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Abstract

We consider a class of sparsity-inducing optimization problems whose constraint set is
regularizer-compatible, in the sense that, the constraint set becomes easy-to-project-onto after
a coordinate transformation induced by the sparsity-inducing regularizer. Our model is general
enough to cover, as special cases, the ordered LASSO model in [21] and its variants with
some commonly used nonconvex sparsity-inducing regularizers. The presence of both the
sparsity-inducing regularizer and the constraint set poses challenges on the design of efficient
algorithms. In this paper, by exploiting absolute-value symmetry and other properties in
the sparsity-inducing regularizer, we propose a new algorithm, called the Doubly Majorized
Algorithm (DMA), for this class of problems. The DMA makes use of projections onto the
constraint set after the coordinate transformation in each iteration, and hence can be performed
efficiently. Without invoking any commonly used constraint qualification conditions such as
those based on horizon subdifferentials, we show that any accumulation point of the sequence
generated by DMA is a so-called 1)op¢-stationary point, a new notion of stationarity we define as
inspired by the notion of L-stationarity in [2,3]. We also show that any global minimizer of our
model has to be a Yop-stationary point, again without imposing any constraint qualification
conditions. Finally, we illustrate numerically the performance of DMA on solving variants of
ordered LASSO with nonconvex regularizers.

1 Introduction

Sparsity structures arise frequently in contemporary applications such as compressed sensing [5,6,8,9]
and variable selections [11,20]. In these scenarios, typically, one attempts to find a sparse vector
% such that A% ~ b, where A € R™*" and b € IR™ are given. The corresponding optimization
problem can be formulated as

1 2 N
min 2| Az —0]” + 1Y 0(|a)), (1.1)

i=1
where 0 : IR, — R, is a sparsity-inducing function, and A > 0 is a parameter trading off data
fidelity and sparsity in z. Popular choices of 8 include:
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(i) 6(t) =t — The corresponding (1.1) then becomes the LASSO model considered in [20];

(ii) @(t) = t? for some p € (0,1) — The corresponding (1.1) belongs to the class of bridge regression
models considered in [18];

(i) O(t) = log(1 + t/e) for some ¢ > 0 — This choice of 6 was used in [7] for enhancing the
sparsity-inducing property of the LASSO model.

Notice that the optimization problem (1.1) corresponding to 6(t) = t is convex, while the problems
associated with the other two choices of § are nonconvex in general. Efficient algorithms for solving
(1.1) with the above choices of § abound in the literature. Many of them leverage the computation
of the so-called proximal mapping of v0(] - |), v > 0, i.e., for each s, compute a minimizer of the
function ¢ — %(s —1)2 +60(|t]). We refer the readers to [4,17,26] and references therein for efficient
algorithms for (1.1) with the above choices of 6.

While model (1.1) makes use of the function 6 to induce sparsity in its solution, it does not
explicitly take into account of other structures that may be present in the desired solution. Prior
information on these other desirable structures can be incorporated by additionally requiring x to
lie in a certain closed set modeling the structures. One recent example is the ordered LASSO model
in [21] that arises when considering regression problems with time lag, where there is a natural
ordering in the magnitude of x;. The basic optimization model takes the following form:

| 2 S
min §\|Ax—b|\ —&-)\Z\xi\

E]R/”
¥ i=1

s.t. |£E1‘ = |$2| =z |xn|7

(1.2)

where A > 0, A € R™*" and b € R™; this problem is a variant of (1.1) with #(¢) = ¢ and an
additional constraint
21| = [a] = -+ - = [anl. (1.3)

Notice that one may also replace the sparsity-inducing function in (1.2) (i.e., 6(t) = t) by other
nonconver sparsity-inducing functions such as 0(t) = t? (0 < p < 1) and 6(t) = log(1 + t/e) (e > 0)
as described before, which typically have better empirical sparsity-inducing performances; see, for
example, [7,8].

Unlike (1.1) which can be solved efficiently via the proximal gradient algorithm and its variants
for many commonly used 6, with the additional constraint (1.3), it is not immediately clear how
(1.2) (and its variants with different ) can be solved efficiently; this is especially true when some
nonconvex sparsity-inducing regularizers such as 0(t) = t? (0 < p < 1) are adopted. One way to get
around is to approzimate (1.2) by the following conver optimization problem, as suggested in [21]:
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Note that y and z are confined to be in the so-called isotone cone, whose projections can be
computed efficiently via the classical pool-adjacent-violators algorithm (PAVA). Thus, model (1.4)
can be solved efficiently via the gradient projection algorithm and its variants. However, this
approach may be compromised in terms of interpretability of the solution obtained. Furthermore,
in the case when a nonconvex sparsity-inducing regularizer is adopted in place of the 1 norm in
(1.2) for inducing sparser solutions, this approximation technique no longer leads to convex models
that admit efficient algorithms.



In this paper, we consider a general optimization model that covers (1.2) and some of its variants
based on nonconvex sparsity-inducing regularizers as special cases, and develop an algorithm for
solving this class of problems. Specifically, we consider the following optimization problem:

min F(r) := f(z) + X¥(ja]) + dalz), (15)
where f:IR"™ — IR, has Lipschitz gradient whose Lipschitz constant is Ly > 0, the absolute value
is taken componentwise, A > 0, U(y) := >." | ¥ (y;), dq is the indicator function of the set Q (see
Section 2 for notation), and the function ¢ and the set 2 satisfy the following assumption:

Assumption 1.1. (a) ¢ : IRy — IRy satisfies 1(0) = 0 and is continuous and concave. Moreover,
Y is differentiable on (0,00) with ¢ > 0 and lim;_,« ¥ (t) = oo.

(b) ¢ :=v~" exists on Ry. Moreover, ¢/, is locally Lipschitz continuous on Ry.*
(c) Q< R is a nonempty closed set such that a projection onto ¥(Q) can be computed efficiently.

The above assumption is general enough for (1.5) to cover some important instances of (1.1) and
(1.2) as special cases. For example, model (1.1) with 6(¢) = ¢, ¥ (p € (0,0.5]) or log(1 +t/e) (¢ > 0)
corresponds to (1.5) with Q = IR", and () = 6(t); moreover, one can check that Assumption 1.1
is satisfied for these 1 and Q.3 In addition, one can also cover model (1.2) (where (t) = t) and its
variants with nonconvex regularizer 6(t) = t? (p € (0,0.5]) or 6(t) = log(1 + t/€) by setting

Q={zeR}: 2z >20> = 2,},

and considering ¥(t) = 6(t); indeed, recalling that projections onto the above 2 can be computed
efficiently via PAVA and noting that ¢(Q2) = Q in this case, we see that Assumption 1.1 is satisfied
for these ¥ and Q.

Since (1.5) under Assumption 1.1 is quite general and covers some particular instances of (1.2),
it is not immediately clear how it can be solved efficiently. For example, in view of the smoothness
of f, it might be tempting to apply proximal-gradient-type methods. However, it is unclear whether
such methods can be efficient because the proximal mapping of the nonsmooth part AU(|-|)+dqa(|-|)
in (1.5) is in general difficult to compute. Specifically, under Assumption 1.1, it is not necessarily
easy to obtain an element of the following set given v > 0 and y € IR"™:

1
Argmin{2|13y|2+/\\11(|z|)}. (1.6)
|z|eQ B

In this paper, by exploiting the (absolute-value) symmetry in the nonsmooth part AU (]-|)+dq(]-])
in (1.5) and the invertibility and smoothness of 1, we propose a new algorithm, which we call the
Doubly Majorized Algorithm (DMA), for solving (1.5) under Assumption 1.1. The DMA obviates
the use of (1.6) and, instead, makes use of projections onto () in each iteration. Hence, in view
of Assumption 1.1 (c), each iteration of DMA can be executed efficiently; moreover, one can show
that the sequence {z*} generated satisfies |2*| € Q for all k. To study the limiting behavior of this
sequence, we define a new notion of stationarity (called 1op¢-stationarity) as inspired by the notion
of L-stationarity (see [2, Definition 2.3] and [3, Definition 5.2]). We show that 1,p¢-stationarity is a
necessary condition for global optimality for (1.5) under Assumption 1.1 without any additional
assumptions, and prove that any accumulation point of the sequence generated by DMA for solving

1Here, @/, (t) is the right-hand derivative at t defined as limy, o M

2See Section 2 for the definition of (), the discussion on its closedness and nonemptiness, and the observation
that the set of projections from any = € IR™ onto ¥ (f2) is nonempty.

3Note that 1(t) = t? with p € (0.5,1) does not satisfy Assumption 1.1 (b).



