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Abstract

We consider a class of sparsity-inducing optimization problems whose constraint set is

regularizer-compatible, in the sense that, the constraint set becomes easy-to-project-onto after

a coordinate transformation induced by the sparsity-inducing regularizer. Our model is general

enough to cover, as special cases, the ordered LASSO model in [21] and its variants with

some commonly used nonconvex sparsity-inducing regularizers. The presence of both the

sparsity-inducing regularizer and the constraint set poses challenges on the design of efficient

algorithms. In this paper, by exploiting absolute-value symmetry and other properties in

the sparsity-inducing regularizer, we propose a new algorithm, called the Doubly Majorized

Algorithm (DMA), for this class of problems. The DMA makes use of projections onto the

constraint set after the coordinate transformation in each iteration, and hence can be performed

efficiently. Without invoking any commonly used constraint qualification conditions such as

those based on horizon subdifferentials, we show that any accumulation point of the sequence

generated by DMA is a so-called ψopt-stationary point, a new notion of stationarity we define as

inspired by the notion of L-stationarity in [2,3]. We also show that any global minimizer of our

model has to be a ψopt-stationary point, again without imposing any constraint qualification

conditions. Finally, we illustrate numerically the performance of DMA on solving variants of

ordered LASSO with nonconvex regularizers.

1 Introduction

Sparsity structures arise frequently in contemporary applications such as compressed sensing [5,6,8,9]

and variable selections [11,20]. In these scenarios, typically, one attempts to find a sparse vector

x̂ such that Ax̂ « b, where A P IRmˆn and b P IRm are given. The corresponding optimization

problem can be formulated as

min
xPIRn

1

2
}Ax´ b}2 ` λ

n
ÿ

i“1

θp|xi|q, (1.1)

where θ : IR` Ñ IR` is a sparsity-inducing function, and λ ą 0 is a parameter trading off data

fidelity and sparsity in x. Popular choices of θ include:
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(i) θptq “ t — The corresponding (1.1) then becomes the LASSO model considered in [20];

(ii) θptq “ tp for some p P p0, 1q— The corresponding (1.1) belongs to the class of bridge regression

models considered in [18];

(iii) θptq “ logp1 ` t{εq for some ε ą 0 — This choice of θ was used in [7] for enhancing the

sparsity-inducing property of the LASSO model.

Notice that the optimization problem (1.1) corresponding to θptq “ t is convex, while the problems

associated with the other two choices of θ are nonconvex in general. Efficient algorithms for solving

(1.1) with the above choices of θ abound in the literature. Many of them leverage the computation

of the so-called proximal mapping of γθp| ¨ |q, γ ą 0, i.e., for each s, compute a minimizer of the

function t ÞÑ 1
2γ ps´ tq

2` θp|t|q. We refer the readers to [4,17,26] and references therein for efficient

algorithms for (1.1) with the above choices of θ.

While model (1.1) makes use of the function θ to induce sparsity in its solution, it does not

explicitly take into account of other structures that may be present in the desired solution. Prior

information on these other desirable structures can be incorporated by additionally requiring x to

lie in a certain closed set modeling the structures. One recent example is the ordered LASSO model

in [21] that arises when considering regression problems with time lag, where there is a natural

ordering in the magnitude of xi. The basic optimization model takes the following form:

min
xPIRn

1

2
}Ax´ b}2 ` λ

n
ÿ

i“1

|xi|

s.t. |x1| ě |x2| ě ¨ ¨ ¨ ě |xn|,

(1.2)

where λ ą 0, A P IRmˆn and b P IRm; this problem is a variant of (1.1) with θptq “ t and an

additional constraint

|x1| ě |x2| ě ¨ ¨ ¨ ě |xn|. (1.3)

Notice that one may also replace the sparsity-inducing function in (1.2) (i.e., θptq “ t) by other

nonconvex sparsity-inducing functions such as θptq “ tp (0 ă p ă 1) and θptq “ logp1` t{εq (ε ą 0)

as described before, which typically have better empirical sparsity-inducing performances; see, for

example, [7, 8].

Unlike (1.1) which can be solved efficiently via the proximal gradient algorithm and its variants

for many commonly used θ, with the additional constraint (1.3), it is not immediately clear how

(1.2) (and its variants with different θ) can be solved efficiently; this is especially true when some

nonconvex sparsity-inducing regularizers such as θptq “ tp (0 ă p ă 1) are adopted. One way to get

around is to approximate (1.2) by the following convex optimization problem, as suggested in [21]:

min
y,zPIRn

1

2
}Apy ´ zq ´ b}2 ` λ

n
ÿ

i“1

pyi ` ziq

s.t. y1 ě y2 ě ¨ ¨ ¨ ě yn ě 0,

z1 ě z2 ě ¨ ¨ ¨ ě zn ě 0.

(1.4)

Note that y and z are confined to be in the so-called isotone cone, whose projections can be

computed efficiently via the classical pool-adjacent-violators algorithm (PAVA). Thus, model (1.4)

can be solved efficiently via the gradient projection algorithm and its variants. However, this

approach may be compromised in terms of interpretability of the solution obtained. Furthermore,

in the case when a nonconvex sparsity-inducing regularizer is adopted in place of the `1 norm in

(1.2) for inducing sparser solutions, this approximation technique no longer leads to convex models

that admit efficient algorithms.
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In this paper, we consider a general optimization model that covers (1.2) and some of its variants

based on nonconvex sparsity-inducing regularizers as special cases, and develop an algorithm for

solving this class of problems. Specifically, we consider the following optimization problem:

min
xPIRn

F pxq :“ fpxq ` λΨp|x|q ` δΩp|x|q, (1.5)

where f : IRn
Ñ IR` has Lipschitz gradient whose Lipschitz constant is Lf ą 0, the absolute value

is taken componentwise, λ ą 0, Ψpyq :“
řn
i“1 ψpyiq, δΩ is the indicator function of the set Ω (see

Section 2 for notation), and the function ψ and the set Ω satisfy the following assumption:

Assumption 1.1. (a) ψ : IR` Ñ IR` satisfies ψp0q “ 0 and is continuous and concave. Moreover,

ψ is differentiable on p0,8q with ψ1 ą 0 and limtÑ8 ψptq “ 8.

(b) φ :“ ψ´1 exists on IR`. Moreover, φ1` is locally Lipschitz continuous on IR`.1

(c) Ω Ď IRn
` is a nonempty closed set such that a projection onto ψpΩq can be computed efficiently.2

The above assumption is general enough for (1.5) to cover some important instances of (1.1) and

(1.2) as special cases. For example, model (1.1) with θptq “ t, tp (p P p0, 0.5s) or logp1` t{εq (ε ą 0)

corresponds to (1.5) with Ω “ IRn
` and ψptq “ θptq; moreover, one can check that Assumption 1.1

is satisfied for these ψ and Ω.3 In addition, one can also cover model (1.2) (where θptq “ t) and its

variants with nonconvex regularizer θptq “ tp (p P p0, 0.5s) or θptq “ logp1` t{εq by setting

Ω “ tx P IRn
` : x1 ě x2 ě ¨ ¨ ¨ ě xnu,

and considering ψptq “ θptq; indeed, recalling that projections onto the above Ω can be computed

efficiently via PAVA and noting that ψpΩq “ Ω in this case, we see that Assumption 1.1 is satisfied

for these ψ and Ω.

Since (1.5) under Assumption 1.1 is quite general and covers some particular instances of (1.2),

it is not immediately clear how it can be solved efficiently. For example, in view of the smoothness

of f , it might be tempting to apply proximal-gradient-type methods. However, it is unclear whether

such methods can be efficient because the proximal mapping of the nonsmooth part λΨp| ¨ |q`δΩp| ¨ |q

in (1.5) is in general difficult to compute. Specifically, under Assumption 1.1, it is not necessarily

easy to obtain an element of the following set given γ ą 0 and y P IRn:

Arg min
|x|PΩ

"

1

2γ
}x´ y}2 ` λΨp|x|q

*

. (1.6)

In this paper, by exploiting the (absolute-value) symmetry in the nonsmooth part λΨp|¨|q`δΩp|¨|q

in (1.5) and the invertibility and smoothness of ψ, we propose a new algorithm, which we call the

Doubly Majorized Algorithm (DMA), for solving (1.5) under Assumption 1.1. The DMA obviates

the use of (1.6) and, instead, makes use of projections onto ψpΩq in each iteration. Hence, in view

of Assumption 1.1 (c), each iteration of DMA can be executed efficiently; moreover, one can show

that the sequence txku generated satisfies |xk| P Ω for all k. To study the limiting behavior of this

sequence, we define a new notion of stationarity (called ψopt-stationarity) as inspired by the notion

of L-stationarity (see [2, Definition 2.3] and [3, Definition 5.2]). We show that ψopt-stationarity is a

necessary condition for global optimality for (1.5) under Assumption 1.1 without any additional

assumptions, and prove that any accumulation point of the sequence generated by DMA for solving

1Here, φ1`ptq is the right-hand derivative at t defined as limhÓ0
φpt`hq´φptq

h
.

2See Section 2 for the definition of ψpΩq, the discussion on its closedness and nonemptiness, and the observation

that the set of projections from any x P IRn onto ψpΩq is nonempty.
3Note that ψptq “ tp with p P p0.5, 1q does not satisfy Assumption 1.1 (b).

3



(1.5) under Assumption 1.1 is a ψopt-stationary point. We would like to emphasize that this

characterization of accumulation points is obtained without invoking any commonly used constraint

qualifications in the literature for nonsmooth nonconvex problems (such as those involving the

normal cones and horizon subdifferentials; see, for example, (3.2) below); this is an advantage

because such constraint qualifications can be difficult to verify in view of the complexity of the

nonsmooth part in (1.5).

The rest of the paper is organized as follows. We present notation and preliminary materials

in Section 2. The notion of ψopt-stationarity is defined and shown to be necessary for global

optimality in Section 3. In Section 4, we describe our algorithm and establish its convergence.

Finally, numerical experiments on order-constrained compressed sensing problems and block order-

constrained sparse time-lagged regression problems are conducted in Section 5 to illustrate the

effectiveness of our algorithm for solving them.

2 Notation and preliminaries

In this paper, we use IRn to denote the n-dimensional Euclidean space and IRn
` (resp. IRn

``) to

denote the nonnegative (resp. positive) orthant of IRn. For two vectors x, y P IRn, their standard

inner product is denoted by xx, yy and their Hadamard (entry-wise) product is denoted by x ˝ y.

