
ar
X

iv
:2

10
5.

06
43

6v
4 

 [
m

at
h.

O
C

] 
 4

 F
eb

 2
02

3

Average Curvature FISTA for Nonconvex Smooth

Composite Optimization Problems

May 13, 2021

first revision: March 10, 2022
second revision: February 3, 2023

Jiaming Liang 1 and Renato D.C. Monteiro 2

Abstract

A previous authors’ paper introduces an accelerated composite gradient (ACG) variant,
namely AC-ACG, for solving nonconvex smooth composite optimization (N-SCO) problems. In
contrast to other ACG variants, AC-ACG estimates the local upper curvature of the N-SCO
problem by using the average of the observed upper-Lipschitz curvatures obtained during the
previous iterations, and uses this estimation and two composite resolvent evaluations to compute
the next iterate. This paper presents an alternative FISTA-type ACG variant, namely AC-
FISTA, which has the following additional features: i) it performs an average of one composite
resolvent evaluation per iteration; and ii) it estimates the local upper curvature by using the
average of the previously observed upper (instead of upper-Lipschitz) curvatures. These two
properties acting together yield a practical AC-FISTA variant which substantially outperforms
earlier ACG variants, including the AC-ACG variants discussed in the aforementioned authors’
paper.

Key words. nonconvex smooth composite optimization, average curvature, accelerated com-
posite gradient methods, FISTA, first-order methods, line search free methods.
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1 Introduction

This paper studies a FISTA-type accelerated composite gradient (ACG) algorithm, namely the
AC-FISTA method, for solving the nonconvex smooth composite optimization (N-SCO) problem

φ∗ := min {φ(z) := f(z) + h(z) : z ∈ R
n} (1)

where h : Rn → (−∞,∞] is a proper lower semicontinuous convex function and f is a real-valued
differentiable (possibly nonconvex) function with an L-Lipschitz continuous gradient on a compact
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convex set containing domh. The N-SCO problem (1) has a wide range of real-world applications
including support vector machine [4], sparse PCA [6], matrix completion [16], and nonnegative
matrix factorization [5, 9]. ACG methods are widely used optimization approaches for solving
N-SCO problems. A critical issue related to the practical performance of these methods lies on the
development of efficient stepsize selection strategies.

More specifically, a key step in ACG methods for solving the N-SCO problem (1) is to compute
an iterate yk+1 as the solution of a proximal subproblem of the form

yk+1 = y(x̃k;Mk) := argmin

{

ℓf (x; x̃k) + h(x) +
Mk

2
‖x− x̃k‖2 : x ∈ R

n

}

(2)

where ℓf (x; x̃k) := f(x̃k)+ 〈∇f(x̃k), x− x̃k〉, x̃k is a convex combination of yk and another auxiliary
iterate xk, and Mk is a positive scalar such that

C(y(x̃k;Mk); x̃k) ≤ τMk (3)

where τ ∈ (0, 1] and

C(y; x̃) := 2 [f(y)− ℓf (y; x̃)]

‖y − x̃‖2 . (4)

It can be shown that the smaller the sequence {Mk} is, the faster the convergence rate of the
method becomes. Hence, it is desirable to choose Mk = M̄k where M̄k is the smallest value of
Mk satisfying (3). Since M̄k is hard to compute, a large class of ACG methods for solving either
convex or nonconvex SCO problems simply computes a scalar Mk satisfying (3) either by setting
it to be a sufficiently large constant or by using a line search procedure. Works dealing with ACG
methods for solving nonconvex SCO problems based on this idea are discussed in “Other related
works” below.

In contrast to the ACG methods based on the above ideas, the AC-ACG methods of [13] do not
require the next iterate yk+1 to satisfy (3). They instead follow the natural geometrical viewpoint
of choosing Mk, and hence the local approximate model in (2), by means of average curvature
information. More specifically, the theoretical version of AC-ACG in [13] computes yk+1 as in (2)
with Mk set to be a positive multiple of the average of all observed curvatures C̃0, . . . , C̃k−1, where
C̃i := C̃(yi+1; x̃i) for every i, and

C̃(y; x̃) := max {C(y; x̃),L(y; x̃)} , L(y; x̃) := ‖∇f(y)−∇f(x̃)‖‖y − x̃‖ . (5)

It is shown in Theorem 2.1 of [13] that, for every k, the theoretical version of AC-ACG generates a
pair (ŷk, v̂k) satisfying v̂k ∈ ∇f(ŷk)+∂h(ŷk) and ‖v̂k‖2 = O(Mk/k), and hence that its convergence
rate directly depends on the magnitude of Mk. Paper [13] also presents a practical aggressive
variant of AC-ACG, which computes Mk using the average of the Ci’s, i = 0, . . . , k − 1, where
Ci := C(yi+1; x̃i) for every i, instead of the usually much larger C̃i’s. Most likely due to smaller
size of the generated sequence {Mk}, the practical AC-ACG variant computationally outperforms
other ACG variants, including its theoretical variant, but its convergence rate analysis is left open
in [13].

This paper presents the AC-FISTA method for solving (1) which is a FISTA-type variant of
AC-ACG, and establishes a convergence rate for it similar to the one described above but with
Mk obtained in the same way as in the practical AC-ACG variant. AC-FISTA has the following
advantages compared to the theoretical AC-ACG variant. It computes about half the number
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of composite resolvent evaluations as that performed by AC-ACG, and hence its iterations are
computationally cheaper. It uses Ck (in place of C̃k) to computeMk, and hence generates a sequence
of smaller curvature estimates {Mk}. (It is worth noting that, even though this last property is
established in the context of AC-FISTA, it indirectly addresses the aforementioned open question
of [13] posed in the context of AC-ACG.) Finally, computational results are presented in this paper
to demonstrate that AC-FISTA substantially outperforms previous ACG variants as well as the
theoretical and practical AC-ACG variants, both in terms of CPU time and computed solution
quality.

Other related works. The first convergence analysis of an ACG algorithm based on (3) for
solving the N-SCO problem (1) under the same assumptions as in this paper appears in [3]. Inspired
by [3], many papers have proposed other ACG variants based on (3). Algorithms presented in [2, 11,
14, 17] choose Mk constant as in [3], i.e., Mk = L/τ for every k, where L is the Lipschitz constant
of ∇f and τ ∈ (0, 1]. Moreover, algorithms discussed in [4, 10, 14] use line search procedures to
compute a relatively small scalar Mk satisfying (3).

In addition to the ACG methods mentioned above, it is worth discussing other approaches
for solving (1) that use an inexact proximal point method where each proximal subproblem is
constructed to be (possibly strongly) convex and hence solved by a convex ACG variant. Papers
[1, 7, 15] describe a descent unaccelerated inexact proximal-type method that works with a large
prox stepsize and approximately solves a proximal subproblem by an ACG variant. Finally, [12]
proposes an accelerated inexact proximal point method, which in each outer iteration performs an
accelerated step with a large prox stepsize and follows the same way as in the algorithms presented
in [1, 7] to solve a proximal subproblem.

Basic definitions and notation. Let R and R+ denote the set of real numbers and the set
of non-negative real numbers, respectively. Let R

n denote the standard n-dimensional Euclidean
space with inner product and norm denoted by 〈·, ·〉 and ‖ · ‖, respectively. The Frobenius norm
in R

m×n is denoted by ‖ · ‖F . The set of real symmetric positive semidefinite matrices in R
n×n is

denoted by Sn+. Let ⌈·⌉ denote the ceiling function. The cardinality of a finite set A is denoted
by |A|. The indicator function IX of a set X ⊂ R

n is defined as IX(z) = 0 for every z ∈ X, and
IX(z) = ∞, otherwise. The diameter of a compact set X ⊂ R

n is DX := sup{‖z − z̄‖ : z, z̄ ∈ X}.
If X is a nonempty closed convex set, the orthogonal projection PX : Rn → R

n onto X is defined
as

PX(z) := argmin z̄∈X‖z̄ − z‖ ∀z ∈ R
n.