(1.5) under Assumption 1.1 is a topi-stationary point. We would like to emphasize that this
characterization of accumulation points is obtained without invoking any commonly used constraint
qualifications in the literature for nonsmooth nonconvex problems (such as those involving the
normal cones and horizon subdifferentials; see, for example, (3.2) below); this is an advantage
because such constraint qualifications can be difficult to verify in view of the complexity of the
nonsmooth part in (1.5).

The rest of the paper is organized as follows. We present notation and preliminary materials
in Section 2. The notion of t4p¢-stationarity is defined and shown to be necessary for global
optimality in Section 3. In Section 4, we describe our algorithm and establish its convergence.
Finally, numerical experiments on order-constrained compressed sensing problems and block order-
constrained sparse time-lagged regression problems are conducted in Section 5 to illustrate the
effectiveness of our algorithm for solving them.

2 Notation and preliminaries

In this paper, we use IR" to denote the n-dimensional Euclidean space and IRY} (resp. IR'} ) to
denote the nonnegative (resp. positive) orthant of IR". For two vectors x, y € IR", their standard
inner product is denoted by {z,y) and their Hadamard (entry-wise) product is denoted by z o y.
For a vector x € IR", we use |z| to denote its Euclidean norm, i.e., [z| = 4/{z,z). We let |z| be
the vector whose i-th entry equals |x;|, and sgn(z) be the vector whose ith entry is given by

(sgn(z)), =

—1 ifx; <O0.

For a y € R’} and the ¢ and ¢ as in Assumptions 1.1 (a) and (b), with an abuse of notation, we
use ¥ (y) and ¢(y) to denote the vectors whose i-th entries are 1 (y;) and ¢(y;), respectively. The
vector of all ones is denoted by e, whose dimension should be clear from the context.

An extended real-valued function f : IR"™ — (—o0, 0] is said to be proper if dom f := {x e R" :
f(x) < o0} is nonempty. Such a function is said to be closed if it is lower semicontinuous. For a
proper closed function f, the Frechét subdifferential 0 f, the (limiting) subdifferential ¢f and the
horizon subdifferential 0% f of f at an x € dom f are defined respectively as

5f(x) = {UEIR": lim inf fw) = f&) = wu =) = 0};

W [u—al

of(x) :={veR": I* —v,zk 2, o with o* € 5f(mk) for all k};
07 f(z) == {veR™: It | 0,0F - v,2¥ L 2 with v* /1, € Of (") for all k};
k4, & means 2F — z and f(a*) — f(x). Moreover, for x ¢ dom f, one defines 5f(1:) =
0f(x) = 0° f(x) = &. As we will comment in Section 3 below, these subdifferentials are standard

tools for deriving optimality conditions for (1.5), and we defer the discussion on subdifferential-based
optimality conditions to Section 3.1. For a nonempty closed set = in IR", we let Pz denote the set

where x

of projections onto it, i.e., for all x € R",

P=(z) := Argmin ||z — y].

yez=

The above set reduces to a singleton if = is in addition convex. The indicator function of Z is
denoted by d=, which equals 0 if x € = and equals o0 otherwise. Moreover, the normal cone of =



at an = € Z is defined as N=(x) := ddé=(x). For a nonempty closed set © < R, and the 1) as in
Assumption 1.1 (a), we write

P(O):={¢(y) e R": ye O} S RY,

where we abuse the notation 1(y) as described above, i.e., use ¥ (y) to denote the vector whose i-th
entry is ¥ (y;). Note that this set is necessarily closed and nonempty under Assumptions 1.1 (a) and
(b) because ¥ : IR, — IR, is a continuous bijection on IRy. Hence, Pye)(x) # & for all x € R".
In the remainder of this section, we will present several important auxiliary lemmas. We start
with the following version of Taylor’s inequality for (finite-valued) continuous convex functions on
IR. Here and throughout, for a function h : IRy — IR, we let h/_ denote its right-hand derivative,

ie.,
h/+ (t) :=lim M

Vte R..
sl0 S +

Lemma 2.1. Let h: Ry — IR be convex and continuous, and h be differentiable on (0,0). Suppose
also that K, is locally Lipschitz continuous on Ry.. Then for any a > 0, there exists ¢ > 0 such that

h(t) + B (t)(s —t) < h(s) < h(t) + K/ (t)(s —t) + g(s —t)% whenever s,t € [0,al.

Proof. The first inequality is a direct consequence of convexity. For the second inequality, define
the function H : IR — IR by

h(t) if £ >0,
H(t) := , i
h(0) + A/, (0)t otherwise.

Then by direct computation and the continuity of A/, on IR, we have

W) {h’(t) if t >0,

h' (0) otherwise.

Since 1/, is locally Lipschitz continuous on R4, we see from the above formula that H' is locally
Lipschitz on IR. The desired inequality (and the existence of ¢ > 0) now follows from the standard
descent lemma for functions with locally Lipschitz gradients. O

The next lemma concerns a version of Taylor’s inequality for a structured function defined on
IR . We will make use of the explicit formula of L in (2.1) for our convergence analysis in Section 4.

Lemma 2.2 (A descent lemma). Let h: IRy — IR be convex and continuous, and h be differentiable
n (0,00). Suppose also that b/, is locally Lipschitz continuous on IRy. Let b€ IR, v > 0 and define

g(t) = %(h(t) —b)2. Then for any a > 0, it holds that

g(s) <gt) + gL (t)(s—t)+ g(s —1)? whenever s,t € [0,al,

where

2
1
L= sup [h(@®)|+ b | += sup W, (&) + 2] <o, (2.1)
v Yo\t 2

te[0,a] €[0,a]

with ¢ > 0 given in Lemma 2.1.



Proof. By direct computation, we see that

1
g, (t) = ;(h(t) —b)h/ (t) whenever t € Ry.

Now, fix any a > 0. From Lemma 2.1, we can find ¢ > 0 so that
|h(s) — h(t) — B (t)(s — t)] < g(s —t)? whenever s,t € [0,a]. (2.2)
Consequently, for any s, t € [0, a], we have

299(s) = (h(s) = b)* = [A(t) = b+ W (t)(s — t) + h(s) — h(t) — ', (t)(s — )]
= (A(t) = b)* +2(h(t) — L)W, (t)(s — 1)
+2(h(t) — b)[(s) — h(t) — Wy () (s — 1)]
+ (W (8)(s — ) + h(s) — h(t) — B ()(s — 1))*.
We now drive upper bounds for the third and fourth terms on the right hand side of (2.3). For the
third term, observe from (2.2) that

2(h(t) = b)[A(s) — h(t) — Wy (£)(s — )]
(2.4)
<ch(t) —b|(s—t)? <c ( sup |h(t)| + b|> (s —t)%

te[0,a]

(2.3)

Next, for the fourth term on the right hand side of (2.3), we can also deduce using (2.2) that
(W (8)(s = 1) + h(s) = h(t) = h, (£)(s — 1))°
< (1P () (s = )] + [h(s) = h(t) = Wy (£)(s — 1)])?
2 2
< ( sup [, (8)[|s = t] + 5 (s - t)?) - ( sup [, (D] + 5| — t) (s—1)>  (25)

e[0,a] te[0,a]

2
< | swp LB +Z) (s—0)?
te[0,a] 2

where the last inequality holds because s,t € [0,a]. Combining (2.4) and (2.5) with (2.3) and
invoking the definition of L in (2.1), we can now obtain
2y9(s) < ((t) —~ b)* +2(h(t) — I, (0)(s — 1) + ¥ L(s — 1)
= 27g(t) + 279’ (t)(s — 1) + yL(s —1)?,
where the equality follows from the definition of g and the formula of ¢/.. This completes the
proof. O
Before ending this section, we present a key lemma concerning properties of the optimal solution

of an absolutely symmetrically structured problem.

Lemma 2.3 (Minimizers under absolute-value symmetry). Let T < IR!l be a nonempty closed set,
rzelR" and g : R} — IRy be lower semicontinuous. If

ueArgmm{fo—xHQ—|—g(\x|)} (2.6)
|z|eY
then we have )
[ul € Argmin {ZJw — [z]|? + g(w)}. (2.7)
weY 2

Moreover, if Argmin g ey {%Hx —Z|? + g(|x\)} = {u}, then we have sgn(u;) = sgn(x;) whenever
Ui # 0.



Proof. We first prove the following relationship.

1 1
valy := inf { e~ 2 +g(la) f = it {Sllal 7l +g(al} = vl (28)

Due to the triangle inequality |||z| — |Z|| < |« — Z|, it suffices to show that val; < vals. To this
end, let o* be a solution of the problem on the right-hand side in (2.8).* Define 7* € IR" by

% |zF] it Z; = 0;
’ |z¥| - sgn(z;) else.

Then we have |z*| = |x*| € T. Moreover,
1w — ~ 1 _
valy < 2|7 —2[” + g(|2%)) = Sll2*| = [2[[* + g(|=*]) = val,.

