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Abstract. We study the distributed stochastic compositional optimization problems over di-

rected communication networks in which agents privately own a stochastic compositional ob-

jective function and collaborate to minimize the sum of all objective functions. We propose a

distributed stochastic compositional gradient descent method, where the gradient tracking and

the stochastic correction techniques are employed to adapt to the networks’ directed structure

and increase the accuracy of inner function estimation. When the objective function is smooth,

the proposed method achieves the convergence rate O
(
k−1/2

)
and sample complexity O

(
1
ε2

)
for

finding the (ε)-stationary point. When the objective function is strongly convex, the convergence

rate is improved to O
(
k−1

)
. Moreover, the asymptotic normality of Polyak-Ruppert averaged

iterates of the proposed method is also presented. We demonstrate the empirical performance of

the proposed method on model-agnostic meta-learning problem and logistic regression problem.

Key words. distributed stochastic compositional optimization, directed communication net-

works, gradient tracking, asymptotic normality

1 Introduction

Stochastic compositional optimization problem (SCO) has received extensive attention re-

cently for its application in machine learning, stochastic programming and financial engineering,

etc, [2, 12, 21, 26, 27], which is in the form of

min
x∈Rd

f(g(x)), (1)

where f(g(x)) = (f ◦ g)(x) denotes the function composition, f(z) := E [F (z; ζ)] , g(x) :=

E [G(x;φ)], G(·;φ) : Rd → Rp and F (·; ζ) : Rp → R are measurable functions parameterized by

random variables ζ and φ respectively.

To solve the stochastic compositional optimization problem (1), one may employ the two

sample based popular schemes in stochastic optimization, sample average approximation (SAA)

and stochastic approximation (SA). For the SAA scheme, Dentcheva et al. [5] discuss the

asymptotic behavior of the SAA problem and establish the central limit theorem for the optimal
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value. Ermoliev and Norkin [7] study the conditions for convergence in mean, almost surely of

SAA problem and provide the large deviation bounds for the optimal values. The SA based

method for SCO can be traced back to 1970s [6], in which penalty functions for stochastic

constraints and composite regression models are considered. More recently, Wang et al. [26]

present the stochastic compositional gradient descent method (SCGD) for problem (1), which

is defined as follows
zk+1 = (1− βk)zk + βkG(xk;φk),

xk+1 = xk − αk∇G(xk;φk)∇F (zk+1; ζk),
(2)

where stepsize αk diminishes to zero at a faster rate than βk, iterates zk+1 and xk are the

estimations of inner function value g(xk) and decision variable respectively. For nonsmooth

convex problems, the SCGD [26] achieves a convergence rate of O
(
k−1/4

)
in the general case

and O
(
k−2/3

)
in the strongly convex case. An accelerated variant of SCGD with improved

convergence rate has been presented in [27], where an extrapolation-smoothing scheme is in-

troduced. Moreover, the variance reduction techniques, such as SVRG and SARAH, have been

merged into the compositional optimization framework [14, 16, 30]. Note the fact that the two-

timescale structure of SCGD may decrease the convergence rate, Ghadimi et al. [11] propose a

nested averaged stochastic approximation method to solve SCO (1), which is a single-timescale

method and achieves the optimal convergence rate O
(
k−1/2

)
as methods for one-level uncon-

strained stochastic optimization. Chen et al. [2] propose the stochastically corrected stochastic

compositional gradient method (SCSC), which is also a single-timescale method and achieves

the optimal convergence rate O
(
k−1/2

)
. Specially, the SCSC read as follows:

zk+1 = (1− βk)(zk +G(xk;φk)−G(xk−1;φk)) + βkG(xk;φk),

xk+1 = xk − αk∇G(xk;φk)∇F (zk+1; ζk),

where stepsize αk does not have to decay to zero at a faster rate than βk. Compared with

SCGD, SCSC adds an extra term G(xk;φk) − G(xk−1;φk) in recursion (2), which may reduce

the tracking variance of g(xk). We refer [1, 15, 24, 29, 30] for the new developments on multilevel

compositional optimization and [4, 13] on conditional stochastic optimization.

Note that the machine learning and financial engineering problems tend to be character-

ized by large scale or distributed storage of data, consequently it is necessary to study the

distributed stochastic compositional optimization problems. Gao and Huang [10] first consider

the distributed stochastic compositional optimization problem (DSCO)

min
x∈Rd

h(x) :=
1

n

n∑
j=1

fj(gj(x)), (3)

where fj(gj(x)) := E [Fj(E [Gj(x;φj)] ; ζj)] is the local objective of agent j. Under the assump-

tion that each agent only knows its own local objective function, Gao and Huang [10] propose a

distributed stochastic compositional gradient descent method for problem (3), which is named

GP-DSCGD:

zi,k+1 = (1− γβk)zi,k + γβkGi(xi,k;φi,k), (4)

x̃i,k+1 =

n∑
j=1

wi,jxj,k − η∇Gi(xi,k;φi,k)∇F (zi,k+1; ζi,k), (5)

xi,k+1 = xi,k + βk(x̃i,k+1 − xi,k), (6)
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where parameters γ > 0, βk > 0, η > 0 are stepszie parameters and W = {wij} is a sym-

metric and doubly stochastic matrix. Different from the SCGD in [26], there is an additional

hyperparameter γ in computing zi,k+1 (4), which is helpful to control the estimation variance

of zi,k+1. On the other hand, (6) can also be beneficial to control the estimation variance of

zi,k+1. When the objective function is smooth and the communication network is undirected,

the proposed method achieves the optimal convergence rate O
(
k−1/2

)
. Moreover, a gradient-

tracking version of GP-DSCGD, named GT-DSCGD, is also proposed in [10], where the local

gradient ∇Gi(xi,k;φi,k)∇F (zi,k+1; ζi,k) in (5) is replaced with the global gradient tracker. As

the two methods need the increasing batch size O(
√
k), the corresponding sample complexity

for finding the (ε)-stationary point is O( 1
ε3

).

In this paper, we consider the distributed stochastic problem (3) over directed communi-

cation networks. We propose a gradient-tracking based distributed stochastic method, which

incorporates the SCSC method [2] into the AB/push-pull scheme [19, 28]. The collaboration of

AB scheme and SCSC induces more complex estimate errors, for example, the estimate error

of inner function values is involved in the gradient tracking process of AB scheme, the errors

of tracked gradient affect the iterations and then the inner function values. Therefore, the

convergence analysis techniques of AB/push-pull scheme [19, 28] and SCSC are not applicable.

Moreover, the techniques used in [10] are not applicable as the induced estimate error forms

non-martingale-difference. As far as we are concerned, the contributions of the paper can be

summarized as follows.

• We propose a distributed stochastic optimization method for DSCO over directed com-

munication networks. To the best of our knowledge, it is the first one for distributed

stochastic compositional optimization problem (3) over directed communication networks.

(i) For the nonconvex smooth objective, it achieves the same order of convergence rate

O
(
k−1/2

)
as GP-DSCGD and GT-DSCGD in [10] under constant stepsize strategy. How-

ever, the sample complexity for finding the (ε)-stationary point is O
(
1
ε2

)
as the proposed

method does not require increasing batch size in each iteration. (ii) For the strongly convex

and smooth objective, we show that the square of the distance between the iterate and the

optimal solution converges to zero with rate O
(
k−1

)
under diminishing stepsize strategy,

which is the optimal convergence rate as methods for one-level unconstrained stochastic

optimization [23].

• We present that Polyak-Ruppert averaged iterates of the proposed method converge in

distribution to a normal random vector for any agent. Research on asymptotic normality

results for the SA based algorithm can be traced to the works in the 1950s [3, 8]. To the

best of our knowledge, our result is the first asymptotic normality result for the stochastic

approximation based method of DSCO. On the other hand, it is a complement to the

asymptotic normality on the SAA scheme for stochastic compositional optimization [5].

We verify our theoretical results using two numerical examples, model-agnostic meta-

learning problem and logistic regression problem.

The rest of this paper is organized as follows. Section 2 introduces the proposed method and

some standard assumptions for DSCO, communication graphs and weighted matrices. Section
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3 focuses on the convergence analysis of the proposed method. At last, Section 4 presents

numerical results to validate the theoretic results.

Throughout this paper, we use the following notation. Rd denotes the d-dimension Euclidean

space endowed with norm ‖x‖ =
√
〈x, x〉. Denote 1 := (1 1 . . . 1)ᵀ ∈ Rn, 0 := (0 0 . . . 0)ᵀ ∈ Rd.

Id ∈ Rd×d stands for the identity matrix. A ⊗ B denotes the Kronecker product of matrix A

and B. For any positive sequences {ak} and {bk}, ak = O(bk) if there exists c > 0 such that

ak ≤ cbk. The communication relationship between agents is characterized by a directed graph

G = (V, E), where V = {1, 2, ..., n} is the node set and E ⊆ V ×V is the edge set. For any i ∈ V,

Pφi and Pζi are distributions of random variables φi and ζi respectively.