For a vector x P IRn, we use }x} to denote its Euclidean norm, i.e., }x} “
a

xx, xy. We let |x| be

the vector whose i-th entry equals |xi|, and sgnpxq be the vector whose ith entry is given by

`

sgnpxq
˘

i
“

#

1 if xi ě 0,

´1 if xi ă 0.

For a y P IRn
` and the ψ and φ as in Assumptions 1.1 (a) and (b), with an abuse of notation, we

use ψpyq and φpyq to denote the vectors whose i-th entries are ψpyiq and φpyiq, respectively. The

vector of all ones is denoted by e, whose dimension should be clear from the context.

An extended real-valued function f : IRn
Ñ p´8,8s is said to be proper if dom f :“ tx P IRn :

fpxq ă 8u is nonempty. Such a function is said to be closed if it is lower semicontinuous. For a

proper closed function f , the Frechét subdifferential pBf , the (limiting) subdifferential Bf and the

horizon subdifferential B8f of f at an x P dom f are defined respectively as

pBfpxq :“

"

v P IRn : lim inf
uÑx,u‰x

fpuq ´ fpxq ´ xv, u´ xy

}u´ x}
ě 0

*

;

Bfpxq :“ tv P IRn : Dvk Ñ v, xk
f
Ñ x with vk P pBfpxkq for all ku;

B8fpxq :“ tv P IRn : Dtk Ó 0, vk Ñ v, xk
f
Ñ x with vk{tk P pBfpx

kq for all ku;

where xk
f
Ñ x means xk Ñ x and fpxkq Ñ fpxq. Moreover, for x R dom f , one defines pBfpxq “

Bfpxq “ B8fpxq “ H. As we will comment in Section 3 below, these subdifferentials are standard

tools for deriving optimality conditions for (1.5), and we defer the discussion on subdifferential-based

optimality conditions to Section 3.1. For a nonempty closed set Ξ in IRn, we let PΞ denote the set

of projections onto it, i.e., for all x P IRn,

PΞpxq :“ Arg min
yPΞ

}x´ y}.

The above set reduces to a singleton if Ξ is in addition convex. The indicator function of Ξ is

denoted by δΞ, which equals 0 if x P Ξ and equals 8 otherwise. Moreover, the normal cone of Ξ
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at an x P Ξ is defined as NΞpxq :“ BδΞpxq. For a nonempty closed set Θ Ď IRn
` and the ψ as in

Assumption 1.1 (a), we write

ψpΘq :“ tψpyq P IRn : y P Θu Ď IRn
`,

where we abuse the notation ψpyq as described above, i.e., use ψpyq to denote the vector whose i-th

entry is ψpyiq. Note that this set is necessarily closed and nonempty under Assumptions 1.1 (a) and

(b) because ψ : IR` Ñ IR` is a continuous bijection on IR`. Hence, PψpΘqpxq ‰ H for all x P IRn.

In the remainder of this section, we will present several important auxiliary lemmas. We start

with the following version of Taylor’s inequality for (finite-valued) continuous convex functions on

IR`. Here and throughout, for a function h : IR` Ñ IR, we let h1` denote its right-hand derivative,

i.e.,

h1`ptq :“ lim
sÓ0

hpt` sq ´ hptq

s
@t P IR`.

Lemma 2.1. Let h : IR` Ñ IR be convex and continuous, and h be differentiable on p0,8q. Suppose

also that h1` is locally Lipschitz continuous on IR`. Then for any a ą 0, there exists c ą 0 such that

hptq ` h1`ptqps´ tq ď hpsq ď hptq ` h1`ptqps´ tq `
c

2
ps´ tq2 whenever s, t P r0, as.

Proof. The first inequality is a direct consequence of convexity. For the second inequality, define

the function H : IR Ñ IR by

Hptq :“

#

hptq if t ě 0,

hp0q ` h1`p0qt otherwise.

Then by direct computation and the continuity of h1` on IR`, we have

H 1ptq :“

#

h1ptq if t ą 0,

h1`p0q otherwise.

Since h1` is locally Lipschitz continuous on IR`, we see from the above formula that H 1 is locally

Lipschitz on IR. The desired inequality (and the existence of c ą 0) now follows from the standard

descent lemma for functions with locally Lipschitz gradients.

The next lemma concerns a version of Taylor’s inequality for a structured function defined on

IR`. We will make use of the explicit formula of L in (2.1) for our convergence analysis in Section 4.

Lemma 2.2 (A descent lemma). Let h : IR` Ñ IR be convex and continuous, and h be differentiable

on p0,8q. Suppose also that h1` is locally Lipschitz continuous on IR`. Let b P IR, γ ą 0 and define

gptq “ 1
2γ phptq ´ bq

2. Then for any a ą 0, it holds that

gpsq ď gptq ` g1`ptqps´ tq `
L

2
ps´ tq2 whenever s, t P r0, as,

where

L “
c

γ

˜

sup
tPr0,as

|hptq| ` |b|

¸

`
1

γ

˜

sup
tPr0,as

|h1`ptq| `
ac

2

¸2

ă 8, (2.1)

with c ą 0 given in Lemma 2.1.
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Proof. By direct computation, we see that

g1`ptq “
1

γ
phptq ´ bqh1`ptq whenever t P IR`.

Now, fix any a ą 0. From Lemma 2.1, we can find c ą 0 so that

|hpsq ´ hptq ´ h1`ptqps´ tq| ď
c

2
ps´ tq2 whenever s, t P r0, as. (2.2)

Consequently, for any s, t P r0, as, we have

2γgpsq “ phpsq ´ bq2 “ rhptq ´ b` h1`ptqps´ tq ` hpsq ´ hptq ´ h
1
`ptqps´ tqs

2

“ phptq ´ bq2 ` 2phptq ´ bqh1`ptqps´ tq

` 2phptq ´ bqrhpsq ´ hptq ´ h1`ptqps´ tqs

` ph1`ptqps´ tq ` hpsq ´ hptq ´ h
1
`ptqps´ tqq

2.

(2.3)

We now drive upper bounds for the third and fourth terms on the right hand side of (2.3). For the

third term, observe from (2.2) that

2phptq ´ bqrhpsq ´ hptq ´ h1`ptqps´ tqs

ď c|hptq ´ b|ps´ tq2 ď c

˜

sup
t̂Pr0,as

|hpt̂q| ` |b|

¸

ps´ tq2.
(2.4)

Next, for the fourth term on the right hand side of (2.3), we can also deduce using (2.2) that

ph1`ptqps´ tq ` hpsq ´ hptq ´ h
1
`ptqps´ tqq

2

ď p|h1`ptqps´ tq| ` |hpsq ´ hptq ´ h
1
`ptqps´ tq|q

2

ď

˜

sup
t̂Pr0,as

|h1`pt̂q||s´ t| `
c

2
ps´ tq2

¸2

“

˜

sup
t̂Pr0,as

|h1`pt̂q| `
c

2
|s´ t|

¸2

ps´ tq2

ď

˜

sup
t̂Pr0,as

|h1`pt̂q| `
ca

2

¸2

ps´ tq2,

(2.5)

where the last inequality holds because s, t P r0, as. Combining (2.4) and (2.5) with (2.3) and

invoking the definition of L in (2.1), we can now obtain

2γgpsq ď phptq ´ bq2 ` 2phptq ´ bqh1`ptqps´ tq ` γLps´ tq
2

“ 2γgptq ` 2γg1`ptqps´ tq ` γLps´ tq
2,

where the equality follows from the definition of g and the formula of g1`. This completes the

proof.

Before ending this section, we present a key lemma concerning properties of the optimal solution

of an absolutely symmetrically structured problem.

Lemma 2.3 (Minimizers under absolute-value symmetry). Let Υ Ď IRn
` be a nonempty closed set,

sx P IRn and g : IRn
` Ñ IR` be lower semicontinuous. If

u P Arg min
|x|PΥ

!1

2
}x´ sx}2 ` gp|x|q

)

, (2.6)

then we have

|u| P Arg min
wPΥ

!1

2
}w ´ |sx|}2 ` gpwq

)

. (2.7)

Moreover, if Arg min|x|PΥ

!

1
2}x ´ sx}2 ` gp|x|q

)

“ tuu, then we have sgnpuiq “ sgnpsxiq whenever

ui ‰ 0.

6



Proof. We first prove the following relationship.

val1 :“ inf
|x|PΥ

!1

2
}x´ sx}2 ` gp|x|q

)

“ inf
|x|PΥ

!1

2
}|x| ´ |sx|}2 ` gp|x|q

)

“: val2. (2.8)

Due to the triangle inequality }|x| ´ |sx|} ď }x ´ sx}, it suffices to show that val1 ď val2. To this

end, let x˚ be a solution of the problem on the right-hand side in (2.8).4 Define px˚ P IRn by

px˚i “

#

|x˚i | if sxi “ 0;

|x˚i | ¨ sgnpsxiq else.

Then we have |px˚| “ |x˚| P Υ. Moreover,

val1 ď
1

2
}px˚ ´ sx}2 ` gp|px˚|q “

1

2
}|x˚| ´ |sx|}2 ` gp|x˚|q “ val2.

This proves (2.8).

Next, we prove the following two statements concerning u satisfying (2.6):

(i) when sxi ą 0, it holds that ui ě 0; when sxi ă 0, it holds that ui ď 0;

(ii) when sxi “ 0, if ui ‰ 0, then u is not the unique solution in (2.6).

For (i), if there exists some i such that sxi ą 0 but ui ă 0 or sxi ă 0 but ui ą 0, we can pick any

such i and define su P IRn by

suj “

#

uj if j ‰ i,

´ui if j “ i.
(2.9)

Then one can see that |su| “ |u| P Υ and

1

2
}su´ sx}2 ` gp|su|q ă

1

2
}u´ sx}2 ` gp|u|q,

which contradicts (2.6).

For (ii), if there exists some i such that sxi “ 0 and ui ‰ 0, we can still define su as in (2.9).

Since ui ‰ 0, we have su ‰ u. Moreover, su is also a solution in (2.6), thanks to sxi “ 0. Therefore, u

is not the unique solution in (2.6).

