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Abstract

Sparse principal component analysis (PCA) improves interpretability of the classic PCA by
introducing sparsity into the dimension-reduction process. Optimization models for sparse PCA,
however, are generally non-convex, non-smooth and more difficult to solve, especially on large-
scale datasets requiring distributed computation over a wide network. In this paper, we develop
a distributed and centralized algorithm called DSSAL1 for sparse PCA that aims to achieve low
communication overheads by adapting a newly proposed subspace-splitting strategy to accelerate
convergence. Theoretically, convergence to stationary points is established for DSSAL1. Extensive
numerical results show that DSSAL1 requires far fewer rounds of communication than state-of-
the-art peer methods. In addition, we make the case that since messages exchanged in DSSAL1
are well-masked, the possibility of private-data leakage in DSSAL1 is much lower than in some
other distributed algorithms.

1 Introduction

The principal component analysis (PCA) is a fundamental and ubiquitous tool in statistics and data
analytics. In particular, it frequently serves as a critical preprocessing step in numerous data science
or machine learning tasks. In general, solutions produced by the classical PCA are dense combinations
of all features. However, in practice, sparse combinations not only enhance the interpretability of
the principal components but also reduce storage [47, 9], which motivates the idea of sparse PCA.
More importantly, from a theoretical perspective as given in [34, 63], sparse PCA is able to remediate
some inconsistency phenomenon present in the classical PCA under the high-dimensional setting. As a
dimension reduction and feature extraction method, sparse PCA can be widely applied to application
areas where PCA is normally used; such as medical imaging [47], biological knowledge mining [54],
ecology study [24], cancer analysis [9], neuroscience research [7], to mention a few examples.

Let A = [a1, a2, . . . , am] be an n×m data matrix, where n and m denote the numbers of features
and samples, respectively. Without loss of generality, we assume that each row of A has a zero mean.
Mathematically speaking, PCA finds an orthonormal basis Z ∈ Sn,p := {Z ∈ Rn×p | Z>Z = Ip}
of a p-dimensional subspace such that the projection of samples a1, a2, . . . , am on this subspace has
the most variance. The set Sn,p is usually referred to as the Stiefel manifold [48]. Then PCA can be
formally expressed as the following optimization problem with the orthogonality constraints.

min
Z∈Rn×p

f(Z) := −1

2
tr
(
Z>AA>Z

)
s. t. Z ∈ Sn,p,
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where tr(·) represents the trace of a given square matrix, and the column of Z are called loading vectors
or simply loadings.

In the projected data Z>A ∈ Rp×m, the number of features is reduced from n to p and each feature
(row of Z>A) is a linear combination of the original features (rows of A) with coefficients from Z.
For a sufficiently sparse Z, each reduced feature depends only on a few original features instead of
all of them, leading to better interpretability in many applications. For this purpose, we consider the
following `1-regularized optimization model for sparse PCA:

min
Z∈Rn×p

f̄(Z) := f(Z) + r(Z)

s. t. Z ∈ Sn,p,
(2)

where the (non-operator) `1-norm regularizer r(Z) := µ ‖Z‖1 = µ
∑
i,j |[Z]ij | is imposed to promote

sparsity in Z, and µ > 0 is the parameter used to control the amount of sparseness. Here, [Z]ij denotes
the (i, j)-th entry of the matrix Z. Our distributed approach can efficiently tackle (2) with p > 1 by
pursuing sparsity and orthogonality at the same time.

The optimization problem (2) is a penalized version of the SCoTLASS model proposed in [35].
Evidently, there is a significant difficulty gap in going from the standard PCA to sparse PCA in terms
of both problem complexity and solution methodology. The standard PCA is polynomial-time solvable,
while the sparse PCA is NP-hard if the `0-regularizer is used to enforce sparsity [39], though it is still
unclear what is the computational time complexity of solving the `1-regularized model (2). In this
paper we will be content with a theoretical result of convergence to first-order stationary points of (2).
There are other formulations for sparse PCA, such as regression model [62], semidefinite programming
[14, 15], and matrix decompositions [46, 53]. A comparative study of these formulations is beyond
the scope of this paper. We refer interested readers to [63] for a recent survey of theoretical and
computational results for sparse PCA.

1.1 Distributed setting

We consider the following distributed setting. The data matrix A is divided into d blocks, each
containing a number of samples; namely, A = [A1, A2, . . . , Ad] where Ai ∈ Rn×mi so that m1 +
· · · + md = m. This is a natural setting since each sample is a column of A. These submatrices Ai,
i = 1, . . . , d, are stored locally in d locations, possibly having been collected at different locations by
different agents, and all the agents are connected through a communication network. According to the
splitting scheme of A, the function f(Z) can also be distributed into d agents, namely,

f(Z) =

d∑
i=1

fi(Z) with fi(Z) = −1

2
tr
(
Z>AiA

>
i Z
)
. (3)

In terms of network topology, we only need to assume that the network allows global summation
operations (say, through all-reduce type of communications [43]) which are required by our algorithm.
In particular, our algorithm will operate well in the federated-learning setting [41] where all the agents
are connected to a center server so that global summations can be readily achieved in the network. To
this extent, we say our algorithm is a centralized algorithm.

For most distributed algorithms, since the amount of communications per iteration remains essen-
tially the same, the total communication overhead is proportional to the required number of iterations
regardless of the underlying network topology. Therefore, our goal is to devise an algorithm that
converges fast in terms of iteration counts, while considerations on other network topologies and com-
munication patterns are beyond the scope of the current paper.

In certain applications, such as those in healthcare and financial industry [38, 60], preserving privacy
of local data is of primary importance. In this paper, we consider the following scenario: each agent
i wants to keep its local dataset (i.e., AiA

>
i ) from being discovered by any other agents including the

center. In this situation, it is not an option to implement a pre-agreed encryption or a coordinated
masking operation. For convenience, we will call such a privacy situation of intrinsic privacy. For an
algorithm to preserve intrinsic privacy, publicly exchanged information must be safe so that none of the
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local-data matrices can be figured out by any means. We will show later that, in general, algorithms
based on traditional methods with distributed matrix multiplications are not intrinsically private.

1.2 Related works

Optimization problems with orthogonality constraints have been actively investigated in recent decades,
for which many algorithms and solvers have been developed, such as, gradient approaches [40, 42,
1, 3], conjugate gradient approaches [16, 45, 61], constraint preserving updating schemes [52, 32],
Newton methods [30, 29], trust-region methods [2], multipliers correction frameworks [21, 49], and
orthonormalization-free approaches [22, 55]. These aforementioned algorithms are designed for smooth
objective functions, and are generally not suitable for problem (2).

There exist some algorithms specifically designed for solving non-smooth optimization problems
with orthogonality constraints; most of which adopt certain non-smooth optimization techniques to the
Stiefel manifold; for instances, Riemannian subgradient methods [17, 18], proximal point algorithms [6],
non-smooth trust-region methods [25], gradient sampling methods [28], and proximal gradient methods
[11, 31]. Out of these algorithms, proximal gradient methods are among the most efficient. Specifically,
Chen et al. [11] propose a manifold proximal gradient method (ManPG) and its accelerated version
ManPG-Ada for non-smooth optimization problems over the Stiefel manifold. Starting from a current
iterate, say Z(k) ∈ Sn,p, ManPG and ManPG-Ada generate the next iterate by solving the following
subproblem restricted to the tangent space TZ(k)Sn,p = {D ∈ Rn×p | D>Z(k) + (Z(k))>D = 0}:

min
D∈T

Z(k)Sn,p

−

〈
d∑
i=1

AiA
>
i Z

(k), D

〉
+

1

2η
‖D‖2F + r(Z(k) +D), (4)

which consumes the most computational time in the algorithm. In ManPG [11], the semi-smooth
Newton (SSN) method [57] is deployed to solve the above subproblem, and global convergence to
stationary points is established with the convergence rate O(1/

√
k). Huang and Wei [31] later extend

the framework of ManPG to general Riemannian manifolds beyond the Stiefel manifold. Another class
of algorithms first introduces auxiliary variables to split the objective function and the orthogonality
constraint and then utilizes alternating minimization techniques to solve the resulting model, including
SOC [37], MADMM [36], and PAMAL [12]. It is worth mentioning that SOC and MADMM lack a
convergence guarantee. As for PAMAL, although convergence is guaranteed, its numerical performance
is heavily dependent on its parameters as discussed in [11].

In principle, all the aforementioned algorithms can be adapted to the distributed setting considered
in this paper. We take the algorithm ManPG as an example. Under the distributed setting, each agent
computes the local product AiA

>
i Z

(k) individually, then one round of communications will gather the

global sum
∑d
i=1AiA

>
i Z

(k) at a center. The center then solves subproblem (4) and scatters the
updated Z(k+1) back to all agents. At each iteration, distributed computation is basically limited to
the matrix-multiplication level.

We point out that, without prior data-masking, distributed algorithms at the matrix-multiplication
level cannot preserve local-data privacy intrinsically. Specifically, local data AiA

>
i , privately owned

by agent i, can be uncovered by anyone who has access to publicly exchanged products AiA
>
i Z

(k),
after collecting enough such products and then solving a system of linear equations for the “unknown”
AiA

>
i . This idea works even for more complicated iterative procedures as long as a mapping from data

AiA
>
i to a publicly exchanged quantity is deterministic and known.

To illustrate this data leakage situation, we now present a simple experiment on algorithm ManPG-
Ada [11]. The test environment well be described in Section 5. As mentioned earlier, at iteration k

the publicly shared quantity in ManPG-Ada by agent i is S
(k)
i := AiA

>
i Z

(k), where Z(k) is the k-th
iterate of ManPG-Ada accessible to all agents. For instance, to recover the unknown local data A1A

>
1

we construct the following linear system with unknown Y ∈ Rn×n:

Y [Z(1), · · · , Z(k)] = [S
(1)
1 , · · · , S(k)

1 ]. (5)

Let Y (k) be the minimum norm least-squares solution to the linear equation (5) at iteration k. We
perform an experiment to illustrate that Y (k) will quickly converge to A1A

>
1 , when ManPG-Ada is
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deployed to solve the sparse PCA problem on a randomly generated test matrix with n = 100 and
m = 1280 (other parameters are d = 10, p = 10, and µ = 0.05). Figure 1 depicts how the reconstruction
error ‖Y (k) − A1A

>
1 ‖F and the stationarity violation1 vary, on a logarithmic scale, as the number of

iterations increases. We observe that local data A1A
>
1 is obtained with high accuracy much faster

than solving the sparse PCA problem.
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Figure 1: Local data uncovered by solving linear systems during ManPG-Ada iterations.