2 AB-DSCSC Method

In this section, we propose a gradient tracking based distributed stochastically corrected

stochastic compositional gradient method for DSCO over directed communication networks.

Algorithm 1 AB/push-pull based Distributed Stochastically Corrected Stochastic Composi-

tional Gradient (AB-DSCSC):

Require: initial values xi,1 ∈ Rd, zi,1 ∈ Rp, φi,1
iid∼ Pφi , ζi,1

iid∼ Pζi , yi,1 =

∇Gi(xi,1;φi,1)∇Fi(zi,1; ζi,1) for any i ∈ V; stepsizes αk > 0, βk > 0; nonnegative weight matrices

A = {aij}1≤i,j≤n and B = {bij}1≤i,j≤n.

1: For k = 1, 2, · · · do

2: State update: for any i ∈ V,

xi,k+1 =

n∑
j=1

aij (xj,k − αkyj,k) . (7)

3: Inner function value tracking update: for any i ∈ V, draw φ
′
i,k+1

iid∼ Pφi to compute

zi,k+1 = (1− βk)
(
zi,k +Gi(xi,k+1;φ

′

i,k+1)−Gi(xi,k;φ
′

i,k+1)
)

+ βkGi(xi,k+1;φ
′

i,k+1). (8)

4: Gradient tracking update: for any i ∈ V, draw φi,k+1
iid∼ Pφi , ζi,k+1

iid∼ Pζi to compute

yi,k+1 =

n∑
j=1

bijyj,k +∇Gi(xi,k+1;φi,k+1)∇Fi(zi,k+1; ζi,k+1)−∇Gi(xi,k;φi,k)∇Fi(zi,k; ζi,k). (9)

4: end for

Throughout our analysis in the paper, we make the following two assumptions on the objec-

tive function, communication graphs and weight matrices A and B.

Assumption 1. [Objective function] Let Cg, Cf , Vg, Lg and Lf be positive scalars. For

∀i ∈ V, ∀x, x′ ∈ Rd, ∀y, y′ ∈ Rp,
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(a) functions Gi(·;φi) and Fi(·; ζi) are Lg and Lf smooth, that is,

‖∇Gi(x;φi)−∇Gi(x
′
;φi)‖ ≤ Lg‖x− x

′‖,

and

‖∇Fi(y; ζi)−∇Fi(y
′
; ζi)‖ ≤ Lf‖y − y

′‖;

(b)

E [∇Gi(x;φi,1)∇Fi(y; ζi,1)] = ∇gi(x)∇fi(y), E
[
Gi(x;φ

′
i,1)
]

= gi(x);

(c) the stochastic gradients of fi and gi are bounded in expectation, that is

E
[
‖∇Gi(x;φi)‖2

∣∣ζi] ≤ Cg, E
[
‖∇Fi(y; ζi)‖2

]
≤ Cf ;

(d) function G(·;φi) has bounded variance, i.e., E
[
‖Gi(x;φi)− gi(x)‖2

]
≤ Vg;

Assumption 1 is standard assumption for stochastic compositional optimization problem

[2, 10, 26]. Conditions (b) and (d) in Assumption 1 are analogous to the unbiasedness and

bounded variance assumptions for non-compositional stochastic optimization problems.

Assumption 2. [weight matrices and networks] Let GA = (V, EA) and GBᵀ = (V, EBᵀ) be

subgraphs of G induced by matrices A and Bᵀ respectively.

(a) The matrix A ∈ Rn×n is nonnegative row stochastic and B ∈ Rn×n is nonnegative column

stochastic, i.e., A1 = 1 and 1ᵀB = 1ᵀ. In addition, the diagonal entries of A and B are

positive, i.e., Aii > 0 and Bii > 0 for all i ∈ V.

(b) The graphs GA and GBᵀ each contain at least one spanning tree. Moreover, there exists at

least one node that is a root of spanning trees for both GA and GBᵀ , i.e. RA ∩ RBᵀ 6= ∅,
where RA ( RBᵀ) is the set of roots of all possible spanning trees in the graph GA ( GBᵀ).

It is worth noting that Assumption 2 (b) is weaker than requiring that both GA and GBᵀ

are strongly connected, which offers greater flexibility in the design of GA and GB [20]. Under

Assumption 2, the matrix A has a nonnegative left eigenvector uᵀ (w.r.t. eigenvalue 1) with

uᵀ1 = n, and the matrix B has a nonnegative right eigenvector v (w.r.t. eigenvalue 1) with

1Tv = n. Moreover, uᵀv > 0.

For easy of presentation, we rewrite AB-DSCSC ((7)-(8)) in a compact form:

xk+1 = Ã (xk − αkyk) ,

zk+1 = (1− βk)
(
zk + G

(1)
k+1 −G

(2)
k+1

)
+ βkG

(1)
k+1,

yk+1 = B̃yk + Hk+1 −Hk,

(10)

where Ã := A ⊗ Id, B̃ := B ⊗ Id, the vectors xk, yk, zk, G
(1)
k+1, G

(2)
k+1 and Hk concatenate

all xi,k’s, yi,k’s, zi,k’s, Gi(xi,k+1, φ
′
i,k+1)’s, Gi(xi,k, φ

′
i,k+1)’s and ∇Gi(xi,k;φi,k)∇Fi(zi,k; ζi,k)’s

respectively.
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3 Convergence analysis

In this section, we derive convergence rates of AB-DSCSC. We also investigate the asymptotic

normality of AB-DSCSC when the objective function is strongly convex. We first present a

technical lemma which provides some norms for studying the consensus of AB-DSCSC.

Lemma 1. Under Assumption 2, there exist vector norms, denoted as ‖ · ‖A, ‖ · ‖B, on

Rnd such that the corresponding induced matrix norms |||W|||A := supx 6=0
‖Ŵx‖A
‖x‖A , |||W|||B :=

supx 6=0
‖Ŵx‖B
‖x‖B for W ∈ Rnd×nd satisfy:∣∣∣∣∣∣∣∣∣∣∣∣Ã− 1uᵀ

n
⊗ Id

∣∣∣∣∣∣∣∣∣∣∣∣
A

< 1,

∣∣∣∣∣∣∣∣∣∣∣∣B̃− v1ᵀ

n
⊗ Id

∣∣∣∣∣∣∣∣∣∣∣∣
B

< 1. (11)

Additionally, let ‖ · ‖∗ and ‖ · ‖∗∗ be any two vector norms of ‖ · ‖, ‖ · ‖A or ‖ · ‖B. There exists

a constant c > 1 such that

‖x‖∗ ≤ c‖x‖∗∗, ∀x ∈ Rnd. (12)

Proof. Under Assumption 2, the conditions of [25, Lemma 3] hold and then there exists an

invertible matrix A∗ ∈ Rd×d such that∣∣∣∣∣∣∣∣∣∣∣∣A− 1uᵀ

n

∣∣∣∣∣∣∣∣∣∣∣∣
∗

=

∣∣∣∣∣∣∣∣∣∣∣∣A∗(A− 1uᵀ

n

)
A−1∗

∣∣∣∣∣∣∣∣∣∣∣∣ < 1,

where |||·|||∗ and |||·||| are matrix norms induced by vector norms ‖x‖∗ := ‖A∗x‖ and 2-norm

respectively. Let Â = A∗ ⊗ Id. Noting that (W1 ⊗W2)
−1 = W−1

1 ⊗W−1
2 for any invertible

matrices W1,W2 ∈ Rnd×nd, Â−1 = A−1∗ ⊗ Id. Therefore, vector matrix ‖x‖A := ‖Âx‖ is well

defined and the corresponding induced matrix norm |||·|||A satisfies∣∣∣∣∣∣∣∣∣∣∣∣Ã− 1uᵀ

n
⊗ Id

∣∣∣∣∣∣∣∣∣∣∣∣
A

=

∣∣∣∣∣∣∣∣∣∣∣∣Â(Ã− 1uᵀ

n
⊗ Id

)
Â−1

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣[A∗(A− 1uᵀ

n

)
A−1∗

]
⊗ Id

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣A∗(A− 1uᵀ

n

)
A−1∗

∣∣∣∣∣∣∣∣∣∣∣∣ < 1.

By the similar analysis, there exists B̂ such that∣∣∣∣∣∣∣∣∣∣∣∣B̃− v1ᵀ

n
⊗ Id

∣∣∣∣∣∣∣∣∣∣∣∣
B

=

∣∣∣∣∣∣∣∣∣∣∣∣B̂(B̃− v1ᵀ

n
⊗ Id

)
B̂−1

∣∣∣∣∣∣∣∣∣∣∣∣ < 1.

The inequality (12) follows from the equivalence relation of all norms on Rd. The proof is

complete.

The next lemma studies the asymptotic consensus of AB-DSCSC.

6



Lemma 2. Suppose Assumptions 1-2 hold. Stepsize αk is nonincreasing and limk→∞
αk
αk+1

= 1.

Define auxiliary sequence {y′k} as

y
′
k+1 = B̃y

′
k + Jk+1 − Jk, (13)

where vectors Jk and y
′
1 concatenate all ∇gi(xi,k)∇fi(zi,k)’s and ∇gi(xi,1)∇fi(zi,1)’s respectively.

