DC optimization problem from an infeasible starting
point. In the numerical section of this work, the exact penalty DCA is
applied to the problem of computing compressed modes for variational
problems and the sphere packing problem on Grassmannian.

1 Introduction

Starting with the pioneering works of Hiriart-Urruty [38, 39], Pham Dinh and
Souad [71], Strekalovsky [75], Tuy [86], and many others in the 1980s, DC
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(Difference of Convex functions) programming has been an active area of re-
search in nonlinear nonconvex optimization. One of the main features of DC
optimization problems is the fact that one can derive constructive global opti-
mality conditions [23,40,76,88,95] and develop deterministic global optimization
methods [25, 41, 57, 78, 79, 87] for this class of problems. Local search methods
for minimizing DC functions have also attracted a considerable attention of
researchers (see [28, 43, 77, 83] and the references therein).

Perhaps, the most efficient and well-known numerical method for DC op-
timization problems is the so-called DCA, originally presented by Pham Dinh
and Souad in [71] and later on thoroughly investigated in the works of Le Thi
and Pham Dinh et al. [52, 53, 56, 66, 67] (a particular version of the DCA is
sometimes called the concave-convex/convex-concave procedure [50, 94]). Some
closely related local search methods were studied in the works of de Oliveira et
al. [16, 17, 89–91]. For a detailed survey on DC programming, DCA, and their
applications see [54, 55, 65]. A comprehensive literature review of the DCA,
the convex-concave procedure, and other related optimization methods can be
found in [58].

Cone constrained optimization is one the central areas of constrained op-
timization, since it provides a unified setting for many different problems ap-
pearing in applications. Standard equality and inequality constrained problems,
semidefinite programming problems [47,74,81], second order cone programming
problems [3], semi-infinite programming problems [29,69], and many other par-
ticular problems (see, e.g. [5,8,61]) can be formulated as general cone constrained
optimization problems.

A detailed theoretical analysis of smooth and nonsmooth cone constrained
optimization problems was presented in [7,27,45,60,84,97]. Optimization meth-
ods for solving various convex cone constrained optimization problems can
be found in [5, 8, 61], while algorithms for solving various classes of smooth
nonconvex cone constrained optimization problems were developed, e.g. in
[10, 46, 47, 74, 92, 93] (see also the references therein).

Despite the abundance of publications on cone constrained optimization and
(usually inequality) constrained DC optimization problems, very little attention
has been paid to extensions of the main results and methods of DC optimization
to the case of problems with cone constraints. Even in the comprehensive sur-
vey paper [55], only unconstrained and inequality constrained DC optimization
problems are discussed.

The convex-concave procedure and the penalty convex-concave procedure for
solving cone constrained DC optimization problems were proposed by Lipp and
Boyd in [58], where an application of these methods to multi-matrix principal
component analysis was presented. However, to the best of the author’s knowl-
edge, a convergence analysis of these methods remains an open problem. An
application of the DCA to bilinear and quadratic matrix inequality feasibility
problems was considered by Niu and Dinh [62]. Finally, optimality conditions for
DC semi-infinite programming problems were studied in the recent paper [15].

The main goal of this paper is to fill in the gap and extend some of the main
results and methods of inequality constrained DC optimization (such as the
DCA) to the case of DC optimization problems with DC cone constraints, par-
ticularly, DC semidefinite programming problems. The motivation behind this
extension is connected to the fact that the DC optimization approach allows one
to develop general methods for solving nonsmooth cone constrained optimiza-
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tion problems, as well as extend global DC optimization methods to the case
of such problems. Furthermore, the nonlocal nature of the DCA (the method
uses global majorants of the objective function and constraints) in some cases
allows this algorithm to find better local solutions than traditional optimization
methods. This peculiarity makes the DCA a potentially appealing alternative
to existing methods for solving cone constrained optimization problems (see [58]
and Section 7 for some promising results of numerical experiments).

In the first part of the paper, we present a detailed discussion of two different
approaches to the definition of DC matrix-valued mappings: order-theoretic and
componentwise. We obtain several useful properties of convex and DC matrix-
valued functions, prove that any DC (in the order-theoretic sense) matrix-valued
map is necessarily componentwise DC, and demonstrate how one can compute
DC decompositions of several nonlinear matrix-valued functions appearing in
applications. We also construct a DC decomposition of the maximal eigen-
value of a componentwise DC matrix-valued mapping. This result allows one to
easily extend all ideas and methods of inequality constrained DC optimization
to the case of DC optimization problems with componentwise DC semidefinite
constraints. Finally, we also derive local optimality conditions for general cone
constrained DC optimization problems in several different forms.

In the second part of the paper, we study convergence of the DCA for solv-
ing cone constrained DC optimization problems and its exact penalty version
from [58]. Namely, we provide sufficient conditions for the convergence of both
methods to a critical point of the problem under consideration. We also study
the exact penalty property of the penalized convex subproblems of the second
method and obtain two types of sufficient conditions for the convergence of this
method to a feasible critical point of a cone constrained DC optimization prob-
lem from an infeasible starting point. In the end of the paper, we apply the
exact penalty DCA to the problem of computing compressed modes for varia-
tional problems [63] and the sphere packing problem on Grassmannian [1, 18],
that has applications to multi-antenna channel communications [32, 96]. We
present some interesting results of numerical experiments that support our the-
oretical observations on penalty updating rules and the overall performance of
the method. For an interesting application of the algorithms discussed in this
paper to multi-matrix principal component analysis see [58].

The paper is organized as follows. Order-theoretic and componentwise ap-
proaches to DC matrix valued functions are studied in Section 2, while a DC
structure of the maximal eigenvalue of a nonlinear matrix-valued mapping is
discussed in Section 3. Section 4 is devoted to the derivation of local optimality
conditions for general cone constrained DC optimization problems. A conver-
gence analysis of the DCA for cone constrained DC optimization problems is
presented in Section 5, while a detailed analysis of the penalty convex-concave
procedure (exact penalty DCA) from [58] is given in Section 6. Some results of
numerical experiments are contained in Section 7. Finally, a primal-dual version
of the exact penalty DCA is briefly discussed in the appendix.
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2 Two Approaches to DC Matrix-Valued Func-

tions

Denote by S
ℓ the space of all real symmetric matrices of order ℓ ∈ N, and let

� be the Löewner partial order on Sℓ, i.e. A � B for some matrices A,B ∈ Sℓ

if and only if the matrix B −A is positive semidefinite. Nonlinear semidefinite
optimization is concerned with problems of minimizing functions subject to
constraints of the form F (x) � 0, where F : Rd → Sℓ is a given nonlinear
mapping. To extend the main ideas and results of DC optimization to the
case of nonlinear semidefinite programming problems, first one must introduce
a suitable definition of a DC matrix-valued mapping F . There are two possible
approaches to this definition: order-theoretic and componentwise. Let us discuss
and compare these approaches.

Recall that the matrix-valued function F is called convex (see, e.g. [7,
Sect. 5.3.2] and [8, Sect. 3.6.2]), if

F (αx1 + (1− α)x2) � αF (x1) + (1 − α)F (x2) ∀x1, x2 ∈ R
d, α ∈ [0, 1].

Therefore it is natural to call the function F DC (Difference-of-Convex ), if
there exist convex mappings G,H : Rd → Sℓ such that F = G −H . Any such
representation of the function F (or, equivalently, any such pair of functions
(G,H)) is called a DC decomposition of F .

The definition of matrix-valued DC mapping given above has several disad-
vantages. Firstly, the convexity of matrix-valued functions is much harder to
verify than the convexity of real-valued functions. Many matrix-valued map-
pings that might seem to be convex judging by the experience with the real-
valued case are, in actuality, nonconvex. In particular, the convexity of each
component Fij(·) of F is not sufficient to ensure the matrix convexity of F .

Example 1. Let d = 1, ℓ = 2, and F (x) =
(

1 x2

x2 1

)
. Then for x1 = 1 and

x2 = −1 one has

αF (x1) + (1− α)F (x2)− F (αx1 + (1− α)x2) =
(

0 1−(2α−1)2

1−(2α−1)2 0

)
.

This matrix is not positive semidefinite for any α ∈ (0, 1), which implies that
the map F is nonconvex.

Secondly, recall that the set Sℓ equipped with the Löewner partial order
is not a vector lattice, since by Kadison’s theorem [44] the least upper bound
(the supremum) of two matrices in the Löewner order exists if and only if these
matrices are comparable. Therefore, many standard results and techniques from
convex analysis do not admit a direct extension to the case of matrix convexity
(cf. the general theory of convex vector-valued maps [49, 64, 80], in which the
assumption on the completeness of partial order is often indispensable). For
example, in most cases the supremum of two convex matrix-valued functions is
not correctly defined.

Nevertheless, there are some similarities between matrix-valued DC map-
pings and their real-valued counterparts. In particular, one can construct a DC
decomposition of a twice continuously differentiable matrix-valued map with
bounded Hessian in the same way one can construct DC decomposition of a
twice continuously differentiable real-valued function.
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Let Iℓ be the identity matrix of order ℓ. Denote by | · | the Euclidean norm,
by 〈·, ·〉 the inner product in Rk, and by ‖A‖F =

√
Tr(ATA) the Frobenius

norm of a real matrix A, where Tr(·) is the trace of a square matrix.

Theorem 1. Let a map F : Rd → Sℓ be twice continuously differentiable and
suppose that there exists M > 0 such that ‖∇2Fij(x)‖F ≤ M for all i, j ∈
{1, . . . , ℓ}. Then the mapping F is DC and for any µ ≥ ℓM both pairs (Gk, Hk),
k ∈ {1, 2}, with

G1(x) = F (x) +
µ

2
|x|2Iℓ, H1(x) =

µ

2
|x|2Iℓ, ∀x ∈ R

d,

and
G2(x) =

µ

2
|x|2Iℓ, H2(x) =

µ

2
|x|2Iℓ − F (x) ∀x ∈ R

d,

are DC decompositions of F .

Proof. Observe that by the definitions of matrix convexity and the Löewner
partial order, a mapping G : Rd → S

ℓ is convex if and only if for any z ∈ R
ℓ one

has
〈z,
(
αG(x1) + (1− α)G(x2)−G(αx1 + (1 − α)x2)

)
z〉 ≥ 0

for all x1, x2 ∈ Rd and α ∈ [0, 1] or, equivalently,

〈z,G(αx1 + (1− α)x2)z〉 ≤ α〈z,G(x1)z〉+ (1 − α)〈z,G(x2)z〉.
Therefore, a map G : Rd → Sℓ is convex if and only if for any z ∈ Rℓ the real-
valued function Gz(·) = 〈z,G(·)z〉 is convex. Consequently, in the case when G
is twice continuously differentiable, this function is convex if and only if for any
z the Hessian of the function Gz is positive semidefinite, i.e. for all x ∈ Rd and
z ∈ Rℓ the matrix

∇2Gz(x) =

ℓ∑

i,j=1

zizj∇2Gij(x)

is positive semidefinite.
Let us now turn to the proof of the theorem. Denote G(x) = F (x)+ µ

2 |x|2Iℓ
and H(x) = µ

2 |x|2Iℓ. Let us check that the mappings G and H are convex,
provided µ ≥ ℓM . Then one can conclude that F is a DC function and the pair
(G1, H1) from the formulation of the theorem is a DC decomposition of F . The
fact that the pair (G2, H2) is also a DC decomposition of F can be proved in a
similar way.

Indeed, for any x ∈ Rd and v, z ∈ Rℓ one has

〈v,∇2Gz(x)v〉 =
ℓ∑

i,j=1

zizj〈v,∇2Fij(x)v〉 + µ

ℓ∑

i=1

z2i |v|2 (1)

Let us estimate the first term on the right-hand side of this equality. Indeed,
applying the obvious inequality 2|zizj | ≤ z2i + z2j , one gets

ℓ∑

i,j=1

zizj〈v,∇2Fij(x)v〉 ≥ −
ℓ∑

i,j=1

|zizj |
∣∣〈v,∇2Fij(x)v〉

∣∣

≥ −1

2

ℓ∑

i,j=1

(z2i + z2j )
∣∣〈v,∇2Fij(x)v〉

∣∣.
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By the Cauchy-Bunyakovsky-Schwarz inequality and the fact that the Frobenius
norm is compatible with the Euclidean norm one has

∣∣〈v,∇2Fij(x)v〉
∣∣ ≤ |v|

∣∣∣∇2Fij(x)v
∣∣∣ ≤ ‖∇2Fij(x)‖F |v|2,

which implies that

ℓ∑

i,j=1

zizj〈v,∇2Fij(x)v〉 ≥ −|v|2
2

ℓ∑

i,j=1

(z2i + z2j )‖∇2Fij(x)‖F

= −|v|2
2

ℓ∑

i=1

2z2i

( ℓ∑

j=1

‖∇2Fij(x)‖F
)
,

where the last equality follows from the fact that the matrix F (x) is by definition
symmetric. Combining this inequality with (1), one finally obtains that

〈v,∇2Gz(x)v〉 ≥ |v|2
ℓ∑

i=1


µ−

ℓ∑

j=1

‖∇2Fij(x)‖


 z2i .

Hence for any x ∈ R
d, z ∈ R

ℓ, and µ ≥ ℓM one has

〈v,∇2Gz(x)v〉 ≥ 0 ∀v ∈ R
ℓ,

that is, the Hessian ∇2Gz(x) is positive semidefinite. Thus, one can conclude
that the matrix-valued mapping G(x) = F (x)+ µ

2 |x|2Iℓ is convex. The convexity
of H can be readily verified directly.

The difficulties connected with the use of matrix convexity motivate us to
consider a different approach to the definition of DC matrix-valued mappings.

Definition 1. A function F : Rd → Sℓ is called componentwise convex, if each
component Fij(·), i, j ∈ {1, . . . , ℓ}, is convex. The function F is called com-
ponentwise DC, if there exist componentwise convex functions G,H : Rd → Sℓ

such that F = G−H . Any such representation of F (or, equivalently, any such
pair of functions (G,H)) is called a componentwise DC decomposition of F .

Many properties of real-valued DC functions can be easily extended to the
case of componentwise DC matrix-valued mappings. For example, a linear com-
bination of componentwise DC mappings is obviously componentwise DC. With
the use of the well-known results of Hartman [36], one can easily see that the
Hadamard and the Kronecker products of componentwise DC matrix-valued
mappings are componentwise DC, etc.

Let us point out some connections between convex/DC and componentwise
convex/DC matrix-valued mappings. As Example 1 demonstrates, componen-
twise convex matrix-valued functions need not be convex. On the other hand,
from the fact that for any convex matrix-valued map F , the real-valued function
〈z, F (·)z〉 is convex for all z ∈ R

ℓ it follows that all diagonal components Fii(·)
of a convex matrix-valued map F must be convex (put z = ei for every vector ei
from the canonical basis of Rℓ). However, non-diagonal components of F need
not be convex.
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Example 2. Let d = 1, ℓ = 2, and F (x) =
(

0.5x2 sin x
sin x 0.5x2

)
. Then for all z ∈ R2

and x ∈ R one has

2∑

i,j=1

zizj∇2Fij(x) = z21 − 2(sinx)z1z2 + z22 ≥ z21 − 2|z1||z2|+ z22

= (|z1| − |z2|)2 ≥ 0.

Consequently, the function F is convex by [7, Proposition 5.72, part (ii)], despite
the fact that non-diagonal elements of F are nonconvex.

Although non-diagonal elements of a convex matrix-valued mapping F might
be nonconvex, they cannot be too ‘wild’, e.g. discontinuous. Namely, the fol-
lowing result holds true.

Theorem 2. Let a map F : Rd → Sℓ be convex. Then for all i, j ∈ {1, . . . , ℓ},
i 6= j, the function Fij is DC and, therefore, Lipschitz continuous on any
bounded set and twice differentiable almost everywhere.

Proof. We prove the theorem by induction in ℓ. The case ℓ = 1 is trivial. Let
us prove the case ℓ = 2 in order to highlight the main idea of the proof.

As was noted above, the function 〈z, F (·)z〉 is convex for all z ∈ Rℓ, which,
in particular, implies that the functions F11(·) and F22(·) are convex. For the
vector z = (1, 1)T one obtains that the function

Fz(x) = 〈z, F (x)z〉 = F11(x) + 2F12(x) + F22(x), x ∈ R
d

is convex as well. Therefore the function

F12(x) = F21(x) =
1

2
Fz(x)−

1

2
(F11(x) + F22(x))

is DC, which completes the proof of the case ℓ = 2.
Inductive step. Suppose that the theorem is valid for some ℓ ∈ N. Let us

prove it for ℓ + 1. The function Fz(·) = 〈z, F (·)z〉 is convex for all z ∈ Rℓ+1.
Putting z = (z1, . . . , zℓ, 0)

T and z = (0, z2, . . . , zℓ+1)
T for any zi ∈ R, i ∈

{1, . . . , ℓ+ 1} one obtains that the matrix-valued mappings

G(x) =



F11(x) . . . F1ℓ(x)

...
...