In order to handle distributed datasets, some distributed ADMM-type algorithms have been intro-
duced to PCA and related problems. These methods achieve algorithm-level parallelization, which are
generally more secure than those based on matrix-multiplication-level parallelization. For instance,
[26] proposes a distributed algorithm for sparse PCA with convergence to stationary points, but only
studies the special case of p = 1. Moreover, under the distributed setting, [51] develop a subspace
splitting strategy to tackle the smooth optimization problem over the Grassmann manifold without
the `1-norm regularizer in (2).

Recently, decentralized optimization has attracted attentions partly due to its wide applications
in wireless sensor networks. Only local communications are carried out in decentralized optimization,
namely, agents exchange information only with their immediate neighbors. This is quite different from
the distributed setting considered in the current paper. We refer interested readers to the references
[23, 19, 20, 4, 59, 10, 50] for some decentralized PCA algorithms.

1.3 Main contributions

Recently, a subspace splitting strategy has been proposed [51] to accelerate convergence of distributed
algorithms for optimization problems over Grassmann manifolds where objective functions are orthogonal-
transformation invariant2 and smooth. In regularized problems such as sparse PCA, orthogonal-
transformation invariance and smoothness no longer hold. In this paper, we present a non-trivial
extension of the subspace splitting strategy to more general optimization problems over Stiefel mani-
folds. In particular, by incorporating the subspace splitting strategy into the framework of ManPG [11],
we have developed a distributed algorithm DSSAL1 to solve the `1-regularized optimization problem
(2) for sparse PCA.

The main step of DSSAL1 is to solve the subproblem:

min
D∈T

Z(k)Sn,p

〈
d∑
i=1

Q
(k)
i Z(k), D

〉
+

1

2η
‖D‖2F + r(Z(k) +D), (6)

1Suppose D(k) is the solution to (4). According to Lemma 5.3 in [11], X(k) is a first-order stationary point if D(k) = 0.
Therefore, the stationarity violation is defined as ‖D(k)‖F.

2A function f(X) is called orthogonal-transformation invariant if f(XO) = f(X) for any X ∈ Sn,p and O ∈ Sp,p.
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which is identical to subproblem (4) in ManPG except that each local data matrix AiA
>
i is replaced,

or masked, by a matrix −Q(k)
i whose expression will be derived later.

In a sense, the main contributions of this paper can be attributed to this remarkably simple replace-
ment or masking, which brings two great benefits. Firstly, convergence will be significantly accelerated

which will be shown empirically in Section 5. Secondly, publicly exchanged products Q
(k)
i Z(k) are no

longer images of some fixed and known mapping of AiA
>
i , making it practically impossible to uncover

AiA
>
i from such products via equation-solving.

Several innovations have been made in the development of our algorithms. Firstly, in our algorithm,
only the global variable can possibly converge to a solution, while the local variables will never do. The
role of the local variables, which are generally dense, is to help identify the right subspace. Secondly,
we devise an inexact-solution strategy to effectively handle the difficult subproblem for the global
variable where orthogonality and sparsity are pursued simultaneously. Thirdly, we establish the global
convergence to stationarity for our algorithm, overcoming a number of technical difficulties associated
with the rather complex algorithm construction, as well as the non-convexity and non-smoothness in
problem (2).

1.4 Notations

The Euclidean inner product of two matrices Y1, Y2 of the same size is defined as 〈Y1, Y2〉 = tr(Y >1 Y2).
The Frobenius norm and spectral norm of a given matrix C are denoted by ‖C‖F and ‖C‖2, respectively.
Given a differentiable function g(X) : Rn×p → R, the gradient of g with respect to X is denoted by
∇g(X). And the subdifferential of a Lipschitz continuous function h(X) is denoted by ∂h(X). The
tangent space to the Stiefel manifold Sn,p at Z ∈ Sn,p, is represented by TZSn,p = {Y ∈ Rn×p |
Y >Z + Z>Y = 0}, and the orthogonal projection of Y onto TZSn,p is denoted by ProjTZSn,p

(Y ) =(
In − ZZ>

)
Y + Z

(
Z>Y − Y >Z

)
/2. For X ∈ Sn,p, we define P⊥X := In − XX> standing for the

projection operator onto the null space of X>. Further notation will be introduced as it occurs.

1.5 Organization

The rest of this paper is organized as follows. In Section 2, we introduce a novel subspace-splitting
model for sparse PCA, and investigate the structure of associated Lagrangian multipliers. Then a
distributed algorithm is proposed to solve this model based on an ADMM-like framework in Section 3.
Moreover, convergence properties of the proposed algorithm are studied in Section 4. Numerical
experiments on a variety of test problems are presented in Section 5 to evaluate the performance of
the proposed algorithm. We draw final conclusions and discuss some possible future developments in
the last section.

2 Subspace-splitting model for sparse PCA

We consider the scenario that the i-th component function fi(X) of f in (3) can be evaluated only by
the i-th agent since local dadaset Ai is accessible only to the i-th agent. In order to devise a distributed
algorithm, the classic variable-splitting approach is to introduce a set of local variables {Xi} to make
the sum of local functions nominally separable. Then a (centralized) distributed algorithm would
maintain a global variable Z and impose variable-consensus constraints Xi = Z.

Despite the regularizer term r in (2), all component functions fi(X) in f are still invariant under
orthogonal transformations. It should be natural for us to adapt the subspace-splitting idea introduced
in [51], that is, to use the subspace-consensus constraints XiX

>
i = ZZ> to accelerate convergence. In
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this paper, we propose to solve the following optimization problem:

min
Xi,Z∈Rn×p

d∑
i=1

fi(Xi) + r(Z) (7a)

s. t. X>i Xi = Ip, i = 1, . . . , d, (7b)

XiX
>
i = ZZ>, i = 1, . . . , d, (7c)

Z>Z = Ip, (7d)

which we will call the subspace-splitting model for problem (2), noting that both sides of (7c) are
orthogonal projections onto subspaces. For brevity, we collect the global variable Z and all local
variables {Xi} into a point (Z, {Xi}). A point (Z, {Xi}) is feasible if it satisfies the constraints (7b)-
(7d).

2.1 Stationarity conditions

In this subsection, we aim to present the stationarity conditions of the sparse PCA problem (2). We
first introduce the definition of Clarke subgradient [13] for non-smooth functions.

Definition 2.1. Suppose f : Rn×p → R is a Lipschitz continuous function. The generalized directional
derivative of f at the point X ∈ Rn×p along the direction H ∈ Rn×p is defined by:

f◦(X;H) := lim sup
Y→X, t→0+

f(Y + tH)− f(Y )

t
.

Based on generalized directional derivative of f , the (Clark) subgradient of f is defined by:

∂f(X) := {G ∈ Rn×p | 〈G,H〉 ≤ f◦(X;H)}.

As discussed in [58, 11], the first-order stationarity condition of (2) can be stated as:

0 ∈ ProjTZSn,p

(
−AA>Z + ∂r(Z)

)
.

We provide an equivalent description of the above first-order stationarity condition, which will be used
in the theoretical analysis.

Lemma 2.2. A point Z ∈ Sn,p is a first-order stationary point of (2) if and only if there exists
R(Z) ∈ ∂r(Z) such that the following conditions hold:{

P⊥Z
(
−AA>Z +R(Z)

)
= 0,

Z>R(Z)−R(Z)>Z = 0.
(8)

The proof of Lemma 2.2 is put into Appendix A. Then we can characterize the first-order stationary
points of (7) in the following manner.

Definition 2.3. Suppose Xi ∈ Rn×p(i = 1, . . . , d) and Z ∈ Rn×p. A point (Z, {Xi}) is called a
first-order stationary point of (7) if it is feasible and Z satisfies the conditions in (8).

2.2 Existence of low-rank multipliers

By associating dual variables Γi, Λi, and Θ to the constraints (7b), (7c), and (7d), respectively, we
derive an equivalent description of first-order stationarity conditions of (7).

Proposition 2.4. Suppose Xi ∈ Rn×p(i = 1, . . . , d) and Z ∈ Rn×p. A point (Z, {Xi}) is a first-order
stationary point of (7) if and only if there exist symmetric matrices Λi ∈ Rn×n, Γi ∈ Rp×p, and
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Θ ∈ Rp×p such that (Z, {Xi}) satisfies the following condition:

0 = AiA
>
i Xi +XiΓi + ΛiXi, i = 1, . . . , d,

0 ∈ ∂r(Z) +

d∑
i=1

ΛiZ − ZΘ,

0 = X>i Xi − Ip, i = 1, . . . , d,

0 = XiX
>
i − ZZ>, i = 1, . . . , d,

0 = Z>Z − Ip.

(9)

The proof of Proposition 2.4 is relegated to Appendix B. Actually, the equations in (9) can be
viewed as the KKT conditions of (7), while Γi ∈ Rp×p, Λi ∈ Rn×n, and Θ ∈ Rp×p are the Lagrangian
multipliers corresponding to the constraints (7b), (7c), and (7d), respectively.

In [51], a low-rank and closed-form multiplier is devised with respect to the subspace constraint
(7c) for the PCA problems, which can be expressed as:

Λi = −XiX
>
i AiA

>
i P⊥Xi

−P⊥Xi
AiA

>
i XiX

>
i (i = 1, . . . , d). (10)

In Appendix (B), we further verify that the above formulation is also valid for the sparse PCA problems
at any first-order stationary point (Z, {Xi}). In the next section, we will use (10) to update the
multipliers in our framework of ADMM. This strategy simultaneously saves computational costs and
storage requirements.

3 Algorithmic framework

Now we describe the proposed algorithm, based on an ADMM-like framework, to solve the subspace-
splitting model (7). Note that there are three constraints (7b)-(7d). We only penalize the subspace
constraints (7c) to the objective function, and obtain the corresponding augmented Lagrangian func-
tion:

L(Z, {Xi}, {Λi}) =

d∑
i=1

Li(Z,Xi,Λi) + r(Z), (11)

where

Li(Z,Xi,Λi) = − 1

2
tr
(
X>i AiA

>
i Xi

)
− 1

2

〈
Λi, XiX

>
i − ZZ>

〉
+
βi
4

∥∥XiX
>
i − ZZ>

∥∥2
F
,

and βi > 0(i = 1, . . . , d) are penalty parameters. Schematically, we will follow the ADMM-like
framework below to build an algorithm for solving subspace-splitting model (7), though we quickly
add that the two optimization subproblems below in (12) and (13) are not “solved” in a normal sense
since we may stop after a single iteration of an iterative scheme.