Then

E
[
‖xk+1 − 1⊗ x̄k+1‖2A

]
+ c4E

[
‖y′k+1 − v ⊗ ȳ′k+1‖2B

]
≤ ρk

(
E
[
‖x1 − 1⊗ x̄1‖2A

]
+ c4E

[∥∥∥y′1 − v ⊗ ȳ′1
∥∥∥2
B

])
+ (c1 + c3c4)

k∑
t=1

ρk−tα2
t , (14)

where x̄k :=
(
uᵀ

n ⊗ Id
)
xk, ȳ

′
k :=

(
1ᵀ

n ⊗ Id
)
y
′
k and ρ = max

{
1+τ2B

2 ,
3+τ2A

4

}
, cb = max

{
c,
|||B−In|||B

τB
c
}

,

c1 =
1 + τ2A
1− τ2A

∣∣∣∣∣∣∣∣∣∣∣∣In − 1uᵀ

n

∣∣∣∣∣∣∣∣∣∣∣∣2
A

c2
c2bnCgCf
(1− τB)2

c2 = 8
1 + τ2B
1− τ2B

∣∣∣∣∣∣∣∣∣∣∣∣Ind − v1ᵀ

n
⊗ Id

∣∣∣∣∣∣∣∣∣∣∣∣2
B

c4
(
CfL

2
g + CgL

2
f

) ∣∣∣∣∣∣∣∣∣Ã− Ind

∣∣∣∣∣∣∣∣∣2,
c3 = 8

1 + τ2B
1− τ2B

∣∣∣∣∣∣∣∣∣∣∣∣Ind − v1ᵀ

n
⊗ Id

∣∣∣∣∣∣∣∣∣∣∣∣2
B

c2
(
CfL

2
g + CgL

2
f

) c2bnCgCf
(1− τB)2

, c4 =
1− τ2A

4c2
,

τA :=

∣∣∣∣∣∣∣∣∣∣∣∣Ã− 1uᵀ

n
⊗ Id

∣∣∣∣∣∣∣∣∣∣∣∣
A

, τB :=

∣∣∣∣∣∣∣∣∣∣∣∣B̃− v1ᵀ

n
⊗ Id

∣∣∣∣∣∣∣∣∣∣∣∣
B

, (15)

u and v are the left eigenvector of A and the right eigenvector of B respectively, vector norms

‖ · ‖A, ‖ · ‖B and matrix norms |||·|||A, |||·|||B are introduced in Lemma 1.

Proof. We first provide the upper bound of consensus error xk+1−1⊗ x̄k+1 in the mean square

sense. Note that for any random vectors θ, θ
′

and positive scalar τ ,

E

[∥∥∥θ + θ
′
∥∥∥2
∗

]
≤ (1 + τ)E

[
‖θ‖2∗

]
+

(
1 +

1

τ

)
E

[∥∥∥θ′∥∥∥2
∗

]
, (16)

where the norm ‖ · ‖∗ may be ‖ · ‖A or ‖ · ‖B. Choosing

θ =

(
Ã− 1uᵀ

n
⊗ Id

)
(xk − 1⊗ x̄k) , θ

′
= −αk

(
Ã− 1uᵀ

n
⊗ Id

)
yk,

we have xk+1 − 1⊗ x̄k+1 = θ + θ
′

and

E
[
‖xk+1 − 1⊗ x̄k+1‖2A

]
≤ (1 + τ)E

[∥∥∥∥(Ã− 1uᵀ

n
⊗ Id

)
(xk − 1⊗ x̄k)

∥∥∥∥2
A

]
+

(
1 +

1

τ

)
E

[∥∥∥∥αk (Ã− 1uᵀ

n
⊗ Id

)
yk

∥∥∥∥2
A

]

≤
1 + τ2A

2
E
[
‖xk − 1⊗ x̄k‖2A

]
+ α2

k

1 + τ2A
1− τ2A

∣∣∣∣∣∣∣∣∣∣∣∣A− 1uᵀ

n

∣∣∣∣∣∣∣∣∣∣∣∣2
A

c2E
[
‖yk‖2

]
, (17)

7



where τA is defined in (15), τ = (1 − τ2A)/(2τ2A) and the last inequality follows from the fact
(12). By the definition of yk in (10),

E
[
‖yk‖2

]
= E

∥∥∥∥∥
k−1∑
t=1

B̃k−1−t(B̃− Ind)Ht + Hk

∥∥∥∥∥
2
 ≤ k∑

t1=1

k∑
t2=1

∣∣∣∣∣∣∣∣∣B̃(k, t1)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣B̃(k, t2)

∣∣∣∣∣∣∣∣∣E [‖Ht1‖‖Ht2‖] ,

where

B̃(k, t) := B̃k−1−t(B̃− Ind) (t ≤ k − 1), B̃(k, k) := Ind. (18)

Obviously,
∣∣∣∣∣∣∣∣∣B̃(k, k)

∣∣∣∣∣∣∣∣∣ = 1,
∣∣∣∣∣∣∣∣∣B̃(k, k − 1)

∣∣∣∣∣∣∣∣∣ ≤ c∣∣∣∣∣∣∣∣∣B̃− Ind

∣∣∣∣∣∣∣∣∣
B

and for t < k − 1,∣∣∣∣∣∣∣∣∣B̃(k, t)
∣∣∣∣∣∣∣∣∣ ≤ c∣∣∣∣∣∣∣∣∣B̃k−1−t

(
B̃− Ind

)∣∣∣∣∣∣∣∣∣
B

= c

∣∣∣∣∣∣∣∣∣∣∣∣(B̃− v1ᵀ

n
⊗ Id

)
B̃k−2−t

(
B̃− In

)∣∣∣∣∣∣∣∣∣∣∣∣
B

≤ cτB
∣∣∣∣∣∣∣∣∣B̃k−2−t

(
B̃− Ind

)∣∣∣∣∣∣∣∣∣
B

≤ · · · ≤ cτk−1−tB

∣∣∣∣∣∣∣∣∣B̃− Ind

∣∣∣∣∣∣∣∣∣
B
.

Denoting cb = max
{
c,
|||B−In|||B

τB
c
}

, we have∣∣∣∣∣∣∣∣∣B̃(k, t)
∣∣∣∣∣∣∣∣∣ ≤ cbτk−tB (19)

and

E
[
‖yk‖2

]
≤ c2b

k∑
t1=1

k∑
t2=1

τ2k−t1−t2B E [‖Ht1‖‖Ht2‖]

≤ c2b
k∑

t1=1

k∑
t2=1

τ2k−t1−t2B

E
[
‖Ht1‖2

]
+ E

[
‖Ht2‖2

]
2

≤ c2b
k∑

t1=1

k∑
t2=1

τ2k−t1−t2B nCgCf ≤
c2bnCgCf
(1− τB)2

, (20)

where the third inequality follows from Assumption 1 (c). Substitute (20) into (17),

E
[
‖xk+1 − 1⊗ x̄k+1‖2A

]
≤

1 + τ2A
2

E
[
‖xk − 1⊗ x̄k‖2A

]
+ c1α

2
k, (21)

where c1 =
1+τ2A
1−τ2A

∣∣∣∣∣∣A− 1uᵀ

n

∣∣∣∣∣∣2
A
c2
c2bnCgCf
(1−τB)2

.

Next, we estimate the upper bound of consensus error ‖y′k−v⊗ ȳ′k‖2 in the mean sense. Set

θ =

(
B̃− v1ᵀ

n
⊗ Id

)(
y
′
k − v ⊗ ȳ′k

)
, θ

′
=

(
Ind −

v1ᵀ

n
⊗ Id

)
(Jk+1 − Jk)

in (16). By the definitions of y
′
k+1 and ȳ

′
k+1, we have y

′
k+1 − 1⊗ ȳ′k+1 = θ + θ

′
and

E
[
‖y
′

k+1 − v ⊗ ȳ
′

k+1‖2B
]

≤ (1 + τ)E

[∥∥∥∥(B̃− v1ᵀ

n
⊗ Id

)(
y
′

k − v ⊗ ȳ
′

k

)∥∥∥∥2
B

]
+

(
1 +

1

τ

)
E

[∥∥∥∥(Ind − v1ᵀ

n
⊗ Id

)
(Jk+1 − Jk)

∥∥∥∥2
B

]

≤ 1 + τ2B
2

E

[∥∥∥y′k − v ⊗ ȳ
′

k

∥∥∥2
B

]
+ 2

1 + τ2B
1− τ2B

∣∣∣∣∣∣∣∣∣∣∣∣Ind − v1ᵀ

n
⊗ Id

∣∣∣∣∣∣∣∣∣∣∣∣2
B

c2E
[
‖Jk+1 − Jk‖2

]
, (22)