Let Ψ : Rn → (−∞,+∞] be given. The effective domain of Ψ is denoted by domΨ := {x ∈
R
n : Ψ(x) <∞} and Ψ is proper if domΨ 6= ∅. Moreover, a proper function Ψ : Rn → (−∞,+∞]

is µ-strongly convex for some µ ≥ 0 if

Ψ(βz + (1− β)z̄) ≤ βΨ(z) + (1− β)Ψ(z̄)− β(1 − β)µ

2
‖z − z̄‖2

for every z, z̄ ∈ domΨ and β ∈ [0, 1]. Let ∂Ψ(z) denote the subdifferential of Ψ at z ∈ domΨ. If
Ψ is differentiable at z̄ ∈ R

n, then its affine approximation ℓΨ(·; z̄) at z̄ is defined as ℓΨ(z; z̄) :=
Ψ(z̄)+〈∇Ψ(z̄), z− z̄〉 for every z ∈ R

n. The set of all proper lower semi-continuous convex functions
Ψ : Rn → (−∞,+∞] is denoted by Conv (Rn).

Organization of the paper. Section 2 consists of two subsections. Subsection 2.1 describes
the assumptions made on the N-SCO problem and presents the AC-FISTA method for solving
it. It also describes the main result of the paper, which establishes a convergence rate bound
for AC-FISTA in terms of the average of observed curvatures. Subsection 2.2 discusses a special
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case of AC-FISTA which is quite efficient in practice, and provides reasons behind its good perfor-
mance. Section 3 provides the proof of the main result stated in Subsection 2.1. Section 4 presents
computational results demonstrating the efficiency of AC-FISTA. Finally, Section 5 provides some
concluding remarks.

2 AC-FISTA and the main result

This section consists of two subsections. The first one describes the assumptions made on the
N-SCO problem (1) and presents the AC-FISTA method for solving it. It also presents results
describing the global convergence rate of AC-FISTA in terms of the iteration count and some
parameters associated with AC-FISTA and the problem instance. The second subsection discusses
a special case of AC-FISTA and the practical consequences of the above results to this context.

2.1 AC-FISTA and its theoretical guarantees

Throughout this paper, we consider the N-SCO problem (1) and make the following assumptions
on it:

(A1) h ∈ Conv (Rn);

(A2) there exist scalar L ≥ 0 and a compact convex set Ω ⊃ H := domh such that f is nonconvex
and differentiable on Ω, and

‖∇f(u)−∇f(u′)‖ ≤ L‖u− u′‖ ∀u, u′ ∈ Ω. (6)

We now make some remarks about the above assumptions. First, it follows from (A1) and (A2)
that the set of optimal solutions X∗ is nonempty and compact. Second, if L satisfies (6) then the
pair (M,m) = (L,L) satisfies

− m

2
‖u− u′‖2 ≤ f(u)− ℓf (u;u

′) ≤ M

2
‖u− u′‖2 ∀u, u′ ∈ Ω. (7)

Throughout this paper, L̄ denotes the smallest L satisfying (6), and m̄ (resp., M̄) denotes the
smallest m (resp., M) satisfying the first (resp., second) inequality in (7). Clearly, in view of (A2)
and the second remark above, we have 0 < m̄ ≤ L̄ and 0 ≤ M̄ ≤ L̄.

A necessary condition for y to be a local minimum of (1) is that y is a stationary point of
(1), i.e., 0 ∈ ∇f(y) + ∂h(y). The goal of AC-FISTA described below is to find an approximate
stationary point defined as follows.

Definition 2.1. Given a tolerance ρ̂ > 0, a pair (ŷ, v̂) ∈ R
n × R

n is called a ρ̂-approximate
stationary point of (1) if it satisfies v̂ ∈ ∇f(ŷ) + ∂h(ŷ) and ‖v̂‖ ≤ ρ̂.

We are now ready to state AC-FISTA.

AC-FISTA

0. Let parameters α, γ ∈ (0, 1], scalar M such that 0.9M ≥ M̄ , tolerance ρ̂ > 0, and initial point
y0 ∈ H be given, and set A0 = 0, x0 = y0, M0 = γM and k = 0;
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1. compute

ak =
1 +
√
1 + 4MkAk

2Mk
, Ak+1 = Ak + ak, x̃k =

Akyk + akxk
Ak+1

; (8)

2. compute

ygk+1
= y(x̃k;Mk), Ck = C(ygk+1

; x̃k), (9)

vk+1 = Mk(x̃k − ygk+1
) +∇f(ygk+1

)−∇f(x̃k) (10)

where y(·; ·) and C(·; ·) are as in (2) and (4), respectively; if ‖vk+1‖ ≤ ρ̂ then output (ŷ, v̂) =
(ygk+1

, vk+1) and stop;

3. if Ck ≤ 0.9Mk, then compute

xgk+1
= PΩ

(

Ak+1

ak
ygk+1

− Ak

ak
yk

)

, (11)

and set xk+1 = xgk+1
and ỹk+1 = ygk+1

; otherwise, compute

xbk+1 = argmin
u∈Rn

{

ak[ℓf (u; x̃k) + h(u)] +
1

2
‖u− xk‖2

}

, (12)

ybk+1 =
Akyk + akx

b
k+1

Ak+1

, (13)

and set xk+1 = xbk+1
and ỹk+1 = ybk+1

;

4. choose yk+1 ∈ H such that φ(yk+1) ≤ φ(ỹk+1), compute

Mk+1 = max

{

γM ,

∑k
j=0

Cj

α(k + 1)

}

, (14)

set k ← k + 1, and go to step 1.

The k-th iteration of AC-FISTA is called good (resp., bad) if the inequality at the beginning of
step 3, which is identical to (3) with τ = 0.9 , is satisfied (resp., violated). Moreover, for the sake
of future reference, we define the index sets for the good and bad iterations as

G := {k ≥ 0 : Ck ≤ 0.9Mk}, B := {k ≥ 0 : Ck > 0.9Mk}, (15)

respectively. For ACG methods that satisfy (3) for every k ≥ 0, it is well-known that the smaller
the sequence {Mk} is, the faster their practical performance is. One of the goals of this paper is to
show that this observation also holds for AC-FISTA, even though it does not satisfy (3) at every
k ≥ 0. Hence, from the AC-FISTA point of view, it is desirable to choose α large, say α = 0.5, and γ
small, say γ = 10−6, since this forces Mk in (14) to be small. It turns out that this is the AC-FISTA
implemented in our benchmark of Section 4 and we refer to it as the (0.5, 10−6)-AC-FISTA.

The following paragraphs give some relevant comments about AC-FISTA.
It is shown below in Theorem 2.2(a) that the pair (ygk+1

, vk+1) satisfies the inclusion in Definition
2.1 for every k ≥ 0. Hence, if the termination criterion ‖vk+1‖ ≤ ρ̂ in step 2 is satisfied, then AC-
FISTA terminates with a ρ̂-approximate stationary point of (1). The first two identities in (8)
imply that

Ak+1 = Mka
2
k. (16)
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It follows from step 0 of AC-FISTA, (14), (4), (7) with (m,M) = (m̄, M̄), and the definition of Ck

in (9), that
Mk ≥ γM, Ck ∈ [−m̄, M̄ ], ∀k ≥ 0. (17)

Two popular rules for choosing yk+1 in step 4 of AC-FISTA are: i) yk+1 = ỹk+1 for all k ≥ 0;
and ii) yk+1 such that φ(yk+1) = min{φ(yk), φ(ỹk+1)} for all k ≥ 0. If rule (i) is chosen, then an
iteration of AC-FISTA works as follows. Given a pair (xk, yk), the k-th iteration sets (xk+1, yk+1)
as being the pair (xgk+1

, ygk+1
) obtained in (11) and (9) if k ∈ G, or the pair (xbk+1

, ybk+1
) obtained

in (12) and (13) if k ∈ B. The condition on yk+1 in step 4 simply relaxes rule (i), and allows AC-
FISTA to include as special case the monotone (i.e., satisfying φ(yk+1) ≤ φ(yk) for all k) variant
in which, in place of (i), rule (ii) is used instead.

Following the same notation of this paper, Subsection 3.1 of [13] reviews three rules for per-
forming an ACG iteration which have roots in works dealing with the convex version of SCO (1).
They are referred there to as FISTA rule, AT rule, and LLM rule. Under the assumption that
Ω = R

n, the two AC-FISTA iterations (i.e., good and bad) can be interpreted in terms of the three
rules above as follows: a good (resp., bad) iteration of AC-FISTA performs an ACG iteration based
on the FISTA (resp., AT) rule. Since the test to decide the type of iteration (i.e., good or bad) to
perform depends on ygk+1

, this point needs to be computed prior to a bad iteration (even though
the iteration itself does not use it).