This proves (2.8).
Next, we prove the following two statements concerning u satisfying (2.6):

(i) when Z; > 0, it holds that u; > 0; when Z; < 0, it holds that u; < 0;
(ii) when Z; = 0, if u; # 0, then w is not the unique solution in (2.6).

For (i), if there exists some ¢ such that Z; > 0 but u; < 0 or Z; < 0 but u; > 0, we can pick any
such ¢ and define u € IR" by

R
a=Jm ITh (2.9)
i =i

Then one can see that |u| = |u| € T and
1, R TR
Sla =21 +g(al) < 5lu—2|" + g(lul),

which contradicts (2.6).

For (ii), if there exists some ¢ such that z; = 0 and u; # 0, we can still define @ as in (2.9).
Since u; # 0, we have u # u. Moreover, @ is also a solution in (2.6), thanks to Z; = 0. Therefore, u
is not the unique solution in (2.6).

Now, we are ready to prove (2.7). We have

1 a) 1 1
el = 1P + gul) @ Shu—217 + g(ful) = inf {5l ~al” +g(la)}

b) . {} A2 }(g). Lo e }
= inf {5l = 17 + glal) | < inf {5~ 71 + gw)],

—

where (a) follows from statement (i), (b) follows from (2.8) and (c) follows from the fact that
T < IRY. This together with |u| € T proves (2.7).

Finally, if u is the unique solution in (2.6), we see from statement (ii) that if Z; = 0 we will
have u; = 0. Consequently, we have Z; # 0 whenever u; # 0. Then statement (i) implies that
sgn(u;) = sgn(z;) whenever u; # 0. This completes the proof. O

Remark 2.1. Let T < IR} be a nonempty closed set, T € R" and g : R} — R4 be lower
semicontinuous. Then one can observe from the proof of Lemma 2.3 that (2.8) holds. Using this

observation, one can show readily that if w € Argmin,, . {%Hw —|z||? +g(w)}, then & := sgn(T)ow

belongs to Argmin ey {%Hm —z|% + g(\x|)} We will need this fact when developing our algorithm
in Section 4.

4Note that such a solution exists because Y is closed and nonempty, and g is nonnegative lower semicontinuous.



3 First-order necessary optimality conditions

In this section, we discuss (first-order) necessary optimality conditions for (1.5) under Assumption 1.1.
Specifically, we discuss necessary conditions for a feasible point of (1.5) to be globally optimal.

3.1 Necessary optimality conditions based on limiting subdifferential

One large class of necessary optimality conditions is deduced based on the concept of limiting
subdifferential; see [15] for a recent overview. Indeed, in view of [19, Theorem 10.1] and [19,
Exercise 8.8(c)], we know that if * is a global minimizer of (1.5) under Assumption 1.1, then

0€ dF(x™) = Vf(z™) + o(A¥(| - [) + da(] - ) (™). (3.1)

A point T satisfying (3.1) in place of z* is called a stationary point of the function F in (1.5). Notice
that the subdifferential of the nonsmooth part P(z) := A¥(|z|) + da(|z|), however, is in general
difficult to characterize. In addition, typical algorithm such as the proximal gradient algorithm,
which clusters at such stationary points, needs to compute the proximal mapping of P in each
iteration, i.e., to find
¥ € Argmin in —y* + A¥(Jz])
lzlen 2V

given y and v > 0. To the best of our knowledge, such an & cannot be found efficiently for general
Q and ¥ satisfying Assumption 1.1.

Simpler subdifferential-based necessary optimality conditions can be obtained under suitable
constraint qualifications at x™* involving the horizon subdifferential, such as

O7W(]-)(z*) N (=Ng(a*)) = {0}, (3.2)

where Q := {z : |2| € Q}. Indeed, under (3.2), it is possible to deduce using (3.1) and [19,
Corollary 10.9] that if * is a global minimizer of (1.5) under Assumption 1.1, then

0e Vf(z*)+ A0¥(|-|)(z*) + Ng(z*).

While the one single set of subdifferential in (3.1) is split into two in the above display, with each
subdifferential set considerably easier to characterize, the sum of the two sets is still not easy to
characterize. Furthermore, it also appears to be nontrivial to verify (3.2) at a candidate solution
x* for our particular problem (1.5); indeed, it is unclear whether such condition should hold at any
global minimizer of our problem (1.5).

In view of the complicated structure of (1.5) and the aforementioned difficulties, in this paper,
we focus on another way of deriving necessary optimality conditions for our problem (1.5). This
alternative approach does not explicitly involve subdifferentials and is constraint-qualification free.
It is based on fixed points of set-valued maps.

3.2 Necessary optimality conditions based on fixed points of set-valued
maps

Suppose that z* is a global minimizer of (1.5) under Assumption 1.1. Then, using the Lipschitz
continuity of Vf, we see that for any z satisfying |z| € £,

F(a®) < F(x) = f(2) + A¥(|z])

< f@F) +Vf (@), —a®) + %Hw —a*|? + XU (Jz]).



This shows that

L

x* € Argmin {<Vf(x*), x—z*)+ —fo — ¥ + )\\I/(|.13)} )
|z]|eQ 2

Motivated by the above argument, the notion of L-stationarity (see [2, Definition 2.3] and [3,

Definition 5.2]) and the proof of [3, Lemma 5.3], we say that an 2* is an L-stationary point of (1.5)

(under Assumption 1.1) if there exists 7 > 0 such that

x* € Argmin {(Vf(x*),x —z*)+ QHx —*? + )\\Il(\x|)} . (3.3)
|z]eQ 2

Note that if we define a set-valued map S, : R" =3 IR" by

Sa(y) = Argmin {(V7 )2 =)+ gl — vl + A¥(al)}.
xr
then z* is an L-stationary point of (1.5) if and only if there exists n > 0 such that z* is a fixed
point of S, i.e., z* € S,(z™*).

In view of [19, Theorem 10.1] and [19, Exercise 8.8(c)], we can deduce immediately that if z* is
an L-stationary point of (1.5), then z* is a stationary point of F, i.e., it satisfies (3.1). Moreover,
one can show that if the proximal gradient algorithm is applied to solving (1.5), any accumulation
point is an L-stationary point; in this sense, we can regard the proximal gradient algorithm as
a companion algorithm for the notion of L-stationarity. However, as pointed out in the previous
subsection, it is not clear whether the proximal gradient algorithm can be applied efficiently to
solve (1.5).

In this paper, we further relax the notion of optimality in the fixed point inclusion in (3.3) and
define the following notion of ,p¢-stationarity for (1.5) under Assumption 1.1. The name topt
suggests that this notion of stationarity involves an optimization problem concerning ).

Definition 3.1 (¢opi-stationarity condition). Consider (1.5) and suppose that Assumption 1.1
holds. We say that x* satisfies the 1ops-stationarity condition, if there exist some 0y > 0 and
o e {—=1,1}" such that

z* e A‘rg‘rgin {Z*WUJ?) —(l*)[* + 3 [N+ af - Vifa*) - ¢l ((|ef )] -w(a:il)} o (34)
T|€ i=1
with of = sgn(x}) whenever x¥ # 0, and of = —sgn(V,; f(z*)) if xf =0 and V, f(z*) # 0.

We show in the next theorem that the 1,p¢-stationarity condition is a necessary condition for
global optimality of (1.5) under Assumption 1.1; the proof involves two majorization steps, which
arise in (3.5) and (3.12) below. Interestingly, this implication does not require any additional
assumptions such as (3.2). We will develop a companion algorithm for this notion of stationarity in
Section 4.

Theorem 3.1 (Global optimality implies ¥op-stationarity). Consider (1.5) and suppose that
Assumption 1.1 holds. Then any global minimizer of (1.5) satisfies the Vops-stationarity condition.

Proof. Let z* be a global minimizer of (1.5). We then have |z*| € Q and for any |z| € ©,
F@®) + 20 ([27]) < f(x) + AT (|]).