8



where τB is defined in (15), the second inequality follows from the setting τ = (1− τ2B)/(2τ2B)

and (12). For the term E
[
‖Jk+1 − Jk‖2

]
,

E
[
‖Jk+1 − Jk‖2

]
= E

[
‖(∇gk+1 −∇gk)∇fk+1 +∇gk (∇fk+1 −∇fk)‖2

]
≤ 2

(
CfL

2
g + CgL

2
f

)
E
[
‖xk+1 − xk‖2

]
= 2

(
CfL

2
g + CgL

2
f

)
E

[∥∥∥(Ã− Ind

)
(xk − 1⊗ x̄k)− αkÃyk

∥∥∥2]
≤ 4

(
CfL

2
g + CgL

2
f

) ∣∣∣∣∣∣∣∣∣Ã− Ind

∣∣∣∣∣∣∣∣∣2c2E [‖xk − 1⊗ x̄k‖2A
]

+ 4
(
CfL

2
g + CgL

2
f

)2
α2
kE
[
‖yk‖2

]
, (23)

where ∇gk = [∇g1(x1,k)ᵀ, · · · ,∇gn(xn,k)
ᵀ]ᵀ and ∇fk = [∇f1(x1,k)ᵀ, · · · ,∇fn(xn,k)

ᵀ]ᵀ, the first

inequality follows from Assumption 1 (a) and (c), the second equality follows from the fact(
Ã− Ind

)
(1⊗ x̄k) = 0 as A is a row stochastic matrix. Substitute (20) and (23) into (22),

E
[
‖y′k+1 − v ⊗ ȳ′k+1‖2B

]
≤

1 + τ2B
2

E

[∥∥∥y′k − v ⊗ ȳ′k
∥∥∥2
B

]
+ c2E

[
‖xk − 1⊗ x̄k‖2A

]
+ c3α

2
k, (24)

where the constants

c2 = 8
1 + τ2B
1− τ2B

∣∣∣∣∣∣∣∣∣∣∣∣Ind − v1ᵀ

n
⊗ Id

∣∣∣∣∣∣∣∣∣∣∣∣2
B

c4
(
CfL

2
g + CgL

2
f

) ∣∣∣∣∣∣∣∣∣Ã− Ind

∣∣∣∣∣∣∣∣∣2,
c3 = 8

1 + τ2B
1− τ2B

∣∣∣∣∣∣∣∣∣∣∣∣Ind − v1ᵀ

n
⊗ Id

∣∣∣∣∣∣∣∣∣∣∣∣2
B

c2
(
CfL

2
g + CgL

2
f

)
|||A|||2

c2bnCgCf
(1− τB)2

.

Lastly, we show (14) through combining (21) with (24). Multiplying c4 =
1−τ2A
4c2

on both sides

of inequality (24),

c4E
[
‖y
′

k+1 − v ⊗ ȳ
′

k+1‖2B
]

≤ 1 + τ2B
2

c4E

[∥∥∥y′k − v ⊗ ȳ
′

k

∥∥∥2
B

]
+

1− τ2A
4

E
[
‖xk − 1⊗ x̄k‖2A

]
+ c3c4α

2
k.

Substituting above inequality into (21), we have

E
[
‖xk+1 − 1⊗ x̄k+1‖2A

]
+ c4E

[
‖y′k+1 − v ⊗ ȳ′k+1‖2B

]
≤

3 + τ2A
4

E
[
‖xk − 1⊗ x̄k‖2A

]
+

1 + τ2B
2

c4E

[∥∥∥y′k − v ⊗ ȳ′k
∥∥∥2
B

]
+ (c1 + c3c4)α

2
k

≤ ρ
(

E
[
‖xk − 1⊗ x̄k‖2A

]
+ c4E

[∥∥∥y′k − v ⊗ ȳ′k
∥∥∥2
B

])
+ (c1 + c3c4)α

2
k

· · ·

≤ ρk
(

E
[
‖x1 − 1⊗ x̄1‖2A

]
+ c4E

[∥∥∥y′1 − v ⊗ ȳ′1
∥∥∥2
B

])
+ (c1 + c3c4)

k∑
t=1

ρk−tα2
t ,

where ρ = max
{

1+τ2B
2 ,

3+τ2A
4

}
. The proof is complete.
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Lemma 2 indicates that the consensus errors can be explicitly decomposed into “bias” and

“variance” terms. The bias term characterizes how fast initial conditions are forgotten and is

related to condition numbers τA and τB of network topology. The variance term characterizes

the effect of new stochastic gradient, which is independent of the starting point and increases

with the gradient upper bounds Cf , Cg and Lipschitz parameters Lf , Lg.

The following lemma is a technical result.

Lemma 3. Suppose that stepsize αk is nonincreasing and limk→∞
αk
αk+1

= 1. Then there exists

a constant c such that
k∑
t=1

ρk−tαt ≤ cαk,

where scalar ρ = max
{

1+τ2B
2 ,

3+τ2A
4

}
.

Proof. Let βk =
∑k

t=1 ρ
k−tαt, then βk = ρ

∑k−1
t=1 ρ

k−1−tαt + αk = ρβk−1 + αk. Denoting bk =

βk/αk, then bk = ρ
αk−1

αk
bk−1+1. Noting that limk→∞

αk−1

αk
= 1 and ρ < 1, there exists an integer

k0 > 0 such that
αk−1

αk
≤ 2

ρ+1 for k > k0. Taking c = max
{

sup1≤k≤k0 bk,
ρ+1
1−ρ

}
, we have bk ≤ c

for k ≤ k0. Suppose that the claim holds for k − 1 (k − 1 ≥ k0), that is bk−1 ≤ c, then

bk = ρ
αk−1
αk

bk−1 + 1 ≤ 2ρ

ρ+ 1
c+ 1 ≤ 2ρ

ρ+ 1
c+

1− ρ
ρ+ 1

c = c.

The proof is complete.

By the fact limk→∞
α2
k

α2
k+1

= 1 and Lemma 3, (14) can be rewritten as

E
[
‖xk+1 − 1⊗ x̄k+1‖2A

]
+ c4E

[
‖y′k+1 − v ⊗ ȳ′k+1‖2B

]
≤ ρk

(
c4E

[∥∥∥y′1 − v ⊗ ȳ′1
∥∥∥2
B

]
+ E

[
‖x1 − 1⊗ x̄1‖2A

])
+ (c1 + c3c4)cα

2
k.

Assuming ρk = o
(
α2
k

)
1, the consensus errors have a rough upper bounds

E
[
‖xk − 1⊗ x̄k‖2A

]
≤ U1α

2
k, E

[
‖y′k − v ⊗ ȳ′k‖2

]
≤ U1α

2
k, (25)

where the constant U1 depends on parameters τA, τB, Cf , Cg, Lf and Lg.

The next lemma quantifies the error of estimating gi(xi,k) by zi,k.

Lemma 4. Suppose that stepsizes αk and βk are nonincreasing and limk→∞
αk
αk+1

= 1, βk ≤ 1.

Then under Assumptions 1-2,

E
[
‖zk+1 − gk+1‖2

]
≤ (1− βk)2E

[
‖zk − gk‖2

]
+

(
12Cgc

2
∣∣∣∣∣∣∣∣∣Ã− Ind

∣∣∣∣∣∣∣∣∣2U1

+
12c2bnC

2
gCf |||A|||

2

(1− τB)2

)
α2
k + 3Vgβ

2
k, (26)

where gk = [g1(x1,k)
ᵀ, · · · , gn(xn,k)

ᵀ]ᵀ and c is defined in (12).
1In this paper, we use constant stepsize and sublinear diminishing stepsize. Then ρk = o

(
α2
k

)
holds.
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Proof. By the definitions of zk+1 and gk+1,

zk+1 − gk+1 = (1− βk) (zk − gk) + (G
(1)
k+1 − gk+1) + (1− βk)(gk −G

(2)
k+1). (27)

Then

E
[
‖zk+1 − gk+1‖2

]
= (1− βk)2E

[
‖zk − gk‖2

]
+ E

[
‖(G(1)

k+1 − gk+1) + (1− βk)(gk −G
(2)
k+1)‖

2
]

+ 2E
[〈

(1− βk)(zk − gk), (G
(1)
k+1 − gk+1) + (1− βk)(gk −G

(2)
k+1)

〉]
= (1− βk)2E

[
‖zk − gk‖2

]
+ E

[
‖(G(1)

k+1 − gk+1) + (1− βk)(gk −G
(2)
k+1)‖

2
]
, (28)

where the second equality follows from the fact

E
[
(G

(1)
k+1 − gk+1) + (1− βk)(gk −G

(2)
k+1)

]
= E

[
E

[
(G

(1)
k+1 − gk+1) + (1− βk)(gk −G

(2)
k+1)

∣∣∣∣F ′k]] = 0

with

F ′1 = σ (xi,1, zi,1, φi,1, ζi,1 : i ∈ V) ,

F ′k = σ
(
{xi,1, zi,1, φi,t, ζi,t : i ∈ V, 1 ≤ t ≤ k} ∪ {φ′i,t : i ∈ V, 2 ≤ t ≤ k}

)
(k ≥ 2).