...
Fℓ1(x) . . . Fℓℓ(x)


 , H(x) =




F22(x) . . . F2(ℓ+1)(x)
...

...
...

F(ℓ+1)2(x) . . . F(ℓ+1)(ℓ+1)(x)




are convex. Therefore, by the induction hypothesis all functions Fij , i, j ∈
{1, . . . , ℓ+1} are DC, except for F1(ℓ+1) (or, equivalently, F(ℓ+1)1, since F (x) is
by definition a symmetric matrix).

For z = (1, . . . , 1)T one gets that the function

Fz(x) =
ℓ+1∑

i,j=1

Fij(x), x ∈ R
d

is convex, which obviously implies that the function F1(ℓ+1) is DC.
Finally, taking into account the fact that finite-valued convex functions are

Lipschitz continuous on bounded sets [73, Thm. 10.4] and twice differentiable
almost everywhere by the Busemann-Feller-Aleksandrov theorem (see, e.g. [6]),
one can conclude that for all i, j ∈ {1, . . . , ℓ} the functions Fij are Lipschitz
continuous on bounded sets and twice differentiable almost everywhere.
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As simple corollaries to the previous theorem we obtain straightforward
extensions of some well-known results for real-valued convex function to the
matrix-valued case.

Corollary 1. Let a map F : Rd → Sℓ be convex. Then F is Lipschitz continuous
on bounded sets, i.e. for any bounded set K ⊂ Rd there exists L > 0 such that
‖F (x1)− F (x2)‖F ≤ L|x1 − x2| for all x1, x2 ∈ K.

Corollary 2 (Busemann-Feller-Aleksandrov theorem for matrix-valued func-
tions). Let a map F : Rd → Sℓ be convex. Then F is twice differentiable almost
everywhere.

Remark 1. Note that the statement of Theorem 2 is obviously true for locally
convex (i.e. convex in a neighbourhood of every point) matrix-valued mappings
defined on not necessarily convex sets. Therefore, the previous corollary remains
true in this case as well. Namely, every locally convex map F : U → Sℓ defined
on an open set U ⊂ Rd is twice differentiable almost everywhere on U .

Since the difference of two real-valued DC functions is a DC function, The-
orem 2 also allows one to point out a direct connection between DC and com-
ponentwise DC matrix-valued mappings.

Corollary 3. Any DC map F : Rd → Sℓ is componentwise DC.

Since the definition of DC function provides a lot of flexibility (namely, there
are infinitely many DC decompositions of a given function), it seems reasonable
to assume that despite some drawbacks of matrix convexity the class of matrix-
valued DC mappings is sufficiently rich. In particular, one might ask whether
the class of matrix valued DC functions coincides with the class of componen-
twise DC functions or there are some componentwise DC mappings that are
not DC (a characterization of such functions would provide a deep insight into
the structure of DC matrix-valued mappins). Another interesting question is
whether the matrix DC property is preserved under standard operations, such
as the Hadamard/Kronecker product and inversion. Arguing in the same way
as in the proof of Theorem 1, one can easily check that for twice continuously
differentiable matrix-valued mappings the answer to this question is positive,
provided one considers locally DC functions. However, it is unclear whether the
classes of locally and globally DC mappings coincide in the matrix-valued case
(for componentwise DC functions this statement is true due to the celebrated
result of Hartman [36]).

In the end of this section, let us present several simple examples of DC
semidefinite constraints appearing in applications and their DC decompositions.
These examples, in particular, demonstrate some benefits of using matrix-valued
DC mappingss in comparison with componentwise DC mappings.

Example 3 (Quadratic/Bilinear Constraints). Suppose that

F (x) = C +

d∑

i=1

xiBi +

d∑

i,j=1

xixjAij (2)

for some matrices C,Bi, Aij ∈ Sℓ. In particular, one can suppose that the map
F (x) is bilinear/biaffine, that is,

F (x, y) = A00 +

d∑

i=1

xiAi0 +

m∑

j=1

yjA0j +

d∑

i=1

m∑

j=1

xiyjAij , ∀x ∈ R
d, y ∈ R

m

8



for some matrices Aij ∈ Sℓ. Such nonlinear matrix constraints appear in prob-
lems of simultaneous stabilisation of single-input single-output linear systems
by one fixed controller of a given order [37,74], robust gain-scheduling and some
decentralized control problems [30, 31], problems of maximizing the minimal
eigenfrequency of a given structure [74], etc.

By Theorem 1 the map F of the form (2) is DC and for any µ ≥ ℓM , where

M2 = max
s,k∈{1,...,ℓ}

d∑

i,j=1

[Aij ]
2
sk,

the pair

G(x) = C +
d∑

i=1

xiBi +
d∑

i,j=1

xixjAij +
µ

2
|x|2Iℓ, H(x) =

µ

2
|x|2Iℓ

is a DC decomposition of F . Note that to compute a componentwise DC decom-
position of F one would have to compute DC decompositions of ℓ2 quadratic
functions of the form

d∑

i,j=1

[Aij ]skxixj , s, k ∈ {1, . . . , ℓ}.

Moreover, in the general case the mapping H (the concave part) from a com-
ponentwise DC decomposition of F would not be diagonal.

It should be noted that a different DC decomposition of the mapping F can
be constructed. Namely, as was shown in [7, Example 5.74], a matrix-valued
map F of the form (2) is convex, if the ℓd × ℓd block matrix A = (Aij)

d
i,j=1 is

positive semidefinite (note that replacing, if necessary, A with 0.5(A+AT ), one
can suppose that the block matrix A is symmetric). Therefore, if a decompo-
sition A = A+ + A− of the matrix A onto positive semidefinite and negative
semidefinite parts is known, one can define

G(x) = C +
d∑

i=1

xiBi +
d∑

i,j=1

xixj(A+)ij , H(x) = −
d∑

i,j=1

xixj(A−)ij

Such DC decomposition can be used, if the block matrix A has a relatively
simple structure, e.g. when only the diagonal blocks Aii are nonzero.

Example 4 (Bilinear/Biaffine Matrix Constraints). Consider the map

R(X1, X2, X3) =

[
X1 (A+BX2C)X3

X3(A+BX2C)T X3

]

for all X1, X3 ∈ Sℓ, X2 ∈ Rm×m, and for some matrices A ∈ Rℓ×ℓ, B ∈ Rℓ×m,
and C ∈ R

m×ℓ. Nonlinear semidefinite constraints involving such mappings
R (or similar ones) appear, e.g. in optimal H2/H∞-static output feedback
problems [51, 74].

To apply the results presented in this section to the mapping R, define d =
0.5ℓ(ℓ+1)+m2+0.5ℓ(ℓ+1) (here we used the fact that a matrixX ∈ Sℓ is defined

9



by ℓ(ℓ+ 1)/2 variables). For any x ∈ Rd let (X1, X2, X3) be the corresponding
triplet of matrices from Sℓ × Rm×m × Sℓ, and let F (x) = R(X1, X2, X3).

By Theorem 1 the map F is DC and for any µ ≥ ℓM , where

M2 = max
i∈{1,...,ℓ}

m∑

k1=1

m∑

k2=1

ℓ∑

k3=1

(
Bik1

Ck2k3

)2
,

the pair

G(x) = F (x) +
µ

2

(
‖X2‖2F + ‖X3‖2F

)
I2ℓ, H(x) =

µ

2

(
‖X2‖2F + ‖X3‖2F

)
I2ℓ

is a DC decomposition of F .

Example 5 (The Stiefel Manifold/Orthogonality Constraint). Let d = m × ℓ
for some m ∈ N, i.e. x is a real matrix of order m × ℓ, which we denote by X .
Consider the equality constraint

XTX = Iℓ, (3)

which is known as the Stiefel manifold or orthogonality constraint appearing in
many applications [2, 24, 58, 59].

Following Lipp and Boyd [58], we rewrite equality constraint (3) as two
matrix inequality constraints:

G(X) = XTX − Iℓ � 0, H(X) = Iℓ −XTX � 0.

Let, as above, Gz(X) = 〈z,G(X)z〉. Observe that for any X1, X2 ∈ Rm×ℓ and
α ∈ [0, 1] one has

αGz(X1) + (1− α)Gz(X2)−Gz(αX1 + (1− α)X2)

= (α − α2)〈z,XT
1 X1z〉+

(
(1− α)− (1− α)2

)
〈z,XT

2 X2z〉
− α(1 − α)〈z, (XT

1 X2 +XT
2 X1)z〉

= α(1 − α)
(
|X1z|2 + |X2z|2 − 2〈X1z,X2z〉

)

= α(1 − α)
∣∣X1z −X2z

∣∣2 ≥ 0.

Consequently, the function Gz is convex for any z ∈ Rℓ, which implies that
the functions G and −H are matrix convex. Thus, equality constraint (3)
can be rewritten as two DC semidefinite constraints. It should be noted that
although this transformation is degenerate (we rewrite an equality constraint as
two inequality constraints), numerical experiments reported in [58] demonstrate
the effectiveness of an optimization method based on such transformation.

3 DC Structure of the Maximal Eigenvalue Func-

tion

Since there is no obvious connection between componentwise convexity and
the Löewner partial order/matrix convexity, componentwise DC matrix-valued
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mappings cannot be utilised directly in the abstract setting of nonlinear semi-
definite programming problems. Instead, it is natural to apply component-
wise DC property to a reformulation of such problems, in which the semidef-
inite constraint F (x) � 0 is replaced by the equivalent inequality constraint
λmax(F (x)) ≤ 0, where λmax(A) is the maximal eigenvalue of a symmetric ma-
trix A.

Our aim is to show that for componentwise DC mappings F the inequality
constraint λmax(F (x)) ≤ 0 is also DC, and one can compute a DC decompo-
sition of the maximal eigenvalue function λmax(F (·)), if a componentwise DC
decomposition of the map F is known. With the use of this result one can easily
extend standard results and algorithms from the theory of DC constrained DC
optimization problems to the case of DC semidefinite programming problems.

Theorem 3. Let F : Rd → Sℓ be a componentwise DC mapping and Fij =
Gij − Hij be a DC decomposition of each component of F , i, j ∈ {1, . . . , ℓ}.
Then the function λmax(F (·)) is DC and the pair (g, h) with

g(x) = max
|v|≤1

ℓ∑

i,j=1

(
(vivj + 1)Gij(x) + (1 − vivj)Hij(x)

)
,

h(x) =

ℓ∑

i,j=1

(
Gij(x) +Hij(x)

) (4)

for all x ∈ Rd is a DC decomposition of the function λmax(F (·)).
Proof. Fix any x ∈ Rd. As is well-known and easy to check, the following
equality holds true:

λmax(F (x)) = max
|v|≤1

〈v, F (x)v〉 = max
|v|≤1

ℓ∑

i,j=1

vivjFij(x).

Adding and subtracting Gij(x) +Hij(x) for all i, j ∈ {1, . . . , ℓ} and taking into
account the equality Fij(x) = Gij(x)−Hij(x), one obtains that

λmax(F (x)) = max
|v|≤1

ℓ∑

i,j=1

(
(vivj + 1)Gij(x) + (1 − vivj)Hij(x)

)

−
ℓ∑

i,j=1

(
Gij(x) +Hij(x)

)
=: g(x)− h(x).

The function h is obviously convex as the sum of convex functions. Moreover,
note that vivj + 1 ≥ 0 and 1− vivj ≥ 0 for all |v| ≤ 1. Therefore, the function
g is also convex as the maximum of the family of convex functions

(vivj + 1)Gij(x) + (1− vivj)Hij(x), |v| ≤ 1.

Thus, the function λmax(F (·)) is DC and the pair (g, h) defined in (4) is a DC
decomposition of this function.

Remark 2. Let us make an almost trivial, yet useful observation. By definition
g(x) = λmax(F (x)) + h(x). Therefore, there is no need to directly compute the
maximum in the definition of g in order to compute g(x). One simply has to to
find the maximal eigenvalue of the matrix F (x) and then add h(x).

11



For the sake of completeness, let us point out explicit formulae for the sub-
differentials of the convex functions g and h from the theorem above. To this
end, for any matrix A ∈ S

ℓ denote by Emax(A) the eigenspace of λmax(A).

Proposition 1. Under the assumptions of Theorem 3 for any x ∈ R
d one has

∂g(x) = co
{ ℓ∑

i,j=1

(
(vivj + 1)∂Gij(x) + (1 − vivj)∂Hij(x)

) ∣∣∣

v ∈ Emax(F (x)), |v| = 1
}

and ∂h(x) =
∑ℓ

i,j=1(∂Gij(x) + ∂Hij(x)), where ‘co’ stands for the convex hull.

Proof. The expression for ∂h(x) follows directly from the standard rules of sub-
differential calculus. Let us prove the equality for ∂g(x).

Indeed, fix any x ∈ Rd and denote by V (F (x)) the set of all those v ∈ Rℓ

with |v| ≤ 1 for which the maximum in the definition of g(x) is attained. Clearly,
V (F (x)) is a compact set. With the use of the theorem on the subdifferential of
the supremum of an infinite family of convex functions (see, e.g. [42, Thm. 4.2.3])
one obtains that

∂g(x) = co
{ ℓ∑

i,j=1

(vivj + 1)∂Gij(x) + (1− vivj)∂Hij(x)
∣∣∣ v ∈ V (F (x))

}
.

Note that this convex hull is closed as the convex hull of a compact set. There-
fore, it remains to show that v ∈ V (F (x)) if and only if v ∈ Emax(F (x)) and
|v| = 1.

Observe that for any v ∈ Rℓ one has

ℓ∑

i,j=1

(
(vivj + 1)Gij(x) + (1 − vivj)Hij(x)

)

=

ℓ∑

i,j=1

vivj
(
Gij(x)−Hij(x)

)
+ h(x) = 〈v, F (x)v〉 + h(x).

Therefore, the maximum over all v ∈ R
ℓ with |v| ≤ 1 of the left-hand side of

this equality (which is equal to g(x)) is attained at exactly the same v as the
maximum over all v ∈ Rℓ with |v| ≤ 1 of the right-hand side of this equality
(which is equal to λmax(F (x)) + h(x)). Consequently, one has

V (F (x)) =
{
v ∈ R

ℓ
∣∣∣ |v| ≤ 1, 〈v, F (x)v〉 = λmax(F (x))

}
.

With the use of the spectral decomposition of the matrix F (x) one can easily
verify that λmax(F (x)) = 〈v, F (x)v〉 for some |v| ≤ 1 if and only if |v| = 1 and
v is an eigenvector of the matrix F (x) corresponding to its maximal eigenvalue
(i.e. v ∈ Emax(F (x))), which implies the required result.

Thus, if an eigenvector v with |v| = 1 of the matrix F (x) corresponding
to the maximal eigenvalue λmax(F (x)) is computed, one can easily compute
subgradients of DC components of the function λmax(F (·)) at the point x with
the use of subgradients of the functions Gij and Hij .
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Remark 3. Let us note once again that one can rewrite nonlinear semidefinite
programming problem

minimize f0(x) subject to F (x) � 0, x ∈ Q.

where Q is a closed convex set, as the following equivalent inequality constrained
problem

minimize f0(x) subject to λmax(F (x)) ≤ 0, x ∈ Q. (5)

In the case when the function f0 is DC and the map F is componentwise DC,
one can easily extend all existing results and methods for inequality constrained
DC optimization problems to the case of problem (5) with use of Theorem 3
and Proposition 1. For the sake of shortness, we leave the tedious task of
explicitly reformulating existing results and methods in terms of problem (5) to
the interested reader.

4 Cone Constrained DC Optimization

In the previous section, we pointed out how methods and results of DC opti-
mization can be applied to nonlinear semidefinite optimization problems with
componentwise DC constraints. Let us now show how one can extend standard
results from DC optimization to the case when the semidefinite constraint is
DC in the order-theoretic sense. Since such extension does not rely on any par-
ticular properties of semidefinite problems (i.e. any properties of matrix-valued
mappings, the Löwner partial order, etc.) or the finite dimensional nature of the
problem, following Lipp and Boyd [58], below we study optimality conditions
for DC semidefinite programming problems in the more general setting of DC
cone constrained problems of the form

minimize f0(x) = g0(x)− h0(x),

subject to F (x) = G(x) −H(x) �K 0, x ∈ Q.
(P)

Here g0, h0 are real-valued closed convex functions defined on Rd, K is a proper
cone in a real Banach space Y (that is, K is a closed convex cone such that
K ∩ (−K) = {0}), �K is the partial order induced by the cone K, i.e. x �K y
if and only if y − x ∈ K, the mappings G,H : Rd → Y are convex with respect
to the cone K (or K-convex), that is,

G(αx1 + (1− α)x2) �K αG(x1) + (1− α)G(x2) ∀α ∈ [0, 1], x1, x2 ∈ R
d

and the same inequality holds for H , and, finally, Q ⊆ R
d is a closed convex

set. Note that the constraint F (x) �K 0 can be rewritten as F (x) ∈ −K.
Thus, the problem (P) is a cone constrained DC optimization problem that

consists in minimizing the DC objective function f0 subject to the generalized
inequality (or cone) constraint that is DC with respect to the cone K. In the
case when Y = Sℓ and K is the cone of positive semidefinite matrices, the
problem (P) becomes a standard nonlinear semidefinite programming problem.
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4.1 Some Properties of Convex Mappings

Before we proceed to the study of cone constrained DC optimization problems,
let us first present two well-known auxiliary results on convex mappings and
convex multifunctions, whose formulations are tailored to our specific setting.
For the sake of completeness, we provide detailed proofs of these results.