Z(k+1) ≈ arg min
Z∈Sn,p

L(Z, {X(k)
i }, {Λ

(k)
i }). (12)

X
(k+1)
i ≈ arg min

Xi∈Sn,p

Li(Z(k+1), Xi,Λ
(k)
i ), i = 1, . . . , d. (13)

W
(k+1)
i = −P⊥

X
(k+1)
i

AiA
>
i X

(k+1)
i , i = 1, . . . , d. (14)

Λ
(k+1)
i = X

(k+1)
i (W

(k+1)
i )> +W

(k+1)
i (X

(k+1)
i )>, i = 1, . . . , d. (15)

In the above framework, the superscript (k) counts the number of iterations, and the subscript i
indicates the number of agents.
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A novel feature in our algorithm is the way to update the multipliers Λi associated with the subspace
constraints (7c). Generally speaking, in the augment Lagrangian based approach, the multipliers are
updated by the dual ascent step

Λ
(k+1)
i = Λ

(k)
i − τβi

(
X

(k+1)
i (X

(k+1)
i )> − Z(k+1)(Z(k+1))>

)
,

where τ > 0 is the step size. This standard method would require to store and update an n×n matrix
at each agent, which could be costly when n is large. Instead, we use the low-rank updating formulas
(14)-(15) based on the closed-form expression (10) derived in Section 2.2. In our iterative setting,
these multiplier matrices are never stored but used in matrix multiplications, in which the required
additional storage for agent i is for the n× p matrix Wi.

3.1 Subproblem for global variable

We now describe how to approximate subproblems (12) and (13). By rearrangments, subproblem (12)
reduces to:

min
Z∈Sn,p

q(k)(Z) :=
1

2
tr
(
Z>Q(k)Z

)
+ r(Z) (16)

where Q(k) =
∑d
i=1Q

(k)
i and Q

(k)
i is an n× n matrix defined by

Q
(k)
i = Λ

(k)
i − βiX

(k)
i (X

(k)
i )>. (17)

We quickly point out here that it is not necessary to construct and store these Q-matrices explicitly
since we will only use them to multiply n × p matrices in an iterative scheme to obtain approximate
solutions to subproblem (16). More details will follow later.

Apparently, subproblem (16) pursues the orthogonality and sparsity simultaneously, and is not
easier to solve than the the original problem (2). However, we will demonstrate later by both theoretical
analysis and numerical experiments that inexactly solving (16) by conducting one proximal gradient
step is adequate for the global convergence.

Starting from the current iterate Z(k), we first find a decent direction D(k) restricted to the tangent
space TZ(k)Sn,p by solving the following subproblem

min
D∈Rn×p

〈
Q(k)Z(k), D

〉
+

1

2η
‖D‖2F + r(Z(k) +D)

s. t. D>Z(k) + (Z(k))>D = 0,

(18)

where η > 0 is the step size. Since Z(k) +D(k) does not necessarily lie on the Stiefel manifold Sn,p, we
then perform a projection to bring it back to Sn,p, which can be represented as:

Z(k+1) = ProjSn,p

(
Z(k) +D(k)

)
.

Here, the orthogonal projection of a matrix C ∈ Rn×p onto Sn,p is denoted by ProjSn,p
(C) = UCV

>
C ,

where UCΣCV
>
C is the economic form of the singular value decomposition of C.

Remark 1. We note that the subproblems solved by ManPG [11] are identical in form to our subprob-
lem (18) but with Q(k) replaced by the data matrix AA>. That is, ManPG applies manifold proximal
gradient steps to a fixed problem, while our algorithm computes steps of the same type using a sequence
of matrices, each being updated to incorporate latest information. From this point of view, our algo-
rithm can be interpreted as an acceleration scheme to reduce the number of outer-iterations, thereby
reducing communication overheads.

Since these n× n matrices Q
(k)
i (i = 1, . . . , d) are distributively maintained in d agents, each agent

is not able to independently solve subproblem (18). Fortunately, we only need to calculate

Q(k)Z(k) =

d∑
i=1

Q
(k)
i Z(k), (19)

8



to solve this subproblem. In the distributed setting, the right hand side of (19) can be accomplished

by calculating Q
(k)
i Z(k) in each agent and then invoking the all-reduce type of communication, where

each agent just shares one n × p matrix. If the all-reduce type of communication is realized by the
butterfly algorithm [43], the communication overhead per iteration is O (np log(d)). Furthermore, each

local product Q
(k)
i Z(k) can be computed from

Q
(k)
i Z(k) = Λ

(k)
i Z(k) − βiX(k)

i (X
(k)
i )>Z(k)

= X
(k)
i (W

(k)
i )>Z(k) +W

(k)
i (X

(k)
i )>Z(k)

− βiX(k)
i (X

(k)
i )>Z(k),

(20)

with a computational cost in the order of O(np2). From the above formula, one observes that the n×n
matrices Qi need not be stored explicitly.

Now we consider how to efficiently solve subproblem (18). By associating a multiplier Υ ∈ Rp×p
to the linear equality constraint, the Lagrangian function of (18) can be written as:

L(D,Υ) =
〈
Q(k)Z(k), D

〉
+

1

2η
‖D‖2F + r(Z(k) +D)

− 1

2

〈
Υ, D>Z(k) + (Z(k))>D

〉
.

We choose to apply the Uzawa method [5] to solve subproblem (18). At the j-th inner iteration, we
first minimize the above Lagrangian function with respect to D for a fixed Υ = Υ(j):

D(j + 1) = arg min
D∈Rn×p

L(D,Υ(j))

= Proxηr

(
Z(k) − η

(
Q(k)Z(k) − Z(k)Υ(j)

))
− Z(k),

(21)

where D(j) and Υ(j) denote the j-th inner iterate of D and Υ, respectively. Here, we use Proxg (X)
to denote the proximal mapping of a given function g : Rn×p → R at the point X ∈ Rn×p, which is
defined by:

Proxg (X) = arg min
Y ∈Rn×p

g(Y ) +
1

2
‖Y −X‖2F .

For the `1-norm regularizer term r(X) = µ ‖X‖1, the proximal mapping in (21) admits a closed-form
solution:

[Proxηr (X)]ij =


[X]ij − ηµ, if [X]ij > ηµ,

0, if − ηµ ≤ [X]ij ≤ ηµ,
[X]ij + ηµ, if [X]ij < −ηµ,

where the subscript [ · ]ij represents the (i, j)-th entry of a matrix. Then the multiplier is updated by
a dual ascent step:

Υ(j + 1) = Υ(j)− τ
(
D(j + 1)>Z(k) + (Z(k))>D(j + 1)

)
, (22)

where τ > 0 is the step size. These two steps are repeated until convergence. The complete framework
is summarized in Algorithm 1.

The Uzawa method can be viewed as a special case of the primal-dual hybrid gradient algorithm
(PDHG) developed in [27] with the convergence rate O(1/k) in the ergodic sense under mild conditions.
Moreover, as an inner solver it can bring a higher overall efficiency than the SSN method used by
ManPG [11] (see [56] for a recent study).

3.2 Subproblems for local variables

In this subsection, we focus on for the i-th local variable Xi, which can be rearranged as the following
equivalent problem:

min
Xi∈Sn,p

h
(k)
i (Xi) := −1

2
tr
(
X>i H

(k)
i Xi

)
. (23)
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Algorithm 1: Uzawa method for subproblem (18).

1 Input: Z(k), Q(k)Z(k), and η in subproblem (18).
2 Set j := 0, and choose the step size τ > 0 as well as the initial variable Υ(0).
3 while not converged do
4 Compute D(j + 1) by (21).
5 Update Υ(j + 1) by (22).
6 Set j := j + 1.

7 Output: D(j).

Here, H
(k)
i is an n× n real symmetric matrix:

H
(k)
i = AiA

>
i + Λ

(k)
i + βiZ

(k+1)(Z(k+1))>, (24)

which is only related to the local data Ai. This is a standard eigenvalue problem where one needs to

compute a p-dimensional dominant eigenspace of H
(k)
i .

As a subproblem, it is not necessary to solve (23) to high precision. In practice, we just need

to find a point X
(k+1)
i ∈ Sn,p satisfying the following two conditions, which suffices to be a good

inexact solution empirically, and to guarantee the global convergence of the whole algorithm. The first
condition demands a sufficient decrease in function value:

h
(k)
i

(
X

(k)
i

)
− h(k)i

(
X

(k+1)
i

)
≥ ci

c′i ‖Ai‖
2
2 + βi

∥∥∥P⊥
X

(k)
i

H
(k)
i X

(k)
i

∥∥∥2
F
, (25)

where ci > 0 and c′i > 0 are two constants independent of βi. The second condition is a sufficient
decrease in KKT violation:∥∥∥P⊥

X
(k+1)
i

H
(k)
i X

(k+1)
i

∥∥∥
F
≤ δi

∥∥∥P⊥
X

(k)
i

H
(k)
i X

(k)
i

∥∥∥
F
, (26)

where δi ∈ [0, 1) is a constant independent of βi. It turns out that these two rather weak termination
conditions for subproblem (23) are sufficient for us to derive global convergence of our ADMM-like
algorithm framework (12)-(15).

In practice, we can combine a warm-start strategy with a single iteration of SSI [44] to generate

the next iterate X
(k+1)
i = ProjSn,p

(
H

(k)
i X

(k)
i

)
, i.e.,

X
(k+1)
i = ProjSn,p

(
AiA

>
i X

(k)
i + Λ

(k)
i X

(k)
i + βiZ

(k+1)(Z(k+1))>X
(k)
i

)
= ProjSn,p

(
AiA

>
i X

(k)
i +W

(k)
i + βiZ

(k+1)(Z(k+1))>X
(k)
i

)
,

(27)

which can be computed in the order of O(np2) floating-point operations, given that the term AiA
>
i X

(k)
i

is inherited from the last iteration as a result of updating W
(k)
i , see (14).