(29)

For the second term on the right hand side of (28),

E
[
‖(G(1)

k+1 − gk+1) + (1− βk)(gk −G
(2)
k+1)‖

2
]

= E
[
‖(1− βk)(G

(1)
k+1 −G

(2)
k+1) + βk(G

(1)
k+1 − gk+1) + (1− βk)(gk − gk+1)‖2

]
≤ 3(1− βk)2E

[
‖G(1)

k+1 −G
(2)
k+1‖

2
]

+ 3β2kE
[
‖G(1)

k+1 − gk+1‖2
]

+ 3(1− βk)2E
[
‖gk − gk+1‖2

]
≤ 6(1− βk)2CgE

[
‖xk+1 − xk‖2

]
+ 3β2kVg,

where the second inequality follows from the conditions (c) and (d) in Assumption 1. Substitute

above inequality into (28),

E
[
‖zk+1 − gk+1‖2

]
≤ (1− βk)2E

[
‖zk − gk‖2

]
+ 6(1− βk)2CgE

[
‖xk+1 − xk‖2

]
+ 3β2kVg

= (1− βk)2E
[
‖zk − gk‖2

]
+ 6(1− βk)2CgE

[∥∥∥(Ã− Ind

)
(xk − 1⊗ x̄k)− αkÃyk

∥∥∥2]+ 3β2kVg

≤ (1− βk)2E
[
‖zk − gk‖2

]
+ 12(1− βk)2Cgc2

∣∣∣∣∣∣∣∣∣Ã− Ind

∣∣∣∣∣∣∣∣∣2E [‖xk − 1⊗ x̄k‖2A
]

+ 12(1− βk)2Cgα2
k|||A|||

2E
[
‖yk‖2

]
+ 3β2kVg

≤ (1− βk)2E
[
‖zk − gk‖2

]
+

(
12Cgc

2
∣∣∣∣∣∣∣∣∣Ã− Ind

∣∣∣∣∣∣∣∣∣2U1 +
12c2bnC

2
gCf |||A|||

2

(1− τB)2

)
α2
k + 3Vgβ

2
k,

where c is defined in (12), the equality follows from the fact
(
Ã− Ind

)
(1⊗ x̄k) = 0 by the row

stochasticity of A, the last inequality follows from (20), (25) and the definition of βk. The proof

is complete.
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The following lemma studies the boundness of stochastic noise accumulated in gradient

tracking process.

Lemma 5. Define

ξk := yk − y
′
k. (30)

Under the conditions of Lemma 2,

(i) E
[
‖ξk‖2

]
≤ c2b4nCfCg

(1−τB)2
, where cb = max

{
c,
|||B−In|||B

τB
c
}

;

(ii) there exists constant U3 > 0 such that∣∣∣∣E [〈∇h(x̄k),

(
uᵀ

n
⊗ Id

)
ξk

〉]∣∣∣∣ ≤ U3αk.

Proof. We first show part (i). By the definition of ξk,

ξk =
k−1∑
t=1

B̃k−1−t(B̃− Ind)εt + εk =
k∑
t=1

B̃(k, t)εt, (31)

where εt := Ht − Jt, Ht and Jt present in (10) and Lemma 2 respectively, B̃(k, t) is defined in

(18). Then we have

E[‖ξk‖2] ≤
k∑

t1=1

k∑
t2=1

∣∣∣∣∣∣∣∣∣B̃(k, t1)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣B̃(k, t2)

∣∣∣∣∣∣∣∣∣E [‖εt1‖‖εt2‖]

≤ c2b
k∑

t1=1

k∑
t2=1

τ2k−t1−t2B E [‖εt1‖‖εt2‖]

≤ c2b
k∑

t1=1

k∑
t2=1

τ2k−t1−t2B

E
[
‖εt1‖2 + ‖εt2‖2

]
2

, (32)

where cb = max
{
c,
|||B−In|||B

τB
c
}

, the second inequality follows from (19). By the definition of εk,

E
[
‖εk‖2

]
=

n∑
j=1

E
[
‖∇Gj(xj,k;φj,k)∇Fj(zj,k; ζj,k)−∇gj(xj,k)∇fj(zj,k)‖2

]
≤ 2

n∑
j=1

(
E
[
‖∇Gj(xj,k;φj,k)‖2‖∇Fj(zj,k; ζj,k)‖2

]
+ CfCg

)
= 2

n∑
j=1

(
E
[
E
[
‖∇Gj(xj,k;φj,k)‖2‖∇Fj(zj,k; ζj,k)‖2

∣∣Fk, ζj,k]]+ CfCg
)

≤ 2

n∑
j=1

(
CgE

[
‖∇Fj(zj,k; ζj,k)‖2

]
+ CfCg

)
≤ 4nCfCg, (33)

where

F1 = σ{xi,1, zi,1 : i ∈ V},

Fk = σ
(
{xi,1, zi,1, φi,t, ζi,t : i ∈ V, 1 ≤ t ≤ k − 1} ∪ {φ′i,t : i ∈ V, 2 ≤ t ≤ k}

)
(k ≥ 2).

(34)

12



Substitute (33) into (32), E[‖ξk‖2] ≤ c2b4nCfCg
∑k

t1=1

∑k
t2=1 τ

2k−t1−t2
B ≤ c2b4nCfCg

(1−τB)2
. Part (i) is

obtained.

By (31),∣∣∣∣E [〈∇h(x̄k),

(
uᵀ

n
⊗ Id

)
ξk

〉]∣∣∣∣
=

∣∣∣∣∣
k∑
t=1

E

[〈
∇h(x̄k),

(
uᵀ

n
⊗ Id

)
B̃(k, t)εt

〉]∣∣∣∣∣
=

∣∣∣∣∣
k−1∑
t=1

E

[
E

[〈
k∑

l=t+1

(∇h(x̄l)−∇h(x̄l−1)) +∇h(x̄t),

(
uᵀ

n
⊗ Id

)
B̃(k, t)εt

〉∣∣∣∣Ft
]]

+E

[
E

[〈
∇h(x̄k),

(
uᵀ

n
⊗ Id

)
B̃(k, t)εk

〉 ∣∣∣∣Fk]]∣∣∣∣
=

∣∣∣∣∣
k−1∑
t=1

E

[〈
k∑

l=t+1

(∇h(x̄l)−∇h(x̄l−1)) ,

(
uᵀ

n
⊗ Id

)
B̃(k, t)εt

〉]∣∣∣∣∣
≤ ‖u‖Lcb

n

k−1∑
t=1

τk−tB

k∑
l=t+1

E [‖x̄l − x̄l−1‖ ‖εt‖]

≤ ‖u‖
2Lcb
n2

k−1∑
t=1

τk−tB

k∑
l=t+1

αlE [‖yl‖ ‖εt‖] ,

where the third equality holds as {εt} is a martingale difference sequence, the first inequality

follows from (19) and the last inequality follows from the fact x̄k+1 = x̄k − αk
(
uᵀ

n ⊗ Id
)
yk. By

(20) and (33),

E [‖yl‖ ‖εt‖] ≤
E
[
‖yl‖2

]
+ E

[
‖εk‖2

]
2

≤
c2bn CfCg
2(1− τB)2

+ 2nCfCg. (35)

Let U = ‖u‖2Lcb
n

(
c2b CfCg
2(1−τB)2

+ 2CfCg

)
,

E

[〈
∇h(x̄k),

(
uᵀ

n
⊗ Id

)
ξk

〉]
≤ (1− τB)U

k−1∑
t=1

τk−tB

k∑
l=t+1

αl = (1− τB)U

k∑
t=2

αtτ
k−t
B

(
t−1∑
l=1

τ lB

)
≤ Ucαk,

where the last inequality follows from the fact (1− τB)
(∑t−1

l=1 τ
l
B

)
≤ 1 and Lemma 3. Part (ii)

holds. The proof is complete.

With Lemmas 1-5 at hand, we are ready to present the convergence rate of AB-DSCSC.

Theorem 1. Let αk = a√
K

, βk =
αkCgL

2
f

n and a < n
CgL2

f
. Then under Assumptions 1-2,

1

K

K∑
k=1

E
[
‖∇h(xi,k)‖2

]
≤

8
(
E [h(x̄1)] + E

[
‖z1 − g1‖2

])
/a+ 8aU4√

K
+

2
(

4L2U1

n + 4‖u‖2U1

n2 + L2U1

)
a2

K
,

where constants U1 is defined in (25), U3 presents in Lemma 5 and

U4 =
L‖u‖2c2b CfCg
2n2(1− τB)2

+ U3 + 12Cgc
2
∣∣∣∣∣∣∣∣∣Ã− Ind

∣∣∣∣∣∣∣∣∣2U1 +
12c2bnC

2
gCf |||A|||

2

(1− τB)2
+ 3Vg

C2
gL

4
f

n2
.
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Proof. We first estimate the upper bound of ∇h(x̄k) in expectation. Noting that ∇h(x) is

L
(
:= C2

gLf + CfLg
)
-smooth [31],

h(x̄k+1) ≤ h(x̄k) + 〈∇h(x̄k), x̄k+1 − x̄k〉+
L

2
‖x̄k+1 − x̄k‖2

= h(x̄k)−
〈
∇h(x̄k), αk

(
uᵀ

n
⊗ Id

)(
y
′
k + ξk

)〉
+
L

2

∥∥∥∥αk (uᵀ

n
⊗ Id

)
yk

∥∥∥∥2
= h(x̄k)−

uᵀvαk
n
‖∇h(x̄k)‖2 +

L

2

∥∥∥∥αk (uᵀ

n
⊗ Id

)
yk

∥∥∥∥2
+

〈
∇h(x̄k), αk

(
uᵀv

n
∇h(x̄k)−

(
uᵀ

n
⊗ Id

)(
y
′
k + ξk

))〉
,

where the second equality follows from the fact that

x̄k+1 = x̄k − αk
(
uᵀ

n
⊗ Id

)
yk = x̄k − αk

(
uᵀ

n
⊗ Id

)(
y
′
k + ξk

)
.