Now, we are ready to prove (2.7). We have

1

2
}|u| ´ |sx|}2 ` gp|u|q

paq
“

1

2
}u´ sx}2 ` gp|u|q “ inf

|x|PΥ

!1

2
}x´ sx}2 ` gp|x|q

)

pbq
“ inf
|x|PΥ

!1

2
}|x| ´ |sx|}2 ` gp|x|q

)

pcq
“ inf

wPΥ

!1

2
}w ´ |sx|}2 ` gpwq

)

,

where (a) follows from statement (i), (b) follows from (2.8) and (c) follows from the fact that

Υ Ď IRn
`. This together with |u| P Υ proves (2.7).

Finally, if u is the unique solution in (2.6), we see from statement (ii) that if sxi “ 0 we will

have ui “ 0. Consequently, we have sxi ‰ 0 whenever ui ‰ 0. Then statement (i) implies that

sgnpuiq “ sgnpsxiq whenever ui ‰ 0. This completes the proof.

Remark 2.1. Let Υ Ď IRn
` be a nonempty closed set, sx P IRn and g : IRn

` Ñ IR` be lower

semicontinuous. Then one can observe from the proof of Lemma 2.3 that (2.8) holds. Using this

observation, one can show readily that if w̆ P Arg minwPΥ

!

1
2}w´|sx|}

2`gpwq
)

, then x̆ :“ sgnpsxq˝ w̆

belongs to Arg min|x|PΥ

!

1
2}x´ sx}2 ` gp|x|q

)

. We will need this fact when developing our algorithm

in Section 4.
4Note that such a solution exists because Υ is closed and nonempty, and g is nonnegative lower semicontinuous.
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3 First-order necessary optimality conditions

In this section, we discuss (first-order) necessary optimality conditions for (1.5) under Assumption 1.1.

Specifically, we discuss necessary conditions for a feasible point of (1.5) to be globally optimal.

3.1 Necessary optimality conditions based on limiting subdifferential

One large class of necessary optimality conditions is deduced based on the concept of limiting

subdifferential; see [15] for a recent overview. Indeed, in view of [19, Theorem 10.1] and [19,

Exercise 8.8(c)], we know that if x˚ is a global minimizer of (1.5) under Assumption 1.1, then

0 P BF px˚q “ ∇fpx˚q ` BpλΨp| ¨ |q ` δΩp| ¨ |qqpx
˚q. (3.1)

A point x̄ satisfying (3.1) in place of x˚ is called a stationary point of the function F in (1.5). Notice

that the subdifferential of the nonsmooth part P pxq :“ λΨp|x|q ` δΩp|x|q, however, is in general

difficult to characterize. In addition, typical algorithm such as the proximal gradient algorithm,

which clusters at such stationary points, needs to compute the proximal mapping of P in each

iteration, i.e., to find

x̆ P Arg min
|x|PΩ

1

2γ
}x´ y}2 ` λΨp|x|q

given y and γ ą 0. To the best of our knowledge, such an x̆ cannot be found efficiently for general

Ω and Ψ satisfying Assumption 1.1.

Simpler subdifferential-based necessary optimality conditions can be obtained under suitable

constraint qualifications at x˚ involving the horizon subdifferential, such as

B8Ψp| ¨ |qpx˚q X
`

´N
pΩpx

˚q
˘

“ t0u, (3.2)

where pΩ :“ tx : |x| P Ωu. Indeed, under (3.2), it is possible to deduce using (3.1) and [19,

Corollary 10.9] that if x˚ is a global minimizer of (1.5) under Assumption 1.1, then

0 P ∇fpx˚q ` λBΨp| ¨ |qpx˚q `N
pΩpx

˚q.

While the one single set of subdifferential in (3.1) is split into two in the above display, with each

subdifferential set considerably easier to characterize, the sum of the two sets is still not easy to

characterize. Furthermore, it also appears to be nontrivial to verify (3.2) at a candidate solution

x˚ for our particular problem (1.5); indeed, it is unclear whether such condition should hold at any

global minimizer of our problem (1.5).

In view of the complicated structure of (1.5) and the aforementioned difficulties, in this paper,

we focus on another way of deriving necessary optimality conditions for our problem (1.5). This

alternative approach does not explicitly involve subdifferentials and is constraint-qualification free.

It is based on fixed points of set-valued maps.

3.2 Necessary optimality conditions based on fixed points of set-valued

maps

Suppose that x˚ is a global minimizer of (1.5) under Assumption 1.1. Then, using the Lipschitz

continuity of ∇f , we see that for any x satisfying |x| P Ω,

F px˚q ď F pxq “ fpxq ` λΨp|x|q

ď fpx˚q ` x∇fpx˚q, x´ x˚y ` Lf
2
}x´ x˚}2 ` λΨp|x|q.
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This shows that

x˚ P Arg min
|x|PΩ

"

x∇fpx˚q, x´ x˚y ` Lf
2
}x´ x˚}2 ` λΨp|x|q

*

.

Motivated by the above argument, the notion of L-stationarity (see [2, Definition 2.3] and [3,

Definition 5.2]) and the proof of [3, Lemma 5.3], we say that an x˚ is an L-stationary point of (1.5)

(under Assumption 1.1) if there exists η ą 0 such that

x˚ P Arg min
|x|PΩ

!

x∇fpx˚q, x´ x˚y ` η

2
}x´ x˚}2 ` λΨp|x|q

)

. (3.3)

Note that if we define a set-valued map Sη : IRn
Ñ IRn by

Sηpyq :“ Arg min
|x|PΩ

!

x∇fpyq, x´ yy ` η

2
}x´ y}2 ` λΨp|x|q

)

,

then x˚ is an L-stationary point of (1.5) if and only if there exists η ą 0 such that x˚ is a fixed

point of Sη, i.e., x˚ P Sηpx
˚q.

In view of [19, Theorem 10.1] and [19, Exercise 8.8(c)], we can deduce immediately that if x˚ is

an L-stationary point of (1.5), then x˚ is a stationary point of F , i.e., it satisfies (3.1). Moreover,

one can show that if the proximal gradient algorithm is applied to solving (1.5), any accumulation

point is an L-stationary point; in this sense, we can regard the proximal gradient algorithm as

a companion algorithm for the notion of L-stationarity. However, as pointed out in the previous

subsection, it is not clear whether the proximal gradient algorithm can be applied efficiently to

solve (1.5).

In this paper, we further relax the notion of optimality in the fixed point inclusion in (3.3) and

define the following notion of ψopt-stationarity for (1.5) under Assumption 1.1. The name ψopt

suggests that this notion of stationarity involves an optimization problem concerning ψ.

Definition 3.1 (ψopt-stationarity condition). Consider (1.5) and suppose that Assumption 1.1

holds. We say that x˚ satisfies the ψopt-stationarity condition, if there exist some η˚ ą 0 and

α˚ P t´1, 1un such that

x˚ P Arg min
|x|PΩ

#

η˚
2
}ψp|x|q ´ ψp|x˚|q}2 `

n
ÿ

i“1

“

λ` α˚i ¨∇ifpx
˚q ¨ φ1`pψp|x

˚
i |qq

‰

¨ ψp|xi|q

+

, (3.4)

with α˚i “ sgnpx˚i q whenever x˚i ‰ 0, and α˚i “ ´sgnp∇ifpx
˚qq if x˚i “ 0 and ∇ifpx

˚q ‰ 0.

We show in the next theorem that the ψopt-stationarity condition is a necessary condition for

global optimality of (1.5) under Assumption 1.1; the proof involves two majorization steps, which

arise in (3.5) and (3.12) below. Interestingly, this implication does not require any additional

assumptions such as (3.2). We will develop a companion algorithm for this notion of stationarity in

Section 4.

Theorem 3.1 (Global optimality implies ψopt-stationarity). Consider (1.5) and suppose that

Assumption 1.1 holds. Then any global minimizer of (1.5) satisfies the ψopt-stationarity condition.

Proof. Let x˚ be a global minimizer of (1.5). We then have |x˚| P Ω and for any |x| P Ω,

fpx˚q ` λΨp|x˚|q ď fpxq ` λΨp|x|q.

Since f has Lipschitz gradient with modulus Lf , we have for any |x| P Ω,

λΨp|x˚|q ď fpxq ´ fpx˚q ` λΨp|x|q ď x∇fpx˚q, x´ x˚y ` Lf
2
}x´ x˚}2 ` λΨp|x|q. (3.5)

9



Fix any sLf ą Lf . Then (3.5) further implies that

x˚ P Arg min
|x|PΩ

!

x∇fpx˚q, x´ x˚y `
sLf
2
}x´ x˚}2 ` λΨp|x|q

)

“ Arg min
|x|PΩ

!

sLf
2

›

›x´ px˚ ´∇fpx˚q{sLf q
›

›

2
` λΨp|x|q

)

.

(3.6)

Now we show that x˚ is the unique optimal solution in (3.6). Suppose to the contrary that there

exists another optimal solution sx˚ ‰ x˚. We then see from this and sLf ą Lf that

x∇fpx˚q, sx˚ ´ x˚y ` Lf
2
}sx˚ ´ x˚}2 ` λΨp|sx˚|q

ă x∇fpx˚q, sx˚ ´ x˚y `
sLf
2
}sx˚ ´ x˚}2 ` λΨp|sx˚|q

paq
“ x∇fpx˚q, x˚ ´ x˚y `

sLf
2
}x˚ ´ x˚}2 ` λΨp|x˚|q “ λΨp|x˚|q,

where we used the assumption that both x̄˚ and x˚ are optimal solutions in (a). The above display

contradicts (3.5) and hence x˚ is the unique solution in (3.6).

By Lemma 2.3, we have from (3.6) that

sgnpx˚i q “ sgn
`

x˚i ´∇ifpx
˚q{sLf

˘

when x˚i ‰ 0,

|x˚| P Arg min
wPΩ

!

sLf
2

›

›w ´ |x˚ ´∇fpx˚q{sLf |
›

›

2
` λΨpwq

)

.
(3.7)

Let v “ ψpwq. Recalling φ “ ψ´1, we then have

ψp|x˚|q P Arg min
vPψpΩq

!

sLf
2

›

›φpvq ´ |x˚ ´∇fpx˚q{sLf |
›

›

2
` λxe, vy

)

. (3.8)

For each i, let gipviq :“
sLf

2

`

φpviq ´ |x
˚
i ´∇ifpx

˚q{sLf |
˘2

and

α˚i :“

#

´sgnp∇ifpx
˚qq if x˚i “ 0 and ∇ifpx

˚q ‰ 0;

sgnpx˚i q else.
(3.9)

We then obtain from the local Lipschitz continuity of φ1` that

pgiq
1
`pψp|x

˚
i |qq “

sLf pφpψp|x
˚
i |qq ´ |x

˚
i ´∇ifpx

˚q{sLf |q ¨ φ
1
`pψp|x

˚
i |qq

“ sLf p|x
˚
i | ´ |x

˚
i ´∇ifpx

˚q{sLf |q ¨ φ
1
`pψp|x

˚
i |qq

paq
“ sLf α

˚
i px

˚
i ´ x

˚
i `∇ifpx

˚q{sLf q ¨ φ
1
`pψp|x

˚
i |qq

“ α˚i ¨∇ifpx
˚q ¨ φ1`pψp|x

˚
i |qq,

(3.10)

where (a) follows from the definition of α˚i in (3.9) and the first equation in (3.7).