We now comment on the computational effort of an AC-FISTA iteration. A good iteration
computes only one resolvent evaluation of ∂h, while a bad one computes two composite resolvent
evaluations (one in (9) to compute ygk+1

and another in (12) to compute xbk+1
). Since Ω is usually

chosen so that the projection onto Ω in (11) is considerably cheaper than a composite resolvent
evaluation and the majority of iterations performed by AC-FISTA is assumed to be good ones (see
Condition A below), it follows that the average number of resolvent evaluations per iteration is
close to 1.

We now state the main result of the paper which describes how fast one of the iterates yg1 , . . . , y
g
k

approaches the stationary condition 0 ∈ ∇f(y) + ∂h(y). Its main conclusion assumes the following
condition.

Condition A: There exist k0 ∈ N+ such that |Bk| ≤ k/3 for every k ≥ k0 where

Bk := {i ∈ B : i ≤ k − 1} ∀k ≥ 1. (18)

It is worth noting that the factor 1/3 in Condition A is not particularly important for our
analysis to hold. Even though this factor can be replaced by any scalar less than one, we have
chosen a specific value for it in order to keep the number of constants used in our analysis small.

We now discuss some choices of (α, γ) which guarantee that Condition A holds. First, step 0
of AC-FISTA and (17) imply that Ck ≤ M̄ ≤ 0.9M ≤ 0.9Mk/γ for every k ≥ 0. Thus, if γ = 1
(and α ∈ (0, 1] is arbitrary) then every iteration of AC-FISTA is good, and Condition A trivially
holds with k0 = 0. Second, it is shown in Lemma 4.5 of [13] that Condition A holds with k0 = 12
whenever α, γ ∈ (0, 1] are chosen so that

α ≤ 0.9

8

(

1 +
1

0.9γ

)−1

. (19)

Rule (19) for choosing (α, γ) results in α = O(γ) so that a small choice of γ implies that α is
also small. Hence, it excludes the practical choice (α, γ) = (0.5, 10−6) mentioned in the paragraph
following AC-FISTA. However, since the proof of Lemma 4.5 of [13] is based on quite conservative
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bounds, Subsection 2.2 below reexamines its proof and gives strong evidence (validated by our
computational results) that Condition A holds for our practical choice of (α, γ) = (0.5, 10−6).

Instead of specifying values for (α, γ), the two main results below simply assume that Condition
A holds, and establishes a global convergence rate and iteration-complexity for AC-FISTA.

Theorem 2.2. Define the harmonic mean of the sequence {Mi} and the average of the curvature
sequence {L(ygi+1

; x̃i)} defined in (5) as

Mhm
k :=

k
∑k−1

i=0
1
Mi

, Lavg
k :=

1

k

k−1
∑

i=0

L(ygi+1
; x̃i), (20)

respectively, and let

θk :=
Mk

Mhm
k

, τk :=
Lavg
k

Mk
. (21)

Then, the following statements hold:

(a) for every k ≥ 1, we have vk ∈ ∇f(ygk) + ∂h(ygk);

(b) if Condition A holds, then for every k ≥ max{12, k0},

min
1≤i≤k

‖vi‖ = O
(

(1 + τk)

[

Mkd0
k3/2

+
(
√

M̄ +
√
m̄
)

√
MkθkDΩ

k
+

√
m̄MkθkDH√

k

])

(22)

where d0 denotes the distance of the initial point x0 to the set of optimal solutions of (1),
and DΩ and DH denote the diameters of Ω and H, respectively;

(c) for every k ≥ 1, we have

Mk = O
(

M

α

)

,
k − 1

2k
≤ θk ≤

Mk

γM
, τk ≤

L̄

γM
; (23)

as a consequence, θk = O(1/(αγ)).
The corollary below describes the worst-case behavior of AC-FISTA under the assumption that

Condition A holds.

Corollary 2.3. If Condition A holds, then for every k ≥ max{12, k0},

min
1≤i≤k

‖vi‖ = O
(

(

1 +
L̄

γM

)

[

Md0

αk3/2
+
(√

M̄ +
√
m̄
)

√
MDΩ

α
√
γk

+

√
m̄MDH

α
√
γ
√
k

])

. (24)

As a consequence, the iteration-complexity to find a ρ̂-approximate stationary point of (1) is

O
(

(

1 +
L̄

γM

)2/3(
Md0
αρ̂

)2/3

+

(

1 +
L̄

γM

)

(
√
M̄ +

√
m̄)
√
MDΩ

α
√
γρ̂

+

(

1 +
L̄

γM

)2
m̄MD2

H

α2γρ̂2

)

.

Proof: The first conclusion immediately follows from Theorem 2.2(b) and (c). The second one
follows from (24) and Definition 2.1.

We finally make a comment about the dependence of the convergence rate bound (24) in terms
of α and γ only. If M is chosen so as to satisfy M ≥ L̄/0.9, then the bottleneck term in the worst-
case convergence rate bound (24) becomes O(

√
m̄MDH/(αγ

3/2
√
k)), which is equal to 1/(αγ3/2)

times the convergence rate bounds of some other ACG variants derived in the literature (see e.g.,
[3, 14]). Hence, the above two convergence rate bounds are similar whenever α and γ are both
close to one.
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2.2 A practical AC-FISTA

This subsection discusses in more details the AC-FISTA with (α, γ) = (0.5, 10−6), i.e., the (0.5, 10−6)-
AC-FISTA as defined in the paragraph immediately after AC-FISTA.

Although the dependence of the dominant term in (24) with respect to α and γ, i.e., O(1/(αγ3/2)),
is large for (0.5, 10−6)-AC-FISTA, it should be noted that this dependence factor was obtained us-
ing the conservative estimates in (23). In practice, the quantity θk, although sometimes initially
large, quickly approaches one and stays close to one thereafter, and τk never exceeds 4 and, in
many cases, is within the interval [0, 3] (see Tables 3, 7, 8, 12 and 13). We can then conclude that,
in terms of γ and α, both θk and τk are O(1), instead of O(1/(αγ)) and O(1/γ) as in Theorem
2.2(c). Second, under the (often observed) condition that θk and τk are O(1), the convergence rate
bound reduces to

min
1≤i≤k

‖vi‖ = O
(

Mkd0
k3/2

+
(√

M̄ +
√
m̄
)

√
MkDΩ

k
+

√
m̄MkDH√

k

)

,

and hence does not depend on γ−1 = 106. Third, the latter bound clearly shows that the practical
behavior of this (0.5, 10−6)-AC-FISTA improves as the ratio Mk/M becomes small, which is what
has been observed in our computational experiments.

We will now argue that in practice the (0.5, 10−6)-AC-FISTA is likely to satisfy Condition A.
Indeed, letting

ηk :=

∑

i∈Bk
Ci

∑

i∈Bk, i≤|Bk|/2
Ci

where Bk is as in (18), and examining the proof of Lemma 4.5 of [13], it can be easily seen that

kαηk ≥
0.9|Bk|

2
.

Lemma 4.5 of [13] then uses (14), and the facts that M ≥ M̄ ≥ Ci and Ci > 0.9Mi for i ∈ Bk, to
conclude that ηk is bounded by 1+ 1/(0.9γ). However, such bound on ηk is quite conservative and
it is observed computationally that ηk quickly approaches two and remains close to two thereafter.
Hence, it follows from the latter observation and the above inequality that any choice of α in (0, 1/8]
makes Condition A very likely to hold in practice. Although our choice of α = 0.5 does not lie
in this (still conservative) range, we have observed that it works quite well in our computational
experiments.

2.3 Comparison with the AC-ACG method of [13]

We start by giving an overview of the AC-ACG method of [13] using the description of AC-FISTA in
Subsection 2.1. More specifically, AC-ACG is similar to the variant of AC-FISTA where yk+1 = ỹk+1

for every k ≥ 0 but differs in the following two aspects:

• it sets xk+1 to the right-hand side of (12) regardless of whether the iteration is good or bad;

• it computes Mk+1 as in (14) but with Cj replaced by C̃(ygj+1
; x̃j) where C̃(·; ·) is as in (5).