Take expectation on both sides of above inequality,

E [h(x̄k+1)] ≤ E [h(x̄k)]−
uᵀvαk
n

E
[
‖∇h(x̄k)‖2

]
+
L

2
E

[∥∥∥∥αk (uᵀ

n
⊗ Id

)
yk

∥∥∥∥2
]

+ E

[〈
∇h(x̄k), αk

(
uᵀv

n
∇h(x̄k)−

(
uᵀ

n
⊗ Id

)(
y
′
k + ξk

))〉]
. (36)

For the third term on the right hand of (36),

L

2
E

[∥∥∥∥αk (uᵀ

n
⊗ Id

)
yk

∥∥∥∥2
]
≤
Lα2

k‖u‖2

2n2
E
[
‖yk‖2

]
≤
L‖u‖2c2b CfCg
2n2(1− τB)2

α2
k, (37)

where the second inequalities follows from (20).

For the fourth term on the right hand of (36),

E

[〈
∇h(x̄k), αk

(
uᵀv

n
∇h(x̄k)−

(
uᵀ

n
⊗ Id

)(
y
′
k + ξk

))〉]
≤
α2
k

2τ
E
[
‖∇h(x̄k)‖2

]
+

3τ

2

(
uᵀv

n

)2

E
[
‖P1‖2

]
+

3τ

2

(
uᵀv

n

)2

E
[
‖P2‖2

]
+

3τ‖u‖2

2n2
E
[
‖v ⊗ ȳ′k − y

′
k‖2
]

+
αk‖u‖
n

∣∣∣∣E [〈∇h(x̄k),−αk
(
uᵀ

n
⊗ Id

)
ξk

〉]∣∣∣∣
≤
α2
k

2τ
E
[
‖∇h(x̄k)‖2

]
+

3τL2

2n

(
uᵀv

n

)2

E
[
‖xk − 1⊗ x̄k‖2

]
+

3τCgL
2
f

2n

(
uᵀv

n

)2

E
[
‖gk − zk‖2

]
+

3τ‖u‖2

2n2
E
[
‖v ⊗ ȳ′k − y

′
k‖2
]

+
αk‖u‖
n

∣∣∣∣E [〈∇h(x̄k),−αk
(
uᵀ

n
⊗ Id

)
ξk

〉]∣∣∣∣
≤
α2
k

2τ
E
[
‖∇h(x̄k)‖2

]
+

3τL2U1

2n
α2
k +

3τCgL
2
f

2n
E
[
‖gk − zk‖2

]
+

3τ‖u‖2U1

2n2
α2
k + U3α

2
k, (38)

where P1 = ∇h(x̄k)− 1
n

∑n
j=1∇gj(xj,k)∇fj(gj(xj,k)), P2 = 1

n

∑n
j=1∇gj(xj,k)∇fj(gj(xj,k))− ȳ

′
k

and τ can be any positive scalar, the first inequality follows from Cauchy-Schwartz inequality
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and the fact ab ≤ 1
2τ a

2 + τ
2 b

2, the second inequality follows from the Lipschitz continuity of

∇gj(·)∇fj(gj(·)), Assumption 1 and the fact ȳ
′
k = 1

n

∑n
j=1∇gj(xj,k)∇fj(zj,k), the third inequal-

ity follows from (25), the fact uᵀv ≤ n and Lemma 5 (ii).

Plug (37)-(38) into (36) and set τ = 2αk
3 ,

E [h(x̄k+1)] ≤ E [h(x̄k)]− αk
(

1− αk
2τ

)
E
[
‖∇h(x̄k)‖2

]
+
L‖u‖2c2b CfCg
2n2(1− τB)2

α2
k +

3τL2U1

2n
α2
k

+
3τCgL

2
f

2n
E
[
‖gk − zk‖2

]
+

3τ‖u‖2U1

2n2
α2
k + U3α

2
k

≤ E [h(x̄k)]−
αk
4

E
[
‖∇h(x̄k)‖2

]
+

(
L‖u‖2c2b CfCg
2n2(1− τB)2

+ U3

)
α2
k

+

(
L2U1

n
+
‖u‖2U1

n2

)
α3
k + βkE

[
‖gk − zk‖2

]
. (39)

Combining (26) with (39),

E [h(x̄k+1)] + E
[
‖zk+1 − gk+1‖2

]
≤ E [h(x̄k)] +

[
(1− βk)2 + βk

]
E
[
‖zk − gk‖2

]
− αk

4
E
[
‖∇h(x̄k)‖2

]
+

(
L‖u‖2c2b CfCg
2n2(1− τB)2

+ U3

)
α2
k

+

(
L2U1

n
+
‖u‖2U1

n2

)
α3
k +

(
12Cgc

2
∣∣∣∣∣∣∣∣∣Ã− Ind

∣∣∣∣∣∣∣∣∣2U1 +
12c2bnC

2
gCf |||A|||

2

(1− τB)2

)
α2
k + 3Vgβ

2
k

≤ E [h(x̄k)] + E
[
‖zk − gk‖2

]
− αk

4
E
[
‖∇h(x̄k)‖2

]
+ U4α

2
k +

(
L2U1

n
+
‖u‖2U1

n2

)
α3
k, (40)

where

U4 =
L‖u‖2c2b CfCg
2n2(1− τB)2

+ U3 + 12Cgc
2
∣∣∣∣∣∣∣∣∣Ã− Ind

∣∣∣∣∣∣∣∣∣2U1 +
12c2bnC

2
gCf |||A|||

2

(1− τB)2
+ 3Vg

C2
gL

4
f

n2
.

Reordering the terms of (40) and summing over k from 1 to K,

K∑
k=1

αk
4

E
[
‖∇h(x̄k)‖2

]
≤ E [h(x̄1)] + E

[
‖z1 − g1‖2

]
−
(
E [h(x̄K+1)] + E

[
‖zK+1 − gK+1‖2

])
+ U4

K∑
k=1

α2
k +

(
L2U1

n
+
‖u‖2U1

n2

) K∑
k=1

α3
k

≤ E [h(x̄1)] + E
[
‖z1 − g1‖2

]
+ U4

K∑
k=1

α2
k +

(
L2U1

n
+
‖u‖2U1

n2

) K∑
k=1

α3
k.

Multiplying both sides of the above inequality by 4
a
√
K

,

1

K

K∑
k=1

E
[
‖∇h(x̄k)‖2

]
≤

4
(
E [h(x̄1)] + E

[
‖z1 − g1‖2

])
/a+ 4aU4√

K
+

4
(
L2U1
n + ‖u‖2U1

n2

)
a2

K
.
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By the Lipschitz continuity of ∇h(·), we have

1

K

K∑
k=1

E
[
‖∇h(xi,k)‖2

]
≤ 2

K

K∑
k=1

E
[
‖∇h(x̄k)‖2

]
+

2L2

K

K∑
k=1

E
[
‖xi,k − x̄k‖2

]

≤
8
(
E [h(x̄1)] + E

[
‖z1 − g1‖2

])
/a+ 8aU4√

K
+

2
(

4L2U1

n + 4‖u‖2U1

n2 + L2U1

)
a2

K
,

where the last inequality follows from (25). The proof is complete.

Theorem 1 presents that the AB-DSCSC achieves the convergence rate O(K−1/2) finding

the (ε)-stationary point, which is same as the convergence rate of stochastic gradient descent

for non-compositional problems. On the other hand, the sample complexity for finding the (ε)-

stationary point is O
(
1
ε2

)
as AB-DSCSC does not need the increasing batch size strategy in

each iteration.

Next, we study the convergence rate of AB-DSCSC for the strongly convex objective under

diminishing stepsize strategy.

Theorem 2. Let αk = a/(k+ b)α, βk = βαk, where a > 0, b ≥ 0, α ∈ (1/2, 1), β ∈ (0, 1/a) and

a/(1 + b)α ≤ n
uᵀvµ min{1, 2/(C2

gLf + CfLg)}. Under Assumptions 1-2 and the condition that

objective function h(x) is µ-strongly convex,

E
[
‖x̄k − x∗‖2

]
= O (αk) .

Moreover, if αk = a/(k + b), βk = βαk, 2n
uᵀvµ < a ≤ n(b+1)

uᵀvµ min
{

1, 2/(C2
gLf + CfLg)

}
and

1 < βa ≤ 1 + b,

E
[
‖x̄k − x∗‖2

]
= O

(
1

k

)
.