We start with the following well-known characterisation of K-convex map-
pings in terms of their derivatives.

Lemma 1. Let X be a real Banach space. A Gâteaux differentiable mapping
Φ: X → Y is K-convex if and only if

Φ(x1)− Φ(x2) �K Φ′(x2)(x1 − x2) ∀x1, x2 ∈ X, (6)

where Φ′(x) is the Gâteaux derivative of Φ at x.

Proof. Let Φ be convex. Then by definition

αΦ(x1) + (1− α)Φ(x2)− Φ(αx1 + (1− α)x2) ∈ K ∀α ∈ [0, 1], x1, x2 ∈ X.

Since K is a cone, for any α ∈ (0, 1] one has

Φ(x1)− Φ(x2)−
1

α

(
Φ(x2 + α(x1 − x2))− Φ(x2)

)
∈ K.

Passing to the limit as α → +0 and taking into account the fact that the cone
K is closed, one obtains that

Φ(x1)− Φ(x2)− Φ′(x2)(x1 − x2) ∈ K ∀x1, x2 ∈ X

or, equivalently, condition (6) holds true.
Conversely, if condition (6) holds true then for all x1, x2 ∈ X and for any

α ∈ [0, 1] one has

Φ(x1)− Φ(x(α)) − (1− α)Φ′(x(α))(x1 − x2) ∈ K,

Φ(x2)− Φ(x(α)) − αΦ′(x(α))(x2 − x1) ∈ K.

where x(α) = αx1 + (1 − α)x2. Multiplying the first expression by α and the
second expression by 1− α and bearing in mind the fact that a convex cone is
closed under addition, one obtains that

αΦ(x1) + (1− α)Φ(x2)− Φ(x(α)) ∈ K ∀α ∈ [0, 1], x1, x2 ∈ X,

that is, Φ is K-convex.

Let us also present a lemma on solutions of perturbed convex generalized
equations, based on some well-known results on metric regularity of convex
multifunctions (see, e.g. [72]). For any metric space (X, ρ) and all x ∈ X denote
B(x, r) = {x′ ∈ X | ρ(x′, x) ≤ r}. If X is a normed space, then BX = B(0, 1).

Lemma 2. Let X be a real Banach space and Z be a metric space. Suppose
that Mz : X ⇒ Y , z ∈ Z, is a family of closed convex multifunctions such that
for some z∗ ∈ Z and x ∈ X one has 0 ∈ intMz∗(X) and 0 ∈ Mz∗(x). Suppose
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also that the function z 7→ dist(0,Mz(x)) is continuous at z∗ and for any ε > 0
there exists δ > 0 such that

Mz∗(x +BX) ⊆ Mz(x+BX) + εBY ∀z ∈ B(z∗, δ).

Then there exist a neighbourhood U of z∗ and a mapping ξ : U → X such that
0 ∈ Mz(ξ(z)) for all z ∈ U , ξ(z∗) = x, and ξ(z) → x as z → z∗.

Proof. Since 0 ∈ intMz∗(X) and 0 ∈ Mz∗(x), by [72, Thm. 1] there exists η > 0
such that ηBY ⊆ Mz∗(x+BX). By our assumption there exists δ > 0 such that

ηBY ⊆ Mz∗(x +BX) ⊆ Mz(x +BX) +
η

3
BY ∀z ∈ B(z∗, δ),

which by [72, Thm. 2] implies that for all x ∈ X and z ∈ B(z∗, δ) one has

dist(x,M−1
z (0)) ≤ 2

η

(
1 + ‖x− x‖

)
dist(0,Mz(x)).

Putting x = x one gets that for any z ∈ B(z∗, δ) there exists ξ(z) ∈ M−1
z (0) such

that ‖x− ξ(z)‖ ≤ (4/η) dist(0,Mz(x)). Note that ξ(z∗) = x, since 0 ∈ Mz∗(x).
Moreover, from the fact that the function z 7→ dist(0,Mz(x)) is continuous at
z∗ it follows that ξ(z) → x as z → z∗, which completes the proof.

Remark 4. Roughly speaking, the previous lemma states that if 0 ∈ intMz∗(X)
and 0 ∈ Mz∗(x), then under certain semicontinuity assumptions for any z in
a neighbourhood of z∗ there exists a solution ξ(z) of the generalized equation
0 ∈ Mz(x) continuously depending on z and such that ξ(z∗) = x.

Corollary 4. Let X be a real Banach space, W ⊆ X be a closed convex set,
E ⊆ Y be a proper cone, and Φ,Ψ: X → Y be E-convex mappings. Suppose
that Φ is continuous on W , Ψ is continuously Fréchet differentiable on W , and
the following constraint qualification holds true

0 ∈ int
{
Φ(x)−Ψ(x∗)−DΨ(x∗)(x− x∗) + E

∣∣∣ x ∈ W
}

(7)

for some x∗ ∈ W such that Φ(x∗) −Ψ(x∗) �E 0, where DΨ(x∗) is the Fréchet
derivative of Ψ at x∗. Then for any x ∈ W such that

Φ(x)−Ψ(x∗)−DΨ(x∗)(x− x∗) �E 0

there exists a neighbourhood U of x∗ and a mapping ξ : U ∩W → W such that

Φ(ξ(z))−Ψ(z)−DΨ(z)(ξ(z)− z) �E 0 ∀z ∈ U ∩W

ξ(x∗) = x, and ξ(z) → x as z → x∗.

Proof. For any z ∈ X introduce the E-convex function Φz : X → Y defined as
Φz(x) = Φ(x)−Ψ(z)−DΨ(z)(x− z) and the set-valued mapping

Mz(x) =

{
Φz(x) + E, if x ∈ W,

∅, if x /∈ W.
(8)
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The multifunction Mz is closed due to the facts that the mapping Φz(·) is
continuous and the sets W and E are closed. Moreover, this multifunction is
convex.

Indeed, by the convexity of Φ for any x1, x2 ∈ W and all α ∈ [0, 1] one has

αΦz(x1) + (1− α)Φz(x2) ∈ Φz(αx1 + (1− α)x2)) + E,

which due to the convexity of the cone E implies that

αMz(x1) + (1− α)Mz(x2) ⊆ Φz(αx1 + (1− α)x2)) + E + αE + (1− α)E

⊆ Mz(αx1 + (1 − α)x2)

for all x1, x2 ∈ W and α ∈ [0, 1], that is, the graph of Mz is convex.
Our aim is to apply Lemma 2 with Z = W and z∗ = x∗. Indeed, by definition

0 ∈ Mz∗(x), while condition (7) implies that 0 ∈ intMz∗(X).
From the fact that Ψ is continuously Fréchet differentiable on W it follows

that for any ε > 0 there exists δ < min{1, ε/3(1 + ‖DΨ(z∗)‖)} such that

‖Ψ(z)−Ψ(z∗)‖ <
ε

3
, ‖DΨ(z)−DΨ(z∗)‖ <

ε

3(2 + ‖x‖+ ‖z∗‖)

for all z ∈ B(z∗, δ) ∩ W . Choose any y ∈ Mz∗(x + BX). By definition there
exist x ∈ (x +BX) ∩W and v ∈ E such that y = Φz∗(x) + v. Observe that

‖Φz(x) + v − y‖ = ‖Φz(x)− Φz∗(x)‖
≤ ‖Ψ(z)−Ψ(z∗)‖ + ‖DΨ(z)−DΨ(z∗)‖‖x− z‖+ ‖DΨ(z∗)‖‖z − z∗‖ < ε

for all z ∈ B(z∗, δ) ∩W , which implies that

Mz∗(x+BX) ⊆ Mz(x+BX) + εBY ∀z ∈ B(z∗, δ) ∩W.

Thus, it remains to show that the restriction of the function dist(0,Mz(x)) to
W is continuous.

By definition dist(0,Mz(x)) = dist(Φz(x),−E) (see (8)). With the use of
the fact that Ψ is continuously Fréchet differentiable one obtains that for any
ε > 0 there exists r < min{1, ε/3(1 + ‖DΨ(z∗)‖)} such that

‖Ψ(z)−Ψ(z∗)‖ <
ε

3
, ‖DΨ(z)−DΨ(z∗)‖ <

ε

3(‖x‖+ ‖z∗‖+ 1)

for all z ∈ B(z∗, r) ∩W . Therefore for any such z one has

‖Φz(x)− Φz∗(x)‖ ≤ ‖Ψ(z)−Ψ(z∗)‖
+ ‖DΨ(z)−DΨ(z∗)‖‖x− z‖+ ‖DΨ(z∗)‖‖z − z∗‖ < ε,

which implies that for any z ∈ B(x∗, r)∩W the following inequality holds true:

dist(0,Mz(x)) = dist(Φz(x),−E) ≤ ‖Φz(x)− Φz∗(x)‖ < ε

(here we used the fact that Φz∗(x) ∈ −E). Thus, all assumptions of Lemma 2
with Z = W and z∗ = x∗ are valid, and by this lemma there exists a required
mapping ξ(z).
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4.2 Optimality Conditions

Let us extend well-known local optimality conditions for constrained DC opti-
mization problems to the case of the problem (P). To the best of the author’s
knowledge, standard subdifferential calculus cannot be extended to the case of
convex matrix-valued mappings and many other K-convex vector-valued maps,
which makes it very difficult to deal with subdifferentials of such functions.
Therefore, below we suppose that the mapping H (the K-concave part of F ) is
continuously differentiable, but do not impose any smoothness assumptions on
the objective function f0.

Theorem 4. Let x∗ be a locally optimal solution of the problem (P) and the
mapping H be Fréchet differentiable at x∗. Then for any v ∈ ∂h0(x∗) the point
x∗ is a globally optimal solution of the following convex programming problem:

minimize g0(x) − h0(x∗)− 〈v, x − x∗〉
subject to G(x)−H(x∗)−DH(x∗)(x− x∗) �K 0, x ∈ Q,

(9)

where DH(x∗) is the Fréchet derivative of H at x∗.

Proof. Denote by ωv(x) = g0(x) − h0(x∗) − 〈v, x − x∗〉, x ∈ R
d, the objective

function of problem (9). This function is convex. Moreover, taking into account
the fact that by the definition of subgradient h0(x) ≥ h0(x∗) + 〈v, x− x∗〉, one
obtains that ωv(x) ≥ f0(x) for all x ∈ Rd and ωv(x∗) = f0(x∗).

By contradiction, suppose that there exists v ∈ ∂h0(x∗) such that the point
x∗ is not a globally optimal solution of problem (9), i.e. there exists a feasible
point x of this problem such that ωv(x) < ωv(x∗). Define x(α) = αx+(1−α)x∗.
Then

f0(x(α)) ≤ ωv(x(α)) ≤ αωv(x) + (1− α)ωv(x∗) < ωv(x∗) = f0(x∗) (10)

for all α ∈ (0, 1], thanks to the convexity of ωv.
Let us check that x(α) is a feasible point of the problem (P) for all α ∈ [0, 1].

Then with the use of (10) one can conclude that x∗ is not a locally optimal
solution of the problem (P), which contradicts the assumption of the theorem.

Indeed, by Lemma 1 one has H(x(α)) −H(x∗) −DH(x∗)(x(α) − x∗) ∈ K
for all α ∈ [0, 1]. Adding and subtracting G(x(α)), one obtains that

−F (x(α)) +G(x(α)) −H(x∗)−DH(x∗)(x(α) − x∗) ∈ K ∀α ∈ [0, 1]

or, equivalently,

F (x(α)) �K G(x(α)) −H(x∗)−DH(x∗)(x(α) − x∗) ∀α ∈ [0, 1].

Hence taking into account the fact that the point x(α) is feasible for problem
(9) due to the convexity of this problem, one can conclude that F (x(α)) �K 0.
Thus, x(α) is a feasible point of the problem (P) and the proof is complete.

Let us reformulate optimality conditions from the previous theorem. Denote
by Ω(x∗) the feasible region of problem (9) and for any convex set V ⊆ Rd and
x ∈ V denote by NV (x) = {v ∈ Rd | 〈v, z − x〉 ≤ 0 ∀z ∈ V } the normal cone to
V at x.
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Corollary 5. Let x∗ be a locally optimal solution of the problem (P) and the
map H be Fréchet differentiable at x∗. Then

∂h0(x∗) ⊆ ∂g0(x∗) +NΩ(x∗)(x∗).

Proof. Fix any v ∈ ∂h0(x∗). By Theorem 4 the point x∗ is a globally optimal
solution of the convex problem (9). Applying standard necessary and suffi-
cient optimality conditions for a convex function on a convex set (see, e.g. [42,
Thm. 1.1.2’]), one obtains that 0 ∈ ∂ωv(x∗) + NΩ(x∗)(x∗), where, as above,
ωv(x) = g0(x) − h0(x∗) − 〈v, x − x∗〉 is the objective function of problem (9).
Since ∂ω(x∗) = ∂g0(x∗) − v, one gets that v ∈ ∂g0(x∗) + NΩ(x∗)(x∗), which
implies the desired result.

In the case when a natural constraint qualification (namely, Slater’s condi-
tion for problem (9)) holds at x∗, one can show that optimality conditions from
Theorem 4 coincide with standard optimality conditions for cone constrained
optimization problems (see, e.g. [7]). To this end, denote by Y ∗ the topological
dual space of Y and by 〈·, ·〉 the canonical duality pairing between Y and Y ∗,
that is, 〈y∗, y〉 = y∗(y) for any y∗ ∈ Y ∗ and y ∈ Y .

Let K∗ = {y∗ ∈ Y ∗ | 〈y∗, y〉 ≥ 0 ∀y ∈ K} be the dual cone of K and for any
λ ∈ Y ∗ define L(x, λ) = f0(x) + 〈λ, F (x)〉.

Corollary 6. Let x∗ be a locally optimal solution of the problem (P) and the
mappings G and H be Fréchet differentiable at x∗. Suppose also that the fol-
lowing constraint qualification holds true:

0 ∈ int
{
G(x) −H(x∗)−DH(x∗)(x− x∗) +K

∣∣∣ x ∈ Q
}

(if K has nonempty interior, it is sufficient to suppose that there exists x ∈ Q
such that G(x)−H(x∗)−DH(x∗)(x−x∗) ∈ − intK). Then for any v ∈ ∂h0(x∗)
there exists a multiplier λ∗ ∈ K∗ such that 〈λ∗, F (x∗)〉 = 0 and

v ∈ ∂g0(x∗) +D
(
〈λ∗, F (·)〉

)
(x∗) +NQ(x∗).

In particular, if both g0 and h0 are differentiable at x∗, then there exists λ∗ ∈ K∗

such that 〈λ∗, F (x∗)〉 = 0 and 〈DxL(x∗, λ∗), x− x∗〉 ≥ 0 for all x ∈ Q.

Proof. Rewriting problem (9) as the convex cone constrained problem

minimize g0(x) − h0(x∗)− 〈v, x− x∗〉
subject to G(x) −H(x∗)−DH(x∗)(x− x∗) ∈ −K, x ∈ Q

and applying standard necessary and sufficient optimality conditions for convex
cone constrained optimization problems (see, for example, [7, Thm. 3.6 and
Prp. 2.106]), we arrive at the required result.

Remark 5. In the case of semidefinite programs, i.e. when Y = Sℓ and K is the
cone of positive semidefinite matrices, the dual cone K∗ coincides with K (if
we identify the dual of Sℓ with the space Sℓ itself), and thus the multiplier λ∗

from the previous corollary is a positive semidefinite matrix. In addition, the
constraint qualification from the corollary takes the form: there exists x ∈ Q
such that the matrix G(x) −H(x∗)−DH(x∗)(x − x∗) is negative definite.
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5 DCA for Cone Constrained DC Optimization

The optimality conditions from Theorem 4 can be applied to a convergence
analysis of a method for solving cone constrained DC optimization problems
proposed in [58], which can be viewed as an extension of the renown DCA
[52,55,67] to the case of DC problems with cone constraints. A general scheme
of this method for the problem (P) is given in Algorithmic Pattern 1. Following
[89], we use the term algorithmic pattern, since Algorithmic Pattern 1 is not an
algorithm per se, but rather a theoretical scheme (a pattern) that can be used
to define a local search method for the problem (P) by specifying a method for
solving the convex subproblem on Step 2 and a stopping criterion.

Algorithmic Pattern 1: DCA for Cone Constrained DC Optimiza-
tion.
Initialization. Choose a feasible initial point x0 and set n := 0.
Step 1. Compute vn ∈ ∂h0(xn) and DH(xn).
Step 2. Set the value of xn+1 to an optimal solution of the convex
problem

minimize g0(x)− 〈vn, x〉
subject to G(x) −H(xn)−DH(xn)(x − xn) �K 0, x ∈ Q.

