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Distributed Stochastic Compositional Optimization Problems

over Directed Networks

Shengchao Zhao and Yongchao Liu*

Abstract. We study the distributed stochastic compositional optimization problems over di-
rected communication networks in which agents privately own a stochastic compositional ob-
jective function and collaborate to minimize the sum of all objective functions. We propose a
distributed stochastic compositional gradient descent method, where the gradient tracking and
the stochastic correction techniques are employed to adapt to the networks’ directed structure
and increase the accuracy of inner function estimation. When the objective function is smooth,
the proposed method achieves the convergence rate O (k:_l/ 2) and sample complexity O (6%) for
finding the (¢)-stationary point. When the objective function is strongly convex, the convergence
rate is improved to O (k:_l). Moreover, the asymptotic normality of Polyak-Ruppert averaged
iterates of the proposed method is also presented. We demonstrate the empirical performance of
the proposed method on model-agnostic meta-learning problem and logistic regression problem.

Key words. distributed stochastic compositional optimization, directed communication net-
works, gradient tracking, asymptotic normality

1 Introduction

Stochastic compositional optimization problem (SCO) has received extensive attention re-
cently for its application in machine learning, stochastic programming and financial engineering,
ete, [2, 12| 21), 26], 27], which is in the form of

. 7 1

min f(g(x)) (1)
where f(g(z)) = (f o g)(z) denotes the function composition, f(z) := E[F(z;()], g(z) :=
E[G(z;¢)], G(-;¢) : R = RP and F(-;¢) : R — R are measurable functions parameterized by
random variables ¢ and ¢ respectively.

To solve the stochastic compositional optimization problem , one may employ the two
sample based popular schemes in stochastic optimization, sample average approximation (SAA)
and stochastic approximation (SA). For the SAA scheme, Dentcheva et al. [5] discuss the
asymptotic behavior of the SAA problem and establish the central limit theorem for the optimal
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value. Ermoliev and Norkin [7] study the conditions for convergence in mean, almost surely of
SAA problem and provide the large deviation bounds for the optimal values. The SA based
method for SCO can be traced back to 1970s [6], in which penalty functions for stochastic
constraints and composite regression models are considered. More recently, Wang et al. [20]
present the stochastic compositional gradient descent method (SCGD) for problem , which
is defined as follows

21 = (1 — Br)zr + BuG(zk; ¢k), @)

Tp1 = T — ax VG (215 Ok) VF (2415 Cr)s
where stepsize «aj diminishes to zero at a faster rate than (g, iterates zypy1 and xj are the
estimations of inner function value g(x;) and decision variable respectively. For nonsmooth
convex problems, the SCGD [26] achieves a convergence rate of O (k_l/ 4) in the general case
and O (k:_Q/ 3) in the strongly convex case. An accelerated variant of SCGD with improved
convergence rate has been presented in [27], where an extrapolation-smoothing scheme is in-
troduced. Moreover, the variance reduction techniques, such as SVRG and SARAH, have been
merged into the compositional optimization framework [14] [16], 30]. Note the fact that the two-
timescale structure of SCGD may decrease the convergence rate, Ghadimi et al. [I1] propose a
nested averaged stochastic approximation method to solve SCO (1), which is a single-timescale
method and achieves the optimal convergence rate O (k:_l/ 2) as methods for one-level uncon-
strained stochastic optimization. Chen et al. [2] propose the stochastically corrected stochastic
compositional gradient method (SCSC), which is also a single-timescale method and achieves
the optimal convergence rate O (k:_l/ 2). Specially, the SCSC read as follows:

zp+1 = (1= Bi) (2 + G(2ks o) — G(@h-1; 0k)) + BeG (ks dr),

Tpt1 = T — ap VG (g o) VE (28415 Cr),
where stepsize a; does not have to decay to zero at a faster rate than f;. Compared with
SCGD, SCSC adds an extra term G(xy; ¢r) — G(zk—1; ¢k) in recursion , which may reduce
the tracking variance of g(xy). We refer [1}, [15] 24] [29] 30] for the new developments on multilevel
compositional optimization and [4], 13] on conditional stochastic optimization.

Note that the machine learning and financial engineering problems tend to be character-
ized by large scale or distributed storage of data, consequently it is necessary to study the
distributed stochastic compositional optimization problems. Gao and Huang [10] first consider
the distributed stochastic compositional optimization problem (DSCO)

rERd

min h(zx) := %ij(gj(ac)), (3)
j=1

where f;(gj(x)) := E[F;(E[Gj(x; ¢;)]; ;)] is the local objective of agent j. Under the assump-
tion that each agent only knows its own local objective function, Gao and Huang [10] propose a
distributed stochastic compositional gradient descent method for problem , which is named
GP-DSCGD:

Zigr1 = (L= vBr) ik + VBeGi(Ti s dik), (4)
n
Bikpr = ) Wik — NV Gi(@ik; 0ik) VF(Ziki1; Gik), (5)
=
Tikt1 = Tik + Br(Tig+1 — Tik), (6)



where parameters v > 0,5, > 0, n > 0 are stepszie parameters and W = {w;;} is a sym-
metric and doubly stochastic matrix. Different from the SCGD in [26], there is an additional
hyperparameter 7 in computing z; x4+1 , which is helpful to control the estimation variance
of % x+1. On the other hand, @ can also be beneficial to control the estimation variance of
Zi k+1. When the objective function is smooth and the communication network is undirected,
the proposed method achieves the optimal convergence rate O (k:_l/ 2). Moreover, a gradient-
tracking version of GP-DSCGD, named GT-DSCGD, is also proposed in [I0], where the local
gradient VG (2 k; i k) VF(2i k15 Gg) in is replaced with the global gradient tracker. As
the two methods need the increasing batch size O(\/E), the corresponding sample complexity
for finding the (e)-stationary point is O(E%)

In this paper, we consider the distributed stochastic problem over directed communi-
cation networks. We propose a gradient-tracking based distributed stochastic method, which
incorporates the SCSC method [2] into the AB/push-pull scheme [19, 28]. The collaboration of
AB scheme and SCSC induces more complex estimate errors, for example, the estimate error
of inner function values is involved in the gradient tracking process of AB scheme, the errors
of tracked gradient affect the iterations and then the inner function values. Therefore, the
convergence analysis techniques of AB/push-pull scheme [19] 28] and SCSC are not applicable.
Moreover, the techniques used in [10] are not applicable as the induced estimate error forms
non-martingale-difference. As far as we are concerned, the contributions of the paper can be
summarized as follows.

e We propose a distributed stochastic optimization method for DSCO over directed com-
munication networks. To the best of our knowledge, it is the first one for distributed
stochastic compositional optimization problem over directed communication networks.
(i) For the nonconvex smooth objective, it achieves the same order of convergence rate
o (k:_l/2) as GP-DSCGD and GT-DSCGD in [I0] under constant stepsize strategy. How-
ever, the sample complexity for finding the (e)-stationary point is O (}2) as the proposed
method does not require increasing batch size in each iteration. (ii) For the strongly convex
and smooth objective, we show that the square of the distance between the iterate and the
optimal solution converges to zero with rate O (k:_l) under diminishing stepsize strategy,
which is the optimal convergence rate as methods for one-level unconstrained stochastic
optimization [23].

e We present that Polyak-Ruppert averaged iterates of the proposed method converge in
distribution to a normal random vector for any agent. Research on asymptotic normality
results for the SA based algorithm can be traced to the works in the 1950s [3], §]. To the
best of our knowledge, our result is the first asymptotic normality result for the stochastic
approximation based method of DSCO. On the other hand, it is a complement to the
asymptotic normality on the SAA scheme for stochastic compositional optimization [5].
We verify our theoretical results using two numerical examples, model-agnostic meta-
learning problem and logistic regression problem.