3.3 Algorithm description

We formally present the detailed algorithmic framework as Algorithm 2 below, named distributed
subspace splitting algorithm with `1 regularization and abbreviated to DSSAL1. In the distributed

environment, all agents are initiated from the same point Z(0) ∈ Sn,p. And the initial guess of
multipliers are computed by (15). After initialization, all agents first solve the common subproblem
for Z collaboratively by certain communication strategy. Then each agent solves its subproblem for
Xi and updates its multiplier Λi. These two steps only involve the local data privately stored at
each agent, and hence can be carried out in d agents concurrently. This procedure is repeated until
convergence.
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Algorithm 2: Distributed Subspace Splitting Algorithm with `1 regularization (DSSAL1).

1 Input: functions fi(i = 1, . . . , d) and r.

2 Set k := 0, choose penalty parameters {βi}, and initialize Z(0).

3 Set X
(0)
i = Z(0) for i = 1, . . . , d.

4 Compute the initial multipliers {Λ(0)
i } by (15).

5 while not converged do
6 Solve (18) to obtain D(k) by Algorithm 1.

7 Set Z(k+1) = ProjSn,p

(
Z(k) +D(k)

)
.

8 for i = 1, . . . , d do

9 Find X
(k+1)
i ∈ Sn,p satisfying (25) and (26).

10 Update the multipliers Λ
(k+1)
i by (15).

11 Set k := k + 1.

12 Output: Z(k).

3.4 Data privacy

We claim that DSSAL1 can naturally protect the intrinsic privacy of local data. To form the global sum

in (19), the shared information in DSSAL1 at iteration k from the i-th agent is S
(k)
i := Q

(k)
i Z(k) where

Z(k) is known to all agents. However, the n × p system of equations, Q
(k)
i Z(k) = S

(k)
i , is insufficient

for obtaining the n× n mask matrix Q
(k)
i which changes from iteration to iteration. Secondly, even if

a few mask matrices Q
(k)
i were unveiled, it would still be impossible to derive the local data matrix

AiA
>
i from these Q

(k)
i without knowing corresponding X

(k)
i (and βi) which are always kept privately

by the i-th agent. Finally, consider the ideal “converged” case where XiX
>
i = ZZ> held at iteration

k, and βi were known. In this case, Q
(k)
i would be a known linear function of AiA

>
i parameterized by

Z(k). Still, the n × p system Q
(k)
i Z(k) = S

(k)
i would not be sufficient to uncover the n × n local data

matrix AiA
>
i (strictly speaking, one only needs to recover n(n+1)/2 entries since AiA

>
i is symmetric).

Based on this discussion, we call DSSAL1 a privacy-aware method.

3.5 Computational cost

We conclude this section by discussing the computational cost of our algorithm per iteration. We
first compute the matrix multiplication Q(k)Z(k) by (19) and (20), whose computational cost for each
agent is O(np2) as mentioned earlier. Then, at the center, the Uzawa method is applied to solving
subproblem (18) which has a per-iteration complexity O(np2). In practice, it usually takes very few

iterations to generate Z(k+1). Next, each agent uses a single iteration of SSI to generate X
(k+1)
i by (27)

with the computational cost O(np2) as discussed before. Finally, agent i updates W
(k+1)
i by (14) with

the computational cost 4npmi + O(np2) (which represents the multiplier matrix Λ
(k+1)
i implicitly).

Overall, for each agent, the computational cost of our algorithm is 4npmi +O(np2) per iteration. At
the center, the computational cost for approximately solving (18) is, empirically speaking, O(np2).

4 Convergence analysis

In this section, we analyze the global convergence of Algorithm 2 and prove that a sequence {Z(k)}
generated by Algorithm 2 has at least one accumulation point, and any accumulation point is a first-
order stationary point. A global, sub-linear convergence rate is also established.

We start with a property that a feasible point is first-order stationary if no progress can be made
by solving (18).

11



Lemma 4.1. Let (Z(k), {X(k)
i }) be feasible. Then Z(k) is a first-order stationary point of the sparse

PCA problem (2) if D(k) = 0 is the minimizer of subproblem (18).

The proof of Lemma 4.1 is deferred to Appendix C. It motivates the following definition of an
ε-stationary point for the subspace-splitting model (7).

Definition 4.2. Suppose Z(k) is the k-th iterate of Algorithm 2. Then Z(k) is called an ε-stationary
point if the following condition holds:

1

d

d∑
i=1

∥∥∥Z(k)(Z(k))> −X(k)
i (X

(k)
i )>

∥∥∥2
F

+
∥∥∥D(k)

∥∥∥2
F
≤ ε2,

where ε > 0 is a small constant.

In order to prove the convergence of our algorithm, we need to impose some mild conditions on
algorithm parameters, which are summarized below.

Condition 1. The algorithm parameters η > 0, ci > 0, c′i > 0, δi ∈ [0, 1), as well as two auxiliary
parameters ρ ≥ 1 and σ ∈ (0, 1), satisfy the following conditions:

0 < η <
1

2M̄
, 0 ≤ δi <

σ

2
√
ρd
, 0 < σ < min

{
1,

1
√
ci

}
, i = 1, . . . , d,

where M̄ = µ
√
np/2 + 2 ‖A‖2F +

√
p
∑d
i=1 βi > 0 is a constant.

Condition 2. Each penalty parameter βi(i = 1, . . . , d) in (11) has a lower bound

max

{
ξi ‖Ai‖22 ,

8(µnp+
√
p ‖A‖2F)

(1− σ2)
,

6
√
p ‖Ai‖2F

ciσ2(1− σ2)

}
,

where ξi = max{c′i, 4
√

2/σ, 4(2
√
ρd +

√
2)/(σ − 2

√
ρdδi), 4(

√
2ρd + 1)/(ciσ

2ρd)} > 0 is a constant.
In addition, βi ≤ ρβj holds for any i, j ∈ {1, . . . , d}.

We note that the above technical conditions are not necessary in a practical implementation, They
are introduced purely for the purpose of theoretical analysis to facilitate obtaining a global convergence
rate and corresponding worst-case complexity for Algorithm 2.

Theorem 4.3. Suppose {Z(k)} is an iterate sequence generated by Algorithm 2, starting from an
arbitrary orthogonal matrix Z(0) ∈ Sn,p, with parameters satisfying Conditions 1 and 2. Then {Z(k)}
has at least one accumulation point and any accumulation point must be a first-order stationary point
of the sparse PCA problem (2). Moreover, for any integer K > 1, it holds that

min
k=1,...,K

{∥∥∥D(k)
∥∥∥2
F

+
1

d

d∑
i=1

∥∥∥Z(k)(Z(k))> −X(k)
i (X

(k)
i )>

∥∥∥2
F

}
≤ C

K
,

where C > 0 is a constant.

The proof of Theorem 4.3, which is rather complicated and lengthy, will be given in Appendix D.
The global sub-linear convergence rate in Theorem 4.3 guarantees that DSSAL1 is able to return an
ε-stationary point in at most O(1/ε2) iterations. Since DSSAL1 performs one round of communication
per iteration, the number of communication rounds required to obtain an ε-stationary point is also
O(1/ε2) at the most.
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5 Numerical results

In this section, we evaluate the empirical performance of DSSAL1 through a set of comprehensive nu-
merical experiments. All the experiments throughout this section are performed on a high-performance
computing cluster 3, called LSSC-IV which is maintained at the State Key Laboratory of Scientific and
Engineering Computing (LSEC), Chinese Academy of Sciences. The LSSC-IV cluster has 408 nodes,
each consisting of two Inter(R) Xeon(R) Gold 6140 processors (at 2.30GHz ×18) with 192GB memory,
running under the operating system Red Hat Enterprise Linux Server 7.3.

We compare the performance of DSSAL1 with two state-of-the-art algorithms: (1) an ADMM-
type algorithm called SOC [37] and (2) a manifold proximal gradient method called ManPG-Ada [11].
Since open-source, parallel codes for the above two algorithms are not available, to conduct experiments
under the distributed environment of the LSSC-IV cluster, we implemented the two existing algorithms
and our own algorithm DSSAL1 in C++ with MPI for inter-process communications4. For the two
existing algorithms, we set all parameters to their default values as described in [37, 11]. The linear
algebra library Eigen5 (version 3.3.8) is adopted for matrix computation tasks.

5.1 DSSAL1 Implementation details

In Algorithm 2, we set the penalty parameters to βi = 0.1(‖∇fi(X(0)
i )‖F +µ), and in subproblem (18)

we set the hyperparameter to η = 1/(
∑d
i=1 βi) . In Algorithm 1, we set the step size to τ = 1/ (2η)

and terminate the algorithm whenever∥∥∥D(j)>Z(k) + (Z(k))>D(j)
∥∥∥
F
≤
∥∥∥D(k−1)

∥∥∥
F

is satisfied or the number of iterations reaches 10.
We use the well-known SSI method [44] to obtain a very rough solution to subproblem (23) for Xi.

More specifically, we initialize Xi to the previous iterate X
(k)
i and perform a single SSI iteration, as

given by (27), to generate the next iterate X
(k+1)
i .

The stopping criteria used in Algorithm 2 are

1

d

d∑
i=1

∥∥∥Z(k)(Z(k))> −X(k)
i (X

(k)
i )>

∥∥∥
F
≤ εc and

∥∥∥D(k)
∥∥∥
F
≤ εg, (28)

where εc and εg are two small positive constants. Unless otherwise specified, εc and εg are set to 10−6

and 10−8np, respectively. Algorithm 2 is also terminated once the iteration count reaches MaxIter =
50000.

5.2 Synthetic data generation

In our experiments, a synthetic data matrix A ∈ Rn×m is constructed into the form of (economy-size)
SVD:

A = UΣV >, (29)

where U ∈ Rn×n and V ∈ Rm×n satisfy U>U = V >V = In and Σ ∈ Rn×n is nonnegative and diagonal.
Specifically, U and V are results of orthonormalization of random matrices whose entries are drawn
independently and identically from [−1, 1] under the uniform distribution, and

Σii = ξ1−i, i = 1, . . . , n,

where the parameter ξ ≥ 1 determines the decay rate of singular values. Finally, we apply the standard
PCA pre-processing operations to a data matrix A = UΣV > by subtracting the sample-mean from
each sample and then normalizing the rows of the resulting matrix to make them of unit `2-norm.