If a stopping criterion is met, Stop. Otherwise, put n := n+ 1 and go
to Step 1.

A stopping criterion for Algorithmic Pattern 1 is discussed below (see Re-
mark 6). Here we only impose one assumption. Namely, we suppose that this
criterion is satisfied, if xn+1 = xn, i.e. the method terminates, if it fails to
improve the current iterate xn.

Let us also note that the point xn+1 on Step 2 of Algorithmic Pattern 1
is not correctly defined in the general case, since the corresponding convex
problem might not have optimal solutions. One can ensure the existence of
optimal solutions by imposing suitable coercivity/compactness assumptions on
the original problem (cf. Lemma 3). For the sake of shortness, below we always
assume that iterations of Algorithmic Pattern 1 are correctly defined. Finally,
it should be mentioned that the convex subproblem on Step 2 of Algorithmic
Pattern 1 can be solved with the use of interior point methods (see, e.g. [8,
Sect. 11.6] and [5, 61]), augmented Lagrangian methods [47, 74], etc.

Our aim is to prove a convergence theorem for Algorithmic Pattern 1. Clearly,
in the nonsmooth case (more precisely, when h0 is nonsmooth) one cannot expect
a sequence {xn} generated by this algorithm to converge to a point x∗ satis-
fying optimality conditions from Theorem 4 for all v ∈ ∂h(x∗). Furthermore,
these optimality conditions are often too restrictive for applications, since they
require the knowledge of the entire subdifferential ∂h(x∗), which might make
verification of these conditions too computationally expensive or even impos-
sible. That is why one usually establishes a convergence of DC optimization
methods to so-called critical points [43,55,89]. Recall that a point x∗ is said to
be critical for the problem (P), if the following condition holds true:

∂h0(x∗) ∩
(
∂g0(x∗) +NΩ(x∗)(x∗)

)
6= ∅.
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Note that this condition is satisfied if and only if there exists v ∈ ∂h0(x∗) such
that x∗ is a globally optimal solution of convex problem (9) (see Theorem 4).
Hence, in particular, if a point xn on Step 2 of Algorithmic Pattern 1 is not criti-
cal for the problem (P), then xn is not an optimal solution of the corresponding
convex subproblem. In other words, if Algorithmic Pattern 1 terminates on
iteration n ∈ N, then xn is a critical point for the problem (P).

The proof of the following theorem was largely inspired by the convergence
analysis of an algorithmic pattern for inequality constrained DC optimization
problems from [89, Section 3.1]. However, let us note that we prove the global
convergence of Algorithmic Pattern 1 to a critical point under assumptions that
are different from the ones used in [89].

Theorem 5. Let the function f0 be bounded below on the feasible region of
the problem (P), and {xn} be the sequence generated by Algorithmic Pattern 1.
Then the following statements hold true:

1. the feasible region Ω(xn) of the convex subproblem on Step 2 of the algo-
rithic pattern is nonempty for all n ∈ N, and the sequence {xn} is feasible
for the problem (P);

2. for any n ∈ N either xn is a critical point of the problem (P) and the
process terminates at step n or f0(xn+1) < f0(xn); moreover, if the algo-
rithmic pattern does not terminate, then the sequence {f0(xn)} converges;

3. if the function h0 is strongly convex with constant µ > 0, then

f0(xn+1) ≤ f0(xn)−
µ

2
|xn+1 − xn|2 (11)

for all n ∈ N;

4. if x∗ is a limit point of the sequence {xn} such that

0 ∈ int
{
G(x)−H(x∗)−DH(x∗)(x− x∗) +K

∣∣ x ∈ Q
}

(that is, Slater’s condition holds for problem (9)), then x∗ is a critical
point for the problem (P).

Proof. 1. Let us prove this statement by induction in n. By our assumption
x0 is feasible for the problem (P), which implies that x0 ∈ Ω(x0), that is, the
feasible region Ω(x0) of the convex subproblem is nonempty.

Inductive step. Suppose that for some n ∈ N the point xn is feasible for the
problem (P) and Ω(xn) is nonempty. Let us prove that xn+1 is feasible for the
problem (P). Then xn+1 ∈ Ω(xn+1), i.e. Ω(xn+1) 6= ∅, and the proof of the
first statement is complete.

Indeed, by definition the point xn+1 is a globally optimal solution of the
convex subproblem on Step 2 of the algorithmic pattern, which implies that

G(xn+1)−H(xn)−DH(xn)(xn+1 − xn) �K 0, xn+1 ∈ Q.

By Lemma 1 (see page 14) one has

−H(xn+1) �K −H(xn)−DH(xn)(xn+1 − xn).
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Therefore F (xn+1) = G(xn+1) −H(xn+1) �K 0, i.e. the point xn+1 is feasible
for the problem (P).

2. If a point xn is not critical, then, as was noted above, xn is not a solution
of the convex subproblem on Step 2 of Algorithmic Pattern 1, which implies
that

g0(xn+1)− 〈vn, xn+1 − xn〉 < g0(xn).

Subtracting h0(xn) from both sides of this inequality and applying the definition
of subgradient, one obtains that f0(xn+1) < f0(xn). Hence bearing in mind the
facts that the sequence {xn} is feasible and f0 is bounded below on the feasible
region, one gets that the sequence {f(xn)} converges.

3. Fix any n ∈ N. Due to the strong convexity of h0 one has

h0(xn+1)− h0(xn) ≥ 〈vn, xn+1 − xn〉+
µ

2
|xn+1 − xn|2.

Furthermore, by the definition of xn+1 one has

g0(xn) ≥ g0(xn+1)− 〈vn, xn+1 − xn〉.

Summing up these two inequalities one obtains that (11) holds true.
4. By our assumption there exists a subsequence {xnk

} converging to x∗.
The corresponding sequence {vnk

} of subgradients of the function h0 is bounded,
since the subdifferential mapping of a finite convex function is locally bounded
(see, e.g. [73, Cor. 24.5.1]). Therefore, replacing, if necessary, the sequence
{xnk

} with its subsequence one can suppose that the sequence of subgradients
{vnk

} converges to some vector v∗ belonging to ∂h0(x∗) due to the fact that the
graph of the subdifferential is closed (see, e.g. [73, Thm. 24.4]).

By contradiction, suppose that x∗ is not a critical point of the problem (P).
Then, in particular,

v∗ /∈ ∂g0(x∗) +NΩ(x∗)(x∗),

which by Theorem 4 implies that x∗ is not a globally optimal solution of the
convex problem (9). Consequently, there exists a feasible point x of this problem
and θ > 0 such that g0(x)− 〈v∗, x− x∗〉 < g(x∗)− θ.

Applying Lemma 2 with Φ = G, Ψ = H , W = Q, and E = K, one obtains
that for any z ∈ Q lying in a neighbourhood of x∗ one can find a point ξ(z) ∈ Q
such that G(ξ(z)) − H(z) − DH(z)(ξ(z) − z) �K 0 and ξ(z) → x as z → x∗.
Hence taking into account the facts that the subsequence {xnk

} converges to
x∗, while {vnk

} converges to v∗, one obtains that there exists k0 ∈ N such that
for all k ≥ k0 one has

g0(ξ(xnk
))− 〈vnk

, ξ(xnk
)− xnk

〉 ≤ g0(xnk
)− θ

2
,

G(ξ(xnk
))−H(xnk

)−DH(xnk
)(ξ(xnk

)− xnk
) �K 0.

Note that ξ(xnk
) is a feasible point of the convex subproblem on Step 2 of

Algorithmic Pattern 1 for any k ≥ k0. Consequently, by the definition of xnk+1

one has

g0(xnk+1)− 〈vnk
, xnk+1 − xnk

〉 ≤ g0(ξ(xnk
))− 〈vnk

, ξ(xnk
)− xnk

〉

≤ g0(xnk
)− θ

2
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for all k ≥ k0. Subtracting h0(xnk
) from both sides of this inequality and

applying the definition of subgradient, one gets that f0(xnk+1) ≤ f0(xnk
)− θ/2

for any k ≥ k0. Hence with the use of the second part of this theorem one can
conclude that f0(xn) → −∞, which contradicts the facts that f0 is bounded
below on the feasible set by our assumption and the sequence {xn} is feasible
by the first part of the theorem.

Remark 6. (i) Note that the assumption on the strong convexity of the function
h0 is not restrictive, since if this assumption is not satisfied, for any µ > 0 one
can replace the DC decomposition f0 = g0−h0 of the objective function f0 with
the following one:

f0(x) =
(
g0(x) +

µ

2
|x|2
)
−
(
h0(x) +

µ

2
|x|2
)
, x ∈ R

d.

(ii) Since by the previous theorem the sequence {f(xn)} converges, one can use
the inequalities |f0(xn+1) − f0(xn)| ≤ ε and/or ‖xn+1 − xn‖ ≤ ε as a stopping
criterion for Algorithmic Pattern 1. Note also that by definitions

0 ≤ g0(xn)− 〈vn, xn〉 −
(
g0(xn+1)− 〈vn, xn+1〉

)

= g0(xn)− g0(xn+1) + 〈vn, xn+1 − xn〉
≤ g0(xn)− g0(xn+1) + h0(xn+1)− h0(xn) ≤ f0(xn)− f0(xn+1)

and the first inequality turns into an equality if and only if xn is a critical
point of the problem (P). Therefore, one can replace the stopping criterion
|f0(xn+1) − f0(xn)| ≤ ε with |g0(xn+1) − 〈vn, xn+1〉 − (g0(xn) − 〈vn, xn〉)| ≤ ε
to avoid the computation of h0(xn) and h0(xn+1). For a discussion of more
elaborate stopping criteria for DC optimization methods involving approximate
optimality conditions see [77].

6 DCA2/The Penalty Convex-Concave Proce-
dure

In order to apply Algorithmic Pattern 1, one needs to find a feasible point of
the problem under consideration. In the case when such point is unknown in
advance and is hard to compute, one can use a combination of the DCA and
exact penalty techniques that allows one to start iterations at infeasible points.
Such modifications of Algorithmic Pattern 1 were discussed in [58] (and in [52,67]
in the case of inequality constrained problems). Here we present and analyze
one such method, which is a slight modification of the penalty convex-concave
procedure [58, Algorithm 4.2]. This method can be viewed as an extension of
DCA2 algorithm from [52,67] to the case of cone constrained DC optimization
problems.

A general scheme of DCA2/Penalty CCP for the problem (P) is given in
Algorithmic Pattern 2. The only difference between our method and [58, Al-
gorithm 4.2] is the penalty updates. Namely, in contrast to [58], we increase
the penalty parameter, only if the infeasibility measure at the current iteration
exceeds a prespecified threshold. Let us also note that the inequality t0 ≻K∗ 0
means that t0 ∈ K∗ and 〈t0, y〉 > 0 for any y ∈ K, y 6= 0. Finally, a stopping
criterion for Algorithmic Pattern 2 is discussed in Remark 11 below.
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Algorithmic Pattern 2: DCA2/Penalty CCP/Exact Penalty DCA.

Initialization. Choose an initial point x0 ∈ Q, penalty parameter
t0 ≻K∗ 0, the maximal norm of the penalty parameter τmax > 0,
µ > 1, infeasibility tolerance κ ≥ 0, and set n := 0.
Step 1. Compute vn ∈ ∂h0(xn) and DH(xn).
Step 2. Set the value of (xn+1, sn+1) to an optimal solution of the
convex problem

minimize
(x,s)

g0(x)− 〈vn, x〉+ 〈tn, s〉

subject to G(x) −H(xn)−DH(xn)(x − xn) �K s, s �K 0, x ∈ Q.

If a stopping criterion is satisfied, Stop.
Step 3. Define

tn+1 =

{
µtn, if ‖sn+1‖ ≥ κ and µ‖tn‖ ≤ τmax,

tn, otherwise.

Put n := n+ 1 and go to Step 1.

Remark 7. Let us point out how the penalized subproblem on Step 2 of Algo-
rithmic Pattern 2 is connected with standard exact penalty methods for cone
constrained optimization [4, 7]. Following the standard exact penalty method-
ology, one can base an exact penalty local search method for the problem (P)
on the function Φc(·) = f0(·) + c dist(F (·),−K). Taking into account the fact
that the map y 7→ dist(y,−K) is monotone with respect to the partial order
�K and utilizing the DC structure of the problem (P) one can define a global
convex majorant of the function Φc of the form

Ψc(x;xn; vn) = g0(x)− h0(xn)− 〈vn, x− xn〉
+ c dist(G(x) −H(xn)−DH(xn)(x− xn),−K),

and propose a DCA-type method for the problem (P) based on sequential mini-
mization of this function. To be able to utilize efficient convex cone constrained
optimization methods [5,8,61] and corresponding software, one can rewrite the
problem of minimizing the function Ψc(·;xn; vn) over the set Q as the equivalent
convex cone constrained problem

minimize
(x,s,ξ)

g0(x)− 〈v0, x〉+ cξ

s.t. G(x) −H(xn)−DH(xn)(x− xn) �K s, (ξ, s) ∈ KL, x ∈ Q,
(12)

where KL = {(ξ, s) ∈ R × Y | ξ ≥ ‖s‖} is the generalized Lorentz (second
order) cone. Alternatively, following the approach of [58], one can consider the
penalized subproblem from Step 2 of Algorithmic Pattern 2. This subproblem
can be derived in exactly the same way as problem (12), if one replaces the
function c dist(F (·),−K) with the following one:

ϕtn(x) = inf
{
〈tn, s〉

∣∣∣ s �K F (x), s �K 0
}
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(as will be shown below, under some natural assumptions on the cone K and the
space Y , one has ϕtn(·) ≥ τ dist(F (·),−K) for some τ > 0). Let us note that all
results below can be easily extended to the case when the auxiliary subproblem
on Step 2 of Algorithmic Pattern 2 is replaced by problem (12). For the sake of
shortness, we do note present this extension here.

Let us analyze convergence of Algorithmic Pattern 2. Firstly, we show that
under some standard assumptions the penalized convex subproblem on Step 2
of this algorithm is exact, in the sense that if the norm of the penalty parameter
tn is sufficiently large, then a solution of the subproblem on Step 2 of Algorith-
mic Pattern 2 coincides with the solution of the corresponding non-penalized
problem

minimize g0(x) − 〈v, x〉
subject to G(x)−H(xn)−DH(xn)(x− xn) �K 0, x ∈ Q,

(13)

provided the feasible region of this problem is nonempty. This result implies, in
particular, that if for some n ∈ N the norm of the penalty parameter tn exceeds
a certain threshold and the feasible region of problem (13) is nonempty, then
the next point xn+1 is feasible for the problem (P) and the rest of the iterations
of Algorithmic Pattern 2 coincide with the iterations of Algorithmic Pattern 1.
Thus, in this case one can ensure the convergence of a sequence generated by
Algorithmic Pattern 2 to a critical point for the problem (P).

Before we proceed to the proof of the exactness of the subproblem from Step 2
of Algorithmic Pattern 2, let us first provide simple sufficient conditions for the
existence of globally optimal solutions of this problem and the corresponding
non-penalized problem (13). To this end, recall that a function ϕ : Rd → R

is called coercive on the set Q, if ϕ(xn) → +∞ as n → ∞ for any sequence
{xn} ⊂ Q such that ‖xn‖ → +∞ as n → ∞.

Lemma 3. Let the space Y be finite dimensional, the cone K be generating
(i.e. K − K = Y ), and the penalty function Φc(·) = f0(·) + c dist(F (·),−K)
be coercive on Q for some c > 0. Then there exists µ∗ ≥ 0 such that for any
µ ≥ µ∗ and for all z ∈ Q and v ∈ ∂h(z) there exists a globally optimal solution
of the penalized problem

minimize
(x,s)

g0(x) − 〈v, x〉+ µ〈t0, s〉

subject to G(x) −H(z)−DH(z)(x− z) �K s, s �K 0, x ∈ Q.
(14)

Moreover, if the feasible region of the corresponding non-penalized problem

minimize g0(x)− 〈v, x〉
subject to G(x) −H(z)−DH(z)(x− z) �K 0, x ∈ Q

(15)

is nonempty, then this problem has a globally optimal solution as well.

Proof. Indeed, fix any z ∈ Q. Suppose at first that the feasible region of problem
(15) is nonempty. By Lemma 1 (see page 14) one has

−H(x) �K −H(z)−DH(z)(x− z) ∀x ∈ R
d.

Adding G(x) to both sides of this inequality, one obtains that

F (x) �K G(x) −H(z)−DH(z)(x− z) ∀x ∈ R
d, (16)
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which implies that the feasible region of problem (15) is contained in the feasible
region of the problem (P).