The rest of this paper is organized as follows. Section 2 introduces the proposed method and
some standard assumptions for DSCO, communication graphs and weighted matrices. Section



3 focuses on the convergence analysis of the proposed method. At last, Section 4 presents
numerical results to validate the theoretic results.

Throughout this paper, we use the following notation. R% denotes the d-dimension Euclidean
space endowed with norm ||z|| = \/(z,z). Denote 1:= (1 1...1)T€R", 0:=(00...0)T € R%
I; € R™? stands for the identity matrix. A ® B denotes the Kronecker product of matrix A
and B. For any positive sequences {ax} and {b;}, ar = O(by) if there exists ¢ > 0 such that
ap, < cbg. The communication relationship between agents is characterized by a directed graph
G=V,E), where V = {1,2,...,n} is the node set and € C V x V is the edge set. For any i € V,
Py, and P, are distributions of random variables ¢; and ¢; respectively.

2 AB-DSCSC Method

In this section, we propose a gradient tracking based distributed stochastically corrected
stochastic compositional gradient method for DSCO over directed communication networks.

Algorithm 1 AB/push-pull based Distributed Stochastically Corrected Stochastic Composi-
tional Gradient (AB-DSCSC):

Require: initial values z;1 € R, zi1 € RP, 91 ud Py,, G d P, yin
VGi(zi1;¢0i1)VEi(zi1; ) for any i € V; stepsizes o, > 0, B > 0; nonnegative weight matrices

A = {aijh1<ij<n and B = {bj;}1<i j<n-
1: For k=1,2,--- do
2: State update: for any i € V,
Tik+1 = Zaij (Tjk — Yjk) - (7)
j=1

iid

3: Inner function value tracking update: for any i € V, draw gb; ki1 ~ Pp; to compute

Zi k1 = (1 — Br) (Zi,k: + Gi(2s k13 ¢;,k+1) = Gi(zix; ¢;,k+1)) + BrGi(wi kv ¢;,k+1)' (8)

id

4: Gradient tracking update: for any i € V, draw ¢; p11 ~ Pp,, G rx+1 id P, to compute

Yiktl = Z biYjke + VGi(Ti k15 i k1) VFi (26 k15 Gikr1) — VGil@ik; Gik) Vi (zik; Gok). - (9)

j=1

4: end for

Throughout our analysis in the paper, we make the following two assumptions on the objec-
tive function, communication graphs and weight matrices A and B.

Assumption 1. [Objective function] Let Cy,Cf,Vy, Ly and Ly be positive scalars. For
Vi€V, Va,a’ € R4 Vy,y €RP,



(a) functions G;(-; ¢;) and F;(+;(;) are Ly and Ly smooth, that is,
IVGi(w; ¢) — VGila's 63)|| < Lyl — 2,

and
IVEi(y;G) — VE(y ;G < Lelly—y |i;

(b)
E [VGi(a: 651 VE(y; G)] = Voi@)Vily),  E [Gilws 6,1)] = ilw);

(c) the stochastic gradients of f; and g; are bounded in expectation, that is

E[IVGi(z;6)|1°|G] < Cq,  E[IVFi(y; G)II°] < Cps
(d) function G(-;¢;) has bounded variance, i.e., E [||Gi(z; ¢:) — gi(2)[|?] < Vy;

Assumption [I] is standard assumption for stochastic compositional optimization problem
[2, 10, 26]. Conditions (b) and (d) in Assumption [l are analogous to the unbiasedness and
bounded variance assumptions for non-compositional stochastic optimization problems.

Assumption 2. [weight matrices and networks| Let G4 = (V,€a) and Gpr = (V,Epr) be
subgraphs of G induced by matrices A and BT respectively.

(a) The matrix A € R™*" is nonnegative row stochastic and B € R™*" is nonnegative column
stochastic, i.e., A1 =1 and 1B = 17. In addition, the diagonal entries of A and B are
positive, i.e., A; > 0 and B;; > 0 for all i € V.

(b) The graphs G4 and Gpr each contain at least one spanning tree. Moreover, there exists at
least one node that is a root of spanning trees for both G4 and Gpr, i.e. R4 NRpr # 0,
where R4 ( Rpr) is the set of roots of all possible spanning trees in the graph G4 ( Gpr).

It is worth noting that Assumption [2| (b) is weaker than requiring that both G4 and Gpr
are strongly connected, which offers greater flexibility in the design of G4 and Gp [20]. Under
Assumption [2) the matrix A has a nonnegative left eigenvector uT (w.r.t. eigenvalue 1) with
uTl = n, and the matrix B has a nonnegative right eigenvector v (w.r.t. eigenvalue 1) with
17v = n. Moreover, uTv > 0.

For easy of presentation, we rewrite AB-DSCSC (—) in a compact form:
Xk+1 = A (X — arYk)
1 2 1
zpr1 = (1 — By) (Zk + G;(cll - G;(CJL) + ﬂkG;(ﬁzl, (10)
Yit1 = Byg + Hypq — Hy,
where A := A ® 14, B:=B® I;, the vectors xi, Vi, Zg, G&Zl, G,(jzl and Hj; concatenate

! !
all wik's, Yik's, zik's, Gi(Tik+1,0;5.1)'8 Gi(Tiks @50 1)’s and VG(@ k5 Gik) VEi(2i k3 Gik)'s
respectively.



3 Convergence analysis

In this section, we derive convergence rates of AB-DSCSC. We also investigate the asymptotic
normality of AB-DSCSC when the objective function is strongly convex. We first present a
technical lemma which provides some norms for studying the consensus of AB-DSCSC.

Lemma 1. Under Assumption [3, there exist vector norms, denoted as || - ||la, | - ||, on

R such that the corresponding induced matriz norms |[W||l 5 = sup, [Wola [[W]lg =

R BN
SUPyo ”WﬂB for W e R"xnd gqtisfy:

[ES

. 1uT N 1T
HA—u®Id <1, H’B—V®Id <1 (11)
n A n B
Additionally, let || - ||« and || - ||« be any two vector norms of || - ||, || - ||la or || - ||B. There exists
a constant ¢ > 1 such that
%|[« < E|%|[«x, V¥x€R™. (12)

Proof. Under Assumption [2, the conditions of [25, Lemma 3] hold and then there exists an
invertible matrix A, € R?*% such that

1uT 1uT
e N i
n ||, n
where |||, and [|-]| are matrix norms induced by vector norms ||z||. := [[A.z| and 2-norm
respectively. Let A = A, ® I;. Noting that (W1 ® Wg)il = Wfl ® W;l for any invertible
matrices W1, Wy € R™*7d A=l — A—1 @ I;. Therefore, vector matrix ||x||a := ||Ax]| is well

defined and the corresponding induced matrix norm [|-||, satisfies

- 1uT N ~ 1u’T R
H‘A—u@dd - A<A—“®Id>A—1
n A n

1uT

n
T

- A*<A—1U>A*1 <1
n

By the similar analysis, there exists B such that

- 1T s 1T .
n

B-— ol
n

B

The inequality follows from the equivalence relation of all norms on R%. The proof is
complete. n

The next lemma studies the asymptotic consensus of AB-DSCSC.