3More information at http://lsec.cc.ac.cn/chinese/lsec/LSSC-IVintroduction.pdf
4Our code is downloadable from http://lsec.cc.ac.cn/~liuxin/code.html
5Available from https://eigen.tuxfamily.org/index.php?title=Main_Page
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For our synthetic data matrices, such pre-processing will only slightly perturb the decay rate of the
singular-values before the pre-processing which is uniformly equal to 1/ξ by construction. Unless
specified otherwise, the default value for the decay-rate parameter is ξ = 1.1.

In the numerical experiments, all the algorithms are started from the same initial points. Since the
optimization problem is non-convex, different solvers may still occasionally return different solutions
when starting from a common initial point at random. As suggested in [11], to increase the chance
that all solvers find the same solution, we first run the Riemannian subgradient method [8, 18] for 500
iterations and then use the resulting output as the common starting point.

5.3 Comprehensive comparison on synthetic data

In order to do a thorough evaluation on the empirical performance of DSSAL1, we design four groups of
test data matrices, generated as in Subsection 5.2. In each group, there is only one parameter varying
while all the others are fixed. Specifically, the varying and fixed parameters for the four groups are as
follows:

1. varying sample dimension n = 1000+500j for j = 0, 1, 2, 3, 4, while m = 128000, p = 10, µ = 0.5,
d = 128;

2. varying number of computed loading vectors p = 10 + 5j for j = 0, 1, 2, 3, 4, while n = 1000,
m = 128000, µ = 0.3, d = 128;

3. varying regularization parameter µ = 0.2 + 0.2j for j = 0, 1, 2, 3, 4, while n = 1000, m = 128000,
p = 10, d = 128;

4. varying number of cores d = 16 × 2j for j = 0, 1, 2, 3, 4, while n = 1000, m = 256000, p = 10,
µ = 0.5.

Additional experimental results for varying ξ will be presented in the next subsection. Numerical
results obtained for the above four test groups are presented in Tables 1 to 4, respectively, where we
record wall-clock times in seconds and total rounds of communication. The average function values
and sparsity levels for the four groups of tests are provided in Table 5. When computing the sparsity
of a solution matrix (i.e., the percentage of zero elements), we set a matrix element to zero when its
absolute value is less than 10−5.

From Table 5, we see that all three algorithms have attained comparable solution qualities with
similar function values and sparsity levels in the four groups of testing problems.

Table 1: Comparison of DSSAL1, ManPG-Ada, and SOC for different n.

Wall-clock time in seconds Rounds of communication

n DSSAL1 ManPG-Ada SOC DSSAL1 ManPG-Ada SOC

1000 10.97 26.76 72.07 655 1794 7569
1500 6.61 16.12 57.75 223 642 2201
2000 49.22 172.32 725.63 1238 5054 20444
2500 181.97 412.51 2296.26 3753 10971 45707
3000 34.58 153.40 860.76 680 2789 11480

It should be evident from Tables 1 to 4 that, in all four test groups and in terms of both wall-
clock time and round of communication, DSSAL1 clearly outperforms ManPG-Ada which in turn
outperforms SOC by large margins. Since the amount of communication per round for the three
algorithms are essentially the same, their total communication overhead is proportional to the rounds
of communication required. Because DSSAL1 takes far fewer rounds of communication than the other
two algorithms (often by considerable margins), we conclude that DSSAL1 is a more communication-
efficient algorithm than the other two. For example, in Table 3 for the case of µ = 0.8, the number of
communication rounds taken by DSSAL1 is less than a quarter of that by ManPG-Ada and one tenth
of that by COS.
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Table 2: Comparison of DSSAL1, ManPG-Ada, and SOC for different p.

Wall-clock time in seconds Rounds of communication

p DSSAL1 ManPG-Ada SOC DSSAL1 ManPG-Ada SOC

10 9.74 26.42 75.25 629 1622 6652
15 29.99 56.31 153.98 1728 3586 15865
20 110.26 239.51 466.22 6144 14107 44086
25 68.79 148.34 334.58 3030 6153 27060
30 110.16 173.11 204.87 5133 6966 14621

Table 3: Comparison of DSSAL1, ManPG-Ada, and SOC for different µ.

Wall-clock time in seconds Rounds of communication

µ DSSAL1 ManPG-Ada SOC DSSAL1 ManPG-Ada SOC

0.2 25.05 59.46 430.37 1537 4140 50000
0.4 22.16 46.76 115.36 1393 3061 13680
0.6 11.61 29.08 81.82 838 1899 8278
0.8 10.09 40.07 66.46 733 3369 8121
1.0 9.12 19.80 56.33 655 1348 6396

5.4 Empirical convergence rate

In this subsection, we examine empirical convergence rates of iterates produced by DSSAL1 and
ManPG-Ada for comparison, while SOC is excluded from this experiment given its obvious non-
competitiveness in previous experiments.

In the following experiments, we fix n = 1000, m = 128000, p = 5, µ = 0.2, and d = 128. Three
synthetic matrices A ∈ Rn×m is randomly generated by (29) with ξ taking three different values 1.15,
1.1, and 1.05, respectively, on which DSSAL1 and ManPG-Ada return Z∗D and Z∗M, respectively, with
smaller-than-usual termination tolerances εc = 10−8 and εg = 10−10np in (28). We use the average of
the two, Z∗ = (Z∗D + Z∗M)/2, as a “ground truth” solution. Then we rerun the two algorithms on the
same A with the termination condition ‖Z(k)−Z∗‖F ≤ 3×10−4 and record the quantity ‖Z(k)−Z∗‖F
at each iteration.

In Figure 2, we plot the iterate-error sequences {‖Z(k)−Z∗‖F} for both DSSAL1 and ManPG-Ada
and observe that both algorithms appear to converge asymptotically at linear rates. Overall, however,
the convergence of DSSAL1 is several times faster than that of ManPG-Ada. We also provide the ratio
between the iteration number of ManPG-Ada and that of DSSAL1 for different values of ξ in Table 6.
In general, the closer to one ξ is, the slower the singular values of A decay, and the more difficult the
problem tends to be. Table 6 demonstrates that in our test the advantage of DSSAL1 becomes more
and more pronounced as the test instances become more and more difficult to solve.

6 Conclusion

In this paper, we propose a distributed algorithm, called DSSAL1, for solving the `1-regularized opti-
mization model (2) for sparse PCA computation. DSSAL1 has the following features.

1. The algorithm successfully extends the subspace-splitting strategy from orthogonal-transformation
invariant objective function f =

∑
fi to the sum f + r where r can be non-invariant and non-

smooth.

2. The algorithm has built-in mechanism for local-data masking and hence naturally protects local-
data privacy without requiring a special privacy preservation process.
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Table 4: Comparison of DSSAL1, ManPG-Ada, and SOC for different d.

Wall-clock time in seconds Rounds of communication

d DSSAL1 ManPG-Ada SOC DSSAL1 ManPG-Ada SOC

16 161.72 168.36 383.14 897 1169 5175
32 106.95 135.81 312.20 808 1169 5175
64 54.33 68.89 167.27 753 1169 5175
128 24.28 35.54 96.04 683 1169 5175
256 9.17 14.74 47.61 660 1169 5175

Table 5: Average function values and sparsity levels of DSSAL1, ManPG-Ada, and SOC for different
tests.

Function value Sparsity level

Test DSSAL1 ManPG-Ada SOC DSSAL1 ManPG-Ada SOC

Varying n -672.26 -672.26 -672.26 16.54% 16.51% 16.50%
Varying p -360.52 -360.51 -360.46 40.42% 40.46% 40.32%
Varying µ -282.65 -282.65 -282.64 26.28% 26.29% 26.28%
Varying d -302.02 -301.97 -301.97 22.13% 22.21% 22.21%

3. The algorithm is storage-efficient in that beside local data, it only requires storing n×p matrices
(usually p� n) by each agent, thanks to a low-rank multiplier formula.

4. The algorithm has a global convergence guarantee to stationary points and a worst-case complex-
ity under mild conditions, in spite of the nonlinear equality constraints for subspace consensus.

Comprehensive numerical simulations are conducted under a distributed environment to evaluate
the performance of our algorithm in comparison to two state-of-the-art approaches. Remarkably, the
communication rounds required by DSSAL1 are often over one order of magnitude smaller than existing
methods. These results indicate that DSSAL1 has a great potential in solving large-scale application
problems in distributed environments where data privacy is a primary concern.

Finally, we mention two related topics worthy of future studies. One is the possibility of developing
asynchronous approaches for sparse PCA to address load balance issues in distributed environments.
Another is to extend the subspace splitting strategy to decentralized networks so that a wider range
of applications can benefit from the effectiveness of this approach.

Appendices

A Proof of Lemma 2.2

Proof of Lemma 2.2. According to the definition of ProjTZSn,p
(·), it follows that∥∥∥ProjTZSn,p

(
−AA>Z +R(Z)

)∥∥∥2
F

=
1

4

∥∥∥Z> (−AA>Z +R(Z)
)
−
(
−AA>Z +R(Z)

)>
Z
∥∥∥2
F

+
∥∥P⊥Z (−AA>Z +R(Z)

)∥∥2
F

=
∥∥P⊥Z (−AA>Z +R(Z)

)∥∥2
F

+
1

4

∥∥Z>R(Z)−R(Z)>Z
∥∥2
F
,
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Figure 2: Comparison between DSSAL1 and ManPG-Ada of empirical convergence rates.

Table 6: The iteration number ratio between ManPG-Ada and DSSAL1 for different values of ξ.

ξ = 1.15 ξ = 1.1 ξ = 1.05

ItManPG−Ada

ItDSSAL1

1202

296
≈ 4.06

1417

335
≈ 4.23

2014

338
≈ 5.96

where R(Z) ∈ ∂r(Z). The proof is completed.

B Proof of Proposition 2.4

Proof of Proposition 2.4. To begin with, we assume that (Z, {Xi}) is a first-order stationary point.
Then there exists R(Z) ∈ ∂r(Z) such that

P⊥Z
(
−AA>Z +R(Z)

)
= 0,

and Z>R(Z) is symmetric. Let Θ = Z>R(Z) ∈ Z>∂r(Z), Γi = −X>i AiA>i Xi, and

Λi = −P⊥Xi
AiA

>
i XiX

>
i −XiX

>
i AiA

>
i P⊥Xi

with i = 1, . . . , d. Then the matrices Θ, Γi and Λi are symmetric and rank (Λi) ≤ 2p. Moreover, we
can deduce that

AiA
>
i Xi +XiΓi + ΛiXi = AiA

>
i Xi −XiX

>
i AiA

>
i Xi −P⊥Xi

AiA
>
i Xi = 0,

and

R(Z) +

d∑
i=1

ΛiZ − ZΘ = R(Z)−
d∑
i=1

P⊥ZAiA
>
i Z − ZZ>R(Z)

= P⊥Z
(
−AA>Z +R(Z)

)
= 0.