Proof. Recall the definition x̄k+1 =
(
uᵀ

n ⊗ Id
)
xk+1 in Lemma 2,

x̄k+1 =

(
uᵀ

n
⊗ Id

)
Ã (xk − αkyk)

= x̄k − αk
(
uᵀ

n
⊗ Id

)(
y
′
k + ξk

)
= x̄k −

uᵀvαk
n
∇h(x̄k) +

uᵀvαk
n

(
∇h(x̄k)−

1

n

n∑
j=1

∇gj(xj,k)∇fj(gj(xj,k))︸ ︷︷ ︸
P

(1)
k

+
1

n

n∑
j=1

∇gj(xj,k)∇fj(gj(xj,k))− ȳ
′
k︸ ︷︷ ︸

P
(2)
k

+
n

uᵀv

(
uᵀ

n
⊗ Id

)(
v ⊗ ȳ′k − y

′
k

)
︸ ︷︷ ︸

P
(3)
k

+
(
− n

uᵀv

)(uᵀ

n
⊗ Id

)
ξk︸ ︷︷ ︸

P
(4)
k

)
, (41)
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where y
′
k and ξk+1 are defined in (13) and (30), the second equality follows from the fact

uᵀA = 1. Subsequently,

E
[
‖x̄k+1 − x∗‖2

]
= E

[∥∥∥∥x̄k − x∗ − uᵀvαk
n
∇h(x̄k)

∥∥∥∥2
]

+

(
uᵀvαk
n

)2

E

[∥∥∥P (1)
k + P

(2)
k + P

(3)
k + P

(4)
k

∥∥∥2]
+ 2

(
uᵀvαk
n

)
E

[〈
x̄k − x∗ −

uᵀvαk
n
∇h(x̄k), P

(1)
k + P

(2)
k + P

(3)
k + P

(4)
k

〉]
≤
(

1− uᵀvµαk
n

)2

E
[
‖x̄k − x∗‖2

]
+

(
uᵀvαk
n

)2

E

[∥∥∥P (1)
k + P

(2)
k + P

(3)
k + P

(4)
k

∥∥∥2]
+ 2

(
uᵀvαk
n

)
E

[〈
x̄k − x∗ −

uᵀvαk
n
∇h(x̄k), P

(1)
k + P

(2)
k + P

(3)
k + P

(4)
k

〉]
≤

((
1− uᵀvµαk

n

)2

+
τ

2

(
uᵀvαk
n

)2

L2

)
E
[
‖x̄k − x∗‖2

]
+

(
1 +

1

2τ

)(
uᵀvαk
n

)2

E

[∥∥∥P (1)
k + P

(2)
k + P

(3)
k + P

(4)
k

∥∥∥2]
+ 2

(
uᵀvαk
n

)
E
[〈
x̄k − x∗, P

(1)
k + P

(2)
k + P

(3)
k + P

(4)
k

〉]
, (42)

where τ is any positive scalar, the first inequality follows from [22, Lemm 10], the second

inequalities follows from the inequality ab ≤ τa2

2 + b2

2τ and the fact that ∇h(x) is L(:= C2
gLf +

CfLg)-smooth.

For the second term on the right hand side of (42),(
1 +

1

2τ

)(
uᵀvαk
n

)2

E

[∥∥∥P (1)
k + P

(2)
k + P

(3)
k + P

(4)
k

∥∥∥2]
≤
(

1 +
1

2τ

)(
4

(
uᵀvαk
n

)2
L2c2

n
E
[
‖xk − 1⊗ x̄k‖2A

]
+ 4

(
uᵀvαk
n

)2 C2
gL

2
f

n
E
[
‖gk − zk‖2

]
+4α2

k

‖u‖2

n2
c2E

[∥∥∥y′k − v ⊗ ȳ
′

k

∥∥∥2
B

]
+ 4
‖u‖2

n2
α2
kE
[
‖ξk‖2

])
≤
(

1 +
1

2τ

)(
4

(
uᵀvαk
n

)2
L2c2U1α

2
k

n
+ 4

(
uᵀvαk
n

)2 C2
gL

2
f

n
E
[
‖gk − zk‖2

]
+ 4
‖u‖2

n2
c2U1α

3
k

)

+

(
1 +

1

2τ

)
4
‖u‖2

n2
c2b4nCfCg
(1− τB)2

α2
k, (43)

where cb = max
{
c,
|||B−In|||B

τB
c
}

, the first inequality follows from Assumption 1(c) and the

Lipschitz continuity of∇fj(·), the second inequality follows from (25) and Lemma 5. In addition,

by Lemma 4 and [17, Lemmas 4-5 in Chapter 2], there exists a constant U2 such that

E
[
‖gk − zk‖2

]
≤ U2βk = U2βαk. (44)
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Combining (43) with (44), we have(
1 +

1

2τ

)(
uᵀvαk
n

)2

E

[∥∥∥P (1)
k + P

(2)
k + P

(3)
k + P

(4)
k

∥∥∥2]
≤
(

1 +
1

2τ

)(
4

(
uᵀvαk
n

)2
L2c2U1α

2
k

n
+ 4

(
uᵀvαk
n

)2 C2
gL

2
f

n
U2βαk + 4

‖u‖2

n2
c2U1α

3
k

)

+

(
1 +

1

2τ

)
4
‖u‖2

n2
c2b4nCfCg
(1− τB)2

α2
k (45)

≤ 16

(
1 +

(
C2
gLf + CfLg

)
µ2

)
‖u‖2

n

c2bCfCg
(1− τB)2

α2
k + o(α2

k), (46)

where

τ =
µ2

2
(
C2
gLf + CfLg

) . (47)

For the third term on the right hand side of (42),

2

(
uᵀvαk
n

)
E
[〈
x̄k − x∗, P

(1)
k + P

(2)
k + P

(3)
k + P

(4)
k

〉]
≤ τ1E

[
‖x̄k − x∗‖2

]
+

1

τ1

(
uᵀvαk
n

)2

E

[∥∥∥P (1)
k + P

(2)
k + P

(3)
k

∥∥∥2]+ 2

(
uᵀvαk
n

)
E
[〈
x̄k − x∗, P

(4)
k

〉]
≤ τ1E

[
‖x̄k − x∗‖2

]
+

12

τ1

(
uᵀvαk
n

)2 L2c2U1α
2
k

n
+

12

τ1

(
uᵀvαk
n

)2 C2
gL

2
f

n
U2βαk +

12

τ1

‖u‖2

n2
c2U1α

3
k

+
‖u‖2cbc0
n2(1− τB)

(
c2bnCgCf
(1− τB)2

+ 4nCgCf

)
α3
k

≤ uᵀvµαk
4n

E
[
‖x̄k − x∗‖2

]
+

(
48uᵀvC2

gL
2
fµU2β

n2
+

48‖u‖2c2U1

nuᵀvµ

)
α2
k + o(α2

k), (48)

where c0 is some constant scalar,

τ1 =
uᵀvµ

4n
αk, (49)

the first inequality follows from the fact ab ≤ τ1a2

2 + b2

2τ1
for any positive scalar τ1, the second

inequality follows from (45) and Lemma 6 in Appendix.

Substitute (46)-(49) into (42),

E
[
‖x̄k+1 − x∗‖2

]
≤
(

1− uᵀvµαk
2n

)
E
[
‖x̄k − x∗‖2

]
+ o

(
α2
k

)
+

[
48uᵀvC2

gL
2
fµU2β

n2
+

48‖u‖2c2U1

nuᵀvµ

+16

(
1 +

(
C2
gLf + CfLg

)
µ2

)
‖u‖2

n

c2bCfCg
(1− τB)2

]
α2
k.

Then by [17, Lemmas 4-5 in Chapter 2],

E
[
‖x̄k+1 − x∗‖2

]
= O (αk) if αk = a/(k + b)α, α ∈ (1/2, 1),

and

E
[
‖x̄k − x∗‖2

]
= O

(
1

k

)
if αk = a/(k + b), a >

2n

uᵀvµ
.

The proof is complete.
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Theorem 2 shows that AB-DSCSC achieves the convergence rate O
(
1
k

)
for finding the op-

timal solution, which is also the optimal convergence rate of stochastic gradient descent for

non-compositional stochastic strongly convex optimization [23].

The next theorem studies the asymptotic normality of AB-DSCSC.