Lemma 2. Suppose Assumptions hold. Stepsize oy, is nonincreasing and limy_, oo %ﬁl =1

Define auziliary sequence {y,} as
y;g+1 = By, + Jii1 — Ji, (13)

where vectors J; and y,1 concatenate all Vg;(x; 1)V fi(zik)’s and Vg;(x;1)V fi(2i1) s respectively.
Then

E [Ixs1 — 1@ rial[A] + 4B Vi = v © G ]

k
2
B]) + (c1 + c3cq) Z Pk_ta?a (14)
t=1

< o <E [Hxl 1@ :m\lﬂ +eE [Hyi —v®y

__— T (1T ! I+7g 3474 — IB-Iillg ~
where Ty, := (% ®Id) Xk, Ui, = (7 ®Id) Y, and p = max{ 5=, —1 (, Cp = max ¢, TBC ,

1+7% 1t ||, cinCyCy
61:1 2 n — C 3
1+ 74 v1T 2 < 2
0 =870 ||Ly — T o 1y|| o (CrE+CyL}) || A - L[
1-14 n B
81+T]23 I v1T o1 272 (C L2+CL2) cganCf 1—7’%
cg = -— ¢ 2 oy =
ST ZTT e TlgT VT T )2 T g
- 1uT N 17
TA :zl A—i@)ld , TB:= B—V—®Id , (15)
n A n B

u and v are the left eigenvector of A and the right eigenvector of B respectively, vector norms
|- lla, |l - I8 and matriz norms ||-|| o ||-llg are introduced in Lemma 1]

Proof. We first provide the upper bound of consensus error xx+1 —1 ® T in the mean square
sense. Note that for any random vectors 6, 6’ and positive scalar 7,

E [H0+9'Hj < (1 +7nE[0?] + <1 + i) E [He' 2] : (16)

where the norm || - ||« may be || - [|a or || - ||B. Choosing
~  1uT / ~  1uT
9:<A—Z®Id>(xk—1®xk), Qz—ak(A_:;@Id)}’ka

we have Xg11 —1® T =60+ 0 and

E [lIxk+1 — 1 ® Tl 2]

_1uT 2 1 ~ 1T 2
<(l1+7)E H<A—®Id> (xp — 1 ® Ty) +<1+>E ak<A—®Id>yk
n A T n A
1+7—%\ 2 21+7—12X 1uT 272 9
< =S Ik — 10wl ] + i 2| A - E [Jlyal?] (17)
2 1—7x A




where 75 is defined in , 7= (1—173)/(273) and the last inequality follows from the fact
(12). By the definition of yj in ,

k—1 2 ko k
E [llysl?] =E || DB B - LaoH + H| | < X [[Bek, 20| Bk )| L, e
where
B(k,t) =B 1Y B —1,) (t<k—1), B(k,k):=1I. (18)
Obviously, —1)‘” SE‘HB—Ind ‘B and for t < k —1,
s _gr—1-t (§ (s _ V1T Sk—2—t (1
Bk < offB+ (B - )|, =]} (B - - o) B2 (B -1,)
B
<o (50|
B
!
Denoting ¢, = max{ % } we have
’HB (k. 1) (H < cyrkt (19)
and
ko ok
k—ty —
E [IyelP] < > D7 A E [IH, || Hy ]
t1=11t2=1
ko ok
Hy, ||”] + E [|[Hy, |?]
< 2 2k— t1—1to |:” t1 2
<dY Y :
t1=1tx=1
k k 2 C.C
< 2 2k—t1—t2 C.Cr < Cbn g“f 20
_Cbtz_ltz_lTB n g f_(l—TB)Q’ ( )
1=112=
where the third inequality follows from Assumption [1| (¢). Substitute into ,
_ 1+ 73 _
E [k —1® 23] < 5 T2E [l — 1@ 23] + i, (21)
1472 1uT _9cinCyC
where ¢ = 172[[|A - B[ @ B

Next, we estimate the upper bound of consensus error ||y;€ -V ®g;€H2 in the mean sense. Set
~ v1T i 7 / v1T
0= (B— n®1d> <Yk_v®yk>7 0 = (Ind_ n®1d> (Je+1 — Ji)
in . By the definitions of Y;c+1 and g;ﬁq, we have Y;g+1 -1® g;ﬁﬂ =0+6 and

E [I¥i =V @ GpallB]
2

2
- v1T / / vl
<(1+7)E H(B_n ®Id) (Yk_v®gk> +<1+ ) M( d_®1d>(Jk+l Jk) ]
B B
1+ 72 , 2 1+ 73 v1T _
<= BEMyk—ve@yk B] 1 Bt - —®1, cQE[||Jk+1—Jk||2}7 (22)
B




where 7g is defined in (15, the second inequality follows from the setting 7 = (1 — 73)/(273)
and . For the term E |||Jgy1 — Jk||2},

E (901 = JulP] = E[I(Vers1 — Ver) Vs + Ve (Ve — VE)?]
<2(CyL+ C’gLfc) E [kaﬂ — Xk”ﬂ

~2 0513+ 03 [ (A1) 1 - 1950 - o

<4(CyL2+C,L3) ‘HA 1,

[T

2
+4(CrLE + CyL3)” oFE |yl (23)
where Vg = [Vgi(214)7, -, V()77 and Vi = [Vfi(a18)T, -, Vfau(@n)T]T, the first
inequality follows from Assumptlon I ) and (c), the second equahty follows from the fact

(A - Ind) (1®zE) =0 as A is a row stochastlc matrix. Substitute and into ,

E |I¥h = v © iillB)

1 + 7'2 ’ /|12
<= BE{ —v®kaB} + 0B [Ixe— 1@} + esad, (24)
where the constants
14 74 v1T < 2
¢ =875 L= T @ L| ¢ (CrLd+Cor3) ||A - L]
~— B B
1+ 74 v1T 2 9 9 5 anC,yCy
=8 1 — I CrL, + CoL3) ||A|l*7——5
s =875 [~ “ oL @ (0513 + o) AP
- . . . 1-72 .
Lastly, we show through combining EI) with 1) Multiplying ¢4 = 462‘\ on both sides

of inequality ,

B [IYisr = v © G I3]

< 1+7']%
- 2

2 1— 72
B} +—TAE {ka -1® ii‘k”i} + ezeaay.