From the the coercivity of the function Φc(·) = f0(·) + c dist(F (·),−K) on
the set Q it follows that the function f0 is coercive on the feasible region of the
problem (P) and, therefore, on the feasible region of problem (15) as well (recall
that F (x) �K 0 if and only if F (x) ∈ −K). Hence taking into account the fact
that by the definition of subgradient

g0(x)− 〈v, x〉 ≥ f0(x) + h0(z)− 〈v, z〉 ∀x ∈ R
d,

one gets that the objective function of problem (15) is coercive on the feasible
region of this problem, which is closed by virtue of our assumptions on G and
H . Consequently, there exists a globally optimal solution of problem (15).

Let us now consider problem (14). Our assumptions on G and H guarantee
that the feasible region of this problem is closed. Note that a pair (x, s) ∈ Q×K
is feasible for this problem if and only if

G(x)−H(z)−DH(z)(x− z) ∈ s−K.

Hence bearing in mind the fact that the cone K is generating, one gets that the
feasible region of problem (14) is nonempty.

Let us check that the objective function

ω(x, s) = g0(x)− 〈v, x〉 + µ〈t0, s〉

of problem (14) is coercive on the feasible region of this problem, provided µ ≥ 0
is sufficiently large. Then one can conclude that a globally optimal solution of
problem (14) exists as well.

Indeed, by contradiction, suppose that ω is not coercive on the feasible
region of problem (14). Then there exist M > 0 and a sequence {(xn, sn)} of
feasible points of problem (14) such that ‖xn‖ + ‖sn‖ → +∞ as n → ∞, but
ω(xn, sn) ≤ M for all n ∈ N. Observe that F (xn) �K sn for all n ∈ N due to
(16), which implies that

M ≥ ω(xn, sn) ≥ inf
{
ω(xn, s)

∣∣∣ s �K F (xn), s �K 0
}

∀n ∈ N.

Let us estimate the infimum on the right-hand side of this inequality. Bearing
in mind the facts that t0 is a continuous linear functional, t0 ≻K∗ 0, and K is
a closed subset of a finite dimensional normed space, one obtains that

τ := min
{
〈t0, s〉

∣∣∣ s ∈ K, ‖s‖ = 1
}
> 0, 〈t0, s〉 ≥ τ‖s‖ ∀s ∈ K.

Therefore for any n ∈ N one has

M ≥ ω(xn, sn) ≥ g0(xn)− 〈v, xn〉+ µτ inf
{
‖s‖

∣∣∣ s ∈ F (xn) +K, s ∈ K
}

≥ f0(xn) + h0(z)− 〈v, z〉+ µτ inf
y∈K

‖F (xn) + y‖

= f0(xn) + h0(z)− 〈v, z〉+ µτ dist(F (xn),−K).

Hence taking into account the fact that by our assumption the penalty function
Φc(·) = f0(·) + c dist(F (·),−K) is coercive on Q, one obtains that the sequence
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{xn} is bounded, provided µ ≥ c/τ . Consequently, ‖sn‖ → +∞ as n → ∞,
which contradicts the fact that

M ≥ ω(xn, sn) ≥ min
‖x‖≤r

(
g0(x)− 〈v, x〉

)
+ µτ‖sn‖

for all n ∈ N, where r = supn∈N ‖xn‖. Thus, the function ω is coercive on the
feasible region of problem (14) for any µ ≥ c/τ and for any such µ there exists
a globally optimal solution of this problem.

Remark 8. Note that the assumptions on the space Y and the cone K are
not used in the proof of the existence of globally optimal solutions of the non-
penalized problem (15).

6.1 Exactness of the Convex Subproblem

Now we can turn to the proof of the exactness of the penalized problem (14).
Introduce the set

D =
{
x ∈ Q

∣∣∣ ∃x ∈ Q : G(x) −H(x)−DH(x)(x − x) �K 0
}
,

i.e. D is the set of all those x ∈ Q for which the feasible region of the non-
penalized problem (15) is nonempty. Observe that the feasible region of the
problem (P) is contained in D , but in the general case D 6= Rd. Denote by

Ds =
{
x ∈ Q

∣∣∣ 0 ∈ int
{
G(x) −H(x)−DH(x)(x− x) +K

∣∣ x ∈ Q
}}

.

the set of all those x ∈ Q for which the constraint qualification from Corollary 6
holds true. It should be noted that in the case when the cone K has nonempty
interior, this constraint qualification is satisfied if and only if there exists x ∈ Q
such that

G(x) −H(x)−DH(x)(x− x) ∈ − intK,

that is, if and only if Slater’s condition for the non-penalized problem (15) holds
true (see, e.g. [7, Prop. 2.106]). Note that by definition Ds ⊆ D . Thus, Ds is
the subset of D consisting of all those x for which Slater’s condition holds true
for the non-penalized problem.

Under some natural assumptions one can verify that the set D is closed (in
particular, it is sufficient to suppose that the feasible region of the problem (P)
is bounded, G is continuous, and H is continuously differentiable), while the
set Ds is open in Q. Therefore, there are some degenerate points x ∈ D \ Ds

(e.g. the ones that lie on the boundary of D in Q) for which one must impose
some additional assumptions. Our aim is to first provide somewhat cumbersome
sufficient conditions for the exactness of the penalized problem (14) for the entire
set D or its arbitrary subset, and then show that these conditions are satisfied
for any compact subset of Ds. The sufficient conditions presented here are based
on a uniform local error bound for the non-penalized problem (15).

To simplify the formulations and proofs of the statements below, for any
z ∈ R

d introduce the convex mapping Fz(x) = G(x) − H(z) − DH(z)(x − z),
x ∈ Rd, and the set-valued mapping

Mz(x) =

{
G(x)−H(z)−DH(z)(x− z) +K, if x ∈ Q,

∅, if x /∈ Q.
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The multifunction Mz is convex and closed, provided the map G is continuous
on Q. For any metric space (X, ρ) denote B(x, r) = {x′ ∈ X | ρ(x′, x) ≤ r} for
all x ∈ X .

Proposition 2. Let K be finite dimensional and there exist c ≥ 0 such that
the penalty function Φc(·) = f0(·) + c dist(F (·),−K) is coercive on Q. Let also
D0 ⊆ D be a nonempty set for which one can find a > 0, Lg > 0, and Lh > 0
such that for any z ∈ D0 and v ∈ ∂h0(z) one has ‖v‖ ≤ Lh and there exist
r > 0 and a globally optimal solution x∗ of the non-penalized problem (15) such
that g0 is Lipschitz continuous near x∗ with Lipschitz constant Lg and

dist(Fz(x),−K) ≥ a dist(x,M−1
z (0)) ∀x ∈ B(x∗, r) ∩Q. (17)

Then there exists µ∗ ≥ 0 such that for all µ ≥ µ∗ and for any z ∈ D0 and
v ∈ ∂h0(z) there exists a globally optimal solution of the penalized problem (14)
and a pair (x∗, s∗) is a solution of this problem if and only if s∗ = 0 and x∗ is
a solution of the corresponding non-penalized problem (15).

Proof. Fix any z ∈ D0 and v ∈ ∂h0(z), and denote by

ωµ(x, s) = g0(x) − 〈v, x− z〉+ µ〈t0, s〉.

the objective function of problem (14), shifted by the constant 〈v, z〉 for the sake
of convenience.

Arguing in the same way as in the proof of Lemma 3, one can check that
there exists τ > 0 such that 〈t0, s〉 ≥ τ‖s‖ for all s ∈ K. Therefore, for any
feasible point (x, s) of problem (14) one has

ωµ(x, s) ≥ g0(x) − 〈v, x− z〉+ µτ inf
{
‖s‖

∣∣ s �K Fz(x), s �K 0
}

≥ g0(x) − 〈v, x− z〉+ µτ inf
{
‖s‖

∣∣ s ∈ Fz(x) +K
}

= g0(x) − 〈v, x− z〉+ µτ dist(Fz(x),−K).

Let x∗ be a globally optimal solution of the non-penalized problem (15) (optimal
solutions of this problem exist by Lemma 3). Observe that by definition the set
M−1

z (0) coincides with the feasible region of problem (15). Therefore, by [19,
Prop. 2.7] there exists δ > 0 such that

g0(x) − 〈v, x− z〉 ≥ g0(x∗)− 〈v, x∗ − z〉 − (Lg + Lh) dist(x,M
−1
z (0))

for all x ∈ B(x∗, δ) ∩ Q. Consequently, applying inequality (17), one obtains
that

ωµ(x, s) ≥ g0(x∗)− 〈v, x∗ − z〉+ (µτa− Lg − Lh) dist(x,M
−1
z (0))

for any feasible point (x, s) of problem (14) such that x ∈ B(x∗, δ). Hence for
any such (x, s) one has

ωµ(x, s) ≥ g0(x∗)− 〈v, x∗ − z〉 = ω(x∗, 0) ∀µ ≥ µ∗ :=
Lg + Lh

τa
,

that is, (x∗, 0) is a locally optimal solution of problem (14) for any µ ≥ µ∗. Tak-
ing into account the fact that this problem is convex, one gets that for any such
µ the pair (x∗, 0) is a globally optimal solution of problem (14). Furthermore,
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since for any other globally optimal solution x̂ of the non-penalized problem
(15) one has ωµ(x∗, 0) = ωµ(x̂, 0), one obtains that for any globally optimal
solution x̂ of the non-penalized problem (15) and for all µ ≥ µ∗ the pair (x̂, 0)
is a globally optimal solution of the penalized problem (14).

Observe that if a pair (x̂, 0) is a globally optimal solution of the penal-
ized problem (14), then x̂ is necessarily a globally optimal solution of the non-
penalized problem (15). In addition, for any x ∈ Q and s ∈ K \ {0} one has

ωµ(x, s) = g0(x)− 〈v, x− z〉+ µ〈t0, s〉 > g0(x)− 〈v, x− z〉+ µ∗〈t0, s〉
= ωµ∗

(x, s) ≥ ωµ∗
(x∗, 0) = ωµ(x∗, 0)

for all µ > µ∗, that is, for any µ > µ∗ globally optimal solution of problem
(14) necessarily have the form (x̂, 0). Thus, for any µ > µ∗ a pair (x̂, ŝ) is a
globally optimal solution of the penalized problem (14) if and only if ŝ = 0 and
x̂ is a solution of the corresponding non-penalized problem. Since z ∈ D0 and
v ∈ ∂h0(z) were chosen arbitrarily and µ∗ does not depend on z and v, one can
conclude that the statement of the proposition holds true.

Corollary 7. Let K be finite dimensional and there exist c ≥ 0 such that the
penalty function Φc(·) = f0(·) + c dist(F (·),−K) is coercive on Q. Then for
any compact subset D0 ⊆ Ds there exists µ∗ ≥ 0 such that for all µ ≥ µ∗ and
for any z ∈ D0 and v ∈ ∂h0(z) there exists a globally optimal solution of the
penalized problem (14) and this problem is exact, in the sense that a pair (x∗, s∗)
is a solution of this problem if and only if s∗ = 0 and x∗ is a solution of the
corresponding non-penalized problem (15).

Proof. Let us verify that for any z ∈ Ds there exists r > 0 such that the
assumptions of the previous proposition are satisfied for D0 = B(z, r) ∩ Q.
Then one can easily verify that these assumptions are satisfied for any compact
subset D0 ⊆ Ds.

Uniform error bound. Fix any z ∈ Ds and choose some x0 ∈ Q such that
0 ∈ Mz(x0). By the definition of the set Ds one has 0 ∈ intMz(R

d). Hence
by [72, Thm. 1] there exists η > 0 such that ηBY ⊆ Mz(x0 +B(0, 1)).

From the fact that H is continuously Fréchet differentiable it follows that
there exists r < min{1, η/9(1 + ‖DH(z)‖)} such that

‖H(u)−H(z)‖ ≤ η

9
, ‖DH(u)−DH(z)‖ ≤ η

9(2 + ‖x0‖+ ‖z‖)
for any u ∈ B(z, r) ∩Q. Choose any y ∈ Mz(x0 + B(0, 1)). By definition there
exist x ∈ (x0 +B(0, 1)) ∩Q and w ∈ K such that y = Fz(x) +w. Observe that

‖Fu(x) + w − y‖ = ‖Fu(x)− Fz(x)‖ ≤ ‖H(u)−H(z)‖
+ ‖DH(u)−DH(z)‖‖x− u‖+ ‖DH(z)‖‖u− z‖ ≤ η

3

for all u ∈ B(z, r) ∩Q, which implies that

ηBY ⊆ Mz(x0 +B(0, 1)) ⊆ Mu(x0 +B(0, 1)) +
η

3
BY ∀u ∈ B(z, r) ∩Q.

Consequently, by [72, Lemma 2] one has

η

2
BY ⊆ Mu(x0 +B(0, 1)) ∀u ∈ B(z, r) ∩Q, (18)
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which with the use of [72, Thm. 2] yields that

dist(x,M−1
u (0)) ≤ η

2

(
1 + ‖x− x0‖

)
dist(0,Mu(x)) (19)

for all x ∈ Rd and u ∈ B(z, r) ∩Q.
The existence of Lg and Lh. Let us show that one can find R > 0 such

that for all u ∈ B(z, r) ∩ Q and v ∈ ∂h0(u) globally optimal solutions of the
problem

min g0(x) − 〈v, x〉 s.t. G(x) −H(u)−DH(u)(x− u) �K 0, x ∈ Q (20)

(which exist by Lemma 3) lie in the ball B(0, R). Then taking into account the
fact that by definition dist(0,Mu(x)) = dist(Fu(x),−K), one obtains that for
all u ∈ B(z, r) ∩Q and v ∈ ∂h0(u), and for any globally optimal solution x∗ of
problem (20) the following inequality holds true:

dist(Fz(x),−K) ≥ 2

η(2 +R+ ‖x0‖)
dist(x,M−1

z (0)) ∀x ∈ B(x∗, 1) ∩Q

(cf. (17)). Moreover, one can take as Lg > 0 a Lipschitz constant of g0 on the
set B(0, R+1) (recall that a convex function finite on Rd is Lipschitz continuous
on bounded sets; see, e.g. [73, Thm. 10.4]), while the existence of Lh such that
‖v‖ ≤ Lh for all v ∈ ∂h0(u) and u ∈ B(z, r) follows from the local boundedness
of the subdifferential mapping [73, Cor. 24.5.1]. Therefore, all assumptions of
Proposition 2 are satisfied for D0 = B(z, r) ∩Q, and one can conclude that the
corollary holds true.

Thus, it remains to prove that globally optimal solutions of problem (20) lie
within some ball B(0, R).

The boundedness of globally optimal solutions. Indeed, denote C1 :=
min{h0(u) | u ∈ B(z, r) ∩Q}. By the definition of subgradient one has

g0(x)− 〈v, x − u〉 ≥ g0(x) − h0(x) + h0(u) ≥ f0(x) + C1.

Furthermore, from inclusion (18) it follows that for any u ∈ B(z, r) ∩ Q there
exists x(u) ∈ x0 + B(0, 1) such that 0 ∈ Mu(x(u)), i.e. x(u) is a feasible point
of problem (20). Finally, as was noted in the proof of Lemma 3, the feasible
region of problem (20) is contained in the feasible region of the problem (P),
which we denote by Ω. Therefore globally optimal solutions of problem (20) are
contained in the set S := {x ∈ Ω | f0(x) ≤ |C1|+ C2}, where

C2 := sup
u∈B(z,r)∩Q

(
g0(x(u)) − 〈v, x(u)− u〉

)

0 ≤ sup
x∈x0+B(0,1)

g0(x) + Lh

(
‖x0‖+ 1 + ‖z‖+ r

)
< +∞.

It remains to note that the set S does not depend on u ∈ B(z, r) ∩ Q and v ∈
∂h0(u), and is contained in some ball B(0, R), since Ω = {x ∈ Q | F (x) ∈ −K}
and by our assumption the penalty function Φc(·) = f0(·) + c dist(F (·),−K) is
coercive on Q.

Remark 9. Let a sequence {xn} be generated by Algorithmic Pattern 2 and sup-
pose that there exists m ∈ N such that either the assumptions of Proposition 2
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are satisfied for some set D0 ⊆ D containing the sequence {xn}n≥m or this
sequence is contained in a compact subset of the set Ds (note that since Ds is
an open set, it is sufficient to suppose that the sequence xn converges to a point
x∗ ∈ Ds). Then there exists a threshold τ∗ > 0 such that if for some k ≥ m
one has ‖tk‖ ≥ τ∗, then the sequence {xn}n≥k+1 is feasible for the problem (P)
and coincides with a sequence generated by Algorithmic Pattern 1 with starting
point xk+1. In this case one can apply Theorem 5 to analyze the behaviour of
the sequence {xn}n≥k+1 and its convergence to a critical point for the problem
(P). Note that to prove this result one must suppose that τmax > τ∗, i.e. the
maximal admissible norm of the penalty parameters tn is sufficiently large.

Let us give a simple example illustrating Proposition 2 and Corollary 7, as
well as behaviour of sequences generated by Algorithmic Patterns 1 and 2.