Another not-so-crucial difference is that ACG chooses the parameters α, γ ∈ (0, 1] so that (19) holds
as equality while AC-FISTA discards the latter condition on α and γ and instead simply makes
the weaker assumption that Condition A holds (see the third remark in the paragraph containing
(19)).
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In terms of the three ACG rules described in Subsection 3.1 of [13], a good (resp., bad) iteration
of AC-ACG performs an ACG iteration based on the LLM (resp., AT) rule. Hence, while a good
iteration AC-ACG uses the LLM rule, the one for AC-FISTA uses the FISTA rule.

From a computational point of view, while AC-ACG always performs two resolvent evaluations
at every iteration, AC-FISTA performs one resolvent evaluation in a good iteration and two resol-
vent evaluations in a bad one. Since in practice most of the iterations of AC-FISTA are good, its
average cost per iteration is relatively lower than that of AC-ACG.

3 Proof of Theorem 2.2

We start by providing a straightforward technical result which is then used to outline our analysis
in this section.

Lemma 3.1. For every k ≥ 1, we have vk ∈ ∇f(ygk) + ∂h(ygk).

Proof: The inclusion follows from the optimality condition of (2), and the definitions of ygk+1
and

vk+1 in (9) and (10), respectively.
The most technical and difficult part of Theorem 2.2 is its statement (b) where a convergence

rate bound on min1≤i≤k ‖vi‖ is claimed. A rough outline of the proof of this statement is as follows.
First, Lemmas 3.2-3.6 are used to prove that

∑

i∈Gk

(

Ai+1Mi‖ygi+1
− x̃i‖2

)

= O
(

d20 +
m̄+ M̄

Mhm
k

D2
Ωk +

m̄

Mhm
k

D2
Hk

2

)

(25)

where Gk = {0, . . . , k − 1} \ Bk. Next, using Condition A and some nontrivial technical results,
namely, Lemmas 3.7-3.9, it is shown within the proof of Theorem 2.2(b) that

min
1≤i≤k

‖vi‖ = O







Mk + Lavg
k

k3/2





∑

i∈Gk

Ai+1Mi‖ygi+1
− x̃i‖2





1/2





. (26)

A direct combination of the above two claims then immediately gives us Theorem 2.2(b). The proof
of Theorem 2.2(c) does not require any technical result.

The first lemma below states a few basic properties of AC-FISTA.

Lemma 3.2. For every k ≥ 0, we define

γ̃k(u) := ℓf (u; x̃k) + h(u), (27)

γk(u) := γ̃k(y
g
k+1

) +Mk〈x̃k − ygk+1
, u− ygk+1

〉. (28)

Then the following statements hold for every k ≥ 0:

(a) γk minorizes γ̃k, γ̃k(y
g
k+1

) = γk(y
g
k+1

),

min
u

{

γ̃k(u) +
Mk

2
‖u− x̃k‖2

}

= min
u

{

γk(u) +
Mk

2
‖u− x̃k‖2

}

,

and these minimization problems have ygk+1
as unique optimal solution;

(b) for every u ∈ H, γ̃k(u)− φ(u) ≤ m̄‖u− x̃k‖2/2;

9



(c) xgk+1
= argmin

{

akγk(u) + ‖u− xk‖2/2 : u ∈ Ω
}

;

(d) {xbk}, {yk}, {y
g
k} and {ỹk} are contained in H, while {xgk}, {xk} and {x̃k} lie in Ω;

(e) for every u ∈ H, we have

Ak‖yk − x̃k‖2 + ak‖u− x̃k‖2 ≤
1

Mk
D2

Ω + akD
2
H.

Proof: (a) This statement follows from Lemma 2.2(a) of [14] with (κ0, λ, yk+1) = (0, 1/Mk , y
g
k+1

).
(b) This statement immediately follows from the first inequality in (7) and the definition of

γ̃k(u) in (27).
(c) It follows from the definitions of x̃k and γk in (8) and (28), respectively, and relation (16)

that the (unique) global minimizer of the function akγk(u) + ‖u− xk‖2/2 over Rn is

xk + akMk(y
g
k+1
− x̃k) = xk +

Ak+1

ak

(

ygk+1
− Akyk + akxk

Ak+1

)

=
Ak+1

ak
ygk+1

− Ak

ak
yk.

This observation and the definition of xgk+1
in (11) then imply that the conclusion of (c) holds.

(d) First, it is by definition that {yk} is contained H. In view of (2) (resp., (12)), it is clear
that the sequence {ygk} (resp., {xbk}) is contained in H. Hence, using the fact that y0 ∈ H (see step
0 of AC-FISTA), (13) and the convexity of H, we easily see that {ybk} ⊂ H and hence {ỹk} ⊂ H.
It is also easy to see that {xgk} ⊂ Ω from its definition in (11). Hence, it follows from the fact that
{xbk} ⊂ H ⊂ Ω and step 0 of AC-FISTA that {xk} lie in Ω. Finally, {x̃k} ⊂ Ω follows from the
third identity in (8) and the convexity of Ω.

(e) It is easy to see that for every x, y ∈ R
n and a,A ∈ R+,

A‖y‖2 + a‖x‖2 = (A+ a)

∥

∥

∥

∥

Ay + ax

A+ a

∥

∥

∥

∥

2

+
Aa

A+ a
‖y − x‖2.

Using the above identity with x = u − x̃k, y = yk − x̃k, a = ak and A = Ak, and the second and
third identities in (8), we have

Ak‖yk − x̃k‖2 + ak‖u− x̃k‖2 =
a2k

Ak+1

‖u− xk‖2 +
Akak
Ak+1

‖u− yk‖2.

This statement now follows from the above inequality, statement (d), the definitions of DΩ and
DH, and relation (16).

The next result introduces a crucial potential function and provides an important recursive
formula based on it.

Lemma 3.3. For every u ∈ H and k ≥ 0, we have

Mk − Fk

2
Ak+1‖ỹk+1 − x̃k‖2 ≤ ηk(u)− ηk+1(u) +

m̄

2

(

1

Mk
D2

Ω + akD
2
H

)

(29)

where Mk is as in (14), Fk := C(ỹk+1; x̃k) and

ηk(u) := Ak[φ(yk)− φ(u)] +
1

2
‖u− xk‖2. (30)
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Proof: We first note that in order to prove the lemma, it suffices to show

Mk − Fk

2
Ak+1‖ỹk+1 − x̃k‖2 − ηk(u) + ηk+1(u) ≤ Ak(γ̃k(yk)− φ(yk)) + ak(γ̃k(u)− φ(u)). (31)

Indeed, it follows from the above inequality and Lemma 3.2(b) that

Mk − Fk

2
Ak+1‖ỹk+1 − x̃k‖2 − ηk(u) + ηk+1(u) ≤

m̄

2

(

Ak‖yk − x̃k‖2 + ak‖u− x̃k‖2
)

,

which, together with Lemma 3.2(e), then immediately implies (29).
We now prove (31) holds for k ∈ G. Let k ∈ G and u ∈ H be given. Noting that xk+1 = xgk+1

,
and using Lemma 3.2(c), relations (8) and (16), and the fact that akγk + ‖ · −xk‖2/2 is 1-strongly
convex, we conclude that

Akγk(yk) + akγk(u) +
1

2
‖u− xk‖2 −

1

2
‖u− xk+1‖2 ≥ Akγk(yk) + akγk(xk+1) +

1

2
‖xk+1 − xk‖2

≥ Ak+1γk(ŷk+1) +
1

2

A2
k+1

a2k
‖ŷk+1 − x̃k‖2 = Ak+1

[

γk(ŷk+1) +
Mk

2
‖ŷk+1 − x̃k‖2

]

where ŷk+1 = (Akyk + akxk+1)/Ak+1. It follows from Lemma 3.2(a) and the fact that ỹk+1 = ygk+1

for every k ∈ G that

γk(ŷk+1) +
Mk

2
‖ŷk+1 − x̃k‖2 ≥ γk(ỹk+1) +

Mk

2
‖ỹk+1 − x̃k‖2

= γ̃k(ỹk+1) +
Mk

2
‖ỹk+1 − x̃k‖2 = φ(ỹk+1) +

Mk − Fk

2
‖ỹk+1 − x̃k‖2

≥ φ(yk+1) +
Mk − Fk

2
‖ỹk+1 − x̃k‖2.