CiE [Hy; ~v ey i

Substituting above inequality into , we have
E [Ixks1 — 1@ xial[A] + B [1¥ign = v © G ]

3—|—7‘i
< E[
1 \

1—1-71%

/ / 2
xp—1® fk”i} + csE [HYk — VU B] + (e1 + ezea)ag,

1

/ / 2
<p (E [lle -1 ®@;H,ﬂ +aE ||y -ve Z?kHBD + (1 + esea)aj,

:|> C1—|—CgC4 Zpk toz?,

}. The proof is complete. O

</ (Bl - 10mi] + ek ||y - ves

1+T]23 3+Ti
2 4

where p = max {

9



Lemma [2] indicates that the consensus errors can be explicitly decomposed into “bias” and
“variance” terms. The bias term characterizes how fast initial conditions are forgotten and is
related to condition numbers 7o and 78 of network topology. The variance term characterizes
the effect of new stochastic gradient, which is independent of the starting point and increases
with the gradient upper bounds C, Cy and Lipschitz parameters Ly, L.

The following lemma is a technical result.

Lemma 3. Suppose that stepsize ay, is nonincreasing and limyg_,o —%— = 1. Then there exists

Ap+1

a constant ¢ such that i

Zpk_tat < cay,
t=1

473 3473
where scalar p = max {TB7 2t

Proof. Let 8 = Zt 1p ~tay, then B, = pzk ! PP 1"ty + ap = pBr_1 + ai. Denoting by, =
Br/ o, then by, = p =1 bk 1+1. Noting that hmk_>OO '“; = 1 and p < 1, there exists an integer

[0
+1
ko > 0 such that ak L < p+1 for k > kg. Taking ¢ = max{sup1<k<k0 b, §+ p}, we have b, < ¢

for k < ko. Suppose that the claim holds for k — 1 (k — 1 > ko), that is by_1 < ¢, then

2p

2p 1—p
=y +1< ——c+1< ——
k—1 PR

c+——c
T p+1 p+1
The proof is complete. O

%—P

2
By the fact limg_, o ;;—’“ =1 and Lemma |D can be rewritten as
k+1

E [Ixs1 — 1€ @xsalla] + 4 [[¥ipr =V © i)

< p" <04E D

Assuming p* = o (ak)ﬂ the consensus errors have a rough upper bounds

/ / 2
-V® ylHB] +E [Hxl -1® :mHiD + (c1 + czcq)caq.

Eflxk —1@zl[a] <Uief, E {Hy; -V @LHQ} < Uraf, (25)
where the constant U; depends on parameters 7o, 78,Cr, Cy, Ly and L.
The next lemma quantifies the error of estimating g;(x; 1) by zi k-

Lemma 4. Suppose that stepsizes oy, and By are nonincreasing and limy_, %ﬁil =1, B < 1.
Then under Assumptions|[IHZ

~ 2
Eﬂmﬂ—gmmﬂgu—ﬁm%mm—gmﬂ+(m@8mA—LmHm
126§n020f|”A”|2 2 2
g - ) aj + 3Vy B, (26)

where g, = [g1(x1.1)T, -+, gn(@nk)T]T and € is defined in @

n this paper, we use constant stepsize and sublinear diminishing stepsize. Then p* = o (ai) holds.

10



Proof. By the definitions of zj,1 and g1,
ziit — 8hr = (1= B1) (2 — 81) + (G —gee) + (1= B (e — G2 (27)
Then
E [lI2e+1 — 8rrll”]
= (1= B)E [z — gell?] + E [ (GLY, — gr1) + (1= B) (e — GILIP]
+ 26 [((1 = Bi) (2 — 80, (GLy — ) + (1= B) (8 — G|

= (1- 6% [lo — &l?] + E [, —grv) + (1= Bl — GELIP] . (28)

f,;” "

where the second equality follows from the fact

E (G —gus) + (1= B)(er — G| = E [E [(Géﬁl —gea) + (1- B)(ge — G2

with
Fi=0 (i1, 21,051,611 €V),

/ p 29
Fp=0 xilazi17¢it7Cit:iev71§t§k U ¢ ZEV72§t§k (k22) ( )
k ) ) s s it

For the second term on the right hand side of ,

E [I(GL, gk+l>+<1—ﬁk><gk—eﬁl>u2}
=E [H(l ~ (G, — G )+ Bu(GL, — gir) + (1 B)(gr — gk+1)\|2}
<301 = B0%E [IGLY, — GELIP| + 36E [IGL — gestll?] +3(1 — 80)E [lgr — g ]
< 6(1 — Br)>CyE [[Ixer1 — k%] + 35V4,

where the second inequality follows from the conditions (c) and (d) in Assumption [I} Substitute
above inequality into ,

E [||Zk+1 - gk+1\|2]
< (1= Br)’E [llze — 8xlI°] + 6(1 — Br)*CyE [|Ixrs1 — xill°] + 387V,

= (1= B)E [ll2k — gll?] + 6(1 - 51)°C,E U\ (A= Tu) (o — 12 7) - ak.&ykm 382,
< (1= 8% [l — &ell?] +12(1 = B)*Coe*[|[A ~ Ly

+12(1 = B2 CoofI|AIPE [lyxl?] + 382V,

] E [ka 1 kaA}

12¢3nC2Cy || A|?
(1—18)2

2
‘Ul—i-

< (1 - Br)’E [llze — gxl’] + (1209(:2WA — L > af + 3V,Bz,

where ¢ is defined in 1' the equality follows from the fact (A - Ind> (1 ® Zx) = 0 by the row

stochasticity of A, the last inequality follows from , and the definition of 8. The proof
is complete. O

11



The following lemma studies the boundness of stochastic noise accumulated in gradient

tracking process.

Lemma 5. Define
&k = Yk — Yg-
Under the conditions of Lemma[2,

(i) E [16]2] < HCL2, where o, = max {¢, IPLxlng)

(ii) there exists constant Us > 0 such that

‘E [<Vh(i'k)a (l:; ® Id) fk>] ’ < Uzay.

Proof. We first show part (i). By the definition of &,

k-1 k
& = ZBk_l_t(B —L)e + e = Zg(kat)eta
t=1 t=1

(30)

(31)

where ¢ := H; — J;, H; and J; present in and Lemma [2[ respectively, B(k, t) is defined in

. Then we have

k
el < YY) B0k, 0| ||[ B¢k 22| E e v )

t1= 1t2 1
k
2k —tq—
< gz Z "2E [[legy || [lecs ]
k k
< 2 2k— tl—tQE|:||€t1H2+H€t2H2:|
iy Y lel]
t1=1tx=1

(32)

where ¢, = max { % } the second inequality follows from . By the definition of ¢,

E [llexl®] =Y E [IVG(@sk; ) VE (23 Gik) — V95(256)V f5(250)|1°]
jfl

< 22 [IVG(55 6517V Ej (2303 G IP] + C1Cy)
—22 E [IVG(ajn: i) I IV Es (2103 G 1P Fis G ]| + CrC)

< 22 (C4E [IVEj (23 Gi)l1?] + CrCy) < 4nCyCy,
j=1

where

.7'—1 = U{xi’l,Z@l 11 € V},

.Fk:a<{xi,1,zi,1,qﬁi,t,g¢:iev,lgtgk—l}u{qﬁ;t:ieV,2§t§k}> (k> 2).

12
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2
Substitute (33) into , Ell6ell?) < GanCrCy Sk _y Yol rli e < FICh parg (i) iy

obtained.

By (31),

= Z E _E < i (VI(z;) — VI(Zi-1)) + Vh(Zy), (I;LT ® Id) B(kvt)ft>
I=t+1
A

+E {E < ( ® Id> B(k,t)ek>
[l 5 - smon (e
t=1 L

k

”uHLCb _
Z Z (12 = Zi1 | lled]]

RRZESw.