Example 6. Let d = 1, Y = R, and K = R+, i.e. y1 �K y2 means that
y1 ≤ y2 for all y1, y2 ∈ R. Consider the following inequality constrained DC
optimization problem:

min (x− 0.5)2 subject to x2 − x4 ≤ 0. (21)

We define g0(x) = (x − 0.5)2, h0(x) = 0, G(x) = x2, and H(x) = x4 for all
x ∈ R. The feasible region has the form Ω = (−∞,−1] ∪ {0} ∪ [1,+∞). The
points x∗ = 1 and x∗ = 0 are globally optimal solutions of problem (21), while
the point x∗ = −1 is a locally optimal solution. All these points are critical,
and one can easily verify that there are no other critical points of the problem
under consideration.

Algorithmic Pattern 1. For any z ∈ R the linearized convex problem for
problem (21) has the form

min
x

(x− 0.5)2 subject to x2 − z4 − 4z3(x− z) ≤ 0. (22)

The inequality constraint can be rewritten as follows:

(
x− 2z3

)2 − 4z4
(
z2 − 3

4

)
≤ 0.

Therefore

D =

(
−∞,−

√
3

2

]
∪ {0} ∪

[√
3

2
,+∞

)
, Ds = intD ,

that is, the feasible region of problem (22) is nonempty if and only if z ∈ D ,
and Slater’s condition holds true for this problem if and only if z ∈ intD = Ds.
Furthermore, for z = 0 the feasible region of problem (22) consists of the single
point x = 0, while for any z ∈ D , z 6= 0, the feasible region has the form

[
2z3 − 2z

√
z2 − 3

4
, 2z3 + 2z

√
z2 − 3

4

]
.

As was noted multiple times above, this set is contained in the feasible region of
problem (21), which implies that for any z ≥

√
3/2 it is contained in [1,+∞),

while for any z ≤ −
√
3/2 it is contained in (−∞,−1]. Consequently, a sequence
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{xn} generated by Algorithmic Pattern 1, i.e. xn+1 is defined as an optimal
solution of the problem

min
x

(x − 0.5)2 subject to x2 − x4
n − 4x3

n(x− xn) ≤ 0,

is contained in the set (−∞,−1], if x0 ≤ −1, and in the set [1,+∞), if x0 ≥ 1.
In the case x0 = 0 one has xn ≡ 0. Moreover, one can easily check that
all assumptions of Theorem 5 are satisfied, and xn+1 > xn for all n ∈ N, if
x0 < −1, while xn+1 < xn for all n ∈ N, if x0 > 1. Therefore, a sequence {xn}
generated by Algorithmic Pattern 1 converges to the locally optimal solution
x∗ = −1, if x0 ≤ −1, and it converges to the globally optimal solution x∗ = 1,
if x0 ≥ 1. This example shows that if the feasible region of a problem under
consideration consists of several disjoint convex components, then a sequence
generated by Algorithmic Pattern 1 lies within the component containing the
initial guess x0 and converges to a critical point from this component, i.e. a
sequence generated by Algorithmic Pattern 1 cannot jump from one convex
component of the feasible region to another. Let us note that one can easily
prove this result in the general case.

The penalized subproblem. Let us now consider Algorithmic Pattern 2.
To this end, we first analyze the exactness of the penalized subproblem that has
the form

min
(x,s)

(x − 0.5)2 + µt0s subject to x2 − z4 − 4z3(x− z) ≤ s, s ≥ 0, (23)

where t0 > 0. One can easily verify that (x∗, s∗) is a globally optimal solution
of this problem if and only if s∗ = max{x2 − z4 − 4z3(x − z), 0} and x∗ is a
globally optimal solution of the unconstrained problem

min (x− 0.5)2 + µt0 max{x2 − z4 − 4z3(x − z), 0}.

Note that for z ∈ D \ Ds this problem takes the form

min (x− 0.5)2 + µt0(x − 2z3)2.

Clearly, for any µ > 0 a unique point of global minimum of this problem does
not belong to the feasible region of the corresponding non-penalized problem
(22), which consists of the single point {2z3}. Thus, the penalized problem (23)
is not exact for all z ∈ D \ Ds (one can verify that this result is connected to
the fact that error bound (17) from Proposition 2 is not valid for such z).

By Corollary 7 for any compact subset D0 ⊂ Ds the penalized problem (23)
is exact for all z ∈ D0, in the sense that there exists µ∗ ≥ 0 such that for all
µ ≥ µ∗ a pair (x∗, s∗) is a globally optimal solution of problem (23) if and only
if s∗ = 0 and x∗ is a globally optimal solution of the non-penalized problem
(22). Denote the greatest lower bound of all such µ∗ by µ∗(D0).

One can verify that problem (23) is not exact for all z ∈ Ds simultaneously,
due to the fact that µ∗({z}) → +∞ as z tends to the boundary of Ds. For the
sake of shortness, we do not present a detailed proof of this result and leave it
to the interested reader. Here we only mention that this result can be proved
by noting that µ∗({z}) is equal to the norm of an optimal solution of the dual
problem of (22) divided by t0.
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Algorithmic Pattern 2. Let us now consider the performance of Algo-
rithmic Pattern 2. To this end, put x0 = −1, t0 = 1, µ = 2, κ = 10−6, and
τmax = 1024 in Algorithmic Pattern 2. Note that the initial point x0 is critical
for problem (21), but is not a globally optimal solution of this problem. Solving
the penalized problem (23) with z = x0 one obtains that x1 = −0.75. Thus, Al-
gorithmic Pattern 2, unlike the DCA, managed to escape a convex component of
the feasible region containing the initial guess and, furthermore, to “jump off”
from a point of local minimum. Numerical simulation showed that the sequence
{xn} generated by Algorithmic Pattern 2 converges to the point x∗ ≈ 0.001. If
one sets τmax = +∞ and κ = 0, then the sequence converges to the globally op-
timal solution x∗ = 0. However, note that if one chooses t0 ≥ µ∗({−1}) = 1.5,
then the method terminates after the first iteration with x1 = x0.

Thus, it seems advisable to choose t0 with sufficiently small norm (and maybe
even perform several iterations before increasing the penalty parameter), to en-
able Algorithmic Pattern 2 to find a better solution (see the appendix). More-
over, even if a feasible point x0 is known, it is reasonable to use Algorithmic
Pattern 2 instead of Algorithmic Pattern 1 due to the ability of the penalized
method to escape convex components of the feasible region and find better lo-
cally optimal solutions than the original method.

6.2 Two Approaches to Convergence Analysis

In the general case, the feasible region of the non-penalized problem (13) might
be empty for all n ∈ N. Then a sequence {xn} generated by Algorithmic Pat-
tern 2 is infeasible for the problem (P), and Proposition 2 along with Corollary 7
do not allow one to say anything about convergence of the method. Moreover,
even if τmax = +∞, i.e. the norm of tn can increase unboundedly, there is no
guarantee that limit points of the sequence {xn} are feasible for the original
problem.

To avoid such pathological cases, one usually either adopts an ‘a priori
approach’ and supposes that a suitable regularity assumption on constraints
(“constraint qualification”) holds true at all infeasible points (this approach was
widely used, e.g. for convergence analysis of exact penalty methods in [68]) or
adopts an ‘a posteriori approach’ and supposes that a sequence generated by the
method converges to a point, at which an appropriate constraint qualification
holds true (such approach was used, e.g. for an analysis of trust region methods
in [13]). For the sake of completeness, we present two convergence theorems for
Algorithmic Pattern 2, one of which is based on the a priori approach, while the
other one is based on the a posteriori one and was hinted at in Remark 9. Both
these theorems ensure the convergence of Algorithmic Pattern 2 to a feasible
and critical point, provided τmax is sufficiently large.

We start with the a priori approach. To this end we need to introduce the
following extension of the definition of critical point to the case of infeasible
points.

Definition 2. Let t ≻K∗ 0 be given. A point x∗ ∈ Q is said to be a generalized
t-critical point of the problem (P), if there exist v∗ ∈ ∂h0(x∗) and s∗ �K 0 such
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that the pair (x∗, s∗) is a globally optimal solution of the problem

min
(x,s)

g0(x) − 〈v∗, x〉+ 〈t, s〉

s.t. G(x) −H(x∗)−DH(x∗)(x − x∗) �K s, s �K 0, x ∈ Q.
(24)

Let us give two useful characterizations of the generalized criticality.

Proposition 3. Let x∗ ∈ Q and t ≻K∗ 0 be given. The following statements
hold true:

1. x∗ is a generalized t-critical point if and only if there exist v∗ ∈ ∂h0(x∗),
s∗ �K 0, and λ∗, µ∗ ∈ K∗ such that F (x∗)− s∗ �K 0, t = λ∗ + µ∗, and

0 ∈ ∂xL(x∗, λ∗) +NQ(x∗), 〈λ∗, F (x∗)− s∗〉 = 0, 〈µ∗, s∗〉 = 0,

where L(x, λ) = g0(x)−〈v∗, x〉+ 〈λ,G(x)−H(x∗)−DH(x∗)(x−x∗)〉 and
∂xL(x∗, λ∗) is the subdifferential of L(·, λ∗) at x∗ in the sense of convex
analysis;

2. if x∗ is feasible for the problem (P) and is a generalized t-critical point,
then x∗ is a critical point for the problem (P); conversely, if x∗ is a critical
point for the problem (P) satisfying optimality conditions from Corollary 6
for some λ∗ ∈ K∗ such that t �K∗ λ∗, then x∗ is a generalized t-critical
point.

Proof. 1. Problem (24) can be rewritten as a convex cone constrained optimiza-
tion problem of the form

minimize
(x,s)

g0(x)− 〈v∗, x〉+ 〈t, s〉 subject to x ∈ Q,

F̂ (x, s) =

(
G(x)−H(x∗)−DH(x∗)(x− x∗)− s

−s

)
∈
(
−K
−K

)
.

(25)

Note that the following constraint qualification holds true for this problem:

0 ∈ int
{
F̂ (x, s) +K ×K

∣∣∣ x ∈ Q, s ∈ Y
}
.

Therefore, x∗ is a generalized t-critical point if and only if there exist v∗ ∈
∂h0(x∗) and s∗ �K 0 such that the pair (x∗, s∗) satisfies the KKT optimal-
ity conditions for problem (25) (see, e.g. [7, Thm. 3.6]). Rewriting the KKT
optimality conditions in terms of problem (24) we arrive at the required result.

2. Let x∗ be a generalized t-critical point. Then by definition there exist v∗ ∈
∂h0(x∗) and s∗ �K 0 such that the pair (x∗, s∗) is a globally optimal solution of
problem (24). Since the point x∗ is feasible for the problem (P), the pair (x∗, 0)
is feasible for problem (24). Moreover, one has g0(x∗) ≤ g0(x∗) + 〈t, s∗〉, since
s∗ �K 0 and t ≻K∗ 0. Therefore, the pair (x∗, 0) is a globally optimal solution
of problem (24), which obviously implies that x∗ is a globally optimal solution
of problem (9) or, equivalently, x∗ is a critical point for the problem (P).

Suppose now that x∗ is a critical point for the problem (P) satisfying opti-
mality conditions from Corollary 6 for some λ∗ ∈ K∗ such that t �K∗ λ∗. Then
one can easily verify that the pair (x∗, 0) satisfies optimality conditions from
the first part of this proposition with µ∗ = t − λ∗, which implies that x∗ is a
generalized t-critical point.
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Remark 10. (i) From the proposition above it follows that if x∗ is a critical
point, but the inequality t �K λ∗ is not satisfied for any corresponding Lagrange
multiplier λ∗ (roughly speaking, the penalty parameter is smaller then the norm
of the Lagrange multiplier), then x∗ cannot be a generalized t-critical point.
Indeed, if x∗ is a generalized t-critical point, then from the proof of the second
part of the proposition it follows that (x∗, 0) is a globally optimal solution of
problem (25). Applying the KKT optimality conditions to this problem, one
gets that t = λ∗ + µ∗ for some µ∗ ∈ K∗ and some Lagrange multiplier λ∗.
Consequently, t �K∗ λ∗, which is impossible.
(ii) With the use of the first part of the previous proposition one can readily
verify that a (not necessarily feasible) point x∗ is a generalized t-critical point
for some t ∈ Rm with t(i) > 0, i ∈ I := {1, . . . ,m}, of the smooth inequality
constrained DC optimization problem

min f0(x) = g0(x)− h0(x) s.t. fi(x) = gi(x)− hi(x) ≤ 0

if and only if for the penalty function Φt(x) = f0(x) +
∑m

i=1 t
(i) max{0, fi(x)}

one has

0 ∈ ∂Φt(x∗) = ∇f0(x∗) +
∑

i∈I : fi(x∗)>0

t(i)∇fi(x∗)

+
∑

i∈I : fi(x∗)=0

t(i) co{0,∇fi(x∗)}

or, equivalently, if and only if there exists λ∗ ∈ R
m such that

∇f0(x∗) +

m∑

i=1

λ
(i)
∗ ∇fi(x∗) = 0, t(i) ≥ λ

(i)
∗ ≥ 0 ∀i ∈ I,

and for all i ∈ I one has λ
(i)
∗ = 0 whenever fi(x∗) < 0, while t(i) = λ

(i)
∗

whenever fi(x∗) > 0. With the use of this result one can show that the point x∗

is not a generalized µt-critical point with µ > 1, provided a suitable constraint
qualification holds true at x∗. Thus, generalized t-criticality depends on the
choice of the penalty parameter t and in many cases its increase or decrease
might help to escape a generalized t-critical point.
(iii) As was noted above, a generalized t-critical point x∗ is, in essence, a critical
point of the penalty function Φt, i.e. such point that 0 ∈ ∂Φt(x∗), where ∂Φt(x)
is the Dini subdifferential of Φt at x. Various conditions ensuring that there
are no infeasible critical points of a penalty function were studied in detail
in [19, 20, 22].

Before we proceed to convergence analysis, let us also establish an important
property of a sequence generated by Algorithmic Pattern 2, which, in particular,
leads to a natural stopping criterion for this method.

Lemma 4. Let {(xn, sn)} be the sequence generated by Algorithmic Pattern 2.
Then

f0(xn+1) + 〈tn, sn+1〉 ≤ f0(xn) + 〈tn, sn〉, ∀n ∈ N. (26)

and this inequality is strict, if xn is not a generalized tn-critical point.
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Proof. By definition (xn+1, sn+1) is a globally optimal solution of the problem

min
(x,s)

g0(x) − 〈vn, x〉+ 〈tn, s〉

s.t. G(x)−H(xn)−DH(xn)(x− xn) �K s, s �K 0, x ∈ Q,
(27)

while the pair (xn, sn) satisfies the following conditions:

G(xn)−H(xn−1)−DH(xn−1)(xn − xn−1) �K sn, sn �k 0, xn ∈ Q.

With the use of Lemma 1 one obtains that G(xn)−H(xn) �K sn, which implies
that (xn, sn) is a feasible point of problem (27). Therefore

g0(xn+1)− 〈vn, xn+1 − xn〉+ 〈tn, sn+1〉 ≤ g0(xn) + 〈tn, sn〉 ∀n ∈ N. (28)

Subtracting h0(xn) from both sides of this inequality and applying the definition
of subgradient, one obtains that inequality (26) holds true. It remains to note
that if xn is not a generalized tn-critical point, then by definition the inequality
in (28) is strict, which implies that inequality (26) is also strict.

Remark 11. From the lemma above it follows that one can use the inequality

∣∣∣f0(xn+1) + 〈tn, sn+1〉 − f0(xn)− 〈tn, sn〉
∣∣∣ ≤ ε (29)

along with the inequality ‖sn+1‖ ≤ ε on the infeasibility measure as a stopping
criterion for Algorithmic Pattern 2. Taking into account (28) one can replace
inequality (29) with the following one

∣∣∣g0(xn+1)− 〈vn, xn+1〉+ 〈tn, sn+1〉 −
(
g0(xn)− 〈vn, xn〉+ 〈tn, sn〉

)∣∣∣ ≤ ε

to avoid the computation of h0(xn) and h0(xn+1) (cf. Remark 6).

Now we can provide sufficient conditions for the convergence of a sequence
generated by Algorithmic Pattern 2 to a feasible and critical point for the prob-
lem (P), based on the a priori approach to convergence analysis.

Theorem 6. Let the space Y be finite dimensional, the cone K be generating,
and the penalty function Φc(x) = f0(x) + c dist(F (x),−K) be bounded below
on Q for c = min{〈t0, s〉 | s ∈ K, ‖s‖ = 1} > 0. Then all limits points of
the sequence {xn} generated by Algorithmic Pattern 2 are generalized t∗-critical
points of the problem (P) with t∗ = lim tn.

Suppose, in addition, that all points from the set

{
x ∈ Q

∣∣∣ dist(F (x),−K) > κ

}

are not generalized t̂-critical points with t̂ = µpt0, where p ∈ N is the largest
natural number satisfying the inequality ‖µpt0‖ ≤ τmax. Then all limit points x∗

of the sequence {xn} satisfy the inequality dist(F (x∗),−K) ≤ κ. In particular,
if κ = 0, then all limits points of the sequence {xn} are feasible and critical for
the problem (P).
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Proof. For the sake of convenience we divide the proof of the theorem into
several parts.