where the last identity is due to the definitions of Fk and γ̃k in (27), and the last inequality is due
to the fact that φ(yk+1) ≤ φ(ỹk+1). Using the above two inequalities and the definition of ηk in
(30), we have

Mk − Fk

2
Ak+1‖ỹk+1 − x̃k‖2 − ηk(u) + ηk+1(u) ≤ Ak[γk(yk)− φ(yk)] + ak[γk(u)− φ(u)],

which together with the fact that γk ≤ γ̃k (see Lemma 3.2(a)) implies that (31) holds.
We finally prove (31) holds for k ∈ B. Let k ∈ B and u ∈ H be given. Noting that xk+1 = xbk+1

and ỹk+1 = ybk+1
, and using the definitions of γ̃k, x

b
k+1

, ỹk+1 and x̃k in (27), (12), (13) and (8),
respectively, the fact that akγ̃k + ‖ · −xk‖2/2 is 1-strongly convex, and relation (16), we conclude
that

Akγ̃k(yk) + akγ̃k(u) +
1

2
‖u− xk‖2 −

1

2
‖u− xk+1‖2 ≥ Akγ̃k(yk) + akγ̃k(x

b
k+1) +

1

2
‖xbk+1 − xk‖2

≥ Ak+1γ̃k(y
b
k+1) +

1

2

A2
k+1

a2k
‖ybk+1 − x̃k‖2 = Ak+1

[

γ̃k(ỹk+1) +
Mk

2
‖ỹk+1 − x̃k‖2

]

= Ak+1

[

φ(ỹk+1) +
Mk − Fk

2
‖ỹk+1 − x̃k‖2

]

≥ Ak+1

[

φ(yk+1) +
Mk − Fk

2
‖ỹk+1 − x̃k‖2

]

where the last identity is due to the definitions of Fk and γ̃k in (27), and the last inequality is due
to the fact that φ(yk+1) ≤ φ(ỹk+1). Using the above inequality and the definition of ηk in (30), and
rearranging the terms, we obtain (31).

The following result discusses the consequences of Lemma 3.3 when k is a good iteration and
also when k is a bad one.
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Lemma 3.4. The following statements hold for every u ∈ H:

(a) if k ∈ G then

1

20
Ak+1Mk‖ỹk+1 − x̃k‖2 ≤ ηk(u)− ηk+1(u) +

m̄

2

(

1

Mk
D2

Ω + akD
2
H

)

; (32)

(b) if k ∈ B then

0 ≤ ηk(u)− ηk+1(u) +
m̄

2

(

1

Mk
D2

Ω + akD
2
H

)

+
M̄

2Mk
D2

Ω. (33)

Proof: (a) Let k ∈ G be given. It is easy to see that Fk ≤ 0.9Mk due to the fact that Fk = Ck

when k ∈ G and (15), and hence (32) immediately follows from this observation and (29).
(b) Let k ∈ B be given. Noting that xk+1 = xbk+1

and ỹk+1 = ybk+1
, and using relations (29)

and (16), and the definitions of ybk+1
and x̃k in (13) and (8), respectively, we conclude that

ηk(u)− ηk+1(u) +
m̄

2

(

1

Mk
D2

Ω + akD
2
H

)

≥ Mk − Fk

2
Ak+1‖ỹk+1 − x̃k‖2

=
Mk − Fk

2
Ak+1

∥

∥

∥

∥

Akyk + akxk+1

Ak+1

− Akyk + akxk
Ak+1

∥

∥

∥

∥

2

=
(Mk − Fk)a

2
k

2Ak+1

‖xk+1 − xk‖2

=
1

2

(

1− Fk

Mk

)

‖xk+1 − xk‖2 ≥
1

2

(

1− M̄

Mk

)

‖xk+1 − xk‖2

where the last inequality is due to the fact that Fk ≤ M̄ , and hence that (33) holds in view of
Lemma 3.2(d).

We now state a technical result which will be used to derive a consequence of Lemma 3.4.

Lemma 3.5. The sequences {Ak} and {Mk} generated by AC-FISTA satisfy the following state-
ments:

a) for every k ≥ 1, we have AkM
hm
k ≤ k2;

b) for every k ≥ 4, we have AkMk ≥ k2/12;

c) for every i ∈ {1, . . . , k}, we have iMi ≤ kMk.

Proof: a) This statement follow from Lemma 4.7 of [13] and the definition of Mhm
k in (20).

b) This statement can be proved by following an argument similar to the proof of (37) of [13].
Note that the only difference is for every k ≥ 4, we have

k−1
∑

i=1

√
i ≥

∫ k−1

0

√
xdx =

2

3
(k − 1)3/2 ≥ 2

3

(

3

4
k

)3/2

≥ 1

3
k3/2.

c) This is Lemma 4.6 of [13].
The following result follows by combining the conclusions (a) and (b) of Lemma 3.4, and using

Lemma 3.5(a).

Lemma 3.6. For every u ∈ H and k ≥ 1, we have

∑

i∈Gk

(

Ai+1Mi‖ỹi+1 − x̃i‖2
)

≤ 10

(

d20 +
m̄+ M̄

Mhm
k

D2
Ωk +

m̄

Mhm
k

D2
Hk

2

)

. (34)
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Proof: Let x∗ ∈ X∗ be such that x∗ = argmin {‖x0 − u‖ : u ∈ X∗} be given and denote ‖x0 − x∗‖
by d0. In view of the definition of ηk in (30), we observe that ηk(x∗) ≥ 0 for every k ≥ 0 and
η0(x∗) = d20/2. Adding (32) and (33) with u = x∗ as k varies in Gk ∪ Bk, and using the previous
observation and the definition of ηk in (30), we have that for k ≥ 1,

∑

i∈Gk

(

Ai+1Mi‖ỹi+1 − x̃i‖2
)

≤ 10

(

d20 + (m̄+ M̄ )D2
Ω

k−1
∑

i=0

1

Mi
+ m̄D2

HAk

)

.

Inequality (34) now follows from the above conclusion, the definition of Mhm
k in (20), and the

second inequality in Lemma 3.5(a).
The two following technical results require Condition A to hold. Recall that sufficient conditions

for Condition A to hold have been discussed in the paragraph containing (19). Moreover, Subsection
2.2 discusses the likelihood that Condition A holds in the practical setting of AC-FISTA.

Recall from the discussion on the line above (19) that Condition A always holds with k0 = 12
if α is chosen so as to satisfy (19). However, our analysis may also hold for α’s that do not satisfy
the restrictive condition (19) as long as the resulting sequence {|Bk|} satisfy Condition A (e.g.,
see the last paragraph in Subsection 2.2 which argues that this condition practically holds for the
(0.5, 10−6)-AC-FISTA).

Lemma 3.7. Assume that Condition A holds and, for every k ≥ 1, define

Ḡk := {i ∈ Gk : i ≥ ⌈k/3⌉}.

Then, |Ḡk| ≥ k/4 for every k ≥ max{12, k0}.

Proof: Using the definitions of Bk in (18) and Ḡk above, we have

Ḡk ∪ Bk ⊃
{⌈

k

3

⌉

, . . . , k − 1

}

,

and hence that

|Ḡk|+ |Bk| = |Ḡk ∪ Bk| ≥ k −
⌈

k

3

⌉

≥ 2k

3
− 1.

This observation and Condition A then imply that for every k ≥ max{12, k0},

|Ḡk| ≥
2k

3
− 1− |Bk| ≥

k

3
− 1 ≥ k

4
,

where the last inequality is due to the fact that k ≥ 12.
We now present an important inequality of our analysis that connects other key ingredients,

i.e., Lemmas 3.6, 3.7, and 3.9 below, for proving Theorem 2.2.

Lemma 3.8. Under Condition A, we have for every k ≥ max{12, k0},

min
1≤i≤k

‖vi‖ ≤
8

k3/2





k−1
∑

i=⌈k/3⌉

Mi + Li√
Ai+1Mi









∑

i∈Gk

Ai+1Mi‖ỹi+1 − x̃i‖2




1/2

(35)

where Li := L(ygi+1
; x̃k) and L(·; ·) is as in (5).
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Proof: It follows from the definitions of Lk and vk+1 in this lemma and (10), respectively, and the
triangle inequality that

‖vk+1‖ ≤ (Mk + Lk)‖ygk+1
− x̃k‖.