<3 ZTétZazEwyznnetm,
t=1

I=t+1

gl

where the third equality holds as {¢} is a martingale difference sequence, the first inequality
follows from and the last inequality follows from the fact Zx11 = Zr — ax (“% ® Id) yi- By

and (33,

E (I1y212] +E [l _ @,

5 21 ) L+ 200Gy (35)

Elllyll llel

Let U = lulPLe, (05 9% 2Cng),

n 2(1-)2

T k—1 k k t—1
e |(va@), (et a)| < 0-mu a3 a- - mu Y ark (Z rf_»,) < Ucay,
t=1 t=2

I=t+1

where the last inequality follows from the fact (1 —7g) ( - i T]l3) <1and Lemma Part (ii)
holds. The proof is complete.

With Lemmas at hand, we are ready to present the convergence rate of AB-DSCSC.

ockCgL?

Theorem 1. Let oy, = \/LT(’ Br = and a < =%5. Then under Assumptions E

CyL7

1 ZE VA2 < 8 (E[h(z1)] +E [||z1 — &1]?]) /a + 8aly N 2 (ﬁwjlivl + Aul’oy +L2U1) o2
K Py xz,k ~ \/K - ’

where constants Uy is defined in , Us presents in Lemma@ and

Llul*c; C4C,
2n2%(1 — )2

12¢nC3Cy || Al CyL}

U =
! (1—78)? ! n?

+ Us + 120, ’HA I,

fors

13



Proof. We first estimate the upper bound of Vh(Zy) in expectation. Noting that Vh(x) is
L (:= C2Ls + CyLg)-smooth [31],

L _ _
R(E), Bost — 7) + 5 k1 — 2l

(V
(o (224) )

u’l
Va4 5 o (5 0 L)

+ <Vh($k),ak <uanh(37k) — <l;: ® Id) <y;€ + €k))> ;

where the second equality follows from the fact that

h(Zk11) < h(Zg) +
2

u’l
ay < ® Id> Yk
n

2

= h(zr) -

_ _ u' _ u' /
Tpy1 = T — Qg <n®1d) Yi =Tk — Qg <n®1d) (yk+§k) .

2
E [IIVA(z)[1*] + SE ||| <1;T ® Id> Yk ]

e (Tt a (Y vne) - (B o) (vira) )| G0

For the third term on the right hand of ,
u’ 2 Laz|jul|? L||lu||?>c C;C,
o <n®ld) . ] < Ledlolle 1y, o) < Ui’ 05y

2n2 — 2n2(1—1B)? %> (37)
where the second inequalities follows from .

Take expectation on both sides of above inequality,

u'vay

E[n(Zr11)] < E[h(z1)] -

L
—E
2

For the fourth term on the right hand of ,

e ()0

2

She w0 + 3 () e e+ 2 () e
il

! I T
N2 E [HV Q Yy, — Yk”Q] + akl’luH ’E KV}Z(C%)? -y (u ® Id> §k>} ‘

a3 T 2 37C, L% 2
CLE [|vh(an) + 5 () E [l — 1© 7] + ( ) E [llg — 2]

n

3T||u||2 ] oyl _
2 E [HV ® U — Yill ] +—, E|( VA(Z), —ag ; @1 ) &
o2 37L2U, 37C, L3 37||ul||?U
k a4 f 2 1 2 2
e [ vaE) 7] + T D+ T gy 2] + T ek, (39)
where Py = Vh(Zy) — Z] 1 Vi(x50)V fi(95(z5k)), P > Z] 1 V5(28)V fi(95(x50)) — g;c

and 7 can be any positive scalar, the first inequality follows from Cauchy-Schwartz inequality

14



and the fact ab < %(ﬁ + %bQ, the second inequality follows from the Lipschitz continuity of

Vi (-)V£ilg;()), Assumptionand the fact 7, = 1 > 21 Vgi(j )V fj(2jk), the third inequal-
ity follows from (25), the fact uTv < n and Lemma [j] (ii).

Plug — into and set 7 = 2%,
P 040, 4 3120

E[n(Zrt1)] < E[R(Zg)] — <1 — ;) [IVA(Z:)]1%] + 22(1 — 73)° R

37 Cg I 2 37|[ul*U; 2 2
g Ll = 2l = ok + U
] L|ju]*¢ C4C
< E[h(z4)] — —E h(ap)l?] + ( St ;
< Elh(aw] - ZE V@] + (S ® L +Ua ) ot
LU ul|?U
+ < n ] 7!2 1) aii + BrE [lgr — z]?] - (39)

Combining with ,

E [(Zrs1)] + E [||Z641 — 81 [I°]
Ll CsC,y

< Efh(@0)] + [(1 = 8% + 8] E [llze — gll?] = FE [IVA@)I?] + ( 221 )2

LU U . 2 1230 C2Cy || Al?
+( kgmgl)d+<mqﬁmA_hd‘ pnCaCyllAll
n

+ Ug) Oéi

) ai + 3Vg/6’,%

n (1-78)2
LU U
< E (e + € [lm — malP) - SE (VA + Usa + (S0 4+ L) (40)
where
Ljju|*¢ ¢4y 2 12¢nCICH| A CiLy
Us = s 58 Uy + 120, |A — | g
! 2n%(1 — 18)? tost ¢ d 1 (1-18)2 92

Reordering the terms of and summing over k from 1 to K,

%E [IVA(zo)?] < Elh(@1)] +E [l21 — g1l*] = (E[M(@x+1)] + E [lzr41 — gx417])

L0y, [P0 5~
Y (e
k=1

K K
U a0 5
_ 2 2 ;
<Elhe]+E lm -l + 0 Yot + (S0 M) S

k=1 k=1

M=

1

i

Multiplying both sides of the above inequality by ﬁ,

N

2 u 2 1
L o) < HEBEL Ll § ()
- VE 7 -

k:
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By the Lipschitz continuity of VA(-), we have

1o 2 & 212 K
e S TE[IVA@i)]?) < e STEIVA@))?] + = S [llei — )]
k=1 k=1 k=1
4L2Uy 4)ul?Uy
< 8 (E[n(z1)] + E [||z1 — &1]1%]) /a + 8alUy N 2 (T + -5+ L2U1) a?
B \/} K I
where the last inequality follows from (25]). The proof is complete. n

Theorem [1| presents that the AB-DSCSC achieves the convergence rate O(K~'/2) finding
the (e)-stationary point, which is same as the convergence rate of stochastic gradient descent
for non-compositional problems. On the other hand, the sample complexity for finding the (€)-
stationary point is O (ﬁ%) as AB-DSCSC does not need the increasing batch size strategy in
each iteration.

Next, we study the convergence rate of AB-DSCSC for the strongly convex objective under
diminishing stepsize strategy.

Theorem 2. Let ay, = a/(k+0)*, Br = Bay, wherea > 0,b>0, a € (1/2,1), f € (0,1/a) and
a/(1+b)* < e min{l, 2/(CZLy + CyLy)}. Under Assumptions E and the condition that

u’'
objective function h(x) is p-strongly conver,

E [z — x*||2] =0 ().