Proof of the second statement. Suppose that the first part of the the-
orem holds true, i.e. all limit points of the sequence {xn} are generalized t∗-
critical points with t∗ = lim tn (note that this limit exists, since according to
Step 3 of Algorithmic Pattern 2 the penalty parameter can be updated only a
finite number of times). Let us show that the second part of the theorem holds
true.

Indeed, let x∗ be a limit point of the sequence {xn}, that is, there exists a
subsequence {xnk

} converging to x∗. Let us consider two cases. Suppose at first
that the norm of the penalty parameter tn does not reach the upper bound τmax

(see Step 3 of Algorithmic Pattern 2), that is, the penalty parameter is updated
less than p times. Then according to the penalty updating rule on Step 3 of
Algorithmic Pattern 2 there exists n0 ∈ N such that ‖sn‖ < κ for all n ≥ n0.
By definition

G(xn)−H(xn−1)−DH(xn−1)(xn − xn−1) �K sn ∀n ∈ N,

which thanks to Lemma 1 implies that F (xn) �K sn or, equivalently, one has
F (xn) − sn ∈ −K. Therefore dist(F (xn),−K) ≤ ‖sn‖ < κ for all n ≥ n0.
Consequently, passing to the limit in the inequality dist(F (xnk

),−K) < κ

with the use of the fact that both G and H are continuous, one obtains that
dist(F (x∗),−K) ≤ κ.

Suppose now that the norm of tn reaches the upper bound τmax after a
finite number of iterations. Then according to Step 3 of Algorithmic Pattern 2
there exists n0 ∈ N such that tn = µpt0 for all n ≥ n0. By our assumption
x∗ is a generalized t∗-critical point with t∗ = t̂ = µpt0, which implies that it
cannot belong to the set {x ∈ Q : dist(F (x),−K) > κ} by the assumption of
the theorem. Therefore, dist(F (x∗),−K) ≤ κ.

Finally, if κ = 0, then dist(F (x∗),−K) = 0, that is, F (x∗) ∈ −K, since the
cone K is closed. Consequently, the point x∗ is feasible for the problem (P).
Hence by the second part of Proposition 3 the point x∗ is also a critical for the
problem (P).

Thus, it remains to prove that all limit points of the sequence {xn} are
generalized t∗-critical points of the problem (P).

Proof of the first statement. Let a subsequence {xnk
} converge to some

point x∗. Then the corresponding sequence {vnk
} of subgradients of the function

h0 is bounded due to the local boundedness of the subdifferential mapping [73,
Cor. 24.5.1]. Therefore, replacing, if necessary, the sequence {xnk

} with its
subsequence, one can suppose that the sequence {vnk

} converges to some vector
v∗ belonging to ∂h0(x∗) by virtue of the fact that the graph of the subdifferential
is closed [73, Thm. 24.4].

Step 1. Let us show that the sequence {snk
} ⊂ K is bounded. Then taking

into account the facts that the space Y is finite dimensional and the cone K
is closed, and replacing, if necessary, the sequence {xnk

} with its subsequence,
one can suppose that {snk

} converges to some s∗ ∈ K.
Indeed, since the penalty parameter tn can be updated only a finite number

of times, there exists n0 ∈ N such that tn = tn0
for all n ≥ n0. Consequently, by

Lemma 4 the sequence {f0(xn)+ 〈tn0
, sn〉}n≥n0

is non-increasing and, in partic-
ular, bounded above. Therefore the sequence {f0(xnk

) + 〈t0, snk
〉} is bounded

above as well.
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By contradiction, suppose that the sequence {snk
} is unbounded. Then

taking into account the fact that the sequence {f0(xnk
)} is bounded below,

since the sequence {xnk
} converges, and applying the inequality

f0(xnk
) + 〈t0, snk

〉 ≥ f0(xnk
) + c‖snk

‖,

one gets that lim supk→∞(f0(xnk
)+〈t0, snk

〉) = +∞, which is impossible. Thus,
without loss of generality one can suppose that the sequence {snk

} converges to
some s∗. Note that from the definition of (xn, sn) and Lemma 1 it follows that
F (xn) �K sn. Therefore F (x∗) �K s∗, thanks to the fact that the cone K is
closed.

Step 2. Now we can turn to the proof of the fact that the point x∗ is a
generalized t∗-critical point. By contradiction, suppose that this statement is
false. Then, in particular, the point (x∗, s∗) is not a globally optimal solution
of problem (24) (see Def. 2). Therefore there exist a feasible point (x, s) of this
problem and θ > 0 such that

g0(x)− 〈v∗, x− x∗〉+ 〈t∗, s〉 < g0(x∗) + 〈t∗, s∗〉 − θ.

Applying Lemma 2 with X = Rd × Y and

Φ(x, s) =

(
G(x) − s

−s

)
, Ψ(x, s) =

(
H(x)
0

)
, W = Q× Y, E = K ×K,

(it is easy to see that condition (7) holds true in the case) one obtains that
for any z = (x, s) ∈ Q × Y lying in a neighbourhood of (x∗, s∗) one can find
(ξ(z), ζ(z)) ∈ Q×K such that

G(ξ(z))−H(x)−DH(x)(ξ(z) − x) �K ζ(z)

and (ξ(z), ζ(z)) → (x, s) as z → (x∗, s∗). Consequently, there exists k0 ∈ N such
that for any k ≥ k0 the point (ξ(znk

), ζ(znk
)) with znk

= (xnk
, snk

) is feasible
for the problem

min
(x,s)

g0(x) − 〈vnk
, x〉+ 〈tnk

, s〉

s.t. G(x) −H(xnk
)−DH(xnk

)(x− xnk
) �K s, s �K 0, x ∈ Q.

(note that one can suppose that tnk
= t∗, since the penalty parameter is updated

only a finite number of times) and

g0(ξ(znk
))− 〈vnk

, ξ(znk
)− xnk

〉+ 〈t∗, ζ(znk
)〉 < g0(xnk

) + 〈t∗, snk
〉 − θ

2
.

Therefore by the definition of (xn, sn) for any k ≥ k0 one has

g0(xnk+1)− 〈vnk
, xnk+1 − xnk

〉+ 〈t∗, snk+1〉 < g0(xnk
) + 〈t∗, snk

〉 − θ

2
.

Subtracting h0(xnk
) from both sides of this inequality and applying the defini-

tion of subgradient, one obtains that

f0(xnk+1) + 〈t∗, snk+1〉 < f0(xnk
) + 〈t∗, snk

〉 − θ

2
∀k ≥ k0,
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which with the use of Lemma 4 implies that f0(xn) + 〈t∗, sn〉 → −∞ as n → ∞
(recall that t∗ = tn for any sufficiently large n, since the penalty parameter can
be updated only a finite number of times). On the other hand, as was shown
above (see the proof of Lemma 3), one has

f0(xn) + 〈t∗, sn〉 ≥ f0(xn) + 〈t0, sn〉 ≥ f0(xn) + c dist(F (xn),−K) =: Φc(xn).

Consequently, Φc(xn) → −∞, which contradicts the fact that by our assumption
this function is bounded below on Q. Therefore one can conclude that x∗ is a
generalized t∗-critical point.

Remark 12. In the previous theorem it is sufficient to suppose that the penalty
function Φc is bounded below on Q for c = inf{〈t∗, s〉 | s ∈ K, ‖s‖ = 1}, which
is, in the general case, greater than c from the formulation of the theorem.
However, such assumption is inconsistent with the a priori approach, since it is
based on the information about the behaviour of the sequence {tn}, which is
not known in advance.

Finally, let us consider the a posteriori approach to convergence analysis,
which allows one to obtain sufficient conditions for the convergence of Algorith-
mic Pattern 2 to a critical point for the problem (P).

Theorem 7. Let K be finite dimensional and there exist c ≥ 0 such that the
penalty function Φc(·) = f0(·) + c dist(F (·),−K) is coercive on Q. Suppose
also that the sequence {xn} generated by Algorithmic Pattern 2 with κ = 0
and τmax = +∞ converges to a point x∗ satisfying the following constraint
qualification:

0 ∈ int
{
G(x) −H(x∗)−DH(x∗)(x− x∗) +K

∣∣ x ∈ Q
}

(30)

(i.e. x∗ ∈ Ds). Then the sequence {tn} is bounded, there exists m ∈ N such
that for all n ≥ m the point xn is feasible for the problem (P), and the point x∗

is feasible and critical for the problem (P).

Proof. By our assumption x∗ ∈ Ds. Therefore, as was shown in the proof of
Corollary 7, there exist r > 0 and µ∗ ≥ 0 such that for all µ ≥ µ∗ and for any
z ∈ B(x∗, r) ∩ Q and v ∈ ∂h0(z) the penalized problem (14) is exact. Define
τ∗ = µ∗‖t0‖.

Step 1. If the penalty parameter tn is updated only a finite number of times,
then the sequence {tn} is obviously bounded. Moreover, according to Step 3 of
Algorithmic Pattern 2 in this case there exists m ∈ N such that sn = 0 for all
n ≥ m, which implies that the sequence {xn}n≥m is feasible for the problem
(P). Therefore the point x∗ is also feasible for this problem, due to the fact
that under our assumptions the feasible region of the problem (P) is closed.

On the other hand, if the penalty parameter tn is updated an infinite number
of times, then according to Step 3 of Algorithmic Pattern 2 there exists m ∈ N

such that ‖tn‖ ≥ τ∗ for all n ≥ m. Moreover, increasing m, if necessary, one
can suppose that xn ∈ B(x∗, r) for all n ≥ m. Consequently, the penalized
subproblem on Step 2 of Algorithmic Pattern 2 is exact for all n ≥ m by
Corollary 7. Hence by the definition of exactness sn = 0 for all n ≥ m+1, which
contradicts our assumption that tn is updated an infinite number of times.

Thus, the sequence {tn} is bounded and the point x∗ is feasible for the
problem (P). It remains to verify that x∗ is a critical point.
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Step 2. Suppose at first that there exists m ∈ N such that ‖tm‖ ≥ τ∗.
Then ‖tn‖ ≥ τ∗ for all n ≥ m. Increasing m, if necessary, one can suppose that
xn ∈ B(x∗, r) for all n ≥ m. Therefore by the definitions of exactness of the
penalized problem and Algorithmic Patterns 1 and 2 the sequence {xn}n≥m+1

is feasible for the problem (P) and coincides with the sequence generated by
Algorithmic Pattern 1 with starting point xm+1. Therefore, by Theorem 5 the
point x∗ is critical for the problem (P).

Step 3. Suppose now that ‖tn‖ < τ∗ for all n ∈ N. Then there exists
n0 ∈ N such that tn = tn0

for all n ≥ n0. Since the sequence {xn} generated
by Algorithmic Pattern 2 converges to x∗, the corresponding sequence {vn} of
subgradients of the function h0 is bounded, thanks to the local boundedness
of the subdifferential mapping [73, Cor. 24.5.1]. Consequently, there exists a
subsequence {vnk

} converging to some vector v∗, which belongs to ∂h0(x∗) due
to closedness of the graph of the subdifferential [73, Thm. 24.4].

By contradiction, suppose that x∗ is not a critical point for the problem (P).
As was noted several times above, it implies that x∗ is not a globally optimal
solution of the problem

minimize g0(x)− 〈v∗, x〉
subject to G(x) −H(x∗)−DH(x∗)(x − x∗) �K 0, x ∈ Q.

Thus, there exist θ > 0 and a feasible point x of this problem satisfying the
inequality g0(x)− 〈v∗, x− x∗〉 < g0(x∗)− θ.

Applying Lemma 2 with Φ = G, Ψ = H , W = Q, and E = K, one obtains
that for any z ∈ Q lying in a neighbourhood of x∗ one can find ξ(z) ∈ Q such
that G(ξ(z)) −H(z)−DH(z)(ξ(z)− z) �K 0 and ξ(z) → x as z → x∗. Hence
bearing in mind the facts that xnk

→ x∗ and vnk
→ v∗ as k → ∞, one obtains

that there exists k0 ∈ N such that

g0(ξ(xnk
))− 〈vnk

, ξ(xnk
)− xnk

〉 < g0(xnk
)− θ

2
∀k ≥ k0.

Clearly, one can suppose that nk0
≥ n0.

Recall that by definition (xnk+1, snk+1) is a globally optimal solution of the
penalized problem

min
(x,s)

g0(x) − 〈vnk
, x− xnk

〉+ 〈tnk
, s〉

s.t. G(x) −H(xnk
)−DH(xnk

)(x− xnk
) �K s, s �K 0, x ∈ Q.

By definition the point (ξ(xnk
), 0) is feasible for this problem, which implies

that

g0(xnk+1)− 〈vnk
, xnk+1 − xnk

〉+ 〈tnk
, snk+1〉

≤ g0(ξ(xnk
))− 〈vnk

, ξ(xnk
)− xnk

〉 < g0(xnk
)− θ

2

for all k ≥ k0. Subtracting h0(xnk
) from both sides of this inequality and

applying the definition of subgradient and the fact that tn = tn0
for all n ≥ n0,

one obtains that

f0(xnk+1) + 〈tn0
, snk+1〉 < f0(xnk

)− θ

2
≤ f0(xnk

) + 〈tn0
, snk

〉 − θ

2
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for all k ≥ k0 (here we used the facts that by definition snk
∈ K and 〈tn, s〉 ≥ 0

for all s ∈ K and n ∈ N). By Lemma 4 one has

f0(xn+1) + 〈tn0
, sn+1〉 ≤ f0(xn) + 〈tn0

, sn〉 ∀n ≥ n0.

Consequently, f0(xn) + 〈tn0
, sn〉 → −∞ as n → ∞, which contradicts the facts

that xn → x∗ as n → ∞ and f0(xn)+〈tn0
, sn〉 ≥ f0(xn) for all n ∈ N. Therefore,

x∗ is a critical point, and the proof is complete.

Thus, one can conclude that if a sequence {xn} generated by either Algo-
rithmic Pattern 1 or Algorithmic Pattern 2 converges to a point x∗ such that
Slater’s condition holds true for the corresponding linearized convex problem,
then under some natural assumptions the point x∗ is critical for the problem
(P).

7 Numerical experiments

Let us present some results of numerical experiments for Algorithmic Pattern 2.
We applied it to the problem of computing compressed modes for variational
problems [63] and the sphere packing problem on Grassmannian [1,14,18]. Local
search methods for the first problem were considered in [11, 12, 63], while local
search methods for the second problem were studied in [14, 18, 34, 35]. For
an interesting application of Algorithmic Pattern 2 to multi-matrix principal
component analysis see [58, Sect. 5.4].

Algorithmic Pattern 2 was implemented in Matlab on a 3.7 GHz Intel(R)
Core(TM) i3 machine with 16 GB of RAM. The parameters of the algorithmic
pattern were chosen as follows. The penalty parameter t0 ≻K∗ 0 was always
chosen as the identity matrix Ik of appropriate dimension k ∈ N, which means
that for any n ∈ N one has tn = τnIk for τn = µl and some l ∈ N. We also set
τmax = 106‖t0‖, µ = 10, and κ = 10−4, and used the first stopping criterion
from Remark 11 with ε = 10−3. Finally, we terminated the algorithm, if the
number of iterations exceeded 100.

To numerically verify the observations made in Example 6, the rule for up-
dating the penalty parameter on Step 3 of Algorithmic Pattern 2 was modified
as follows:

tn+1 =

{
µtn, if n ≥ nmin and ‖sn+1‖ ≥ κ and µ‖tn‖ ≤ τmax,

tn, otherwise,
(31)

Here nmin ∈ N is a parameter that defines the number of iterations, after which
the algorithm starts updating the penalty parameter. We tested 3 different val-
ues nmin = 0, nmin = 3, and nmin = 10, to determine how the value of nmin

affects the overall performance of the method. It should be noted that the con-
vergence analysis presented in the previous sections is applicable to Algorithmic
Pattern 2 with the penalty updating rule (31), since in this case the sequence
{xn}n≥nmin

coincides with the sequence generated by the original version of
Algorithmic Pattern 2 with xnmin

chosen as the starting point.
Finally, the convex subproblems on Step 2 of the method were solved with

the use of cvx, a Matlab package for specifying and solving convex programs
[33, 70]. This package was used as the inferface to the SDPT3 solver [82, 85],
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a Matlab software package for semidefinite programming based on infeasible
path-following methods (a class of interior point methods). An attempt was
also made to solve the convex subproblems on Step 2 with the use of PEN-
LAB [26], an open source Matlab package for solving nonlinear semidefinite
optimization problems based on an augmented Lagrangian method from [74].
However, compared to cvx, PENLAB was harder to deploy and did not perform
well in our test problems, possibly because the augmented Lagrangian method
implemented in PENLAB cannot efficiently exploit convexity.