On the other hand, upon rewriting (3.8) as ψp|x˚|q P Arg minvPψpΩq t
řn
i“1 gipviq ` λxe, vyu, we

see that for any v P ψpΩq,

0 ď
n
ÿ

i“1

gipviq ´
n
ÿ

i“1

gipψp|x
˚
i |qq ` λxe, v ´ ψp|x

˚|qy

“

n
ÿ

i“1

rgipviq ´ gipψp|x
˚
i |qq ` λpvi ´ ψp|x

˚
i |qqs .

(3.11)
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Now, fix any R ą 0 and define BR :“ tv : }v ´ ψp|x˚|q} ď Ru. For all v P ψpΩq XBR, we have

|vi| ď }ψp|x
˚|q} `R for all i. We then see from Lemma 2.25 that there exists ηR ą 0 such that for

all v P ψpΩq XBR and all i,

gipviq ´ gipψp|x
˚
i |qq ď pgiq

1
`pψp|x

˚
i |qqpvi ´ ψp|x

˚
i |qq `

ηR
2
pvi ´ ψp|x

˚
i |qq

2. (3.12)

For simplicity of notation, we let µi :“ λ ` pgiq
1
`pψp|x

˚
i |qq and µ :“ pµ1, . . . , µnq

J. Let η˚ :“

maxtηR, 2}µ}{Ru and define

Vη˚
:“ Arg min

vPψpΩq

!η˚
2
}v ´ ψp|x˚|q}2 `

n
ÿ

i“1

µipvi ´ ψp|x
˚
i |qq

)

. (3.13)

For any vη˚
P Vη˚

, we have from ψp|x˚|q P ψpΩq that

η˚
2
}vη˚

´ ψp|x˚|q}2 ` xµ, vη˚
´ ψp|x˚|qy

ď
η˚
2
}ψp|x˚|q ´ ψp|x˚|q}2 ` xµ, ψp|x˚|q ´ ψp|x˚|qy “ 0.

This together with the definition of η˚ and the Cauchy-Schwartz inequality further gives

}vη˚
´ ψp|x˚|q} ď

2}µ}

η˚
ď R,

which implies that vη˚
P BR. In view of the arbitrariness of vη˚

, we have shown

Vη˚
Ď BR. (3.14)

Now, we combine (3.11) with (3.12), use η˚ ě ηR and obtain

ψp|x˚|q P Arg min
vPψpΩqXBR

!η˚
2
}v ´ ψp|x˚|q}2 `

n
ÿ

i“1

`

λ` pgiq
1
`pψp|x

˚
i |qq

˘

pvi ´ ψp|x
˚
i |qq

)

“ Arg min
vPψpΩqXBR

!η˚
2
}v ´ ψp|x˚|q}2 `

n
ÿ

i“1

µipvi ´ ψp|x
˚
i |qq

)

paq
“ Arg min

vPψpΩq

!η˚
2
}v ´ ψp|x˚|q}2 `

n
ÿ

i“1

µipvi ´ ψp|x
˚
i |qq

)

pbq
“ Arg min

vPψpΩq

!η˚
2
}v ´ ψp|x˚|q}2 `

n
ÿ

i“1

`

λ` α˚i ¨∇ifpx
˚q ¨ φ1`pψp|x

˚
i |qq

˘

pvi ´ ψp|x
˚
i |qq

)

,

where (a) follows from (3.13) and (3.14), and (b) follows from (3.10) and the definition of µi.

Finally, recall that for any |x| P Ω, we have ψp|x|q P ψpΩq. Then we can deduce from this and

the above display that

η˚
2
}ψp|x|q ´ ψp|x˚|q}2 `

n
ÿ

i“1

“

λ` α˚i ¨∇ifpx
˚q ¨ φ1`pψp|x

˚
i |qq

‰

¨ rψp|xi|q ´ ψp|x
˚
i |qs

ě
η˚
2
}ψp|x˚|q ´ ψp|x˚|q}2 `

n
ÿ

i“1

“

λ` α˚i ¨∇ifpx
˚q ¨ φ1`pψp|x

˚
i |qq

‰

¨ rψp|x˚i |q ´ ψp|x
˚
i |qs “ 0.

This together with the arbitrariness of |x| P Ω and the definition of α˚ in (3.9) shows that x˚

satisfies the ψopt-stationarity condition.

5Notice that φ : IR` Ñ IR` is convex because ψ is concave and monotone. Moreover, the differentiability of φ on

p0, 8q follows from ψ1 ą 0 on p0, 8q.
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Next, we show that the ψopt-stationary condition in Definition 3.1 implies the standard notion

of stationarity in (3.1) when Ω “ IRn
`.

Proposition 3.1 (ψopt-stationarity versus stationarity). Consider (1.5) and suppose that As-

sumption 1.1 holds. Suppose in addition that Ω “ IRn
` and let x˚ satisfy the corresponding

ψopt-stationarity condition. Then the following statements hold.

(i) For all i with x˚i ‰ 0, we have

0 P λBψp| ¨ |qpx˚i q `∇ifpx
˚q. (3.15)

(ii) If ψ1`p0q ă 8, then we have for all i with x˚i “ 0 that

|∇ifpx
˚q| ď λψ1`p0q. (3.16)

Proof. By definition, there exist some η˚ ą 0 and α˚ P t´1, 1un with α˚i “ sgnpx˚i q whenever

x˚i ‰ 0, and α˚i “ ´sgnp∇ifpx
˚qq if x˚i “ 0 and ∇ifpx

˚q ‰ 0, such that

x˚ P Arg min
|x|PIRn

`

#

η˚
2
}ψp|x|q ´ ψp|x˚|q}2 `

n
ÿ

i“1

“

λ` α˚i ¨∇ifpx
˚q ¨ φ1`pψp|x

˚
i |qq

‰

¨ ψp|xi|q

+

.

This implies that

|x˚| P Arg min
wPIRn

`

#

η˚
2
}ψpwq ´ ψp|x˚|q}2 `

n
ÿ

i“1

“

λ` α˚i ¨∇ifpx
˚q ¨ φ1`pψp|x

˚
i |qq

‰

¨ ψpwiq

+

.

Since ψ : IRn
` Ñ IRn

` is invertible and ψpIRn
`q “ IRn

`, we further have

ψp|x˚|q P Arg min
vPIRn

`

#

η˚
2
}v ´ ψp|x˚|q}2 `

n
ÿ

i“1

“

λ` α˚i ¨∇ifpx
˚q ¨ φ1`pψp|x

˚
i |qq

‰

¨ vi

+

. (3.17)

Using the first-order optimality conditions for (3.17), we have for all i with x˚i ‰ 0 (hence ψp|x˚i |q ą 0)

that

0 “ λ` α˚i ¨∇ifpx
˚q ¨ φ1pψp|x˚i |qq.

Multiplying both sides of the above equality by ψ1p|x˚i |qsgnpx˚i q and recalling φ “ ψ´1, we obtain

0 “ λψ1p|x˚i |qsgnpx˚i q ` α
˚
i ¨∇ifpx

˚q ¨ φ1pψp|x˚i |qqψ
1p|x˚i |qsgnpx˚i q

“ λψ1p|x˚i |qsgnpx˚i q ` α
˚
i ¨∇ifpx

˚q ¨ sgnpx˚i q

paq
“ λψ1p|x˚i |qsgnpx˚i q `∇ifpx

˚q P λBψp| ¨ |qpx˚i q `∇ifpx
˚q,

where (a) holds because α˚i “ sgnpx˚i q, and the inclusion holds because ψ is differentiable at |x˚i | ą 0.

This proves (i).

Now, suppose in addition that ψ1`p0q ă 8 and let i be such that x˚i “ 0. Note that (3.16)

holds trivially if ∇ifpx
˚q “ 0. On the other hand, when ∇ifpx

˚q ‰ 0, we have from the first-order

optimality conditions for (3.17) that

0 P λ` α˚i ∇ifpx
˚qφ1`p0q `NIR`

p0q

“ λ´ |∇ifpx
˚q|pψ1`p0qq

´1 `NIR`
p0q,

(3.18)

where the equality follows from the definition of α˚i in Definition 3.1 (since ∇ifpx
˚q ‰ 0) and the

facts that ψ1`p0q P p0,8q, ψp0q “ 0 and φ “ ψ´1 on IR`. Item (ii) now follows immediately from

(3.18) upon recalling that NIR`
p0q “ IR´.
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Remark 3.1 (Relationship with existing stationarity). We discuss the relationship between ψopt-

stationary (Definition 3.1) and some existing concepts of stationarity.

(i) When Ω “ IRn
` and ψ1`p0q ă 8, one can see from [24, Lemma 2.2 (ii)] that Bψp| ¨ |qp0q “

r´ψ1`p0q, ψ
1
`p0qs. Thus, in this case, if x˚ is ψopt-stationary for (1.5) under Assumption 1.1,

then Proposition 3.1 (ii) implies that for all i with x˚i “ 0,

0 P λBψp| ¨ |qp0q `∇ifpx
˚q.

In view of this, Proposition 3.1 (i) and invoking [19, Exercise 8.8(c)], we see that x˚ satisfies

the following standard first-order optimality condition:

0 P ∇fpx˚q ` λBΨp| ¨ |qpx˚q “ Bpfp¨q ` λΨp| ¨ |qqpx˚q.

Moreover, in this case, we have that fp¨q`Ψp| ¨ |q is a difference-of-convex function and Ψp| ¨ |q

is regular. Consequently,

0 P ∇fpx˚q ` λBΨp| ¨ |qpx˚q “ ∇fpx˚q ` λpBΨp| ¨ |qpx˚q Ď pB pfp¨q ` λΨp| ¨ |qq px˚q.

This means that x˚ is a d-stationary point, in view of the definition on [15, page 28].