Moreover, if a = a/(k +b), Br = Bay, U%?’H <a< n}g?t;) min{1,2/(C§Lf+C’ng)} and
1< pBa<1+b,

. 1
E [z, —a"*] = 0 <k> '
L. _ u’t .
Proof. Recall the definition Ty, = (7 ® Id) Xp+1 in Lemma

B u' ~
Thy1 = <n X Id) A (ch - akYk)

uT ’
=Ty — oy (n ® Id) (Yk +§k)

— Zp — uTvay Vh(zg) + uTZ% (vh(m) - % i: Vi (zix)V (g (x0))
j=1
J ~
+ ijﬁ;ng<xj,k>ij<gj<xj,k>> it <‘; ® Id) (vou )
P P
(o) (Fon)s) @

16



where y;c and 41 are defined in and , the second equality follows from the fact
uTA = 1. Subsequently,

E [|Ze41 — 2*)1?]
e [
T T
+2 (u ;ak> E [<ark . ;ath<i'k)7Pl§1) + PIEZ) +P/§3) + PI<E4)>:|
T 2 T 2 2
< <1 _u Vn“ak) E [lax - 2*|?] + (u Za’“) E [HP,E” +P® + PP +P;§4)H ]

T T
+2 <“ VO"“) E [<ik — o = 22k, B + PP + P+ P,£4)>}

uTvuoy 2 7 uTvay 2 2]
() () el
n 2 n J

1 T 2
+ <1 + ) (u VO"“) E [HP,E” +P? +pP® 4 pY

_ «  ulvag
Tp—x —

Vh(zy)

2 uTvay 1 2 3 K
]+( Y e 0+ R 1 2+ R

n

|

2T n
T
()l )

(42)

where 7 is any positive scalar, the first inequality follows from [22] Lemm 10], the second
inequalities follows from the inequality ab < %‘2 + % and the fact that Vh(z) is L(:= C’;L F+
C¢Lg)-smooth.

For the second term on the right hand side of (42]),
L 1 uTvaoy 2E HP(1)+P(2)+P(3)+P(4)H2
o " k k k k
2 199 2 (272
1 uTvoy \ - Lc _ 9 uTvayg CgLf 2
< _ _ _
<(1+5) (4( Y ) Ll [ - 1 0muli] +4 (T2 ) S [ - ]
5 |lu ||272 [ H2
+ag —— 2 E y V®y +4 E |l

1 T L272U T 2 C2L2 9
(14 L) (4 Brves Uz ALY ot e [”gk —ZkHﬂ +4||u|| Uy
2T n n n n n?

lull? ¢ 4anC 02
+ - = 4
<1 27 >4 n? (1—1g)2 k> (43)

where ¢, = max {c % } the first inequality follows from Assumptlon(c) and the

Lipschitz continuity of V f;(-), the second inequality follows from (25) and Lemma(s| In addition,
by Lemma [4| and [I7, Lemmas 4-5 in Chapter 2|, there exists a constant U, such that

E [Hgk - ZkHQ] < Usfi = UzPo. (44)
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Combining with , we have
1Y (uTvay)? @, p@ , p® . p@|?
14+ — El|llP" +P” + P>+ P
2T n
T 2 r9-9 2 T CZLQ
. <1+1) <4<u vak> 122200 +4<u vak> o+ 4l 2y, )
2T n n n

[ull® ¢g4nCsCy
(1 + 5 ) SR (LT (45)
C2Lf+CfL ull? CQC C
<16 (1 + (5 e o)\ n” (1b_J;B§2a§+o(ai), (46)
where )
. (47)

~2(G3Ly +CiLy)
For the third term on the right hand side of ,

) <uTVoék> E ka — o, PV £ P 4 p® P,§4)>]

n

< 7iE |ax - 2] + 711 (uTza’“)z E [HP,E” +P® 4+ P,£3)H2] +2 (“TZQ’“) E [( - x*,p,g4>>]

12 /uT L2 12 [uT CiL3 L 12 2
< 7_1E |:”j:k . 1’*H2} + 22 (u VOZk;> 1O‘k i <ll VOZk> fU ﬁ : HUH 72U
1

T n n T n
lull?epco [ cEnCyCy
4nCyC
+n2(1—7']3) (1—-7B)2 tan f
272 2-2
utvpoy [ X2 ABuTvCy Lyulaf  48||u|*®Ur ) 2
< R [z -2t + ( ot aren | ok Hold), (48)
where ¢y is some constant scalar,
u'v
T = 4nluaka (49)

the first inequality follows from the fact ab < Tl“ + 2 for any positive scalar 71, the second
inequality follows from and Lemma |§| in Appendlx

Substitute — into ,
_ N u'vyoy _ .
E |11 —2*|°] < (1 -k ) E [k —2*?] +0(af) +

A8uTvC} L3 plsf3 N 48||ul|?c*U;
2

n nutvy
2
16 (14 (CRLr+CiL)\ > GCsc,
w? n (1—m)?2
Then by [17, Lemmas 4-5 in Chapter 2],
E[|Zke1 — 2*|°] = O(ay) if ax = a/(k+b)* a € (1/2,1),

and . )

E [H.fk — x*”Q] =0 (kj) if a, = a/(k + b),a > uTZMI
The proof is complete. O
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Theorem [2| shows that AB-DSCSC achieves the convergence rate O (%) for finding the op-
timal solution, which is also the optimal convergence rate of stochastic gradient descent for
non-compositional stochastic strongly convex optimization [23].

The next theorem studies the asymptotic normality of AB-DSCSC.

Theorem 3. Let stepsizes ay, = a/(k + b)*, Br = Bag, where a > 0,b > 0, a € (1/2,1),
Be(0,1/a) and a/(1+b)* < min{1,2/(C;Ly + CyLg)}. Suppose

— uTvu

(a) Assumptions hold;
(b) h(x) is p-strongly conve;

(c) there ezist scalar C and matriz H such that

1
HVh(x) - EH(.%‘ — M| < Oz — 2|17, VzeRY,

(14~)/2

where v € (0, 1] satisfies that Y -, %T < 00;

(d) for anyi €V, there exist scalar C; and matriz T; such that
Vi@ - Vi) -Ti(y-) | < Cilly =y 17, vy e R,
(e) for any i €V, Gi(+;¢) is Lipschitz continuous with coefficient L; , that is

HGi(I;sb) - Gi(ﬂﬁl;qﬁ)H <Lyl -2, Vy.y €RP.

Then for any i € V,

LN B e g H™' (S1+8,) (H)T —1H™'S,
7 Z > Vg (x" )T (25, —g5(x5,)) — N1 -
- 2 po} , ; _%SQ(Hfl)T LSQ

where S1 = Cov (VG (x*; ¢;)VF;(g(z*); (), S2 = Cov (Z?Zl Vg;(*)T;G;(z*; ¢j)>.

Proof. By ,

k—
Zoxt—l' \}%Z $2t—fL‘

-1 k
Z\/E th—1®(£t” \/72 ap — 0.