Hence, (Z, {Xi}) satisfies the conditions in (9) under these specific choices of Θ, Γi and Λi.
Conversely, we now assume that there exist R(Z) ∈ ∂r(Z) and symmetric matrices Θ, Γi and Λi

such that (Z, {Xi}) satisfies the conditions in (9). It follows from the first and second equality in (9)
that

d∑
i=1

P⊥Xi
AiA

>
i XiX

>
i = −

d∑
i=1

P⊥Xi
(XiΓi + ΛiXi)X

>
i = −

d∑
i=1

P⊥Xi
ΛiXiX

>
i

= −P⊥Z

(
d∑
i=1

ΛiZ

)
Z> = P⊥Z (R(Z)− ZΘ)Z> = P⊥ZR(Z)Z>.
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At the same time, since XiX
>
i = ZZ>, we have

d∑
i=1

P⊥Xi
AiA

>
i XiX

>
i =

d∑
i=1

P⊥ZAiA
>
i ZZ

> = P⊥ZAA
>ZZ>.

Combining the above two equalities and orthogonality of Z, we arrive at

P⊥Z
(
−AA>Z +R(Z)

)
= 0.

Left-multiplying both sides of the second equality in (9) by Z>, we obtain that

Z>R(Z) = Θ−
d∑
i=1

Z>ΛiZ,

which together with the symmetry of Λi and Θ implies that Z>R(Z) is also symmetric. This completes
the proof.

C Proof of Lemma 4.1

Proof of Lemma 4.1. Since (Z(k), {X(k)
i }) is feasible, we know X

(k)
i (X

(k)
i )> = Z(k)(Z(k))> for i =

1, . . . , d. Thus, it can be readily verified that

Q(k)Z(k) =

d∑
i=1

(
Λ
(k)
i − βiX

(k)
i (X

(k)
i )>

)
Z(k)

=

d∑
i=1

(
−P⊥Z(k)AiA

>
i Z

(k)(Z(k))> − βiZ(k)(Z(k))>
)
Z(k)

= −P⊥Z(k)AiA
>
i Z

(k) −

(
d∑
i=1

βi

)
Z(k),

which implies that

ProjT
Z(k)Sn,p

(
Q(k)Z(k)

)
= ProjT

Z(k)Sn,p

(
−AiA>i Z(k)

)
.

According to Theorem 4.1 in [58], the first-order optimality condition of (18) can be stated as:

0 ∈ ProjT
Z(k)Sn,p

(
Q(k)Z(k) +

1

η
D(k) + ∂r(Z(k) +D(k))

)
.

Since D(k) = 0 is the global minimizer of (18), we have

0 ∈ ProjT
Z(k)Sn,p

(
Q(k)Z(k) + ∂r(Z(k))

)
= ProjT

Z(k)Sn,p

(
−AiA>i Z(k) + ∂r(Z(k))

)
.

We obtain the assertion of this lemma.

D Convergence of Algorithm 2

Now we prove Theorem 4.3 to establish the global convergence of Algorithm 2. In addition to the nota-
tions introduced in Section 1, we further adopt the followings throughout the theoretical analysis. The
notations rank (C) and σmin (C) represent the rank and the smallest singular value of C, respectively.
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For X,Y ∈ Sn,p, we define Dp (X,Y ) := XX> − Y Y > and dp (X,Y ) := ‖Dp (X,Y )‖F, standing for,
respectively, the projection distance matrix and its measurement.

To begin with, we provide a sketch of our proof. Suppose {Z(k)} is the iteration sequence generated

by Algorithm 2, with X
(k)
i and Λ

(k)
i being the local variable and multiplier of the i-th agent at the

k-th iteration, respectively. The proof includes the following main steps.

1. The sequence {Z(k)} is bounded and the sequence {L(Z(k), {X(k)
i }, {Λ

(k)
i })} is bounded from

below.

2. The sequence {Z(k)} satisfies d2
p

(
Z(k+1), X

(k)
i

)
≤ 2(1 − σ2), and σ is a unified lower bound of

the smallest singular values of the matrices (Xk
i )>Zk+1(i = 1, . . . , d).

3. The sequence {L(Z(k), {X(k)
i }, {Λ

(k)
i })} is monotonically non-increasing, and hence is convergent.

4. The sequence {Z(k)} has at least one accumulation point, and any accumulation point is a
first-order stationary point of the sparse PCA problem (2).

Next we verify all the items in the above sketch by proving the following lemmas and corollaries.

Lemma D.1. Suppose {Z(k)} is the iterate sequence generated by Algorithm 2. Let

g(k)(D) =
〈
Q(k)Z(k), D

〉
+

1

2η
‖D‖2F + r(Z(k) +D).

Then the following relationship holds for any k ∈ N,

g(k)(0)− g(k)(D(k)) ≥ 1

2η

∥∥∥D(k)
∥∥∥2
F
.

Proof. Since g(k) is strongly convex with modulus
1

η
, we have

g(k)(D̂) ≥ g(k)(D) +
〈
∂g(k)(D), D̂ −D

〉
+

1

2η

∥∥∥D̂ −D∥∥∥2
F
, (30)

for any D, D̂ ∈ Rn×p. In particular, if D̂,D ∈ TZ(k)Sn,p, it holds that〈
∂g(k)(D), D̂ −D

〉
=
〈

ProjT
Z(k)Sn,p

(
∂g(k)(D)

)
, D̂ −D

〉
.

It follows from the first-order optimality condition of (18) that 0 ∈ ProjT
Z(k)Sn,p

(
∂g(k)(D(k))

)
. Finally,

taking D̂ = 0 and D = D(k) in (30) yields the assertion of this lemma.

Lemma D.2. Suppose Z ∈ Sn,p and D ∈ TZSn,p. Then it holds that∥∥∥ProjSn,p
(Z +D)− Z

∥∥∥
F
≤ ‖D‖F ,

and ∥∥∥ProjSn,p
(Z +D)− Z −D

∥∥∥
F
≤ 1

2
‖D‖2F .

Proof. The proof can be found in, for example, [33]. For the sake of completeness, we provide a proof
here. It follows from the orthogonality of Z and the skew-symmetry of Z>D that Z + D has full
column rank. This yields that ProjSn,p

(Z + D) = (Z + D)F−1, where F = (Ip + D>D)1/2. Since

ProjSn,p
(Z +D)− Z = (Z(Ip − F ) +D)F−1, we have∥∥∥ProjSn,p

(Z +D)− Z
∥∥∥2
F

= 2tr
(
Ip − F−1

)
− 2tr

(
F−1Z>D

)
= 2tr

(
Ip − F−1

)
= 2

d∑
j=1

(
1−

(
1 + σ̃2

i

)−1/2) ≤ d∑
j=1

σ̃2
i = ‖D‖2F ,

19



where σ̃1 ≥ · · · ≥ σ̃d ≥ 0 are the singular values of D. Similarly, it follows from the relationship
ProjSn,p

(Z +D)− Z −D = (Z +D)(F−1 − Ip) that

∥∥∥ProjSn,p
(Z +D)− Z −D

∥∥∥
F

= tr
(

(Ip − F )
2
)

=

d∑
j=1

(
1−

(
1 + σ̃2

i

)1/2)2
≤ 1

4

d∑
j=1

σ̃4
i =

1

4
‖D‖4F ,

which completes the proof.

Corollary D.3. Suppose {Z(k)} is the iterate sequence generated by Algorithm 2 with the parameters
satisfying Condition 1. Then for any k ∈ N, it holds that

L(Z(k), {X(k)
i }, {Λ

(k)
i })− L(Z(k+1), {X(k)

i }, {Λ
(k)
i }) ≥ M̄

∥∥∥D(k)
∥∥∥2
F
, (31)

where M̄ > 0 is a constant defined in Section 4.

Proof. Firstly, it can be readily verified that∥∥∥Q(k)
∥∥∥
F
≤

d∑
i=1

∥∥∥Q(k)
i

∥∥∥
F
≤

d∑
i=1

(
2 ‖Ai‖2F +

√
pβi

)
.

Let q̄(k)(Z) = tr(Z>Q(k)Z)/2 be the smooth part of the objective function q(k)(Z) in (16). Since ∇q̄(k)
is Lipschitz continuous with the corresponding Lipschitz constant

∥∥Q(k)
∥∥
F

, we have

q̄(k)(Z(k+1))− q̄(k)(Z(k)) ≤
〈
Q(k)Z(k), Z(k+1) − Z(k)

〉
+

1

2

∥∥∥Q(k)
∥∥∥
F

∥∥∥Z(k+1) − Z(k)
∥∥∥2
F
.

It follows from Lemma D.2 that〈
Q(k)Z(k), Z(k+1) − Z(k) −D(k)

〉
≤
∥∥∥Q(k)Z(k)

∥∥∥
F

∥∥∥Z(k+1) − Z(k) −D(k)
∥∥∥
F

≤
d∑
i=1

(
‖Ai‖2F +

√
p

2
βi

)∥∥∥D(k)
∥∥∥2
F
,

and

1

2

∥∥∥Q(k)
∥∥∥
F

∥∥∥Z(k+1) − Z(k)
∥∥∥2
F
≤

d∑
i=1

(
‖Ai‖2F +

√
p

2
βi

)∥∥Dk
∥∥2
F
.

Combing the above three inequalities, we can obtain that

q̄(k)(Z(k+1))− q̄(k)(Z(k)) ≤
〈
Q(k)Z(k), D(k)

〉
+

d∑
i=1

(
2 ‖Ai‖2F + βi

√
p
)∥∥∥D(k)

∥∥∥2
F
.