(ii) When Ω “ IRn
` and ψ1`p0q “ 8, our model (1.5) is a special case of the model in [1], in which a

generalized stationary point was defined for constrained problems with a non-Lipschitz objective

function and a closed convex constraint. We show that, in this case, if x˚ is ψopt-stationary

for (1.5) under Assumption 1.1, then x˚ is a generalized stationary point of (1.5).

To this end, we first note from [1, Definition 2] that an x̄ is a generalized stationary point

of (1.5) under Assumption 1.1 with Ω “ IRn
` and ψ1`p0q “ 8 if H˝px̄; v; IRn

q ě 0 for every

v P Vx̄ :“ tw : wi “ 0 if x̄i “ 0u, where Hp¨q “ fp¨q ` λΨp| ¨ |q and H˝px̄; v; IRn
q :“

lim sup
yÑx̄,tÓ0

Hpy`tvq´Hpyq
t . Now, notice that for every v P Vx̄,

H˝px̄; v; IRn
q “ lim sup

yÑx̄,tÓ0

fpy ` tvq ´ fpyq ` λ
řn
i“1rψp|yi ` tvi|q ´ ψp|yi|qs

t

paq
“ lim sup

yÑx̄,tÓ0

fpy ` tvq ´ fpyq ` λ
ř

i:x̄i‰0

rψp|yi ` tvi|q ´ ψp|yi|qs

t

pbq
“ x∇fpx̄q, vy ` λ

ÿ

i:x̄i‰0

lim sup
yiÑx̄i,tÓ0

ψp|yi ` tvi|q ´ ψp|yi|q

t

pcq
“ x∇fpx̄q, vy ` λ

ÿ

i:x̄i‰0

ψ1p|x̄i|qsgnpx̄iqvi

pdq
“

ÿ

i:x̄i‰0

`

∇ifpx̄q ` λψ
1p|x̄i|qsgnpx̄iq

˘

vi,

where (a) follows from the definition of Vx̄, (b) follows from the smoothness of f , (c) follows

from the differentiability of ψ on p0, 8q and (d) follows from the fact that v P Vx̄. Thus,

H˝px̄; v; IRn
q ě 0 for every v P Vx̄ means that for each i with x̄i ‰ 0,

`

∇ifpx̄q ` λψ
1p|x̄i|qsgnpx̄iq

˘

vi ě 0 for all vi P IR.

This is further equivalent to

0 “ ∇ifpx̄q ` λψ
1p|x̄i|qsgnpx̄iq P ∇ifpx̄q ` λBψp| ¨ |qpx̄iq.
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Consequently, x˚ being a generalized stationary point is equivalent to (3.15), which is implied

by x˚ being ψopt-stationary, thanks to Proposition 3.1 (i).

As a specific example, when fpxq “ }Ax´ b}2 and ψptq “ tp with p P p0, 0.5s, condition (3.15)

can be written as

0 “ λp|x˚i |
p´1sgnpx˚i q ` 2

`

AJpAx˚ ´ bq
˘

i
, @ i with x˚i ‰ 0.

Let X˚ be the diagonal matrix whose ith diagonal entry equals x˚i . The above display can be

further equivalently written as

0 “ λp|x˚|p ` 2X˚AJpAx˚ ´ bq,

which reduces to the standard first-order optimality condition for the optimization problem

minxPIRn fpxq ` λ
řn
i“1 |xi|

p; see, for example, [10, Definition 3.1].

4 Algorithm and convergence analysis

In this section, we motivate and present our algorithm for solving (1.5) under Assumption 1.1, and

establish subsequential convergence of our proposed algorithm to ψopt-stationary points.

Noting that the objective of (1.5) consists of a smooth part f (with Lipschitz gradient) and a

nonsmooth part pλΨ` δΩqp| ¨ |q, it is tempting to adapt the proximal gradient algorithm, which is a

popular class of algorithm for tackling optimization problems with objectives being the sum of a

smooth part and a nonsmooth part. However, suppose we directly apply the proximal gradient

algorithm with constant stepsize γ P p0, 1
Lf
q, we will be confronted with the following subproblem

in every iteration: given xk, the xk`1 is obtained as an x̆ satisfying

x̆ P Arg min
|x|PΩ

"

x∇fpxkq, x´ xky ` 1

2γ
}x´ xk}2 ` λΨp|x|q

*

. (4.1)

This subproblem basically requires computing the so-called proximal mapping of the nonsmooth

nonconvex function x ÞÑ γ ¨ pλΨ` δΩqp|x|q, which does not have closed-form solutions in general.

Thus, it appears that the proximal gradient algorithm cannot be efficiently applied to solving (1.5).

Despite not having closed-form solutions, the subproblem (4.1) looks highly structured. Indeed,

note that (4.1) can be equivalently written as

x̆ P Arg min
|x|PΩ

"

1

2γ
}x´ pxk ´ γ∇fpxkqq}2 ` λΨp|x|q

*

. (4.2)

Based on this reformulation and Remark 2.1, we see that a solution x̆ of (4.1) can be obtained as

x̆ “ ᾰ ˝ w̆, where ᾰ “ sgnpxk ´ γ∇fpxkqq and

w̆ P Arg min
wPΩ

"

1

2γ
}w ´ |xk ´ γ∇fpxkq|}2 ` λΨpwq

*

.

The above optimization problem does not seem to be easier to solve compared with (4.2), because

the projection onto Ω may not be efficiently executable and the structure of ψ can be complex.6

To further simplify the subproblem we need to solve, we exploit Assumption 1.1 (b), which states

6When PΩ can be efficiently computed and ψptq “ t, one can compute w̆ efficiently as an element of PΩp|x
k ´

γ∇fpxkq| ´ λγeq. In this case, the proximal gradient algorithm (4.1) and its variants can be applied efficiently. See

also Remark 4.1.
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that ψ has an inverse φ whose directional derivative is locally Lipschitz, to deduce that a w̆ can be

obtained as w̆ “ φpv̆q, with v̆ given by

v̆ P Arg min
vPψpΩq

"

1

2γ
}φpvq ´ |xk ´ γ∇fpxkq|}2 ` λxe, vy

*

. (4.3)

Such a reparametrization strategy was also used recently in [14, 23] in the special case when

ψptq “
?
t (i.e., φptq “ t2) for some simplex-constrained problems, and was called Hadamard

parametrization in [14]. In principle, the optimization problem in (4.3) can be solved approximately

by the gradient projection algorithm (despite the fact that the objective is only continuously

differentiable in IRn
``), because projections onto ψpΩq are easy to compute by assumption. Then

one can obtain x̆ approximately as sgnpxk ´ γ∇fpxkqq ˝ φpv̆q.
However, solving the subproblem (4.3) to a desired accuracy can be time consuming. Having this

in mind, our algorithm, which is presented in Algorithm 1 below, is essentially based on solving the

proximal gradient subproblem (4.1) “roughly” that we apply only one step of gradient projection

to (4.3). Since the objective of (4.3) does not have globally Lipschitz gradient, we incorporate a

linesearch scheme in Step 1b) to search for a viable parameter rη. We also incorporate a standard

non-monotone linesearch scheme (4.4) to look for a viable rγ. Observe that in this algorithm, we

maintain vk “ ψp|xk|q (and hence |xk| “ φpvkq) for all k ě 0.

Algorithm 1 Doubly majorized algorithm (DMA) for (1.5) under Assumption 1.1

Step 0. Take any x0 with |x0| P Ω. Let γmax ě γmin ą 0 and 0 ă η ă η ă 8. Let c1 ą 0,

τ P p0, 1q and pick an integer M ě 0. Let v0 “ ψp|x0|q and set k “ 0.

Step 1. Pick any rγ P rγmin, γmaxs.

1a) Pick any rη P rη, ηs. Consider G
rγpvq :“ λxe, vy`

řn
i“1 g

i
rγpviq with gi

rγpviq :“ 1
2rγ pφpviq´

|xki ´ rγ∇ifpx
kq|q2 for each i.

1b) Compute

rv P Arg min
vPψpΩq

#

rη

2
}v ´ vk}2 `

n
ÿ

i“1

rλ` pgi
rγq
1
`pv

k
i qs ¨ pvi ´ v

k
i q

+

.

If G
rγprvq ď G

rγpv
kq, go to Step 1c); otherwise, update rη Ð rη{τ and go to Step 1b).

1c) Set ru “ sgnpxk ´ rγ∇fpxkqq ˝ φprvq. If

F pruq ď max
rk´Ms`ďiďk

F pxiq ´
c1
2
}ru´ xk}2, (4.4)

go to Step 2; otherwise, update rγ Ð τrγ and go to Step 1a).

Step 2. Set sηk “ rη, γk “ rγ, vk`1 “ rv and xk`1 “ ru. Update k Ð k ` 1 and go to Step 1.

Remark 4.1. We have the following observations concerning Algorithm 1 when ψptq “ t.

(i) If ψptq “ t and the rη in Step 1a) is chosen such that rη ě 1
rγ , then Step 1b) will be invoked

exactly once per iteration. Indeed, when ψptq “ t, we have φptq “ t and hence each gi
rγ is

continuously differentiable on IR. Thus, the subproblem in Step 1b) can be rewritten as

rv P Arg min
vPΩ

"

rη

2
}v ´ vk}2 ` x∇G

rγpv
kq, v ´ vky

*

. (4.5)
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Note that vk P Ω and ∇G
rγ has Lipschitz modulus 1

rγ . Using these, rη ě 1
rγ and the fact that rv

is a minimizer in (4.5), we have

G
rγprvq ď G

rγpv
kq ` x∇G

rγpv
kq, rv ´ vky `

1

2rγ
}rv ´ vk}2

ď G
rγpv

kq ` x∇G
rγpv

kq, rv ´ vky `
rη

2
}rv ´ vk}2

ď G
rγpv

kq ` x∇G
rγpv

kq, vk ´ vky `
rη

2
}vk ´ vk}2 “ G

rγpv
kq.

Hence, Step 1b) is invoked exactly once because rη does not need to be updated.