7.1 Compressed modes for variational problems

In paper [63], the following nonsmooth optimization problem for computing
spatially localized (“sparse”) solutions, called compressed modes, to a class of
problems in mathematical physics was proposed:

minimize
Ψ∈RN×d

f0(Ψ) = Tr(ΨTAΨ) + ν‖Ψ‖1

subject to ΨTΨ = Id,
(32)

Here columns of the matrix Ψ are discretized compressed modes, ΨT is the
transpose of Ψ, N is the number of discretization nodes, ν ≥ 0 is a parameter
influencing the sparsity of solutions, ‖Ψ‖1 =

∑N
i=1

∑d
j=1 |Ψij |, Tr(·) is the trace

of a square matrix, and A is the discretized Schrödinger operator − 1
2∆+ V (x),

where ∆ is the Laplace operator and V (x) is a potential.
Following [63], we consider problem (32) for the Kronig-Penney model of a

periodic one-dimensional crystal [48] on segment [0, 50], in which the rectangular
wells are replaced by Gaussian potentials for the sake of simplicity, so that the
potential is given by

V (x) = −V0

Nel∑

j=1

exp
(
− (x − yj)

2

2δ2

)
∀x ∈ [0, 50].

We chose the same values V0 = 1, Nel = 5, δ = 3, and yj = 10j as in [63],
and also discretized the segment [0, 50] with N = 128 equally spaced nodes
x1 = 0, x2 = σ, x3 = 2σ, . . . , x128 = 50 as was done in [63] (here σ = 50/127 is
the length of the discretization interval). We also set d = 5, which makes the
dimension of the problem equal to 640.

For our choice of parameters, the matrix A of the discretized Schrödinger
operator is neither positive nor negative semidefinite. However, it can be easily
rewritten as the difference of two positive semidefinite matrices A = A∆ − AV

with

A∆ =
1

2σ2




2 −1 0 0 · · · 0 0 0 −1
−1 2 −1 0 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 −1 2 −1
−1 0 0 0 · · · 0 0 −1 2




and AV = diag(−V (x1), . . . ,−V (xN )), where A∆ is the matrix of the discretized
operator − 1

2∆ with periodic boundary conditions and diag(·) is the diagonal
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Figure 1: The solutions of problem (32) (the columns of matrix Ψ) with ν = 0
(left figure) and ν = 0.2 (right figure) corresponding to the best value of the
objective function computed in our numerical experiments.

matrix. Thus, one can use the DC decomposition of the objective function
f0(Ψ) = g0(Ψ)− h0(Ψ) with

g0(Ψ) = Tr(ΨTA∆Ψ) + ν‖Ψ‖1, h0(Ψ) = Tr(ΨTAV Ψ).

Finally, following Example 5, the orthogonality constraint ΨTΨ = Id was rewrit-
ten as two semidefinite constraints

G(Ψ) � Od, −G(Ψ) � Od, G(Ψ) := ΨTΨ− Id,

with convex mapping G (it should be mentioned that this strategy precludes
constraint qualification (30) from holding). Here Od is the zero matrix of order
d and � is the Löwner partial order on the space Sd of all real symmetric
matrices of order d ∈ N, i.e. A � B for A,B ∈ Sd if and only if B−A is positive
semidefinite.

Remark 13. It should be noted that since cvx package cannot solve problems
with nonlinear semidefinite constraints (even if they are convex), we transformed
the nonlinear convex constraint G(Ψ) � s with s � Od, arising on Step 2 of
Algorithmic Pattern 2, into the following equivalent linear matrix inequality

(
Id + s ΨT

Ψ IN

)
� Od+N

with the use of the Schur Complement Lemma (see, e.g. [8, Sect. A.5.5]).

Table 1: The results of numerical experiments for 10 randomly generated start-
ing points in the case ν = 0.

timeav fbest nav τav
nmin = 0 22.48 -1.5919 9 106

nmin = 3 30.76 -3.816 11 105

nmin = 10 53.91 -4.1411 16.4 104

We applied Algorithmic Pattern 2 to problem (32) with two different values
of parameter ν: ν = 0 and ν = 0.2. The method was initialized at 10 different
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Table 2: The results of numerical experiments for 10 randomly generated start-
ing points in the case ν = 0.2.

timeav fbest nav τav
nmin = 0 20.48 7.3279 9 106

nmin = 3 234.51 0.3624 100 103

nmin = 10 77.02 -0.646 32.1 46

starting points, randomly generated with the use of the standard Matlab rou-
tine rand. The results of numerical experiments for each value of ν ∈ {0, 0.2}
and each nmin ∈ {0, 3, 10} (see (31)) are given in Tables 1 and 2. We denote
by timeav the average run-time of the method in seconds, fbest is the smallest
value of the objective function for the given choice of parameters, nav is the
average number of iterations of the method, and τav is the average value of
the penalty parameter. The critical points of problem (32) with ν = 0 and
ν = 0.2 corresponding to the best value of the objective function computed in
our numerical experiments are depicted on Fig. 1, which clearly demonstrates
the effect of parameter ν on the sparsity of solutions.

Let us note that in all cases for ν = 0.2 and in most cases for ν = 0, the
best overall value of the objective function for nmin = 0 was greater than the
values of the objective function at the points satisfying the stopping criterion
for nmin = 3 (that is, the “worst” value for nmin = 3 was better than the best
value for nmin = 0). Similarly, the best overall value of the objective function
for nmin = 3 was greater than the values of the objective function at the points
satisfying the stopping criterion in the case nmin = 10. Thus, our numerical
experiments showed that an increase of the parameter nmin (i.e. the number
of iterations during which the method does not update the penalty parameter)
allows the method to find a critical point with a better value of the objective
function, in accordance with the observation made in Example 6. Moreover, an
increase of nmin also reduces the final value of the penalty parameter used by
the method. However, an increase of nmin also increases computation time.

7.2 Sphere packing on Grassmannian

Recall that the real Grassmann manifold (or Grassmannian) is the smooth man-
ifold of k-dimensional linear subspaces of Rℓ for any given k, ℓ ∈ N such that
k ≤ ℓ. Identifying a subspace with the orhogonal projector onto this subspace,
we can identify the Grassmannian with the set

Gr(ℓ, k) =
{
P ∈ S

ℓ
∣∣∣ P 2 = P, Tr(P ) = k

}
.

The chordal distance dist(P1, P2) onGr(ℓ, k) is defined by dist(P1, P2) =
√
2‖P1−

P2‖F (see, e.g. [14, 18]).
The sphere packing problem on Grassmannian consists in finding m ∈ N,

m > 1, identical, non-overlapping balls

Br(Pi) =
{
P ∈ Gr(ℓ, k) | dist(Pi, P ) < r

}
, Pi ∈ Gr(ℓ, k), i ∈ I,

where I = {1, . . . ,m}, such that their radius is maximized. This problem can
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be formulated as the following nonsmooth optimization problem:

maximize
(P1,...,Pm)

min
1≤i<j≤m

‖Pi − Pj‖F subject to Pi ∈ Gr(ℓ, k), i ∈ I.

To apply Algorithmic Pattern 2 to this problem, we rewrite it as the following
equivalent minimization problem:

minimize
(P1,...,Pm)∈X

f0(P1, . . . , Pm) := max
1≤i<j≤m

(
− ‖Pi − Pj‖F

)

s.t. Gi(Pi) � Oℓ, −Gi(Pi) � Oℓ, i ∈ I, (P1, . . . , Pm) ∈ Q,

(33)

where X is the Cartesian product of m copies of Sℓ, Gi(Pi) = P 2
i − Pi, and

Q =
{
(P1, . . . , Pm) ∈ X

∣∣∣ Tr(Pi) = k, i ∈ I
}
.

One can readily check that the matrix-valued mappings Gi are convex (in the
order-theoretic sense), while the objective function f0 is DC and one can use
the DC decomposition f0 = g0 − h0 of this function with

g0(P1, . . . , Pm) = max
1≤i<j≤m

(
h0(P1, . . . , Pm)− ‖Pi − Pj‖F

)
,

h0(P1, . . . , Pm) =
∑

1≤i<j≤m

‖Pi − Pj‖F .

Note, however, that even for relatively small m the computation of values of the
functions g0 and h0, as well as their subgradients, is very expensive. Therefore,
we also considered the following equivalent reformulation of problem (33), in
which the max-function is replaced by the corresponding inequality constraints:

minimize
(P1,...,Pm,r)∈X×R

r subject to − hij(Pi, Pj , r) ≤ 0, 1 ≤ i < j ≤ m,

Gi(Pi) � Oℓ, −Gi(Pi) � Oℓ, i ∈ I, (P1, . . . , Pm) ∈ Q,
(34)

where hij(Pi, Pj , r) := ‖Pi − Pj‖+ r. Note that hij are convex functions.

Remark 14. As in the case of the problem of computing compressed modes for
variational problems, we transformed the nonlinear convex constraints Gi(Pi) �
s with s � Oℓ, arising on Step 2 of Algorithmic Pattern 2, into the following
equivalent linear matrix inequalities

(
Pi + s Pi

Pi Iℓ

)
� O2ℓ

with the use of the Schur Complement Lemma.

We applied Algorithmic Pattern 2 with the same randomly generated start-
ing point and three different values of nmin ∈ {0, 3, 10} to two different problem
formulations in order to determine the most efficient way to apply Algorith-
mic Pattern 2 to the sphere packing problem on Grassmannian. The results of
a large number of numerical experiments showed that, when initialized at the
same point, Algorithmic Pattern 2 in virtually all cases either (i) converges to
the point with the same (up to the tolerance specified in the stopping criterion)
value of the objective function for both problem formulations or (ii) in the case
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Table 3: The results of numerical experiments in the case ℓ = 10, k = 2, and
m = 4. Here n is the number of iterations and τ is the value of the penalty
parameter.

time fbest n τ
problem (33), nmin = 0 61.1 -1.4044 9 105

problem (34), nmin = 0 37.1 -1.4036 7 105

problem (33), nmin = 3 58.1 -1.4191 7 100
problem (34), nmin = 3 44.1 -1.4186 8 1000
problem (33), nmin = 10 106.9 -1.5158 14 100
problem (34), nmin = 10 74.5 -1.524 14 100

Table 4: The results of numerical experiments for the sphere packing problem
on Gr(2k, k) with m = 10.

k 3 4 5 6 7 8 9 10 11 12
timeav 16.8 15.7 21.6 34.9 55.4 94.2 133.9 205.2 303.6 445.9
fbest -1.5497 -1.8672 -2.1487 -2.3887 -2.6208 -2.8084 -3.007 -3.1747 -3.3497 -3.4954

of the second problem formulation finds a point with the better value of the
objective function than in the case of the first one. Moreover, the run-time
of Algorithmic Pattern 2 for problem (34) was significantly smaller than its
run-time for problem (33) and the difference between the run-times grows very
rapidly as m increases. The results of numerical experiments in the case ℓ = 10,
k = 2, and m = 4 (the dimension of the problem in this case is 220), which are
qualitatively the same as results of numerical experiments for other values of
parameters, are presented in Table 3.

It should be noted that as in the case of the problem of computing com-
pressed modes, the results of numerical experiments showed that an increase of
nmin always allows the method to find a critical point with the better value of
the objective function and reduces the value of the penalty parameter needed to
find a point satisfying the constraints up to a prespecified tolerance. However,
an increase of nmin also increases the run-time of the method.

Finally, to test the overall efficiency of the method, we applied Algorithmic
Pattern 2 with nmin = 10 to problem (34) with ℓ = 2k, k ∈ {3, 4, . . . , 12}, and
m = 10. In all cases the penalty parameter was increased only once (i.e. the final
value t∗ = 10Ik) and the method required between 10 and 15 iterations to find
a point satisfying the stopping criterion. The results of numerical experiments
for 10 randomly generated starting points are given in Table 4.

Remark 15. (i) Let us note that the best value of the objective function for the
sphere packing problem on Gr(16, 8) with m = 10 computed in our experiments
is significantly better than the one given in [18, Fig. 2].
(ii) Let us point out that since the space Sℓ can be identified with R(ℓ+1)ℓ/2,
the dimension of problem (34) is equal to m(ℓ + 1)ℓ/2 + 1. In particular, in
the case ℓ = 2k, k = 12, and m = 10, corresponding to the largest problem
that we solved, the dimension of problem (34) is equal to 3001. Note also that
the dimension of the convex subproblem on Step 2 of Algorithmic Pattern 2 in
this case is equal to 9001 due to the presence of the variables s that are added
to the right-hand side of matrix inequality constraints in accordance with the
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theoretical scheme of Algorithmic Pattern 2.

8 Conclusions

In this paper we developed a general theory of cone constrained DC optimization
problems. The first part of the paper was devoted to analysis of DC semidef-
inite programming problems. We studied two definition of DC matrix-valued
mappings (abstract and componentwise) and their interconnections. We proved
that any DC matrix-valued map is componentwise DC and demonstrated how
one can compute a DC decomposition of several nonlinear semidefinite con-
straints appearing in applications. We also constructed a DC decomposition of
the maximal eigenvalue function, which allows one to apply standard results and
methods of inequality constrained DC optimization to problems with smooth
and nonsmooth componentwise DC semidefinite constraints. In the case of gen-
eral cone constrained DC optimization problems, we obtained local optimality
conditions.

In the second part of the paper, we presented a detailed convergence analysis
of the DCA for cone constrained DC programs and its penalized version pro-
posed in [58] (see also [52,67]) under the assumption that the concave part of the
constraints is smooth. In particular, we obtained sufficient conditions for the
exactness of the penalty subproblem of the penalized version of the method and
analyzed two types of sufficient conditions for the convergence of this method
to a feasible and critical point of a cone constrained DC optimization problem
from an infeasible starting point. The first type of sufficient conditions is the
so-called a priori conditions, which are based on general assumptions on the
problem under consideration, while the second type is the a posteriori condi-
tions, which rely on some assumptions on a limit point of a sequence generated
by an optimization method.

We also presented a simple example demonstrating that even if a feasible
starting point is known, it might be reasonable to use the penalized version of
the method, since it is sometimes capable of finding deeper local minimum than
the standard method.

In Section 7, applications of the exact penalty DCA to the problem of com-
puting compressed modes for variational problems and the sphere packing prob-
lem on Grassmannian were presented. The results of numerical experiments
confirmed the observations about the method made in Example 6. In particu-
lar, they showed that it is advisable to let the exact penalty DCA to perform a
certain number of iterations without updating the penalty parameter to enable
it to find a critical point with the better value of the objective function (see the
appendix).

The main results of our study pave the way for applications of DC optimiza-
tion methods to various nonlinear semidefinite programming problems and other
nonconvex cone constrained optimization problems (such as nonconvex second
order cone and semi-infinite programming problems), as well as some nonlin-
ear and nonsmooth optimization problems on Riemannian manifolds (e.g. the
Stiefel and the Grassmann manifolds).
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Appendix. A modification of Algorithmic Pat-

tern 2

The results of our numerical experiments clearly demonstrate that the increase
of the number nmin of iterations during which the method does not update
the penalty parameter allows the exact penalty DCA to find a deeper local
minimum or a critical point with the better value of the objective function.
Pushing this idea to the extreme and following the theoretical scheme of primal-
dual penalty methods [9, 21], one can propose the following modification of
Algorithmic Pattern 2 corresponding to the case nmin = ∞, whose general
scheme is given in Algorithmic Pattern 3.

The idea of the modified method consists in applying Algorithmic Pattern 2
with a fixed value of the penalty parameter and updating the penalty parameter
only after the method has found a point satisfying a stopping criterion, which
is similar in spirit to primal-dual augmented Lagrangian methods. The results
of numerical experiments presented in Section 7 indicate that it is likely that
Algorithmic Pattern 3 significantly outperforms Algorithmic Pattern 2 in terms
of the quality of computed local solutions (i.e. it is likely to be able to find
critical points with better values of the objective function than Algorithmic
Pattern 2), but at the cost of much greater run-time.

It seems possible to extend the convergence analysis of Algorithmic Pattern 2
presented in this paper to the case of Algorithmic Pattern 3. Such an extension,
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Algorithmic Pattern 3: Primal-dual penalty DCA

Initialization. Choose an initial point x0 ∈ Q, penalty parameter
t0 ≻K∗ 0, the maximal norm of the penalty parameter τmax > 0,
µ > 1, infeasibility tolerance κ ≥ 0, and set n := 0 and k := 0.
Step 1. Compute vn ∈ ∂h0(xn) and DH(xn).
Step 2. Set the value of (xn+1, sn+1) to a solution of the convex
problem

minimize
(x,s)

g0(x)− 〈vn, x〉+ 〈tk, s〉

subject to G(x) −H(xn)−DH(xn)(x − xn) �K s, s �K 0, x ∈ Q.

If a stopping criterion is satisfied, put yk := xn+1 and go to Step 3.
Otherwise, put n := n+ 1 and go to Step 1.
Step 3. If ‖sn+1‖ ≤ κ or µ‖tk‖ ≥ τmax, Stop. Otherwise, define
tk+1 = µtk, put x0 := yk, n := 0, k := k + 1, and go to Step 1.

as well as numerical evaluation of Algorithmic Pattern 3, is an interesting subject
for future research.
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