Using the above inequality, and the facts that ỹi+1 = ygi+1
for i ∈ Gk and Ḡk ⊂ Gk, we have

min
1≤i≤k

‖vi‖ ≤ min
i∈Ḡk

‖vi‖ ≤ min
i∈Ḡk

(

Mi + Li√
Ai+1Mi

)

(

√

Ai+1Mi‖ỹi+1 − x̃i‖
)

≤ |Ḡk|−3/2





∑

i∈Ḡk

Mi + Li√
Ai+1Mi









∑

i∈Ḡk

Ai+1Mi‖ỹi+1 − x̃i‖2




1/2

(36)

where the last inequality is due to Lemma 9 of [8] with k = |Ḡk|, p = 3/2, and

ai =
Mi + Li√
Ai+1Mi

, bi =
√

Ai+1Mi‖ỹi+1 − x̃i‖.

The conclusion of the proposition now follows from (36), the facts that Ḡk ⊂ {⌈k/3⌉, . . . , k−1} and
Ḡk ⊂ Gk, and Lemma 3.7.

In view of Lemmas 3.6 and 3.8, it is sufficient to develop a bound on the first summation in
(35) to obtain a bound on min1≤i≤k ‖vi‖. Hence, we present the following lemma.

Lemma 3.9. For every k ≥ 12, we have

k−1
∑

i=⌈k/3⌉

Mi + Li√
Ai+1Mi

≤ 6
√
3
(

2Mk + Lavg
k

)

(37)

where Li is defined in Lemma 3.8 and Lavg
k is as in (20).

Proof: In view of the assumption that k ≥ 12, it is easy to see that i ≥ 4 for i ≥ ⌈k/3⌉. This
observation, the fact that Ai+1 ≥ Ai and Lemma 3.5(b) imply that for every k ≥ 12,

k−1
∑

i=⌈k/3⌉

Mi + Li√
Ai+1Mi

≤
k−1
∑

i=⌈k/3⌉

Mi + Li√
AiMi

≤ 2
√
3

k−1
∑

i=⌈k/3⌉

Mi + Li

i
.

Using Lemma 3.5(c), we have

k−1
∑

i=⌈k/3⌉

Mi

i
≤

k−1
∑

i=⌈k/3⌉

kMk

i2
≤ kMk

2k/3

(k/3)2
= 6Mk.

It is easy to see from the definition of Lavg
k in (20) that

k−1
∑

i=⌈k/3⌉

Li

i
≤ 3

k

k−1
∑

i=⌈k/3⌉

Li ≤
3

k

k−1
∑

i=0

Li = 3Lavg
k .

Inequality (37) immediately follows from the above three inequalities.
We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2: (a) See Lemma 3.1.
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(b) Putting together Lemmas 3.6, 3.8, and 3.9, and using the inequality
√
a+ b ≤ √a+

√
b for

every a, b ≥ 0, we have

min
1≤i≤k

‖vi‖ ≤
48
√
30

k3/2
(

2Mk + Lavg
k

)



d0 +

√
m̄+

√
M̄

√

Mhm
k

DΩ

√
k +

√
m̄

√

Mhm
k

DHk



 .

Statement b) now follows from the above inequality and the definitions of θk and τk in (21).
(c) Using the definition of Mk+1 in (14), and the facts that γ < 1 and Ck ≤ M̄ ≤ M for every

k ≥ 0, we have for every k ≥ 0,

Mk+1 = O
(

γM +
M̄

α

)

= O
(

M

α

)

,

and hence the inequality on Mk in (23) holds. Using the definition of Mhm
k in (20) and Lemma

3.5(c), we have

Mhm
k =

k
∑k−1

i=0
1

Mi

≤ k
∑k−1

i=0
i

kMk

=
2k

k − 1
Mk,

and hence the first inequality on θk in (23) holds in view of the definition of θk. The second
inequality on θk in (23) immediately follows from the definition of θk in (21) and the fact that
Mi ≥ γM for every i ≥ 0 (see (14)). The bound on τk in (23) is a direct consequence of the
definition of τk in (21), and the facts that Lavg

k ≤ L̄ and Mk ≥ γM . Finally, the bound O(1/(αγ))
on θk immediately follows from the bound on Mk and the second inequality on θk in (23).

4 Numerical results

This section reports computational results of AC-FISTA and a corresponding restart variant against
five other state-of-the-art algorithms on three instances of N-SCO problems: support vector machine
(Subsection 4.1), quadratic programming (Subsection 4.2) and matrix completion (Subsection 4.3).

We start by describing the implementation of AC-FISTA and its restart variant used in our
computational benchmark. Our implementation of AC-FISTA sets M0 = 0.01M , computes Mk+1

according to (14) with (α, γ) = (0.5, 10−6), and chooses yk+1 = ỹk+1. The restart variant of AC-
FISTA uses the same parameters as AC-FISTA but rejects yk+1 whenever k ∈ G and φ(yk+1) ≥
φ(yk) in which case it sets xk = yk and Ak = 0, and repeats the k-th iteration.

We compare our methods with five other ACG variants, namely: (i) the UPFAG method in [4];
(ii) the ADAP-NC-FISTA described in [14]; (iii) the theoretical AC-ACG method proposed in [13]
(referred to as ACT in its Section 5); and (iv) restart variants of the methods in (ii) and (iii) which
are described in the paragraph below. For the sake of simplicity, we use the abbreviations UP, AD,
AC and AF to refer to UPFAG, ADAP-NC-FISTA, AC-ACG and AC-FISTA, respectively, both
in the discussions and tables below. Moreover, we use AD(R), AC(R) and AF(R) to denote the
restart variants of AD, AC and AF, respectively.

This paragraph provides details about the five other ACG variants used in our benchmark.
UP is described in Algorithm 1 of [4] and the code for it was provided by the authors of [4]. In
particular, we have used their choice of parameters but have slightly modified the code to accom-
modate for our termination criterion, i.e., Definition 2.1. More specifically, the input parameters
(λ̂0, β̂0, γ1, γ2, γ3, δ, γ) of UP were set to (1/L, 1/L, 0.4, 0.4, 1, 10−3 , 10−10). AD was implemented
by the authors according to its description in Section 3 in [14]. The input triple (M0,m0, θ) of
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AD was set to (1, 1000, 1.25) in Subsections 4.1 and 4.2, and (1, 1, 1.25) in Subsection 4.3. Method
AC is exactly the theoretical AC-ACG method of [13] with parameter pair (α, γ) set to (0.5, 0.01).
Moreover, the restart variant AC(R) (resp., AD(R)) uses the same set of parameters as AC (resp.,
AD) and restarts in the same way as AF(R) does.

All seven methods terminate when a pair (z, v) satisfying a relative termination criterion

v ∈ ∇f(z) + ∂h(z),
‖v‖

‖∇f(z0)‖+ 1
≤ ρ̂

is obtained, where z0 is the initial point, ρ̂ = 10−7 in Subsections 4.1 and 4.2, and ρ̂ = 5 × 10−4

in Subsection 4.3. We run all numerical experiments using MATLAB R2017b on a MacBook Pro
with a quad-core Intel Core i7 processor and 16 GB of memory.

4.1 Support Vector Machine

This subsection discusses the performance of the methods in our computational benchmark for solv-
ing a support vector machine (SVM) problem (see (4.1) in [4]). For given data points {(ui, vi)}pi=1

,
where ui ∈ R

n is a feature vector and vi ∈ {−1, 1} denotes the corresponding label, we formulate
the SVM problem as

min

{

f(z) :=
1

p

p
∑

i=1

ℓ(ui, vi; z) +
λ

2
‖z‖2 : z ∈ Br

}

(38)

where ℓ(ui, vi; ·) = 1− tanh(vi〈·, ui〉) is a nonconvex sigmoid loss function, λ > 0 is a regularization
parameter and Br := {z ∈ R

n : ‖z‖ ≤ r} is a ball with radius r > 0 and centered at the origin.
The SVM problem (38) is an instance of (1) where h is the indicator function of the ball Br.