Then by Slutsky’s theorem, it is sufficient to show

1 Z i,t - 'T* d N 0 H71 (Sl + SQ) (Hil)T 7%H7182
—_— , = : .
k = S Vg (&) Ty (2,0 —05(25,0)) —1g (HY)T 1,

n
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Subtract £* from both sides of ,

T T
Tep — @ = g - 0t = SR TR(a) + (“ ZO"“> (P + P2+ PP + PV

<Id — ap— H> (@ — ") — - ZVQJ )T (26 — 95 (Tjk)
+a (P + PV + B + P! )), (51)

uTvayg

where ay = = =&,

1
R == (ka) - (-’ ) ZVgJ o = gy (@) + PP (52)

According to recursion and the definition of [y,

nps
Zisk1 — Gi (Tigy1) = (1 - u.l.vak> (zik — gi (Tig)) + Gz pr1 — 9i(@ik1) + (1= Bi) (gi(ﬂfz’,k) G k)+1>
where Gl(lk)ﬂ = Gi( g1 qb;,kﬂ), Gl@k)“ = Gi(zik; gb;,kﬂ). Combining above equation with
(1),
A1 = (Tog — 6 H) Ay + ) + a (0 + 0 53
k1 = (Toa — axHg) Ay + agny’ + ay, +ni ) (53)
where
_ . 1
Tp—T ~H 1,
Ak = zn 1ng($*)Tj(Z'k—gj(l"k)) 5 HQ = n )
= Js Js
’ n 0 uTVId
(4)
By © , p) , p®
W § o _ [ PO+PV+P -
T S T (06 ) — @) | 0 -
uTv = J J J ' i k+ J
and
(3) 0
e = & i G =95 @i )+1=Br) (05 (250G . .
ZIng(:U )T ( + K+ ndkk ( R)=C Gkt ) — u,fv (Gj(x ?¢j,k+1) —gi(z )))
=

Denote M(k t) =&Yy I, (Tog — 64Hg), N(k,t) = M(k,t) — Hy'. Then by the
recursion ,

1 k k 1 k
—3a . 1>+— th — 3" Mk, t)n”
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It is easy to show that the second term on the right hand side of converge to 0 in
probability, see Lemma [7] in Appendix for details. For the third term on the right hand side of

&9

[ K
EZ:IHMIM |||( [

E [HW(@) - %H(it _—

k

—Z (k,t)n

t:

‘ nga ) (Vfi(gi(@5e)) = VIi(zi0) = T; (250 — 95 (@5e)) H]

‘ > (Vi (@se) = Vi (@) (Vg5 (i0) = V5(210)

]+E[1
n <
Jj=1

P 4 p® m

)

i vk, e)E |

k
ZMktHI( an IE [0 — 05 (i) I'77] +E [z — 2]

S\

:M—‘

2:: \/E [ij,t - x*\lz} E [Ilgj(xj,t) - mlﬂ) + % é [IM(k, t)||E [Hptu) n Pf’)m

k
=72 Z MGk, )]0 (af 7 + ).

where the first inequality follows from the definitions of 77152), Pt(o) and Pt@) in , and ,
the second inequality follows from condition (d), Assumption I ) and the Holder inequality,
the equality follows from ( ., Lemma {4 ' Theorem I and Then by the boundedness of

+
M(k,t) [18, Lemma 1 (ii)], the fact > "2, \/; < oo and Kronecker Lemma, we have
Ly )/
Elll—S "Mkt M(k, )]0 (a7 4 o) — 0.
”@2 (k. ] Zm )lio (a /)

Noting that 7],(:’) is a martingale difference sequence adapted to the filtration Fy, , the fourth
term on the right hand side of

k
3
—= > Mkt

E[}
|

2

1
]f n&t

1 2
(Gﬁ,t)ﬂ = 9j(@j41) — (Gg,t)ﬂ —9j (xj,t))

M(k,t) Y Vg;(z*)T
j=1

= I~

2
2 s, o/ *
+uTv (G;,t)Jrl - gj(wj,t) - (Gj(ﬁj §¢j,t+1) - 9]’(95 ))>> ]
1 k 1 n L/ 2 BL/ 2
2 2 g 2 npL, )2

< 1 2 2 MU OV, )P 4(<a) E[lxj,m—xj,tnh(m) E [z — " ])

1 k
= Ezo(at%

&~
Il
-
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where the inequality follows from the Lipschitz continuity of G;(+; ¢), the second equality follows
from , Theorem [2[ and the fact

E [lesee1 = 236ll’] <3 (E |l2sert = Zenal?] +E [Jwge = 2| +E [|7001 — 2] ) = O ().
2
Then by Kronecker Lemma, E {H\/IE Zle M (k, t)nf’) H ] =1 Zle O (ay) — 0.

It is left to show the asymptotic normality of the first term on the right hand side of .
Indeed, by the similar way to [32, Lemma 6 in Appendix B], we may obtain that

1=y 1= /17 1 a1 q 1
Ell|l— P —— —®Iy)e — 0, — —®I;)e - N(0,—S
2 (en) A CEERRICES)
and
1 k ﬁ n ) p B 2
I ; Ej:l Vg;j(z*)T; (Gj(w s Oikt1) — 95 )) - N (0, (uTV) SQ) ,
where
& = [(VG1(z";10)VE1(9(2*); C1e) — Var(z™5 01.0)V fr(g(@™)T, - - -,
<VGn($*u an,t)VFn(g(x*); Cn,t) - Vgn(ac*, (bn,t)vfn(g(x*)))T]T .
—1 ’I’LH_I _U;VH_l . e ’
Note that H, " = and ¢; j, is independent of ¢, ,. Then
0 U, ’
k -1 -1 1y7-1
1 H - (S1+S)(H )T —=H™'S
I T P e
= —L1S,(H )T 58,
The proof is complete. O

Theorem [3]shows that Polyak-Ruppert averaged iterates of the proposed method converge in
distribution to a normal random vector for any agent. Different from the traditional asymptotic
normality results on SA based methods [3| 8], the asymptotic covariance matrix in has two
parts, H™!S;(H™1)T and H™'Sy(H™!)T, where the first one is induced by the randomness of
gradient and the second one is induced by the randomness of the inner function. Indeed, the
asymptotic normality on the SAA scheme for stochastic compositional optimization has been
studied by Dentcheva et al. [5]. To the best of our knowledge, Theorem is the first asymptotic
normality result for the SA based method on distributed stochastic compositional optimization
problem.

4 Experimental Results

We test the proposed method for two applications, i.e., model-agnostic meta learning problem
and logistic regression problem.
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Figure 1: Meta-training and meta-test.

4.1 Model-agnostic meta learning

Model-agnostic meta learning (MAML) is a powerful tool for learning a new task by using
the prior experience from related tasks [9]. It is to find a good initialization parameter from
similar learning tasks such that taking several gradient steps would produce good results on new
tasks, and the optimizations model is

M
o1
min > (@ —aVin(z), (56)
m=1
where m = 1,2,--- , M is the index of training tasks, « is the adaptation stepsize, f,(x) =

E [Fn(x; (r)] is the loss function of task m. We illustrate the empirical performance of AB-
DSCSC to solve MAML problem and compare it with GP-DSCGD and GT-DSCGD [10].