Since f has Lipschitz gradient with modulus Ly, we have for any |z| € €,

AU([e*]) < flz) = (%) + AU (|a]) < (Vf(5), © —2%) + %Hx =¥+ 2u(z).  (3.5)



Fix any Ly > Ly. Then (3.5) further implies that
#* € Arg min {(Vf(x*), z—a*)+ Lo —a*|? + A\I/(|x|)}
|z|eQ
~ (3.6)
! * *\ /T \[?
{Zlo = @* = V@)L + xw(z) }

= Argmin
|z|eQ
Now we show that z* is the unique optimal solution in (3.6). Suppose to the contrary that there

% - .
exists another optimal solution z* # x*. We then see from this and Ly > Ly that

L
(VI @*), 7 = a*) 4 e — ¥ + Au(a*))
L
<(Vf(a*), 7% —a*) + FhEt — o + e (a¥)
L
D vrt), % )+ H et =P M) = M (),
where we used the assumption that both z* and z* are optimal solutions in (a). The above display
contradicts (3.5) and hence z* is the unique solution in (3.6).
By Lemma 2.3, we have from (3.6) that
sgn(z}) = sgn (¢ — V,;f(2*)/Ly) when ¥ # 0,
® f * ®\ /T (3.7)
| |€Argmln{ |w— |a* =V f(a*) /Ll |~ + A )}
Let v = ¢ (w). Recalling ¢ = 9=, we then have
. (L = 2
(1)) € Argmin {2 o(0) — |a* — ¥ £@")/Ly[ | + Xe,vp) (38)
ved(Q)
For each i, let g;(v;) := %(qﬁ(vl) — |x¥ — Vif(:r*)/f/f|)2 and
N —sgn(V;f(z*)) if ¥ =0and V,f(z*) # 0;
* = (3.9)
sgn(x¥) else.
We then obtain from the local Lipschitz continuity of ¢’ that
(9)s W(2F1)) = L(e((|af ) — |2F — Vif (= )/Lfl ¢y (P(|271)
= Ly(lz}| — 2§ — Vif (2*)/Ly) - ¢ (0 (Iff )
. (3.10)
)/Lg) - ¢4 (@(l27)

()

f/fa ( ;k — JJ +V; f(

if (%) - ¢ (|2 ),
where (a) follows from the definition of o} in (3.9) and the first equation in (3.7).
On the other hand, upon rewriting (3.8) as 1 (|z*|) € Argmin, e, ) {221 gi(vi) + Me, v)}, we

see that for any v € ()
(3.11)

Zgi(vi)—Zgi(¢(lw?|))+A<67v— (%))
9i (W27 1) + Avi = (j27]))] -
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Now, fix any R > 0 and define By := {v : |v — ¢¥(|z*|)| < R}. For all v € )(Q) n Bg, we have
lvi| < |w(Jz*])|| + R for all i. We then see from Lemma 2.2° that there exists g > 0 such that for
all v e ¥(Q) N Br and all 1,

9i(vi) = (W (1271)) < (90 (W (|2 D) (vi — P (|27]) + %R(vi = (|2} )% (3.12)

For simplicity of notation, we let u; := A + (¢;)", (¥(|z¥])) and p = (u1,...,p0) . Let 1y =
max{ng, 2| pl|/R} and define

. : UE o * S Ay *
Vi .—gre%l)n{gnv VDI + 3 e w(latD) ). (3.13)

For any vy, € V,,, we have from ¢ (|z*|) € (£2) that

N4
o, — (P + vy, = ("))
< %*W(Ix*l) = D(J2*NI? + o (|2*]) = v(|2¥])) = 0.

This together with the definition of 7, and the Cauchy-Schwartz inequality further gives

2
o — (] < 2 < R,

RS

which implies that v, € Br. In view of the arbitrariness of vy, , we have shown

V,. < Bg. (3.14)

Nx =

Now, we combine (3.11) with (3.12), use 14 > nr and obtain

W(le*) e Argmin {Hfo - w(a* ) + Y (A + (04 @) (v = ()}

’UE’([)(Q)F\BH

- Argmin {Zu = 9" DI + 3} m(vi = (1)}

’UE'(ZJ(Q)P\BR

(@) (s fn2 L N .

= Argmin { — v —¥(|z*))|* + > pi(vi — ¢(|27]))
veB(Q) { 2 ; }

n

2 Argmin { T o —w(a* |2 + Y] (A + af - Vef(@*) - ¢ @t ) i = vt ]) |,

’L)G’L[J(Q) i=1

where (a) follows from (3.13) and (3.14), and (b) follows from (3.10) and the definition of ;.
Finally, recall that for any |z| € Q, we have 1 (|z|) € ¥(£2). Then we can deduce from this and
the above display that

%"wa) =D+ X A+ af - Vif (@) - ¢ (2 D)] - [(2il) — ()]

> %*Hlﬁ(lw*I) — (" )I* + Z (Ao - Vif (@) - ¢ (i )] - [ (2] — (|2 )] = 0.

This together with the arbitrariness of |z| € Q and the definition of a* in (3.9) shows that x*
satisfies the ,p¢-stationarity condition. O

5Notice that ¢ : IRy — IRy is convex because ¥ is concave and monotone. Moreover, the differentiability of ¢ on
(0, ) follows from ¢’ > 0 on (0, o).

11



Next, we show that the ¢,p¢-stationary condition in Definition 3.1 implies the standard notion
of stationarity in (3.1) when Q = IR’;.

Proposition 3.1 (¢,p-stationarity versus stationarity). Consider (1.5) and suppose that As-
sumption 1.1 holds. Suppose in addition that Q = IR} and let x* satisfy the corresponding
Yopt -stationarity condition. Then the following statements hold.

(i) For all i with x} # 0, we have
0 A0Y(| - [)(F) + Vif (7). (3.15)
(ii) If ¢ (0) < o, then we have for all i with x¥ = 0 that

IVif (@) < 2, (0). (3.16)

Proof. By definition, there exist some 1, > 0 and o* € {—1,1}" with af = sgn(z]) whenever
xf # 0, and of = —sgn(V, f(z*)) if zF = 0 and V, f(z*) # 0, such that

z* € Argmin {Z*Izb(lwl) —(Z*)IP + Y A+ af - Vif(a*) - ¢y (|2 ]))] -w(mw} :

|zleRY i=1
This implies that
|z*| e Arg min {?I@b(w) — (2 )+ D A+ af - Vif(a*) - ¢ (0 (|2F])] - ¢(wi)} :
welky i=1

Since ¥ : RY} — IRY is invertible and ¥ (IR"}) = IR’} , we further have

P(|a*]) € Arg min {nz*v — (@ )P+ DL [N+ af - Vif (%) - L ((2f)] - vz} - (317)

v i=1

Using the first-order optimality conditions for (3.17), we have for all ¢ with 7 # 0 (hence ¢¥/(|z¥|) > 0)
that

0=X+af Vif(z*) ¢'@(z]])).
Multiplying both sides of the above equality by v'(|z¥|)sgn(x¥) and recalling ¢ = ¢~!, we obtain

sgn(zf) + of - Vif(a®) - ¢ (¢(|27F]))¢ (|7 )sgn(a)

0= M'(|27])
sgn(a}) + of - Vif(z*) - sgn(a7)

- X (|x
@ (|27 )sen(a?) + Vif(x*) € Aow(| - ) (@F) + Vaf (&%),

*
%
*
%

where (a) holds because o) = sgn(z}), and the inclusion holds because ¢ is differentiable at |z| > 0.
This proves (i).

Now, suppose in addition that ¢/ (0) < co and let i be such that z¥ = 0. Note that (3.16)
holds trivially if V;f(2z*) = 0. On the other hand, when V, f(x*) # 0, we have from the first-order
optimality conditions for (3.17) that

0€ X+ afVf(z%)¢, (0) + N, (0)
= A= [Vif @)@ (0) " + N, (0),

where the equality follows from the definition of o in Definition 3.1 (since V; f(z*) # 0) and the
facts that ¢, (0) € (0,90), ¢(0) =0 and ¢ = ¢! on IRy. Item (ii) now follows immediately from
(3.18) upon recalling that Ng, (0) = IR_. O

(3.18)

12



Remark 3.1 (Relationship with existing stationarity). We discuss the relationship between opy -
stationary (Definition 8.1) and some existing concepts of stationarity.

(i) When Q = R} and ¢/, (0) < o0, one can see from [24, Lemma 2.2 (ii)] that 0y(| - |)(0) =

[—.(0), ¥/ .(0)]. Thus, in this case, if x* is opt-stationary for (1.5) under Assumption 1.1,
then Proposition 8.1 (ii) implies that for all i with xF =0,

0 A0Y(] - (0) + Vif(2®).

In view of this, Proposition 3.1 (i) and invoking [19, Ezercise 8.8(c)], we see that x* satisfies
the following standard first-order optimality condition:

0e VF(@®) +A0W(] - [)(«*) = (f() + A¥(] - ) (=").

Moreover, in this case, we have that f(-)+ ¥ (|-|) is a difference-of-convez function and ¥(|-|)
is reqular. Consequently,

0 VF(a*) +A00(| - [)(@*) = VF(2*) + A0W(| - [)(@*) € 0 (F(-) + A¥(| - ])) (2*).
This means that x* is a d-stationary point, in view of the definition on [15, page 28].

When Q = RY} and 1)'_(0) = o0, our model (1.5) is a special case of the model in [1], in which a
generalized stationary point was defined for constrained problems with a non-Lipschitz objective
function and a closed convex constraint. We show that, in this case, if * is VYops-stationary
for (1.5) under Assumption 1.1, then x* is a generalized stationary point of (1.5).