(ii) If ψptq “ t and the rη in Step 1a) is chosen as 1
rγ in every iteration, then Algorithm 1 reduces to

a proximal gradient algorithm with non-monotone linesearch (NPG). To see this, first observe

that the subproblem in Step 1b) can be further rewritten from (4.5) to

rv P PΩ

´

vk ´
1

rη
∇G

rγpv
kq

¯

“ PΩ

´

vk ´
`

vk ´ yk ` rγλe
˘

¯

“ PΩ

`

yk ´ rγλe
˘

,

where yk :“ |xk ´ rγ∇fpxkq|. Using this observation, the definition of ru in Step 1c) and

Remark 2.1, we conclude that ru satisfies

ru P Arg min
|x|PΩ

#

1

2rγ
}x´ pxk ´ rγ∇fpxkqq}2 ` λ

n
ÿ

i“1

|xi|

+

.

This together with (4.4) shows that Algorithm 1 reduces to NPG in this case.

We next establish the well-definedness of Algorithm 1. Specifically, we will argue that Step 1b)

and Step 1c) are invoked finitely many times in each iteration. To this end, consider (1.5) and

suppose that Assumption 1.1 holds. Fix any γ ą 0 and η ą 0. For each fixed η ě η and px P IRn

with pv :“ ψp|px|q P ψpΩq, define

Gγpvq :“ λxe, vy `
n
ÿ

i“1

giγpviq (4.6)

with giγptq :“ 1
2γ pφptq ´ |pxi ´ γ∇ifppxq|q

2 for each i, and let vη be any element such that

vη P Arg min
vPψpΩq

#

η

2
}v ´ pv}2 `

n
ÿ

i“1

rλ` pgiγq
1
`ppviqs ¨ pvi ´ pviq

+

. (4.7)

Then we have the following result concerning vη.

Lemma 4.1. Consider (1.5) and suppose that Assumption 1.1 holds. Fix any γ ą 0, η ą 0, η ě η

and px P IRn with pv :“ ψp|px|q P ψpΩq, and define Gγ and vη as in (4.6) and (4.7), respectively. Then

the following statements hold.

(i) It holds that }vη ´ pv} ď 2nη´1pλ`maxi |pg
i
γq
1
`ppviq|q.

(ii) Let Li
pv denote the corresponding L obtained by applying Lemma 2.2 with g “ giγ and a “

pvi ` 2nη´1pλ`maxj |pg
j
γq
1
`ppvjq|q for each i. Then it holds that

Gγpvηq ď Gγppvq ´
η ´maxi L

i
pv

2
}vη ´ pv}2.
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(iii) Suppose that vη satisfies Gγpvηq ď Gγppvq and let uγ :“ sgnppx ´ γ∇fppxqq ˝ φpvηq. Then it

holds that

F puγq ď F ppxq ´
1

2

ˆ

1

γ
´ Lf

˙

}uγ ´ px}2.

Proof. We first prove (i). From the definition of vη in (4.7) and the fact that pv P ψpΩq, we have
η
2 }vη ´ pv}2 `

řn
i“1rλ` pg

i
γq
1
`ppviqs ¨ prvηsi ´ pviq ď 0. Rearranging terms, we see further that

η

2
}vη ´ pv}2 ď ´

n
ÿ

i“1

rλ` pgiγq
1
`ppviqs ¨ prvηsi ´ pviq

ď

n
ÿ

i“1

rλ`max
j
|pgjγq

1
`ppvjq|s ¨ }vη ´ pv}8

ď nrλ`max
j
|pgjγq

1
`ppvjq|s ¨ }vη ´ pv}.

The desired conclusion now follows immediately from the above display and the fact that η ě η.

We next prove (ii). Let Li
pv denote the corresponding L obtained by applying Lemma 2.2 with g “

giγ and a “ pvi` 2nη´1pλ`maxj |pg
j
γq
1
`ppvjq|q, and define Ii :“ r0, pvi` 2nη´1pλ`maxj |pg

j
γq
1
`ppvjq|qs

for each i. Then we have rvηsi P Ii from item (i). Hence, we have in view of (4.6) and Lemma 2.2

that,

Gγpvηq “ λxe, vηy `
n
ÿ

i“1

giγprvηsiq “ λxe, pvy ` λxe, vη ´ pvy `
n
ÿ

i“1

giγprvηsiq

ď λxe, pvy `
n
ÿ

i“1

„

giγppviq ` rλ` pg
i
γq
1
`ppviqsprvηsi ´ pviq `

Li
pv

2
prvηsi ´ pviq

2



paq
ď λxe, pvy `

n
ÿ

i“1

„

giγppviq `
Li
pv ´ η

2
prvηsi ´ pviq

2



ď Gγppvq `
maxi L

i
pv ´ η

2
}vη ´ pv}2,

where (a) follows from the definition of vη in (4.7) and the fact that pv P ψpΩq, and the last inequality

follows from (4.6). This proves (ii).

Finally, we prove (iii). Using Taylor’s inequality and the fact that f has Lipschitz gradient with

modulus Lf , we have

F puγq ď fppxq ` x∇fppxq, uγ ´ pxy `
Lf
2
}uγ ´ px}2 ` pλΨ` δΩqp|uγ |q

“ fppxq ` x∇fppxq, uγ ´ pxy `
1

2γ
}uγ ´ px}2 ` pλΨ` δΩqp|uγ |q ´ β}uγ ´ px}2,

where β :“ 1
2

´

1
γ ´ Lf

¯

. Rearranging terms in the above display, we obtain

F puγq ` β}uγ ´ px}2

ď fppxq ` x∇fppxq, uγ ´ pxy `
1

2γ
}uγ ´ px}2 ` pλΨ` δΩqp|uγ |q

“ fppxq ´
γ

2
}∇fppxq}2 ` 1

2γ
}uγ ´ px` γ∇fppxq}2 ` pλΨ` δΩqp|uγ |q

paq
“ fppxq ´

γ

2
}∇fppxq}2 ` 1

2γ
}pα ˝ φpvηq ´ pα ˝ |px´ γ∇fppxq|}2 ` pλΨ` δΩqpφpvηqq

“ fppxq ´
γ

2
}∇fppxq}2 ` 1

2γ
}φpvηq ´ |px´ γ∇fppxq|}2 ` λ

n
ÿ

i“1

rvηsi

pbq
“ fppxq ´

γ

2
}∇fppxq}2 `Gγpvηq, (4.8)
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where (a) holds because |uγ | “ φpvηq componentwise and we write pα :“ sgnppx ´ γ∇fppxqq for

notational simplicity, and (b) follows from the definition of Gγ in (4.6). Using the assumption that

Gγpvηq ď Gγppvq, we deduce further from (4.8) that

F puγq ` β}uγ ´ px}2 ď fppxq ´
γ

2
}∇fppxq}2 `Gγppvq

“ fppxq ´
γ

2
}∇fppxq}2 ` 1

2γ
}φppvq ´ |px´ γ∇fppxq|}2 ` λ

n
ÿ

i“1

pvi

ď fppxq ´
γ

2
}∇fppxq}2 ` 1

2γ
}px´ ppx´ γ∇fppxqq}2 ` pλΨ` δΩqp|px|q

“ F ppxq,

where the last inequality follows from pv “ ψp|px|q (thus φppvq “ |px|), |px| P Ω and the triangle

inequality. This completes the proof.

Remark 4.2 (Well-definedness of Algorithm 1). We discuss the well-definedness of Algorithm 1,

i.e., we argue that in each iteration, Step 1b) and Step 1c) are only invoked finitely many times.

Suppose that an xk is given for some k ě 0. Observe from the update rule of the algorithm that

vk “ ψp|xk|q. For a given rγ ą 0, by applying Lemma 4.1 (ii) with px “ xk and invoking (4.6) and

(4.7), we conclude that G
rγprvq ď G

rγpv
kq for all sufficiently large rη. This together with the update

rule of rη shows that Step 1b) will only be invoked finitely many times given any rγ.

In addition, for any rv that satisfies G
rγprvq ď G

rγpv
kq, according to Lemma 4.1 (iii), the corre-

sponding ru will satisfy (4.4) whenever rγ ď 1
c1`Lf

. In view of the update rule of rγ, we can also

conclude that Step 1c) is invoked only finitely many times at the kth iteration. This also implies

that Step 1b) will only be repeated for finitely many different rγ. These observations together with an

induction argument prove the well-definedness of Algorithm 1.

Finally, notice that at iteration k, the initial rγ at the beginning of Step 1 lies in rγmin, γmaxs.

Hence, we conclude based on this and the update rule of rγ that

γmax ě γk ě min

"

γmin,
τ

c1 ` Lf

*

“: rγmin.

We now show that any accumulation point of the txku generated by Algorithm 1 is a ψopt-

stationary point. In this regard, we can say that Algorithm 1 is a companion algorithm for the

notion of ψopt stationarity. This companion relationship is not too unexpected upon noting the

similarity between the derivations that led to Algorithm 1 and the proof of Theorem 3.1 (which

establishes the necessity of ψopt-stationarity for global optimality).

Theorem 4.1 (Subsequential convergence). Consider (1.5) and suppose that Assumption 1.1 holds.

Let txku and tsηku be generated by Algorithm 1. Then the following statements hold.

(i) It holds that limkÑ8 }x
k`1 ´ xk} “ 0.

(ii) The sequences txku and tsηku are bounded.

(iii) Any accumulation point x˚ of txku satisfies the ψopt-stationarity condition.

Proof. First, we see from the criterion (4.4) that for all k,

F pxkq ď F px0q ă 8.