We set λ = 1/p, r = 50 and Ω = Br, where the set Ω is introduced in (A2). It can be shown that
f is differentiable everywhere and satisfies

m = M = L =
1

p

p
∑

i=1

4
√
3

9
‖ui‖2 + λ, ∀i = 1, . . . , p.

We now describe the datasets SVM-1, SVM-2, SVM-3 and SVM-4 considered in the numerical
experiments. Each dataset contains data points {(ui, vi)}pi=1

where ui is a sparse vector with density
d and its nonzero entries are drawn from the uniform distribution U [0, 1], and vi = sign(〈z̄, ui〉) for
some z̄ ∈ Br. Table 1 lists basic statistics of the datasets.

Dataset n p Density d λ r M

SVM-1 5000 500 5% 0.002 50 13

SVM-2 10000 1000 5% 0.001 50 25

SVM-3 15000 1000 5% 0.001 50 38

SVM-4 20000 500 5% 0.002 50 50

Table 1: SVM datasets
We start all seven methods from the same initial point z0 that is generated randomly and

uniformly within the ball Br.
Numerical results of the seven methods for solving (38) with datasets SVM-1, SVM-2, SVM-3

and SVM-4 are given in Table 2. Specifically, the second to eighth columns provide numbers of
iterations and running times for the seven methods. We do not report the best objective function
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values obtained by all seven methods, since they are essentially the same on each instance. The
bold numbers highlight the method that has the best performance in an instance of (38).

Dataset
Iteration Count /

Running Time (s)

UP AD AC AF AD(R) AC(R) AF(R)

SVM-1 250

18

2333

52

1678

62

604

14

440

13

339

15

160

5

SVM-2 254

81

3996

396

4801

772

1352

144

549

67

605

110

230

29

SVM-3 284

137

3499

529

6023

1505

1563

248

503

93

695

187

200

38

SVM-4 156

50

1701

175

4136

661

823

86

377

46

630

113

151

19

Table 2: Numerical results for solving (38) with SVM-1, 2, 3, & 4

Recall that we have commented on the practical behavior of the ratios θk, τk and |Bk|/k in
Subsection 2.2. We now present the statistics of the three ratios of AF and AF(R) for solving the
SVM problem (38).

Dataset AF AF(R)
θ̄k τ̄k |Bk|/k θ̄k τ̄k |Bk|/k

SVM-1 1.34 0.55 31% 2.16 0.55 37%

SVM-2 1.16 0.60 32% 1.24 0.61 35%

SVM-3 1.04 0.58 26% 1.35 0.62 32%

SVM-4 0.93 0.55 21% 1.25 0.60 37%

Table 3: Statistics of θ̄k, τ̄k and |Bk|
In Table 3, θ̄k and τ̄k are defined as

θ̄k := max{θk : k ≥ 100}, τ̄k := max{τk : k ≥ 100}.

The ratio |Bk|/k represents the the percentage of bad iterations at the last iteration of each method.
In summary, computational results demonstrate that: i) AF(R) is the best method in terms of

running time; ii) AF(R) (resp., AD(R) an AC(R)) improves the results of AF (resp., AD and AC);
and iii) θ̄k and τ̄k are small and |Bk|/k is no more than 37%.

4.2 Quadratic Programming

In this subsection, we consider solving a class of nonconvex quadratic programming (QP) problems.
More specifically, the QP problem reads as

min
{

f(Z) := −α1

2
‖DP(Z)‖2 + α2

2
‖Q(Z)− b‖2 : Z ∈ On

}

(39)

where (α1, α2) ∈ R
2
++, b ∈ R

l, D ∈ R
n×n, On := {Z ∈ Sn+ : tr(Z) = 1} denotes the spectraplex,

and P : Sn+ → R
n and Q : Sn+ → R

l are linear operators given by

[P(Z)]i = 〈Pi, Z〉F ∀ 1 ≤ i ≤ n,

[Q(Z)]j = 〈Qj , Z〉F ∀ 1 ≤ j ≤ l,
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with Pi ∈ Sn+ and Qj ∈ Sn+.
We now describe the datasets QP-1 and QP-2 considered in the numerical experiments. Each

dataset contains b, D, Pi for 1 ≤ i ≤ n and Qj for 1 ≤ j ≤ l. The entries of b are sampled from the
uniform distribution U [0, 1]. The diagonal entries of the diagonal matrix D are generated from the
discrete uniform distribution U{1, 1000}. Sparse matrices Pi and Qj have the same density (i.e.,
percentage of nonzeros) d and their nonzero entries are generated from U [0, 1]. Table 4 lists basic
statistics of the datasets.

Dataset l n Density d

QP-1 50 200 2.5%

QP-2 50 400 0.5%

Table 4: Quadratic programming datasets
The nonconvex QP problem (39) is an instance of (1) where h is the indicator function of the

spectraplex On. The set Ω introduced in (A2) is chosen as Ω = {Z ∈ Sn+ : ‖Z‖F = 1}. It is easy to
see that Ω ⊃ H, which is required in (A2), since Ω ⊃ On = H. For given curvature pairs (M,m) ∈
R
2
++, we L set to max{M,m} and choose scalars α1 and α2 so that (λmax(∇2f), λmin(∇2f)) =

(M,−m), where λmax(·) (resp., λmin(·)) denotes the largest (resp., smallest) eigenvalue function.
We start all seven methods from the same initial point Z0 = In/n where In is an n×n identity

matrix, namely Z0 is the centroid of On.
Numerical results of the seven methods for solving (39) with datasets QP-1 and QP-2 are given

in Tables 5 and 6, respectively. Each table addresses a collection of instances with the same dataset
and M = 106. Specifically, each table contains six instances of (39), their first column specifies m
for the instances. The explanation of columns in Tables 5 and 6 excluding the first one is the same
as that of Table 2 (see the paragraphs preceding Table 2). We do not report the best objective
function values obtained by all seven methods, since they are essentially the same on each instance.
The bold numbers highlight the method that has the best performance in an instance of (39).

m
Iteration Count /

Running Time (s)

UP AD AC AF AD(R) AC(R) AF(R)

105 2633

261

2206

89

1009

55

947

30

787

33

966

55

419

14

104 7203

705

2591

104

1820

98

1744

55

1573

66

1777

99

601

20

103 5429

540

2637

109

1712

92

2000

63

1552

65

1709

100

773

26

102 6891

653

2639

116

1610

95

1687

52

1666

69

1600

96

736

25

10 6479

613

2640

116

1599

95

1804

56

1675

69

1593

96

785

26

Table 5: Numerical results for solving (39) with QP-1
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m
Iteration Count /

Running Time (s)

UP AD AC AF AD(R) AC(R) AF(R)

105 56

13

530

56

403

58

140

12

292

30

414

60

140

12

104 105

26

868

93

599

85

195

17

364

38

599

86

182

17

103 115

29

900

103

564

81

187

16

384

40

557

80

80

15

102 119

32

904

103

559

80

216

19

385

40

554

82

179

16

10 113

31

904

104

561

86

221

19

385

40

554

84

177

16

Table 6: Numerical results for solving (39) with QP-2

We now present the statistics of θ̄k, τ̄k and |Bk|/k of AF and AF(R) for solving the nonconvex
QP problem (39).

m AF AF(R)
θ̄k τ̄k |Bk|/k θ̄k τ̄k |Bk|/k

105 0.92 1.22 13% 1.04 1.24 15%

104 1.07 1.05 7% 1.07 1.05 13%

103 0.99 1.14 5% 0.99 1.14 13%

102 1.02 1.07 5% 1.02 1.07 18%

10 1.00 1.10 5% 1.00 1.10 10%

Table 7: Statistics of θ̄k, τ̄k and |Bk| for QP-1

m AF AF(R)
θ̄k τ̄k |Bk|/k θ̄k τ̄k |Bk|/k

105 0.60 3.08 13% 0.60 3.08 13%

104 0.68 2.29 18% 0.72 2.16 15%

103 0.69 2.38 16% 0.74 2.14 15%

102 0.69 2.40 14% 0.73 2.17 15%

10 0.69 2.40 14% 0.73 2.17 15%

Table 8: Statistics of θ̄k, τ̄k and |Bk| for QP-2

In summary, computational results demonstrate that: i) AF(R) is the best method in terms of
running time; ii) AF(R) (resp., AD(R)) improves the results of AF (resp. AD), while AC(R) has
similar performance as AC; and iii) θ̄k and τ̄k are small and |Bk|/k is no more than 18%.