To this end, we first note from [1, Definition 2] that an T is a generalized stationary point
of (1.5) under Assumption 1.1 with Q@ = RY} and ¢/, (0) = o if H°(z;v;IR") = 0 for every
ve Vg i={w: w =0iz =0}, where H(-) = f(-) + AU(| - |) and H°(Z;v;IR") :=
lim SupH(ertv)*H(y)
y—Z,t]0

. Now, notice that for every v € Vg,

H (2 0:R™) = limsup? 1)~ FW) + /\Z?:tl[w(\yz— + toi]) = Y (lyi)]
y—T,t|0

fly+tv) = fly) + A 2 [D(lyi + tvi]) — ¥(lwil)]

1:%; 70

@)

= lim sup
y—Z,t|0 t

(b) (Vf(z), vy + A 2 lim sup Wi + i) = $(lyil)

i:7; 0 Yi—Tistl0 t

L@, o+ A Y W (lEsen(@)v

2:2;7#0

DS (T @) + € (3)sen(z)) i,

1:%; 70

where (a) follows from the definition of Vz, (b) follows from the smoothness of f, (c) follows
from the differentiability of ¥ on (0, ) and (d) follows from the fact that v € Vz. Thus,
H°(Z;v;IR™) = 0 for every v € Vz means that for each i with T; # 0,

(Vif(®) + M (|z;])sgn(z;)) vi = 0 for all v; € R.
This is further equivalent to

0=Vif(z) + M (|z:])sgn(z:) € Vi f(Z) + A0U(| - [)(z:).

13



Consequently, x* being a generalized stationary point is equivalent to (3.15), which is implied
by x* being Yopy-stationary, thanks to Proposition 3.1 (i).

As a specific example, when f(x) = |Az — b||* and ¥ (t) = tP with p € (0,0.5], condition (3.15)
can be written as

0 = Aplzf [P sgn(z}) + 2 (AT (Az* — b)),, Vi with z} # 0.

Let X* be the diagonal matriz whose ith diagonal entry equals x¥. The above display can be
further equivalently written as

0 = Ap|z*|P + 2X* AT (Az* — b),

which reduces to the standard first-order optimality condition for the optimization problem
mingern f(z) + AX i, |24|P; see, for example, [10, Definition 3.1].

4 Algorithm and convergence analysis

In this section, we motivate and present our algorithm for solving (1.5) under Assumption 1.1, and
establish subsequential convergence of our proposed algorithm to 1,p-stationary points.

Noting that the objective of (1.5) consists of a smooth part f (with Lipschitz gradient) and a
nonsmooth part (AU + dq)(] - |), it is tempting to adapt the proximal gradient algorithm, which is a
popular class of algorithm for tackling optimization problems with objectives being the sum of a
smooth part and a nonsmooth part. However, suppose we directly apply the proximal gradient
algorithm with constant stepsize v € (0, L%)v we will be confronted with the following subproblem

in every iteration: given x*, the zF*! is obtained as an & satisfying
1
& € Arg min {(Vf(xk),x —2Fy+ |z —2")? + )\\I/(|m|)} . (4.1)
|z|eQ 2y

This subproblem basically requires computing the so-called proximal mapping of the nonsmooth
nonconvex function x +— v - (AV + dg)(]z|), which does not have closed-form solutions in general.
Thus, it appears that the proximal gradient algorithm cannot be efficiently applied to solving (1.5).

Despite not having closed-form solutions, the subproblem (4.1) looks highly structured. Indeed,
note that (4.1) can be equivalently written as

% € Arg min {21|:r — (2% =V (™)) + )\\I/(|:r|)} . (4.2)
|z|eQ2 Y

Based on this reformulation and Remark 2.1, we see that a solution & of (4.1) can be obtained as
& = & ow, where & = sgn(z¥ — 4V f(2¥)) and

w € Arg min {1|w — |z* — AV @P)])? + )\\I/(w)} .
weN 27

The above optimization problem does not seem to be easier to solve compared with (4.2), because
the projection onto © may not be efficiently executable and the structure of ¢ can be complex.%
To further simplify the subproblem we need to solve, we exploit Assumption 1.1 (b), which states

6When Pq can be efficiently computed and +(t) = t, one can compute 1w efficiently as an element of sz(\xk —
YV £(2*)| — Mye). In this case, the proximal gradient algorithm (4.1) and its variants can be applied efficiently. See
also Remark 4.1.
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that 1 has an inverse ¢ whose directional derivative is locally Lipschitz, to deduce that a w can be
obtained as W = ¢(¥), with © given by

% € Argmin {21||gz5(v) ot — AV ()2 + Me, v>} . (4.3)
ve () 2

Such a reparametrization strategy was also used recently in [14, 23] in the special case when
P(t) = v/t (ie., ¢(t) = t?) for some simplex-constrained problems, and was called Hadamard
parametrization in [14]. In principle, the optimization problem in (4.3) can be solved approximately
by the gradient projection algorithm (despite the fact that the objective is only continuously
differentiable in IR | ), because projections onto ¢(£2) are easy to compute by assumption. Then
one can obtain # approximately as sgn(z® — 4V f(x)) o ¢(v).

However, solving the subproblem (4.3) to a desired accuracy can be time consuming. Having this
in mind, our algorithm, which is presented in Algorithm 1 below, is essentially based on solving the
proximal gradient subproblem (4.1) “roughly” that we apply only one step of gradient projection

o (4.3). Since the objective of (4.3) does not have globally Lipschitz gradient, we incorporate a
linesearch scheme in Step 1b) to search for a viable parameter 7. We also incorporate a standard
non-monotone linesearch scheme (4.4) to look for a viable 4. Observe that in this algorithm, we
maintain v* = (|z¥|) (and hence |z*| = ¢(v¥)) for all k£ = 0.

Algorithm 1 Doubly majorized algorithm (DMA) for (1.5) under Assumption 1.1

Step 0. Take any z° with [2°] € Q. Let Ymax = Ymin > 0 and 0 < <7 < 0. Let ¢; > 0,
7€ (0, 1) and pick an integer M > 0. Let v° = (|z°|) and set k = 0.

Step 1. Pick any ¥ € [Ymin, Ymax]-

1a) Pick any 7 € [1,7]. Consider G5(v) := Xe,v) + >/, 9%(7%) with g%(vi) _ %((25(%‘) B
|2k — Y, f(2*)])? for each i.

1b) Compute
~ K = ;
¥ € Argmin {2|U — ¥+ DA+ (68) ) ()] - (vi — vf)} :
UE’L[)(Q) i=1
If G5(?) < G5(v*), go to Step 1c); otherwise, update 7j < 7j/7 and go to Step 1b).
1c) Set @ = sgn(z* — AV f(z¥)) 0 ¢(¥). If
C1

F() < F(z%) — = ||t — 2F||? 4.4
(@) < | _max  Fle)—Sli -7 (4.4)

go to Step 2; otherwise, update ¥ « 77 and go to Step 1a).

Step 2. Set 7, = 7, v = 7, v*T! = ¥ and 2F*! = ¥. Update k < k + 1 and go to Step 1.

Remark 4.1. We have the following observations concerning Algorithm 1 when ¢(t) = t.

(i) If ¥(t) =t and the 7] in Step 1a) is chosen such that 7] > %, then Step 1b) will be invoked
exactly once per iteration. Indeed, when (t) = t, we have ¢(t) = t and hence each gféY 18
continuously differentiable on IR. Thus, the subproblem in Step 1b) can be rewritten as

ve Argmin{gv—vk|2+<VGq(vk), v—vk>}. (4.5)
veQ
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Note that v* € Q and VG5 has Lipschitz modulus % Using these, 11 =
is a minimizer in (4.5), we have

and the fact that v

Y=

17—11’““2

G5(0) < G5(v%) +(VG5(v"), T — %) + %H

~ 7~
< G5(0F) + (VG5 (0"), 5 —o*) + I = oF|?
n
< Ga(vk) + <VG§(vk), oF — vk> + iHvk — kaQ = Ga(vk).

Hence, Step 1b) is invoked exactly once because 1) does not need to be updated.

(if) If4(t) =t and the 7} in Step 1a) is chosen as % in every iteration, then Algorithm 1 reduces to

a proximal gradient algorithm with non-monotone linesearch (NPG). To see this, first observe
that the subproblem in Step 1b) can be further rewritten from (4.5) to

~ 1 ~ ~
v € Py (vk - %VG:Y(UIC)) =Py (vk - (vk — y’c + 'y)\e)> =Py (yk — 'y)\e),

where y* = |x* — FV f(2*)|. Using this observation, the definition of U in Step lc) and
Remark 2.1, we conclude that U satisfies

1 n
ue Argmin{ﬂm — (2 AV (™))? —I—)\Z |$z|}
i=1

|z|eQ
This together with (4.4) shows that Algorithm 1 reduces to NPG in this case.