It follows from Lemma D.1 that〈
Q(k)Z(k), D(k)

〉
+ r(Z(k) +D(k))− r(Z(k))

= g(k)(D(k))− g(k)(0)− 1

2η

∥∥∥D(k)
∥∥∥2
F
≤ −1

η

∥∥∥D(k)
∥∥∥2
F
,

which infers that
q̄(k)(Z(k+1))− q̄(k)(Z(k)) + r(Z(k) +D(k))− r(Z(k))

≤
d∑
i=1

(
2 ‖Ai‖2F + βi

√
p
)∥∥∥D(k)

∥∥∥2
F
− 1

η

∥∥∥D(k)
∥∥∥2
F
.
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This together with the Lipschitz continuity of r(Z) yields that

q(k)(Z(k+1))− q(k)(Z(k))

= q̄(k)(Z(k+1))− q̄(k)(Z(k)) + r(Z(k+1))− r(Z(k))

= q̄(k)(Z(k+1))− q̄(k)(Z(k)) + r(Z(k) +D(k))− r(Z(k))

+ r(Z(k+1))− r(Z(k) +D(k))

≤ q̄(k)(Z(k+1))− q̄(k)(Z(k)) + r(Z(k) +D(k))− r(Z(k))

+ µ
√
np
∥∥∥Z(k+1) − Z(k) −D(k)

∥∥∥
F

≤
d∑
i=1

(
2 ‖Ai‖2F + βi

√
p
)∥∥∥D(k)

∥∥∥2
F
− 1

η

∥∥∥D(k)
∥∥∥2
F

+
µ

2

√
np
∥∥∥D(k)

∥∥∥2
F

=

(
M̄ − 1

η

)∥∥∥D(k)
∥∥∥2
F
.

Here, M̄ > 0 is a constant defined in Section 4. According to Condition 1, we know that M̄−1/η ≤ −M̄ .
Hence, we finally arrive at

L(Z(k), {X(k)
i }, {Λ

(k)
i })− L(Z(k+1), {X(k)

i }, {Λ
(k)
i }) = q(k)(Z(k))− q(k)(Z(k+1))

≥ M̄
∥∥∥D(k)

∥∥∥2
F
.

This completes the proof.

Lemma D.4. Suppose {Z(k)} is the iterate sequence generated by Algorithm 2 with the parameters
satisfying Condition 1. Then for any k ∈ N, it can be verified that

d2
p

(
Z(k+1), X

(k)
i

)
≤ ρ

d∑
j=1

d2
p

(
Z(k), X

(k)
j

)
+

8

βi

(√
p ‖A‖2F + µnp

)
, (32)

where ρ ≥ 1 is a constant defined in Section 4.

Proof. The inequality (31) directly results in the following relationship.

q(k)(Z(k))− q(k)(Z(k+1)) ≥ 0.

According to the definition of q(k), it follows that

0 ≤ 1

2
tr
(

(Z(k))>Q(k)Z(k)
)
− 1

2
tr
(

(Z(k+1))>Q(k)Z(k+1)
)

+ r(Z(k))− r(Z(k+1))

≤ 1

2

d∑
j=1

tr
((
βjX

(k)
j (X

(k)
j )> − Λ

(k)
j

)
Dp

(
Z(k+1), Z(k)

))
+ 2µnp.

By straightforward calculations, we can deduce that

d∑
j=1

tr
(

Λ
(k)
j Dp

(
Z(k), Z(k+1)

))
≤

d∑
j=1

∥∥∥Λ
(k)
j

∥∥∥
F

dp

(
Z(k+1), Z(k)

)

≤ 4
√
p

d∑
j=1

‖Aj‖2F = 4
√
p ‖A‖2F ,

and
d∑
j=1

βjtr
(
X

(k)
j (X

(k)
j )>Dp

(
Z(k+1), Z(k)

))

=
1

2

d∑
j=1

βjd
2
p

(
Z(k), X

(k)
j

)
− 1

2

d∑
j=1

βjd
2
p

(
Z(k+1), X

(k)
j

)
.
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The above three inequalities yield that

d∑
j=1

βjd
2
p

(
Z(k+1), X

(k)
j

)
≤

d∑
j=1

βjd
2
p

(
Z(k), X

(k)
j

)
+ 8
√
p ‖A‖2F + 8µnp,

which further implies that

d2
p

(
Z(k+1), X

(k)
i

)
≤ 1

βi

d∑
j=1

βjd
2
p

(
Z(k+1), X

(k)
j

)

≤ ρ
d∑
j=1

d2
p

(
Z(k), X

(k)
j

)
+

8

βi

(√
p ‖A‖2F + µnp

)
.

This completes the proof.

Lemma D.5. Suppose Z(k+1) is the (k + 1)-th iterate generated by Algorithm 2 and satisfies the
following condition:

d2
p

(
Z(k+1), X

(k)
i

)
≤ 2

(
1− σ2

)
,

where σ ∈ (0, 1) is a constant defined in Condition 1. Let the algorithm parameters satisfy Conditions
1 and 2. Then for any i = 1, . . . , d, it holds that

h
(k)
i (X

(k)
i )− h(k)i (X

(k+1)
i ) ≥ 1

4
σ2ciβid

2
p

(
Z(k+1), X

(k)
i

)
, (33)

and

d2
p

(
Z(k+1), X

(k+1)
i

)
≤
(
1− ciσ2

)
d2
p

(
Z(k+1), X

(k)
i

)
+

12

βi

√
p ‖Ai‖2F . (34)

Proof. It follows from Condition 2 that βi > c′i ‖Ai‖
2
2, which together with (25) yields that

h
(k)
i (X

(k)
i )− h(k)i (X

(k+1)
i ) ≥ ci

2βi

∥∥∥P⊥
X

(k)
i

H
(k)
i X

(k)
i

∥∥∥2
F
, (35)

And it can be checked that

P⊥
X

(k)
i

H
(k)
i X

(k)
i = P⊥

X
(k)
i

(
AiA

>
i X

(k)
i + Λ

(k)
i X

(k)
i + βiZ

(k+1)(Z(k+1))>X
(k)
i

)
= P⊥

X
(k)
i

(
AiA

>
i X

(k)
i −P⊥

X
(k)
i

AiA
>
i X

(k)
i

)
− βiP⊥X(k)

i

Z(k+1)(Z(k+1))>X
(k)
i

= −βiP⊥X(k)
i

Z(k+1)(Z(k+1))>X
(k)
i .

(36)

Suppose σ̂1, . . . , σ̂p are the singular values of (X
(k)
i )>Z(k+1). It is clear that 0 ≤ σ̂i ≤ 1 for any

i = 1, . . . , p due to the orthogonality of X
(k)
i and Z(k+1). On the one hand, we have

d2
p

(
Z(k+1), X

(k)
i

)
=
∥∥∥X(k)

i (X
(k)
i )> − Z(k+1)(Z(k+1))>

∥∥∥2
F

= 2

p∑
j=1

(
1− σ̂2

j

)
.

On the other hand, it follows from d2
p

(
Z(k+1), X

(k)
i

)
≤ 2

(
1− σ2

)
that

σmin

(
(X

(k)
i )>Z(k+1)

)
≥ σ.

Let Y
(k)
i = (X

(k)
i )>Z(k+1)(Z(k+1))>X

(k)
i . By straightforward calculations, we can derive that∥∥∥P⊥

X
(k)
i

Z(k+1)(Z(k+1))>X
(k)
i

∥∥∥2
F

= tr
(
Y

(k)
i

)
− tr

(
(Y

(k)
i )2

)
=

p∑
j=1

σ̂2
j

(
1− σ̂2

j

)
≥

p∑
j=1

σ2
min

(
(X

(k)
i )>Z(k+1)

) (
1− σ̂2

j

)
≥ 1

2
σ2d2

p

(
Z(k+1), X

(k)
i

)
.

(37)
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Combining (35), (36) and (37), we acquire the assertion (33). Then it follows from the definition of

h
(k)
i that

ciσ
2d2

p

(
Z(k+1), X

(k)
i

)
≤ 2tr

(
Z(k+1)(Z(k+1))>Dp

(
X

(k+1)
i , X

(k)
i

))
+

2

βi
tr
((
AiA

>
i + Λ

(k)
i

)
Dp

(
X

(k+1)
i , X

(k)
i

))
.

By straightforward calculations, we can obtain that

tr
((
AiA

>
i + Λ

(k)
i

)
Dp

(
X

(k+1)
i , X

(k)
i

))
≤
∥∥∥AiA>i + Λ

(k)
i

∥∥∥
F

dp

(
X

(k+1)
i , X

(k)
i

)
≤ 6
√
p ‖Ai‖2F ,

and

tr
(
Z(k+1)(Z(k+1))>Dp

(
X

(k+1)
i , X

(k)
i

))
=

1

2
d2
p

(
Z(k+1), X

(k)
i

)
− 1

2
d2
p

(
Z(k+1), X

(k+1)
i

)
.

The above three relationships yield (34). We complete the proof.

Lemma D.6. Suppose {Z(k)} is the iterate sequence generated by Algorithm 2 initiated from Z(0) ∈
Sn,p with the parameters satisfying Conditions 1 and 2. Then for any i = 1, . . . , d and k ∈ N, it holds
that

d2
p

(
Z(k+1), X

(k)
i

)
≤ 2

(
1− σ2

)
. (38)

Proof. We use mathematical induction to prove this lemma. To begin with, it follows from the in-
equality (32) that

d2
p

(
Z(1), X

(0)
i

)
≤ ρ

d∑
j=1

d2
p

(
Z(0), X

(0)
j

)
+

8

βi

(√
p ‖A‖2F + µnp

)
=

8

βi

(√
p ‖A‖2F + µnp

)
≤ 2

(
1− σ2

)
,

under the relationship βi > 4(
√
p ‖A‖2F+µnp)/(1−σ2) in Condition 2. Thus, the argument (38) directly

holds for (Z(1), {X(0)
i }). Now, we assume the argument holds at (Z(k+1), {X(k)

i }), and investigate the

situation at (Z(k+2), {X(k+1)
i }).