Notice that F is level-bounded because f and ψ are nonnegative functions, λ ą 0, and ψ is

level-bounded according to Assumption 1.1. Consequently, the sequence txku is bounded. Moreover,

the conclusion limkÑ8 }x
k`1 ´ xk} “ 0 can be proved similarly as in [22, Lemma 4].
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We next prove the boundedness of tsηku. We start by deriving an auxiliary bound on a particular

choice of Liv̂ that satisfies the assumption in Lemma 4.1 (ii). To this end, let M :“ supk }x
k}: this

quantity is finite because txku is bounded. Fix any i P t1, . . . , nu and any k ě 0. Then

aki :“ vki ` 2nη´1pλ`max
j
|pgjγkq

1
`pv

k
j q|q

paq
ď }vk} ` 2nη´1pλ` γ´1

k max
j

ˇ

ˇφpvkj q ´ |x
k
j ´ γk∇jfpx

kq|
ˇ

ˇ ¨ |φ1`pv
k
j q|q

pbq
“ }ψp|xk|q} ` 2nη´1pλ` γ´1

k max
j

ˇ

ˇ|xkj | ´ |x
k
j ´ γk∇jfpx

kq|
ˇ

ˇ ¨ |φ1`pψp|x
k
j |qq|q

ď }ψp|xk|q} ` 2nη´1pλ`max
j
|∇jfpx

kq| ¨ |φ1`pψp|x
k
j |qq|q

pcq
ď sup
}x}ďM

"

}ψp|x|q} ` 2nη´1pλ`max
j
|∇jfpxq| ¨ |φ

1
`pψp|xj |qq|q

*

“: M1 ă 8,

(4.9)

where (a) follows from the definition of gi
rγ in Step 1a) of the algorithm, (b) follows from the

definition of vk, (c) holds because }xk} ďM , and the finiteness of M1 follows from the continuity

of ψ, φ1` and ∇f . Next, writing yk :“ |xk ´ γk∇fpxkq| for notational simplicity, and we apply

Lemma 2.1 with h “ φ on r0,M1s to obtain a c and use it to construct an L as in (2.1) with g “ giγk
on r0, vki ` 2nη´1pλ`maxj |pg

j
γk
q1`pv

k
j q|qs. Denote this L by Livk , and observe that this Livk satisfies

the assumption in Lemma 4.1 (ii) with γ “ γk and pvi “ vki . Moreover, it holds that

Livk “
c

γk

˜

sup
tPr0,aki s

|φptq| ` |yki |

¸

`
1

γk

˜

sup
tPr0,aki s

|φ1`ptq| `
aki c

2

¸2

ď
c

rγmin

˜

sup
tPr0,M1s

|φptq| `M ` γmax sup
}x}ďM

}∇fpxq}

¸

`
1

rγmin

˜

sup
tPr0,M1s

|φ1`ptq| `
M1c

2

¸2

“: M2 ă 8,

where c depends only on M1 and the convex function φ (since it is obtained by applying Lemma 2.1

with h “ φ on r0,M1s) and is independent of k, and the inequality follows from (4.9) and the facts

that }xk} ď M and γmax ě γk ě rγmin for all k (thanks to Remark 4.2). Since M2 is a constant

independent of i and k, we conclude further that

max
1ďiďn

sup
k
Livk ďM2. (4.10)

Equipped with (4.10), we are now ready to argue the boundedness of tsηku. Notice that for

each k, either G
rγprvq ď G

rγpv
kq holds for the first rη used in Step 1b) so that sηk ď η, or Step 1b)

is invoked multiple times so that the rv corresponding to τsηk still gives G
rγprvq ą G

rγpv
kq. In the

latter case, applying Lemma 4.1 (ii) with px “ xk, γ “ γk, η “ τsηk and recalling that the Livk
constructed above satisfies the assumption in Lemma 4.1 (ii), we see that this case is possible only

if τsηk ď maxi L
i
vk . Combining the two cases with (4.10), we conclude that

sηk ď maxtη,max
i
Livk{τu ď maxtη,M2{τu.

This completes the proof of item (ii).

Finally, we prove item (iii). Let x˚ be an accumulation point of txku and define αk :“

sgnpxk´γk∇fpxkqq for notational simplicity. Since γmax ě γk ě rγmin ą 0 for all k (see Remark 4.2)

and tsηku is bounded by item (ii), by passing to further subsequences if necessary, we may assume

without loss of generality that there exist subsequences txkju, tsηkju and tγkju such that

lim
jÑ8

xkj “ x˚, lim
jÑ8

sηkj “ η˚, lim
jÑ8

αkj “ lim
jÑ8

sgnpxkj´γkj∇fpxkj qq “ α˚, lim
jÑ8

γkj “ γ˚ (4.11)
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for some α˚ P t´1, 1un, η˚ ě η ą 0 and γ˚ ě rγmin ą 0. We then have from direct computation that

lim
jÑ8

pgiγkj
q1`pv

kj
i q “ lim

jÑ8
pφpv

kj
i q ´ |x

kj
i ´ γkj∇ifpx

kj q|q ¨ φ1`pv
kj
i q{γkj

paq
“ lim

jÑ8
p|x

kj
i | ´ |x

kj
i ´ γkj∇ifpx

kj q|q ¨ φ1`pv
kj
i q{γkj

“ lim
jÑ8

p|x
kj`1
i | ´ |x

kj
i ´ γkj∇ifpx

kj q| ` |x
kj
i | ´ |x

kj`1
i |q ¨ φ1`pv

kj
i q{γkj

pbq
“ lim

jÑ8
pα
kj
i px

kj`1
i ´ x

kj
i ` γkj∇ifpx

kj qq ` |x
kj
i | ´ |x

kj`1
i |q ¨ φ1`pv

kj
i q{γkj

“ α˚i ∇ifpx
˚qφ1`pψp|x

˚
i |qq, (4.12)

where (a) follows from vk “ ψp|xk|q and φ “ ψ´1, (b) is true in view of the definition of αk and

the update rule of xk`1, and the last equality follows from item (i), (4.11), the continuity of φ1`
and the fact that vkj “ ψp|xkj |q.

Now, recall that xk`1 “ αk ˝ φpvk`1q, and

vk`1 P Arg min
vPψpΩq

#

sηk
2
}v ´ vk}2 `

n
ÿ

i“1

rλ` pgiγkq
1
`pv

k
i qs ¨ pvi ´ v

k
i q

+

. (4.13)

From (4.13), we obtain that for each j ě 0,

sηkj
2
}vkj`1 ´ vkj }2 `

n
ÿ

i“1

rλ` pgiγkj
q1`pv

kj
i qs ¨ pv

kj`1
i ´ v

kj
i q

ď
sηkj
2
}v ´ vkj }2 `

n
ÿ

i“1

rλ` pgiγkj
q1`pv

kj
i qs ¨ pvi ´ v

kj
i q (4.14)

whenever v P ψpΩq. Also, notice from (4.11) and item (i) that

lim
jÑ8

vkj “ lim
jÑ8

ψp|xkj |q “ ψp|x˚|q and lim
jÑ8

vkj`1 “ lim
jÑ8

ψp|xkj`1|q “ ψp|x˚|q.

Using the above display, (4.11) and (4.12), we conclude upon passing to the limit as j goes to

infinity in (4.14) that

η˚
2
}ψp|x˚|q ´ ψp|x˚|q}2 `

n
ÿ

i“1

“

λ` α˚i ¨∇ifpx
˚q ¨ φ1`pψp|x

˚
i |qq

‰

¨ pψp|x˚i |q ´ ψp|x
˚
i |qq

ď
η˚
2
}ψp|x|q ´ ψp|x˚|q}2 `

n
ÿ

i“1

“

λ` α˚i ¨∇ifpx
˚q ¨ φ1`pψp|x

˚
i |qq

‰

¨ pψp|xi|q ´ ψp|x
˚
i |qq

whenever x satisfies |x| P Ω. Since

|x˚| “ lim
jÑ8

|xkj | P Ω,

we obtain that

x˚ P Arg min
|x|PΩ

#

η˚
2
}ψp|x|q ´ ψp|x˚|q}2 `

n
ÿ

i“1

“

λ` α˚i ¨∇ifpx
˚q ¨ φ1`pψp|x

˚
i |qq

‰

¨ ψp|xi|q

+

. (4.15)

Finally, since xk`1 “ αk ˝ φpvk`1q, we have αki “ sgnpxk`1
i q whenever ψp|xk`1

i |q “ vk`1
i ‰ 0. Then

using item (i) and (4.11), we must also have

α˚i “ sgnpx˚i q if x˚i ‰ 0.

Moreover, we see from (4.11) and the lower boundedness of tγku in Remark 4.2 that for all i with

x˚i “ 0 but ∇ifpx
˚q ‰ 0, we have α˚i “ ´sgnp∇ifpx

˚qq. These conditions on α˚ together with

(4.15) show that x˚ is a ψopt-stationary point as desired.
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5 Numerical experiments

In this section, we will conduct numerical experiments for Algorithm 1 on order-constrained

compressed sensing problems and block order-constrained sparse time-lagged regression problems.

All experiments are performed in Matlab R2017b on a 64-bit PC with 2.9 GHz Intel Core i9 6-Core

and 32GB of DDR4 RAM.

5.1 Compressed sensing problems with order constraints

We first consider the following order-constrained compressed sensing problems with nonconvex

regularizers for recovering sparse signals with an order structure:

min
xPIRn

1

2
}Ax´ b}2 ` λ

n
ÿ

i“1

ψp|xi|q

s.t. |x1| ě |x2| ě ¨ ¨ ¨ ě |xn|,

(5.1)

where A P IRmˆn, b P IRm, λ ą 0 and ψptq “ tp with p P p0, 0.5s or ψptq “ logp1` t{εq with ε ą 0.

We will solve (5.1) with ψptq “ tp (p P p0, 0.5s) by DMA (Algorithm 1), and call this algorithm

DMAlp. To the best of our knowledge, our DMA is the only available algorithm for such a model,

due to the presence of both the `p regularizer and the order constraints. As a comparison, we

consider three other simpler models:

• minxPIRn
1
2}Ax ´ b}2 ` λ

řn
i“1 |xi|

p (i.e., change the order-constrained model (5.1) to an

unconstrained model);

• min|x1|ě|x2|ě¨¨¨ě|xn|
1
2}Ax´ b}

2 ` λ
řn
i“1 |xi| (i.e., set ψptq “ t in (5.1));

• minxPIRn
1
2}Ax´ b}

2 ` λ
řn
i“1 |xi| (i.e., LASSO).

Note that all these three models7 can be solved by the NPG proposed in [22] (see also [12, 16, 17]).

We call the corresponding algorithms NPGlp, NPGL1c and NPGL1, respectively, and we refer to

the above four models as “`p-regularized models”.

We also solve (5.1) with ψptq “ logp1 ` t{εq by our DMA, and call this algorithm DMAlog.

Similarly, as a comparison, we solve a simpler model minxPIRn
1
2}Ax´ b}

2 ` λ
řn
i“1 logp1` |xi|{εq

by NPG and call this algorithm NPGlog. In the following, we refer to these two models as

“logarithmically regularized models”.

Data generation. First, we randomly generate an n-dimensional vector with s nonzero entries,

which follow i.i.d. standard Gaussian distribution. We let the original signal xtrue P IRn be a

reordering of this vector such that its entries are nonincreasing in magnitude. Then, we generate

A P IRmˆn by normalizing each column of a randomly generated matrix that has i.i.d. standard

Gaussian elements. Next, we set the measurement vector b “ Axtrue ` σε, where the noise factor

σ ą 0 and the noise vector ε P IRm has i.i.d. standard Gaussian entries.