We next establish the well-definedness of Algorithm 1. Specifically, we will argue that Step 1b)
and Step 1c) are invoked finitely many times in each iteration. To this end, consider (1.5) and
suppose that Assumption 1.1 holds. Fix any v > 0 and n > 0. For each fixed > 1 and 2 € R"
with ¥ := ¢(|Z|) € ¥(), define

G, (0) = Me,vy + 3 g (0) (46)
i=1
with g (t) := %(d)(t) — |Z; — vV f(%)])? for each i, and let v, be any element such that
Ui N :
vy € Argmin {2||v SO+ YA+ () (5] (o — @)} | (47)
veP(Q i=1

Then we have the following result concerning v,.

Lemma 4.1. Consider (1.5) and suppose that Assumption 1.1 holds. Fiz anyy>0,171>0,n>17
and T € R"™ with v := ¥(|Z|) € ¥(Q), and define G-, and v, as in (4.6) and (4.7), respectively. Then
the following statements hold.

(i) It holds that v, — 9| < 2np~ (A + max; [(g%)", (0:)])-

(ii) Let L% denote the corresponding L obtained by applying Lemma 2.2 with g = g,"y and a =
i + 2nn~ (X + max; |(g2)(0;)|) for each i. Then it holds that

n — max; Lt

Gy (vg) < G4() 5 llvn = 9.
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(iii) Suppose that v, satisfies Gy(v,) < G4(V) and let uy := sgn(z — YV f(Z)) o ¢(vy,). Then it
holds that

1/1

Fu) < @) - 5 (2 1r) lur - 312

Proof. We first prove (i). From the definition of v, in (4.7) and the fact that ¥ € ¢(Q2), we have
vy — 0] + X7 [A+ () (05)] - ([vg)i — 0i) < 0. Rearranging terms, we see further that

n

oy =02 < = YT+ (6 (0] - (feuls - B)

i=1
ZHmaXm @)1 oy = Voo
i=1
n[HmaXI(gv) @)1 - [y =]

The desired conclusion now follows immediately from the above display and the fact that n > 7.

We next prove (ii). Let L denote the corresponding L obtained by applying Lemma 2.2 with g =
g} and a = 0; + 2nn~ ()\+max] (92)(©;)]), and define I; := [0, D; + 2nn~ " (X + max; |(92)". (0;))]
for each ¢. Then we have [v,]; € I; from item (i). Hence, we have in view of (4.6) and Lemma 2.2
that,

Gy (vg) = Me, vy) + Z 9, ([onli) = Me, 0y + e, vy = 0) + > g ([vg))

<D+ 2[00 + 1+ ) Gl 50 + S D~
ety 3 oh00 + B o~ 0] < G 0) + R g

where (a) follows from the definition of v, in (4.7) and the fact that v € ¢)(£2), and the last inequality
follows from (4.6). This proves (ii).

Finally, we prove (iii). Using Taylor’s inequality and the fact that f has Lipschitz gradient with
modulus Ly, we have

Fluy) < f(2) +{Vf(@), uy —7) + %Iluw—f|\2+(/\‘lf+5n)(luvl)

= (@) + V(@) uy —7) + o

luy =21 + (AT + 0) (Juy|) — Bluy — ),

where 3 := % (% - L f). Rearranging terms in the above display, we obtain
F(uy) + Blu, — 2
A ~ A 1 A
< (@) +<VFE), uy —2) + %H“v = 2 + (AT + 80)(lu, )

— £@) = JIVI@I + 5l = & +9VF@) + A0 + 60 ()
© 1@) = JIVI@ + g-la0 6(w) a0 2 =y VI@IF + (AT + da) (9(0,)
= £@) = FIVF@IF + 5-10(v) ~ [ -1V @I +AZ ol

Y 1(@) ~ SIVI@I? + Gy vy), (4.8)
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where (a) holds because |u,| = ¢(v,) componentwise and we write & := sgn(z — vV f(Z)) for
notational simplicity, and (b) follows from the definition of G, in (4.6). Using the assumption that
G (vy) < G4(0), we deduce further from (4.8) that

F(us) + Blu, — 31 < 1(@) - V@I + G, (0)
= /@) = JIVI@I + o 160) — o - AVS@IIF + 2 2
v i=1

< 1@ - 2IV@)IP + %u% — (@ = VI@)I? + (N + 50)(13])
~ F(3),

where the last inequality follows from ¥ = ¢(|Z|) (thus ¢(v) = [Z[), |Z] € © and the triangle
inequality. This completes the proof. O

Remark 4.2 (Well-definedness of Algorithm 1). We discuss the well-definedness of Algorithm 1,
i.e., we arque that in each iteration, Step 1b) and Step 1c) are only invoked finitely many times.

Suppose that an ¥ is given for some k = 0. Observe from the update rule of the algorithm that
v* = (|2*]). For a given ¥ > 0, by applying Lemma 4.1 (ii) with T = x* and invoking (4.6) and
(4.7), we conclude that G5 (V) < Gx(v¥) for all sufficiently large 7j. This together with the update
rule of 7] shows that Step 1b) will only be invoked finitely many times given any 7.

In addition, for any ¥ that satisfies G5 (V) < G5(v*), according to Lemma 4.1 (iii), the corre-
sponding @ will satisfy (4.4) whenever ¥ < ﬁ In view of the update rule of 5, we can also
conclude that Step 1c¢) is invoked only finitely many times at the kth iteration. This also implies
that Step 1b) will only be repeated for finitely many different . These observations together with an
induction argument prove the well-definedness of Algorithm 1.

Finally, notice that at iteration k, the initial 5 at the beginning of Step 1 lies in [Ymin, Ymax]-
Hence, we conclude based on this and the update rule of ¥ that

. T ~
Ymax = Yk Z min {’Ymirn Cl"‘Lf} = Ymin-

We now show that any accumulation point of the {z*} generated by Algorithm 1 is a 1op¢-
stationary point. In this regard, we can say that Algorithm 1 is a companion algorithm for the
notion of 9,p¢ stationarity. This companion relationship is not too unexpected upon noting the
similarity between the derivations that led to Algorithm 1 and the proof of Theorem 3.1 (which
establishes the necessity of 1p¢-stationarity for global optimality).

Theorem 4.1 (Subsequential convergence). Consider (1.5) and suppose that Assumption 1.1 holds.
Let {z*} and {n},} be generated by Algorithm 1. Then the following statements hold.

(i) It holds that limy,_, |2*+1 — 2| = 0.
(ii) The sequences {x*} and {n} are bounded.
(iii) Any accumulation point x* of {x*} satisfies the Vops-stationarity condition.
Proof. First, we see from the criterion (4.4) that for all k,
F(z*) < F(2°) < 0.

Notice that F is level-bounded because f and i are nonnegative functions, A\ > 0, and ¥ is

level-bounded according to Assumption 1.1. Consequently, the sequence {z*} is bounded. Moreover,

k+1 _

the conclusion limy_,q ||z 2% = 0 can be proved similarly as in [22, Lemma 4].
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We next prove the boundedness of {7, }. We start by deriving an auxiliary bound on a particular
choice of L that satisfies the assumption in Lemma 4.1 (ii). To this end, let M := sup,, [2*|: this
quantity is finite because {z*} is bounded. Fix any i € {1,...,n} and any k > 0. Then

af = vf +2np (A + max (2% (w)1)
(a) _ _
< o)+ 20 4yt max g (v) — faf = V5 F)]] - 1) (o))

S G e e [ R A A G [ A (T Doy

< (=) + 20~ (A + max Vi ()] ¢y (D (|251))D)

()
< sup {[(eD)l] + 20y max 95 £ @) 164 gD = 2 <

[z <M

where (a) follows from the definition of gféy in Step 1la) of the algorithm, (b) follows from the
definition of v*, (c) holds because |z*|| < M, and the finiteness of M; follows from the continuity
of ¢, ¢, and Vf. Next, writing y* := |2¥ — v,V f(2¥)| for notational simplicity, and we apply
Lemma 2.1 with & = ¢ on [0, M1] to obtain a ¢ and use it to construct an L as in (2.1) with g = g,
on [0, vf +2nn~ ' (A +max; |(¢Z, ), (vF))]. Denote this L by L., and observe that this L', satisfies
the assumption in Lemma 4.1 (ii) with v = 4 and 9; = v¥. Moreover, it holds that

2
) c 1 ake
Le=— 1| sup o)+ |yF| ) + — [ sup |#L(t)] + L

Tk \te 2

Tk \te[0,ak] [0,a¥]

2
<< ( sup [6(8)] + M + Y sUP IVf(x)|>+~1 ( sup ]|¢'+<t>|+Mlc> My <0,

Ymin \ te[0,M1] <M min \ te[0,M; 2

where ¢ depends only on M; and the convex function ¢ (since it is obtained by applying Lemma 2.1
with h = ¢ on [0, M7]) and is independent of k, and the inequality follows from (4.9) and the facts
that |2¥| < M and Ymax = Y& = Ymin for all k& (thanks to Remark 4.2). Since My is a constant
independent of ¢ and k, we conclude further that
max sgp Liw < Ms. (4.10)
Equipped with (4.10), we are now ready to argue the boundedness of {rf;}. Notice that for
each k, either G5 () < Gx(v*) holds for the first 7 used in Step 1b) so that 7jx < 7, or Step 1b)
is invoked multiple times so that the ¥ corresponding to 77 still gives G5(?) > G5(v*). In the
latter case, applying Lemma 4.1 (ii) with Z = z¥, v = 4, n = 77, and recalling that the L,
constructed above satisfies the assumption in Lemma 4.1 (ii), we see that this case is possible only
if 77 < max; L:Jk Combining the two cases with (4.10), we conclude that

M < max{7, max L./} < max{n, Ma/7}.