The setting of MAML is as follows [2, [10]. Each task m € M = {1,2,---, M} maps the
input b to a sine wave $(b; am, ¢m) = am sin(b + ¢,,) where the amplitude a,, and phase ¢,
of the sinusoid vary across tasks. The tasks’ parameters a,, and ¢,, are sampled uniformly
from [0.1, 5] and [0, 27] respectively, input domain of b is uniform on [5, —5]. The regressor of
s(b; am, ¢m) is a fully-connected neural network §(b; x), which consists of two hidden layers with
40 ReLU nodes. The loss function f,,(z) = E; [Hé(b, z) — am sin(b + <z5m)H2] and the one-step

adaptation stepsize a = 0.01.

In this experiment, we generate a directed graph G of 5 agents by adding random links to a
ring network. Each agent is assigned with 200 training tasks, i.e. M = 1000 in problem . We
utilize 2500 new tasks of sinusoidal regression to test the obtained parameters. For AB-DSCSC,
stepsize ap = 0.01, B = 0.8 and communication graphs Ga = Ggr = G. For GP-DSCGD and
GT-DSCGD, stepsize n = 0.03,v = 3, B = 0.33, and set the underlying graphﬂ of G as the
communication graph. In each task, we use 10 samples for training and testing.

2The underlying graph of a directed graph Ql is an undirected graph obtained by replacing all directed edges
of G with undirected edges.
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We run AB-DSCSC, GP-DCSGD and GT-DCSGD for 5000 iterations and record their per-
formance on the training loss and test loss in Figure|l| where the solid curve, dash-dot curve and
dashed curve display the averaged training loss of AB-DSCSC, GT-DCSGD and GP-DCSGD
over different agents respectively. We can observe from Figure [1| (left) that the three methods
achieve similar performance. Figure (1| (right) depicts the test loss on new tasks after 10 gradient
descent steps with the learned model parameters as the initialization. Again, the three methods
achieve similar performance on the new tasks and they are well adaptable to new tasks as test
loss decreasing quickly.

4.2 Conditional stochastic optimization

We consider a modified logistic regression problem, in which the inner and outer randomness
are independent of each other[13],

n

m; l T
. 1 1 - 1

=1 j=m;_1+1

where n = 50, m; = 204, [ = 10000, a; ~ N(0,1;), b; € {1,—1}, ¢s ~ N(0,I;). Obviously,
problem falls in the form of DSCO with inner function

1 T l T T
1 1
gl(x) = [_bmiﬁ-l (l Sz:; ¢S + ami1+1> Lyovry — bmi (l Sz:; Qbs + a’mi> x] s

outer function f;(z) = m%m_l > imiy+1108 (1 +exp (z))), 2 is the j-th component of vector
z € R™.
12 ‘ :
——AB-DSCSC ——AB-DSCSC
""" GT-DSCGD . =-=-=-GT-DSCGD
o GP-DSCGD {; GP-DSCGD
5 100 :E/
[ ‘ 02
i 108 5 0.1
— =
sl — 0
1010 :Tl
s 940 9600 9800 1000 9400 9600 9800 10000}
il
5000 7500 10000 0 2500 5000 7500 10000
Iteration Iteration

Figure 2: Optimality gap and residual.

Similarly, we generate a directed graph G of 50 agents by adding random links to a ring
network, and set communication graphs Ga = Ggr = G for AB-DSCSC. The communication
graph of GP-DCSGD and GT-DSCGD is also set as the underlying graph of G. The stepsize
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ap = 0.01/k%% B, = 0.8/k%6 for AB-DSCSC and 1 = 0.03,7 = 3,5 = 0.33/k%6 for GP-
DCSGD and GT-DCSGD.

Note that problem is a convex optimization problem, we solve it by centralized gradient
descent and denote the optimal solution as x*. Then, we run AB-DSCSC, GP-DCSGD and
GT-DCSGD for 10000 iterations and record their performance on the averaged optimality gap
LS @ik — *||? and average residual £ 3" (h(x;x) — h(z*)) in Figure 2] Obviously, the
three methods can solve the problem efficiently and achieve similar performance.
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Appendix

Lemma 6. Let aj, = a/(k +b)* a > 0,b > 0, a € (1/2,1]. Under Assumptions [I{4 and the
condition that objective function h(x) is u-strongly convex,

. u’ ul|cpe cinC,C
= |- (0w )] < 5,5 205 (5 + 400k ) o

|||B_InH|B C

}, ¢y 18 some constant scalar.
™8

where ¢, = max {E,

Proof. Recall the definition Z; = (“% & Id) X3 in Lemma,

k-1
_ _ ul B u'
T -2t =T — 2" — g < ® Id> Vi1 =T1 — 2" — E ay ( ® Id) Vi,
n n

uT
E Kfﬁk — ", —ay < ® Iy §k>]
n
k-1 uT uT
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— n n

= —oE [<£1 -z — gat (l:; ® Id> Vi, (171; ® Id) zk:]é(kat)ﬁt>] )

and then

t=1
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where ¢, = Hy — J;, H; and J; are defined in and Lemma [2| respectively, the second equality
follows from . Note that E [<a:0 — ", (“% ® Id) B(k, t)et> .7-}] =0 and

E [< (1:: ® 1d> Vios (‘;T ® Id> B(k,t2)6t2> ‘J—}Q} =0 (t; < t2),

where F}. is defined in . Then

k-1 t; 2
_ . u’ [l 114 2 2
e[ (o mon (Trome) )] <o 3 32 o [l (2 ]+ 1)
t1=1ta=1
k-1 t 9 2
lull*cy ks, [ cznCyCy
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||u||20bc cgnC’gC’f

4nC,C _
= 202(1 — 7g) (177B)2+ nCgCy | Qpog—1,

_ IB=Inllg — . . .
where ¢, = max < ¢, %c} and c is some constant scalar, the second inequality follows from

, and (l the third inequality follows from Lemma [3| Noting that limy_, a;: =1,
there exists constant ¢y > ¢ such that

B . u’ ||11H20b60 canng 9
_ _ _ < .
E Kmk ", —ay ( - ® Id> §k>:| S 202 (1= ) \{(1 = )2 +4nCyCy | o,

The proof is complete.

Lemma 7. Let ap = a/(k+0)*, a>0,b>0, a € (1/2,1). Suppose that

(a) Assumptions hold;

(b) for any i €V, there exist scalar C; and matriz T; such that

Vi) - V@) =T (y—y)|| < Clly =y 1", vy e R,

(1+7v)/2

where v € (0, 1] satisfies that Y -, %T < 0.

Denote M(k,t) = & Zizt I

l—t+1 T2a — axHp) , N(k, 1) = M(k,t) — Hy" and

1) () (5 ©1a) &
Ny~ = 3 " )
e T Ve @) (G 67 00) — 95(a))
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Proof. Note that

o = () (5 ©1a) & N 0
t o /
0 u% Z?:l Vg;(z*)T; (Gj (z*; ¢i,t+1) - gj(x*))
and
min{t1,t2} B
E [<§t17£t2>] =E [E [<£t17£t2> ‘]:min{tl,tg}“ =E |:<£min{t1,t2}a Z B(max{tl,tg}, l)€l>] (tl < t2)a
=1
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where F; is defined in . Then
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fact supy,; [|IN(k,?)|| < oo [18, Lemma 1 (ii)] . 3), Lemma b (i) and Assumption (c). By

[18, Lemma 1 (ii)],
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which implies limy_,o E {H\}E Sk N(E, 75)77,51) H } = 0. The proof is complete.
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