Algorithm settings. For DMA, we generate an n-dimensional random vector with i.i.d. Gaus-

sian entries and set the initial point x0 as the corresponding reordered vector whose entries are

nonincreasing in magnitude. We let c1 “ 10´4, τ “ 0.5 and M “ 4. In Step 1, we initialize rη “ 1,

and initialize rγ “ 1 for k “ 0 and

rγ :“ min

"

max

"

}xk ´ xk´1}2

}Apxk ´ xk´1q}2
, 10´8

*

, 108

*

7Especially, the second model can be solved by NPG as discussed in Remark 4.1.
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for k ě 1. In Step 1b), we solve the subproblem by a solver developed from [13].8

For NPG, we use the same settings as those described in [16, Section 5] and set P pzq “

λ
řn
i“1 |zi|

p for NPGlp, P pzq “ λ}z}1 ` δSpzq where S :“ tx P IRn : |x1| ě |x2| ě ¨ ¨ ¨ |xn|u for

NPGL1c, P pzq “ λ}z}1 for NPGL1, and P pzq “ λ
řn
i“1 logp1` |zi|{εq for NPGlog.

We use the same initial point for all six algorithms and terminate them whenever the running

time exceeds some fixed time maxtime (seconds).

Test settings. In our experiments, we set p “ 0.5, ε “ 0.5 and σ “ 0.1, and consider three

triples pn,m, sq “ p2560, 540, 180q, pn,m, sq “ p10240, 2160, 720q and pn,m, sq “ p25600, 5400, 1800q.

For each triple, we generate 10 random instances as described above. For each instance for the

triple pn,m, sq “ p2560, 540, 180q, we solve the `p-regularized models with λ “ 5ˆ 10´2 and the

logarithmically regularized models with λ “ 8ˆ10´2, and terminate all algorithms with maxtime = 4.

For each instance for the triple pn,m, sq “ p10240, 2160, 720q, we solve the `p-regularized models with

λ “ 8ˆ10´2 and the logarithmically regularized models with λ “ 10´1, and terminate all algorithms

with maxtime = 16. Finally, for each instance for the triple pn,m, sq “ p25600, 5400, 1800q, we

solve the `p-regularized models with λ “ 10´1 and the logarithmically regularized models with

λ “ 2ˆ 10´1, and terminate all algorithms with maxtime = 40.

To evaluate the performance of all the algorithms, similar to [25, Section 5.1], we take a

normalized measurement of recovery error with respect to time. Specifically, for each random

instance and each algorithm, we let erpkq :“ }xk ´ xtrue} be the recovery error at xk and define

Eptq :“ min
 

epkq : k P ti : T piq ď tu
(

with epkq :“
erpkq ´ e

min
r

erp0q ´ emin
r

,

where T pkq denotes the total computational time until xk is obtained, and emin
r is the minimum

recovery error among all algorithms at termination for this random instance.

In Figure 1, for each triple, we compare the average of Eptq over 10 random instances for all six

algorithms. In addition, for the triple pn,m, sq “ p25600, 5400, 1800q, we plot the first 1980 entries

of the recovered signals obtained from each algorithm for one random instance. As one can see,

DMAlp generally outperforms NPGlp and NPGL1c in terms of recovery error, which suggests

the necessity of using the order constraints and the `p regularizer (instead of the `1 regularizer),

respectively. Also, the outperformance of DMAlog over NPGlog highlights the advantage of

incorporating the order constraints into the model as well. Moreover, compared with NPGL1, the

superiority of DMAlp and DMAlog implies that solving order-constrained models with nonconvex

regularizers can help improve the recovery error in the case when fewer number of observations are

available.

5.2 Sparse time-lagged regression problems with block order constraints

We also test our Algorithm 1 on real data. Specifically, we solve the following block order-constrained

model arising from [21, Section 3]9 for time-lagged regression problems.

min
xPIRpK

1

2N
}Ax´ b}2 ` λ

pK
ÿ

j“1

|xj |
q

s.t. |xpi´1qK`1| ě |xpi´1qK`2| ě ¨ ¨ ¨ ě |xiK |, i “ 1, . . . , p,

(5.2)

8The matlab code can be found in https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/

submissions/47196/versions/1/previews/improve_JP/toolbox_imp_JP/lsqisotonic.m/index.html.
9In [21], the authors only considered the model with q “ 1 and subsequently solved a convex approximation of it.
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Figure 1: Comparison of the averaged recovery errors and the recovered signals (the horizontal axis

shows the index i and the vertical axis shows the ith entry of the recovered signal).

where A P IRNˆpK , b P IRN , λ ą 0 and q P p0, 0.5s Y t1u. Here, N is the number of observations, p

is the number of predictors, and K is the maximum time lag. For j “ 1, . . . , N , data bj represents

the jth observation and data Aj,pi´1qK`k represents the value of predictor i of observation j at

time-lag k from the current time.

The data we used for test record 330 days of the level of atmospheric ozone concentration

(response variable) and 8 daily meteorological measurements (predictors) made in the Los Angeles

basin in 1976; see https://hastie.su.domains/ElemStatLearn/datasets/LAozone.data. This

data set was used in [21, Section 3.5] and we set a maximum time-lag of 20 days as in [21, Section 3.5],

and predict from the measurements on the current day and the previous 19 days. Then we set both

the training and validation sets to have the same size and use cross validation to search for a viable

λ for final comparison. Specifically, in model (5.2), we let K “ 20, p “ 8 and N “ 155, and each bi
and Ai,: (i “ 1, . . . , N) are constructed as described in Figure 2.

As we can see from Figure 2, the training data matrix A P IR155ˆ160 corresponds to the data

of 8 predictors (vh, . . . vis) in Z from row 1 to row 174, and b P IR155 correspond to the data of

ozone in Z from row 20 to row 174. We construct the validation data matrix rA P IR155ˆ160 and
rb P IR155 in a similar way as in Figure 2, where on the right hand side of Figure 2, the A and b

are replaced by rA and rb respectively, and the row counter of Z starts from i`N instead of i. In

essence, elements of rA correspond to the data of 8 predictors in Z from row 156 to row 329, and

elements of rb correspond to the data of ozone in Z from row 175 to row 329.

Given that the data for the 8 predictors are measured on different scales, standardizations of

each column of A and b are conducted before solving (5.2):

ai Ð
ai ´meanpaiqe

stdpaiq
, bÐ

b´meanpbqe

stdpbq
,
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Figure 2: Here, Z represents the data matrix in the aforementioned link of real data, and the matrix on the

right hand side presents the position (in Z) of bi and Ai,j (j “ 1, . . . , 160), each of which takes the value of

the element of Z with the same position. For example, b2 is set to be the ozone data in the 21st row of Z,

and A2,1, A2,2, . . . A2,20 are set to be the vh data in the 21st, 20th, . . ., and the 2nd row of Z, respectively.

where ai is the ith column of A, and meanp¨q and stdp¨q stand for the sample mean and the sample

standard deviation, respectively. Once we solve (5.2) with the standardized A and b as described

above to obtain an approximate solution, say x˚, we will predict rb by

rbpred “ stdpbq ¨ p rA1x˚q `meanpbqe,

where rA1 is obtained from rA by standardizing each column of rA.

Next, we will solve (5.2) with q “ 0.3 and q “ 0.5 by Algorithm 1 (DMA). In [21], problem

(5.2) with q “ 1 was approximated by a convex problem by replacing each block of constraints

by the constraints as in (1.4). As mentioned in the introduction, the solution obtained from this

approximation model may lack proper interpretation. Meanwhile, note that (5.2) with q “ 1 can

be solved by NPG in view of Remark 4.1. In our experiments below, we will compare DMA with

NPG (which solves (5.2) with q “ 1) in terms of validation error, which is defined by }rbpred ´rb}.

Algorithm settings. For DMA and NPG, we generate the same random initial point x0 P IRpK

with each K-dimensional block having nonincreasing entries in the same way as described in

Section 5.1, and terminate both algorithms whenever

}xk ´ xk´1}

max t1, }xk}u
ă 10´6.

The other parameters for DMA and NPG are the same as in Section 5.1. In Step 1b), the

subproblems of these algorithms reduce to p separate projection problems onto the set pΩ :“ ty P

IRK
` : y1 ě ¨ ¨ ¨ ě yKu, which again will be solved by the solver developed from [13].

In our test, for a sequence of λ generated from the Matlab command “logspace(-4, 1, 100)”,

we solve the corresponding (5.2) by DMA (with q “ 0.3 and q “ 0.5) and NPG, and then

compute their identification errors (defined by }Ax˚´ b}, denoted by DMA0.3
id , DMA0.5

id and NPGid,

respectively) and validation errors (defined by }rbpred ´rb}, denoted by DMA0.3
v , DMA0.5

v and NPGv,

respectively). In Figure 3, we first plot the identification errors and validation errors with different

λ for DMA (with q “ 0.3 and q “ 0.5) and NPG. Next, for each algorithm, we select a proper λ in

the sense of simultaneously leading to small identification error and small validation error. The one

we select for DMA is λ “ 3.68ˆ 10´3 when q “ 0.3, λ “ 4.13ˆ 10´3 when q “ 0.5, and for NPG

is λ “ 1.67ˆ 10´2, which correspond to the λ in Figure 3 (the first three pictures) that leads to the

smallest validation error DMA0.3
v (55.55), DMA0.5

v (56.17) and NPGv (56.98), respectively. In view

of this, DMA has a slightly better prediction that NPG. In the last picture of Figure 3, we plot

the predicted ozone concentration rbpred for DMA (with q “ 0.3 and q “ 0.5) and NPG (denoted

by predictedDMA0.3 , predictedDMA0.5 and predictedNPG respectively, each solves (5.2) with the λ

selected above) and true ozone concentration rb (denoted by true). One can see from the picture
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that the prediction from DMA has fewer negative entries in the predicted ozone concentration: 4

negative entries from DMA with q “ 0.5 and 7 negative entries from NPG.

Figure 3: The first three pictures plot the identification error (blue point) and the validation error

(red point) with different λ for DMA (with q “ 0.3 and q “ 0.5) and NPG, respectively. The last

picture presents the true ozone concentration and predicted ozone concentration for DMA with

λ “ 3.68ˆ 10´3 when q “ 0.3, λ “ 4.13ˆ 10´3 when q “ 0.5 and NPG with λ “ 1.67ˆ 10´2.
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