This completes the proof of item (ii).

Finally, we prove item (iii). Let x* be an accumulation point of {z*} and define o* :=

sgn(z* —4, V£ (%)) for notational simplicity. Since Ymax = Y& = Ymin > 0 for all k& (see Remark 4.2)
and {7} is bounded by item (ii), by passing to further subsequences if necessary, we may assume
without loss of generality that there exist subsequences {z*7}, {7,} and {7x,} such that

k}j *

= *
=T, .hm Nk; = M,
J—00 )

lim x

. m o = lim sgn(2® —v;,, Vf(2")) = a
J—0

li

, lm oy, = s (4.11)
J—0 ;
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for some o* € {—1,1}", 4 =1 > 0 and 4 = Ymin > 0. We then have from direct computation that
. i k; . kj k; ki
T (g1, ' (o) = T (6(0f") — el — 7, Vaf D) - 6 (00

(a) ;. k; k; ) k;
= lim (|27 | — @77 =, Vaf (@™)]) - &) (0,7)

Jj—®©
. kj+1 k; A k; kj+1 k;
= Jim (|z; T =2 = Vaf (@) g = L) - 8 () g
(b) ;. ki, kj+1 k; k; kj+1 k;
= jlgg}(ai (@; T z;T + ’ijvif(xkj)) + o7 | = | i ) - &'y (v; )/ Yk
= af V; f(a®) ¢, (¥(|2F])), (4.12)
where (a) follows from v* = ¢(|2*|) and ¢ = ¥~%, (b) is true in view of the definition of o and
the update rule of z**1, and the last equality follows from item (i), (4.11), the continuity of ¢/,

and the fact that v*i = ¢ (|z*|).
Now, recall that z*™1 = o¥ o ¢(v*T1), and

W e Argmin d o — o812 + S+ (g2, ) ()] - (0 —oF) ¢ (4.13)
vep(@) | 2

From (4.13), we obtain that for each j > 0,

i=1

Mhj | kj+1 kj|2 N ' kj kj+1 k;
S0 = b2 NN (g, ) (0] (0 = o)

i=1
Nk, . ¢ i K, k;
< o= oM+ I (gh, ) ()] - (v = ) (4.14)
i=1
whenever v € (). Also, notice from (4.11) and item (i) that

lim v = lim ¢(j2"]) = ¢(|2*]) and  lim o551 = lim p(ja" ) = p(|2*]).
J]—0 J]—00 J—00 J—00

Using the above display, (4.11) and (4.12), we conclude upon passing to the limit as j goes to
infinity in (4.14) that

%*Hlﬂ(lw*\) —(* )P + 35 [N+ af - Vif@*) - ¢l (e )] - ((af]) — ()

< By (fal) - vl + 2 [\ af - Vaf (o) - 0 D)] - Wllaal) = b(loF)
whenever z satisfies |z| € Q. Since i
2| = lim o€ 2,
we obtain that
7" € Argmin {”;wuw — (DI + 2 [\ +af - Vif () - ol ()] -w<|xi|>} . @)

k

i

Finally, since z**! = ¥ o ¢(v**1), we have «
using item (i) and (4.11), we must also have

= sgn(z¥™) whenever ¢(|zFT!]) = 05 % 0. Then

af =sgn(zf) if f #0.

Moreover, we see from (4.11) and the lower boundedness of {7} in Remark 4.2 that for all ¢ with
xF = 0 but V,;f(z*) # 0, we have of = —sgn(V,;f(2*)). These conditions on a* together with
(4.15) show that x™* is a Y,pt-stationary point as desired. O
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5 Numerical experiments

In this section, we will conduct numerical experiments for Algorithm 1 on order-constrained
compressed sensing problems and block order-constrained sparse time-lagged regression problems.
All experiments are performed in Matlab R2017b on a 64-bit PC with 2.9 GHz Intel Core i9 6-Core
and 32GB of DDR4 RAM.

5.1 Compressed sensing problems with order constraints

We first consider the following order-constrained compressed sensing problems with nonconvex
regularizers for recovering sparse signals with an order structure:

1 n
min = | Az — b2 + A Y (|2
zeR" 2 ;1 (5.1)

st. |z = |xe| = = |wnl,

where A e R™*" be R™, A > 0 and ¢(t) = t* with p € (0, 0.5] or ¥(t) = log(1 + t/e) with e > 0.

We will solve (5.1) with ¢(t) = ¥ (p € (0, 0.5]) by DMA (Algorithm 1), and call this algorithm
DMA,;. To the best of our knowledge, our DMA is the only available algorithm for such a model,
due to the presence of both the ¢, regularizer and the order constraints. As a comparison, we
consider three other simpler models:

e mingegr 5]|Az — b2 + MY [#]? (i.e., change the order-constrained model (5.1) to an
unconstrained model);

® MmNy, |5 |usisslen| 34T — O + XX |2 (ie., set (t) =t in (5.1));
e mingegre 1| Az — B> + AX | 2| (i.e., LASSO).

Note that all these three models” can be solved by the NPG proposed in [22] (see also [12,16,17]).
We call the corresponding algorithms NP Gy, NPGr, . and NP Gy, respectively, and we refer to
the above four models as “/,-regularized models”.

We also solve (5.1) with 9(t) = log(1 + t/€) by our DMA, and call this algorithm DMA,g.
Similarly, as a comparison, we solve a simpler model mingem» 3| Az — b2 + A" log(1 + |z;|/e)
by NPG and call this algorithm NPGj.e. In the following, we refer to these two models as
“logarithmically regularized models”.

Data generation. First, we randomly generate an n-dimensional vector with s nonzero entries,
which follow i.i.d. standard Gaussian distribution. We let the original signal zi;,. € IR" be a
reordering of this vector such that its entries are nonincreasing in magnitude. Then, we generate
A e R™*" by normalizing each column of a randomly generated matrix that has i.i.d. standard
Gaussian elements. Next, we set the measurement vector b = Axie + o€, where the noise factor
o > 0 and the noise vector € € IR™ has i.i.d. standard Gaussian entries.

Algorithm settings. For DMA, we generate an n-dimensional random vector with i.i.d. Gaus-
sian entries and set the initial point 2° as the corresponding reordered vector whose entries are
nonincreasing in magnitude. We let ¢; = 107%, 7 = 0.5 and M = 4. In Step 1, we initialize 77 = 1,
and initialize ¥ = 1 for £ = 0 and

o |z —a* 1|7 -8 8
5= mln{max{ka_w, 10 , 10

"Especially, the second model can be solved by NPG as discussed in Remark 4.1.
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for k > 1. In Step 1b), we solve the subproblem by a solver developed from [13].8

For NPG, we use the same settings as those described in [16, Section 5] and set P(z) =
AX |zlP for NPGyy, P(2) = Az|1 + ds(z) where S := {z e R": |21]| = |2a| = -+ |2,|} for
NPGyic, P(z) = A|z[1 for NPGyry, and P(z) = XX log(1 + |z]/€) for NPGyqg.

We use the same initial point for all six algorithms and terminate them whenever the running
time exceeds some fixed time maztime (seconds).