4.3 Matrix Completion

This subsection considers a constrained version of the nonconvex low-rank matrix completion (NL-
RMC) problem.

We start by giving a few definitions. Given parameters β > 0 and τ > 0, let p : R → R+

denote the log-sum penalty defined as p(t) = pβ,τ (t) := β log(1 + |t|/τ). Let Q denote a subset
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of {1, . . . , l} × {1, . . . , n}. Let ΠQ : Rl×n → R
l×n denote a linear operator such that, for given

A ∈ R
l×n, ΠQ(A)ij = Aij if (i, j) ∈ Q, and ΠQ(A)ij = 0 otherwise.

Given radius R > 0, penalty parameter µ > 0, and an incomplete observation matrix O ∈ R
Q,

the constrained version of the NLRMC problem considered in this subsection is

min

{

1

2
‖ΠQ(Z −O)‖2F + µ

r
∑

i=1

p(σi(Z)) : Z ∈ BR
}

(40)

where r = min{l, n}, σi(Z) is the i-th singular value of Z and BR = {Z ∈ R
l×n : ‖Z‖F ≤ R}.

It is discussed in [13] that (40) is an instance of the N-SCO problem (1) and can be rewritten
as min{f(Z) + h(Z) : Z ∈ Rl×n} where

f(Z) =
1

2
‖ΠQ(Z −O)‖2F + µ

r
∑

i=1

[p(σi(Z))− p0σi(Z)],

h(Z) = µp0‖Z‖∗ + IBR
(Z), p0 = p′(0) =

β

τ

and ‖ · ‖∗ denotes the nuclear norm, i.e., ‖ · ‖∗ :=
∑r

i=1
σi(·). It follows from (48) of [13] that the

triple (m,M,L) satisfying (6) is

(m,M,L) = (2µκ, 1,max{1, 2µκ}) (41)

where κ = β/τ2.
We now describe the datasets MovieLens 100K3 and FilmTrust4 considered in the numerical

experiments. Each dataset contains an observed index set Q and an incomplete observed matrix
O with rows, columns and nonzero entries representing users, items and ratings, respectively, from
some collaborative filtering systems. Table 9 lists basic statistics of the datasets.

Dataset Users (l) Items (n) Ratings Density Scale

MovieLens 100K 943 1682 100000 6.30% [1,5]

FilmTrust 1508 2071 35497 1.14% [0.5,4.0]

Table 9: Matrix completion datasets
The radius R is chosen as the Frobenius norm of the matrix of size l × n containing the same

entries as O in Q and entries outside of Q being maximum of the scale (i.e., 5 (resp., 4) in the case
of MovieLens 100K (resp., FilmTrust)). The set Ω introduced in (A2) is set to be BR with R as the
aforementioned radius. It is easy to see that Ω ⊃ H, which is required in (A2), since Ω = BR = H.

We start all seven methods from the same initial point Z0 that is sampled from the standard
Gaussian distribution and is within BR.

Numerical results of the seven methods for solving (40) with datasets MovieLens 100K and
FilmTrust are given in Tables 10 and 11, respectively. Each table addresses a collection of instances
with the same dataset. The first columns in Tables 10 and 11 present the values of m of the four
instances computed according to (41) with four different triples (µ, β, τ). In addition to the numbers
of iterations and running times of all seven methods, the second to eighth columns of Tables 10
and 11 also provide the function values of (40) at the last iteration. The bold numbers highlight

3http://grouplens.org/datasets/movielens/
4http://guoguibing.github.io/librec/datasets.html#filmtrust
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the method that has the best performance (smallest function value or least running time) in an
instance of (40).

m

Function Value /

Iteration Count /

Running Time (s)

UP AD AC AF AD(R) AC(R) AF(R)

4.4 2605
521

1545

2625
1674

1946

2296
1046

1242

1836

375

287

2625
1674

1946

2304
904

1087

1912
305

245

8.9 4261
576

1621

4203
1794

1930

3896
4773

6519

3617

291

233

4203
1794

1930

3914
4511

6245

3797
241

208

20 4637
676

1914

4582
2209

2364

4313
14892

19948

4098

260

212

4582
2209

2364

4312
15708

21666

4164
304

267

30 6753
606

1628

6293
1963

2104

6005
30815

43172

5333

505

417

6293
1963

2104

5952
27986

38644

5524
413

349

Table 10: Numerical results for solving (40) with MovieLens 100K

m

Function Value /

Iteration Count /

Running Time (s)

UP AD AC AF AD(R) AC(R) AF(R)

4.4 1050
584

6460

1069
2025

9063

981
942

4072

849
347

991

1069
2025

9063

988
1053

4546

804

586

1753

8.9 1814
634

7130

1854
2410

11171

1759
4312

22187

1538
469

1334

1854
2410

11171

1738
5461

29569

1516

753

2198

20 2120
630

7214

2064
2665

12701

1988
13957

73023

1739

676

1959

2064
2665

12701

1993
14379

77128

1777
528

1617

30 2980
559

6244

2917
2365

11205

2855
19419

100580

2593

533

1582

2917
2365

11205

2853
18515

96675

2593

533

1582

Table 11: Numerical results for solving (40) with FilmTrust

We now present the statistics of θ̄k, τ̄k and |Bk|/k of AF and AF(R) for solving the MC problem
(40).
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m AF AF(R)
θ̄k τ̄k |Bk|/k θ̄k τ̄k |Bk|/k

4.4 1.07 1.23 6% 1.12 1.20 4%

8.9 1.04 1.53 8% 1.02 1.48 10%

20 0.97 2.16 9% 1.00 1.88 13%

30 1.02 2.49 7% 1.02 2.40 11%

Table 12: Statistics of θ̄k, τ̄k and |Bk| for MovieLens 100K

m AF AF(R)
θ̄k τ̄k |Bk|/k θ̄k τ̄k |Bk|/k

4.4 1.09 1.25 10% 1.11 1.21 9%

8.9 1.02 1.55 6% 0.99 1.61 6%

20 1.04 2.07 8% 1.06 2.07 9%

30 1.04 2.59 11% 1.04 2.59 11%

Table 13: Statistics of θ̄k, τ̄k and |Bk| for FilmTrust

In summary, computational results demonstrate that: i) AF and AF(R) are the best two meth-
ods; ii) AD(R) does not restart and has the same performance as AD; and iii) θ̄k and τ̄k are small
and |Bk|/k is no more than 13%.

5 Concluding remarks

This paper studies the AC-FISTA method, which is a FISTA-type ACG variant of the AC-ACG
method proposed in [13], for solving the N-SCO problem (1). At the k-th iteration, both methods
compute y(x̃k;Mk) defined in (2) as a potential candidate for the next iterate where Mk is an
estimation of the local upper curvature of (1) at x̃k obtained according to (14), and chooses as
the next iterate either this point if it satisfies (3) or the convex combination in (13) otherwise.
However, in contrast to AC-ACG, AC-FISTA computes Mk according to (14) using the average of
the observed upper curvatures Ck’s defined in (9) instead of the larger upper-Lipschitz curvatures
C̃k’s defined in the line above (5). In addition, AC-FISTA performs only one composite resolvent
evaluation during the good iterations, and two composite resolvent evaluations in the bad ones, but
has been observed to perform an average of about one composite resolvent evaluation per iteration
in practice. These two features together lead to a practical AC-FISTA variant that substantially
outperforms previous ACG variants as well as the theoretical and practical AC-ACG variants, both
in terms of running time and solution quality.

We end this paper by discussing some possible extensions. First, even though we have not
studied the convergence rate of the practical AC-ACG variant of [13], we believe that such analysis
will follow by using similar arguments as the ones used in this paper to analyze AC-FISTA. Second,
numerical results show that the restart variant of AC-FISTA greatly improves the empirical per-
formance of its original variant but its convergence rate analysis has not been established anywhere
in the literature and is an interesting research direction to pursue.

Data availability statements

The datasets generated during and/or analyzed during the current study are available from the
corresponding author on reasonable request.
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