According to Condition 2, we have 12
√
p ‖Ai‖2F /βi < 2

(
1− σ2

)
ciσ

2. Since we assume that

d2
p

(
Z(k+1), X

(k)
i

)
≤ 2

(
1− σ2

)
, it follows from the relationship (34) that

d2
p

(
Z(k+1), X

(k+1)
i

)
≤
(
1− ciσ2

)
d2
p

(
Z(k+1), X

(k)
i

)
+

12

βi

√
p ‖Ai‖2F

≤ 2
(
1− σ2

) (
1− ciσ2

)
+ 2

(
1− σ2

)
ciσ

2 = 2
(
1− σ2

)
,

which infers that σmin

(
(X

(k+1)
i )>Z(k+1)

)
≥ σ. Similar to the proof of Lemma D.5, we can acquire

that ∥∥∥P⊥
X

(k+1)
i

Z(k+1)(Z(k+1))>X
(k+1)
i

∥∥∥2
F
≥ 1

2
σ2d2

p

(
Z(k+1), X

(k+1)
i

)
. (39)

Combining the condition (26) and the equality (36), we have∥∥∥P⊥
X

(k+1)
i

H
(k)
i X

(k+1)
i

∥∥∥
F
≤ δi

∥∥∥P⊥
X

(k)
i

H
(k)
i X

(k)
i

∥∥∥
F

= δiβi

∥∥∥P⊥
X

(k)
i

Z(k+1)(Z(k+1))>X
(k)
i

∥∥∥
F
≤ δiβidp

(
Z(k+1), X

(k)
i

)
.

(40)
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On the other hand, it follows from the triangular inequality that∥∥∥P⊥
X

(k+1)
i

H
(k)
i X

(k+1)
i

∥∥∥
F

≥
∥∥∥P⊥

X
(k+1)
i

(
AiA

>
i + Λ

(k+1)
i + βiZ

(k+1)(Z(k+1))>
)
X

(k+1)
i

∥∥∥
F

−
∥∥∥P⊥

X
(k+1)
i

(
Λ
(k+1)
i − Λ

(k)
i

)
X

(k+1)
i

∥∥∥
F

Combing the inequality (39), it can be verified that∥∥∥P⊥
X

(k+1)
i

(
AiA

>
i + Λ

(k+1)
i + βiZ

(k+1)(Z(k+1))>
)
X

(k+1)
i

∥∥∥
F

= βi

∥∥∥P⊥
X

(k+1)
i

Z(k+1)(Z(k+1))>X
(k+1)
i

∥∥∥
F
≥
√

2

2
σβidp

(
Z(k+1), X

(k+1)
i

)
.

Moreover, according to Lemma B.4 in [51], we have∥∥∥P⊥
X

(k+1)
i

(
Λ
(k+1)
i − Λ

(k)
i

)
X

(k+1)
i
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F
≤
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(k)
i

∥∥∥
F
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X
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i , X

(k)
i

)
.

Combing the above three inequalities, we further obtain that∥∥∥P⊥
X

(k+1)
i

H
(k)
i X

(k+1)
i

∥∥∥
F
≥
√

2

2
σβidp

(
Z(k+1), X

(k+1)
i

)
− 4 ‖Ai‖22 dp

(
X

(k+1)
i , X

(k)
i

)
.

Together with (40), this yields that

√
2

2
σβidp

(
Z(k+1), X

(k+1)
i

)
≤ δiβidp

(
Z(k+1), X

(k)
i

)
+ 4 ‖Ai‖22 dp

(
X

(k+1)
i , X

(k)
i

)
≤
(
δiβi + 4 ‖Ai‖22

)
dp

(
Z(k+1), X

(k)
i

)
+ 4 ‖Ai‖22 dp

(
Z(k+1), X

(k+1)
i

)
.

According to Conditions 1 and 2, we have
√

2σβi − 8 ‖Ai‖22 > 0 and σ − 2
√
ρdδi > 0. Thus, it can be

verified that

dp

(
Z(k+1), X

(k+1)
i

)
≤

2(δiβi + 4 ‖Ai‖22)
√

2σβi − 8 ‖Ai‖22
dp

(
Z(k+1), X

(k)
i

)
≤
√

1

2ρd
dp

(
Z(k+1), X

(k)
i

)
,

(41)

where the last inequality follows from the relationship β >
4
(
2
√
ρd+

√
2
)
‖Ai‖22

σ − 2
√
ρdδi

in Condition 2. This

together with (32) and (38) yields that

d2
p

(
Z(k+2), X

(k+1)
i

)
≤ ρ

d∑
j=1

d2
p

(
Z(k+1), X

(k+1)
j

)
+

8

βi

(√
p ‖A‖2F + µnp

)

≤ 1

2d

d∑
j=1

d2
p

(
Z(k+1), X

(k)
j

)
+
(
1− σ2

)
≤
(
1− σ2

)
+
(
1− σ2

)
= 2

(
1− σ2

)
,

since we assume that βi > 8(
√
p ‖A‖2F + µnp)/(1− σ2) in Condition 2. The proof is completed.
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Corollary D.7. Suppose {Z(k)} is the iterate sequence generated by Algorithm 2 initiated from Z(0) ∈
Sn,p, and the problem parameters satisfy Conditions 1 and 2. Then for any k ∈ N, we can obtain that

L(Z(k+1), {X(k)
i }, {Λ

(k)
i })− L(Z(k+1), {X(k+1)

i }, {Λ(k)
i })

≥ 1

4
σ2

d∑
i=1

ciβid
2
p

(
Z(k+1), X

(k)
i

)
.

Proof. This corollary directly follows from Lemma D.5 and Lemma D.6.

Corollary D.8. Suppose {Z(k)} is the iterate sequence generated by Algorithm 2 initiated from Z(0) ∈
Sn,p, and problem parameters satisfy Conditions 1 and 2. Then for any k ∈ N, we can acquire that

L(Z(k+1), {X(k+1)
i }, {Λ(k)

i })− L(Z(k+1), {X(k+1)
i }, {Λ(k+1)

i })

≥ −
√

2ρd+ 1
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d∑
i=1

‖Ai‖22 d2
p

(
Z(k+1), X

(k)
i

)
.

Proof. According to the Cauchy–Schwarz inequality, we can show that∣∣∣〈Λ
(k+1)
i − Λ

(k)
i ,Dp

(
X

(k+1)
i , Z(k+1)
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)
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‖Ai‖22 dp
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X
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)
dp

(
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(k)
i

)
,

where the last inequality follows from Lemma B.4 in [51] and (41). In addition, we have

dp

(
X
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i , X

(k)
i

)
≤ dp

(
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)
+ dp

(
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)
≤
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(
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)
,

which implies that 〈
Λ
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i − Λ

(k)
i ,Dp

(
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2
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(
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(k)
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.

Combing the fact that

L(Z(k+1), {X(k+1)
i }, {Λ(k)

i })− L(Z(k+1), {X(k+1)
i }, {Λ(k+1)

i })

=
1

2

d∑
i=1

〈
Λ
(k+1)
i − Λ

(k)
i ,Dp

(
X

(k+1)
i , Z(k+1)

)〉
,

we complete the proof.

Now based on these lemmas and corollaries, we can demonstrate the monotonic non-increasing of{
L({Xk

i }, Zk, {Λki })
}

, which results in the global convergence of our algorithm.

Proposition D.9. Suppose {Z(k)} is the iteration sequence generated by Algorithm 2 initiated from
Z(0) ∈ Sn,p, and problem parameters satisfy Conditions 1 and 2. Then the sequence of augmented

Lagrangian functions {L(Z(k), {X(k)
i }, {Λ

(k)
i })} is monotonically non-increasing, and for any k ∈ N,

it satisfies the following sufficient descent property:

L(Z(k), {X(k)
i }, {Λ

(k)
i })− L(Z(k+1), {X(k+1)

i }, {Λ(k+1)
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Jid
2
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i
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+ M̄

∥∥∥D(k)
∥∥∥2
F
,

(42)

where Ji =
1

2
ρdσ2ciβi − 2(

√
2ρd+ 1) ‖Ai‖22 > 0 is a constant.
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Proof. Combining Corollary D.3, Corollary D.7, and Corollary D.8, we obtain that

L(Z(k), {X(k)
i }, {Λ

(k)
i })− L(Z(k+1), {X(k+1)

i }, {Λ(k+1)
i })

≥
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4
σ2ciβi −
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‖Ai‖22

)
d2
p

(
Z(k+1), X

(k)
i

)
+ M̄

∥∥∥D(k)
∥∥∥2
F
.

Recalling the relationship βi > 4(
√

2ρd + 1) ‖Ai‖22 /(ρdσ2ci) in Condition 2, we can conclude that

L(Z(k), {X(k)
i }, {Λ

(k)
i }) ≥ L(Z(k+1), {X(k+1)

i }, {Λ(k+1)
i }). Hence, the sequence {L(Z(k), {X(k)

i }, {Λ
(k)
i })}

is monotonically non-increasing. Finally, the above relationship together with (41) yields the assertion
(42). The proof is finished.

Based on the above properties, we are ready to prove Theorem 4.3, which establishes the global
convergence rate of our proposed algorithm.

Proof of Theorem 4.3. The whole sequence {Z(k), {X(k)
i }} is naturally bounded, since each of X

(k)
i

or Z(k) is orthogonal. Then it follows from the Bolzano-Weierstrass theorem that this sequence ex-
ists an accumulation point {Z∗, {X∗i }}, where Z∗ ∈ Sn,p and X∗i ∈ Sn,p. Moreover, the bounded-

ness of {Λ(k)
i } results from the multipliers updating formula (15). Hence, the lower boundedness of

{L(Z(k), {X(k)
i }, {Λ

(k)
i })} is owing to the continuity of the augmented Lagrangian function. Namely,

there exists a constant L such that L(Z(k), {X(k)
i }, {Λ

(k)
i }) ≥ L for all k ∈ N.

It follows from the sufficient descent property (42) that

K∑
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and
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(44)

Upon taking the limit as K →∞, we obtain that

∞∑
k=1

∥∥∥D(k)
∥∥∥2
F
<∞ and

∞∑
k=1

d2
p

(
Z(k), X
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<∞,

which further implies that

lim
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∥∥∥D(k)
∥∥∥
F

= 0 and lim
k→∞

dp

(
Z(k), X

(k)
i

)
= 0,

respectively. Combing this with Lemma 4.1, we know that any accumulation point Z∗ of sequence
{Z(k)} is a first-order stationary point of the problem (2).
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Eventually, we prove the sublinear convergence rate. Indeed, it follows from the inequalities (43)
and (44) that

min
k=1,...,K

{∥∥∥D(k)
∥∥∥2
F

+
1

d

d∑
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where

C = M̄−1
(
L(Z(1), {X(1)

i }, {Λ
(1)
i })− L

)
+

(
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)
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(
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)
is a positive constant. This completes the proof.
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