Test settings. In our experiments, we set p = 0.5, ¢ = 0.5 and ¢ = 0.1, and consider three
triples (n,m, s) = (2560, 540, 180), (n,m, s) = (10240, 2160, 720) and (n,m, s) = (25600, 5400, 1800).
For each triple, we generate 10 random instances as described above. For each instance for the
triple (n,m, s) = (2560, 540, 180), we solve the £,-regularized models with A = 5 x 1072 and the
logarithmically regularized models with A = 8 x 1072, and terminate all algorithms with maztime = 4.
For each instance for the triple (n, m, s) = (10240, 2160, 720), we solve the ¢,-regularized models with
A = 8x 1072 and the logarithmically regularized models with A = 10~!, and terminate all algorithms
with maztime = 16. Finally, for each instance for the triple (n,m,s) = (25600, 5400, 1800), we
solve the £,-regularized models with A\ = 10~! and the logarithmically regularized models with
A =2 x 1071, and terminate all algorithms with maztime = 40.

To evaluate the performance of all the algorithms, similar to [25, Section 5.1], we take a
normalized measurement of recovery error with respect to time. Specifically, for each random
instance and each algorithm, we let e, (k) := |z¥ — Z1ue| be the recovery error at ¥ and define

e, (k) — emin

B(t) :=min{e(k) : ke {i: T(i) <t}} with e(k):= e (0) — emin”

where T'(k) denotes the total computational time until z* is obtained, and ™™ is the minimum
recovery error among all algorithms at termination for this random instance.

In Figure 1, for each triple, we compare the average of E(t) over 10 random instances for all six
algorithms. In addition, for the triple (n,m, s) = (25600, 5400, 1800), we plot the first 1980 entries
of the recovered signals obtained from each algorithm for one random instance. As one can see,
DMA,, generally outperforms NPGj, and NPGry, . in terms of recovery error, which suggests
the necessity of using the order constraints and the ¢, regularizer (instead of the ¢; regularizer),
respectively. Also, the outperformance of DMA),, over NPGy,, highlights the advantage of
incorporating the order constraints into the model as well. Moreover, compared with NPGy,1, the
superiority of DMA,, and DMA,,, implies that solving order-constrained models with nonconvex
regularizers can help improve the recovery error in the case when fewer number of observations are
available.

5.2 Sparse time-lagged regression problems with block order constraints

We also test our Algorithm 1 on real data. Specifically, we solve the following block order-constrained
model arising from [21, Section 3]° for time-lagged regression problems.

1 K
min  —| Az — b||*> + A z;]?
s gl =07 A Y lo) .
j=1
st |wi-nyks1| = |Te-ykeel = = k], i=1,...,p,

8The matlab code can be found in https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/
submissions/47196/versions/1/previews/improve_JP/toolbox_imp_JP/lsqisotonic.m/index.html.
91n [21], the authors only considered the model with ¢ = 1 and subsequently solved a convex approximation of it.
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Figure 1: Comparison of the averaged recovery errors and the recovered signals (the horizontal axis
shows the index ¢ and the vertical axis shows the ith entry of the recovered signal).

where A e RV*PK pe RN, A > 0and ¢ € (0, 0.5] U {1}. Here, N is the number of observations, p
is the number of predictors, and K is the maximum time lag. For j = 1,..., N, data b; represents
the jth observation and data Aj; ;_1)x 4, represents the value of predictor i of observation j at
time-lag k from the current time.

The data we used for test record 330 days of the level of atmospheric ozone concentration
(response variable) and 8 daily meteorological measurements (predictors) made in the Los Angeles
basin in 1976; see https://hastie.su.domains/ElemStatLearn/datasets/LAozone.data. This
data set was used in [21, Section 3.5] and we set a maximum time-lag of 20 days as in [21, Section 3.5],
and predict from the measurements on the current day and the previous 19 days. Then we set both
the training and validation sets to have the same size and use cross validation to search for a viable
A for final comparison. Specifically, in model (5.2), we let K = 20, p = 8 and N = 155, and each b;
and A;. (i =1,...,N) are constructed as described in Figure 2.

As we can see from Figure 2, the training data matrix A € IR!%**1%0 corresponds to the data
of 8 predictors (vh, ... vis) in Z from row 1 to row 174, and b € IR'®® correspond to the data of
ozone in Z from row 20 to row 174. We construct the validation data matrix A € IR'***1% and
be R in a similar way as in Figure 2, where on the right hand side of Figure 2, the A and b
are replaced by Aand b respectively, and the row counter of Z starts from ¢ + N instead of i. In
essence, elements of A correspond to the data of 8 predictors in Z from row 156 to row 329, and
elements of b correspond to the data of ozone in Z from row 175 to row 329.

Given that the data for the 8 predictors are measured on different scales, standardizations of
each column of A and b are conducted before solving (5.2):

b b — mean(b)e
std(b)

a; — mean(a;)e

std(a;) ’

a; <
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ozone vh wind  --- vis ozone vh wind  --- vis

3 5710 4 .-+ 250 : : : : :
5 5700 3 --- 100 * Ai20 Aiso -+ Aiieo | < ithrowof Z
Z=| 5 5760 3 -+ 60 = . . . .
6 5720 4 60 ' ‘ ' ‘ ' '
) * Aia  Aize -+ Ajiaa| < (i+18)th row of Z
b; Aix A1 -+ Ajan ] < (i+19)th row of Z

Figure 2: Here, Z represents the data matrix in the aforementioned link of real data, and the matrix on the
right hand side presents the position (in Z) of b; and A;; (j = 1,...,160), each of which takes the value of
the element of Z with the same position. For example, b2 is set to be the ozone data in the 21st row of Z,
and Az 1, A2.2,...A2,20 are set to be the vh data in the 21st, 20th, ..., and the 2nd row of Z, respectively.

where a; is the ith column of A, and mean(-) and std(-) stand for the sample mean and the sample
standard deviation, respectively. Once we solve (5.2) with the standardized A and b as described
above to obtain an approximate solution, say x*, we will predict b by

bpred = std(b) - (A'z*) + mean(b)e,

where A’ is obtained from A by standardizing each column of A.

Next, we will solve (5.2) with ¢ = 0.3 and ¢ = 0.5 by Algorithm 1 (DMA). In [21], problem
(5.2) with ¢ = 1 was approximated by a convex problem by replacing each block of constraints
by the constraints as in (1.4). As mentioned in the introduction, the solution obtained from this
approximation model may lack proper interpretation. Meanwhile, note that (5.2) with ¢ = 1 can
be solved by NPG in view of Remark 4.1. In our experiments below, we will compare DMA with
NPG (which solves (5.2) with ¢ = 1) in terms of validation error, which is defined by ||5pmd —b.

Algorithm settings. For DMA and NPG, we generate the same random initial point 2 € IRPX
with each K-dimensional block having nonincreasing entries in the same way as described in
Section 5.1, and terminate both algorithms whenever

J=* — 271

-~ <10°°
max {1, [*]}

The other parameters for DMA and NPG are the same as in Section 5.1. In Step 1b), the
subproblems of these algorithms reduce to p separate projection problems onto the set Q= {y e
IRf ty1 = -+ = YK}, which again will be solved by the solver developed from [13].

In our test, for a sequence of \ generated from the Matlab command “logspace(-4, 1, 100)”,
we solve the corresponding (5.2) by DMA (with ¢ = 0.3 and ¢ = 0.5) and NPGQG, and then
compute their identification errors (defined by ||Az* —b|, denoted by DMAY%?, DMAY5 and NPGiq,
respectively) and validation errors (defined by [byrea — b], denoted by DMA%3 DMA%® and NPG.,
respectively). In Figure 3, we first plot the identification errors and validation errors with different
A for DMA (with ¢ = 0.3 and ¢ = 0.5) and NPG. Next, for each algorithm, we select a proper A in
the sense of simultaneously leading to small identification error and small validation error. The one
we select for DMA is A = 3.68 x 1073 when ¢ = 0.3, A = 4.13 x 1073 when ¢ = 0.5, and for NPG
is A = 1.67 x 1072, which correspond to the A in Figure 3 (the first three pictures) that leads to the
smallest validation error DMAY3 (55.55), DMAY-® (56.17) and NPG, (56.98), respectively. In view
of this, DMA has a slightly better prediction that NPG. In the last picture of Figure 3, we plot
the predicted ozone concentration Epred for DMA (with ¢ = 0.3 and ¢ = 0.5) and NPG (denoted
by predictedpma, 5, predictedpaa, ; and predictedypg respectively, each solves (5.2) with the A
selected above) and true ozone concentration b (denoted by true). One can see from the picture
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that the prediction from DMA has fewer negative entries in the predicted ozone concentration: 4
negative entries from DMA with ¢ = 0.5 and 7 negative entries from NPG.
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Figure 3: The first three pictures plot the identification error (blue point) and the validation error
(red point) with different A for DMA (with ¢ = 0.3 and ¢ = 0.5) and NPG, respectively. The last
picture presents the true ozone concentration and predicted ozone concentration for DMA with
A =3.68 x 1073 when ¢ = 0.3, A = 4.13 x 1072 when ¢ = 0.5 and NPG with A = 1.67 x 1072.
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