Theorem 3. Let stepsizes αk = a/(k + b)α, βk = βαk, where a > 0, b ≥ 0, α ∈ (1/2, 1),

β ∈ (0, 1/a) and a/(1 + b)α ≤ n
uᵀvµ min{1, 2/(C2

gLf + CfLg)}. Suppose

(a) Assumptions 1-2 hold;

(b) h(x) is µ-strongly convex;

(c) there exist scalar C and matrix H such that∥∥∥∥∇h(x)− 1

n
H(x− x∗)

∥∥∥∥ ≤ C‖x− x∗‖1+γ , ∀x ∈ Rd,

where γ ∈ (0, 1] satisfies that
∑∞

k=1
α
(1+γ)/2
k√

k
<∞;

(d) for any i ∈ V, there exist scalar Ci and matrix Ti such that∥∥∥∇fi(y)−∇fi(y
′
)−Ti

(
y − y′

)∥∥∥ ≤ Ci‖y − y′‖1+γ , ∀y, y′ ∈ Rp,

(e) for any i ∈ V, Gi(·;φ) is Lipschitz continuous with coefficient L
′
g , that is∥∥∥Gi(x;φ)−Gi(x

′
;φ)
∥∥∥ ≤ L′g‖x− x′‖, ∀y, y′ ∈ Rp.

Then for any i ∈ V,

1√
k

k∑
t=1

 xi,t − x∗
n∑

j=1
∇gj(x∗)Tj(zj,t−gj(xj,t))

n

 d−→ N

0,

 H−1 (S1 + S2) (H−1)ᵀ − 1
nH
−1S2

− 1
nS2(H−1)ᵀ 1

n2S2

 , (50)

where S1 = Cov (∇Gj(x∗;φj)∇Fj(g(x∗); ζj)), S2 = Cov
(∑n

j=1∇gj(x∗)TjGj(x
∗;φj)

)
.

Proof. By (25),

E

[∥∥∥∥∥ 1√
k

k−1∑
t=0

(x̄t − x∗)−
1√
k

k−1∑
t=0

(xi,t − x∗)

∥∥∥∥∥
]

≤ 1√
k

k−1∑
t=0

√
E [‖xt − 1⊗ x̄t‖2] ≤

√
U1√
k

k−1∑
t=0

αt → 0.

Then by Slutsky’s theorem, it is sufficient to show

1√
k

k∑
t=1

 x̄t − x∗∑n
j=1∇gj(x

∗)Tj(zj,t−gj(xj,t))

n

 d−→ N

0,

 H−1 (S1 + S2) (H−1)ᵀ − 1
nH
−1S2

− 1
nS2(H−1)ᵀ 1

n2S2

 .
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Subtract x∗ from both sides of (41),

x̄k+1 − x∗ = x̄k − x∗ −
uᵀvαk
n
∇h(x̄k) +

(
uᵀvαk
n

)(
P

(1)
k + P

(2)
k + P

(3)
k + P

(4)
k

)
=

(
Id − α̃k

1

n
H

)
(x̄k − x∗)− α̃k

1

n

n∑
j=1

∇gj(x∗)Tj (zj,k − gj (xj,k))

+ α̃k

(
P

(0)
k + P

(1)
k + P

(3)
k + P

(4)
k

)
, (51)

where α̃k = uᵀvαk
n ,

P
(0)
k = −

(
∇h(x̄k)−

1

n
H(x̄k − x∗)

)
+

1

n

n∑
j=1

∇gj(x∗)Tj (zj,k − gj (xj,k)) + P
(2)
k . (52)

According to recursion (27) and the definition of βk,

zi,k+1 − gi (xi,k+1) =

(
1− nβ

uᵀv
α̃k

)
(zi,k − gi (xi,k)) +G

(1)
i,k+1 − gi(xi,k+1) + (1− βk)

(
gi(xi,k)−G(2)

i,k+1

)
,

where G
(1)
i,k+1 = Gi(xi,k+1;φ

′
i,k+1), G

(2)
i,k+1 = Gi(xi,k;φ

′
i,k+1). Combining above equation with

(51),

∆k+1 = (I2d − α̃kHθ) ∆k + α̃kη
(1)
k + α̃k

(
η
(2)
k + η

(3)
k

)
, (53)

where

∆k =

 x̄k − x∗∑n
j=1∇gj(x∗)Tj(zj,k−gj(xj,k))

n

 , Hθ =

 1
nH Id

0 nβ
uᵀvId

 ,

η
(1)
k =


P

(4)
k

β

uᵀv

n∑
j=1

∇gj(x∗)Tj

(
Gj(x

∗;φ
′

j,k+1)− gj(x∗)
)
 , η

(2)
k =

 P
(0)
k + P

(1)
k + P

(3)
k

0

 , (54)

and

η
(3)
k =

 0
n∑
j=1

∇gj(x∗)Tj

(
G

(1)
j,k+1−gj(xj,k+1)+(1−βk)

(
gj(xj,k)−G(2)

j,k+1

)
nα̃k

− β
uᵀv

(
Gj(x

∗;φ
′

j,k+1)− gj(x∗)
))

 .

Denote M(k, t) = α̃t
∑k

l1=t
Πl1
l2=t+1 (I2d − α̃kHθ) , N(k, t) = M(k, t) −H−1θ . Then by the

recursion (53),

1√
k

k∑
t=1

∆t =
1√
k

k∑
t=1

H−1θ η
(1)
t +

1√
k

k∑
t=1

N(k, t)η
(1)
t +

1√
k

k∑
t=1

M(k, t)η
(2)
t

+
1√
k

k∑
t=1

M(k, t)η
(3)
t +O

(
1√
k

)
. (55)
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It is easy to show that the second term on the right hand side of (55) converge to 0 in
probability, see Lemma 7 in Appendix for details. For the third term on the right hand side of
(55),

E

[∥∥∥∥∥ 1√
k

k∑
t=1

M(k, t)η
(2)
t

∥∥∥∥∥
]

≤ 1√
k

k∑
t=1

|||M(k, t)|||

E

∥∥∥∥∥∥ 1

n

n∑
j=1

∇gj(x∗) (∇fj(gj(xj,t))−∇fj(zj,t)−Tj (zj,t − gj (xj,t)))

∥∥∥∥∥∥


+E

[∥∥∥∥∇h(x̄t)−
1

n
H(x̄t − x∗)

∥∥∥∥]+ E

∥∥∥∥∥∥ 1

n

n∑
j=1

(∇gj(xj,t)−∇gj(x∗)) (∇fj(gj(xj,t))−∇fj(zj,t))

∥∥∥∥∥∥


+
1√
k

k∑
t=1

|||M(k, t)|||E
[∥∥∥P (1)

t + P
(3)
t

∥∥∥]

≤ 1√
k

k∑
t=1

|||M(k, t)|||

 1

n

n∑
j=1

‖∇gj(x∗)‖E
[
‖zj,t − gj (xj,t)‖1+γ

]
+ E

[
‖x̄t − x∗‖1+γ

]

+
1

n

n∑
j=1

LgLf

√
E
[
‖xj,t − x∗‖2

]
E
[
‖gj(xj,t)− zj,t‖2

]+
1√
k

k∑
t=1

|||M(k, t)|||E
[∥∥∥P (1)

t + P
(3)
t

∥∥∥]

=
1√
k

k∑
t=1

|||M(k, t)|||O
(
α
(1+γ)/2
t + αt

)
,

where the first inequality follows from the definitions of η
(2)
t , P

(0)
t and P

(2)
t in (54), (52) and (41),

the second inequality follows from condition (d), Assumption 1 (a) and the Hölder inequality,

the equality follows from (25), Lemma 4, Theorem 2 and (43). Then by the boundedness of

M(k, t) [18, Lemma 1 (ii)], the fact
∑∞

k=1
α
(1+γ)/2
k√

k
<∞ and Kronecker Lemma, we have

E

[∥∥∥∥∥ 1√
k

k∑
t=1

M(k, t)η
(2)
t

∥∥∥∥∥
]
≤ 1√

k

k∑
t=1

|||M(k, t)|||O
(
α
(1+γ)/2
t + αt

)
−→ 0.

Noting that η
(3)
k is a martingale difference sequence adapted to the filtration Fk (34), the fourth

term on the right hand side of (55)

E

∥∥∥∥∥ 1√
k

k∑
t=1

M(k, t)η
(3)
t

∥∥∥∥∥
2


=
1

k

k∑
t=1

E

∥∥∥∥∥∥M(k, t)

n∑
j=1

∇gj(x∗)Tj

G(1)
j,t+1 − gj(xj,t+1)−

(
G

(2)
j,t+1 − gj(xj,t)

)
nα̃t

+
β

uᵀv

(
G

(2)
j,t+1 − gj(xj,t)−

(
Gj(x

∗;φ
′

j,t+1)− gj(x∗)
)))∥∥∥∥2

]

≤ 1

k

k∑
t=1

1

n

n∑
j=1

|||M(k, t)|||2‖∇gj(x∗)‖2‖Tj‖24

(L′g
α̃t

)2

E
[
‖xj,t+1 − xj,t‖2

]
+

(
nβL

′

g

uᵀv

)2

E
[
‖xj,t − x∗‖2

]
=

1

k

k∑
t=1

O (αt) ,
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where the inequality follows from the Lipschitz continuity of Gj(·;φ), the second equality follows

from (25), Theorem 2 and the fact

E
[
‖xj,t+1 − xj,t‖2

]
≤ 3

(
E
[
‖xj,t+1 − x̄t+1‖2

]
+ E

[
‖xj,t − x̄t‖2

]
+ E

[
‖x̄t+1 − x̄t‖2

])
= O

(
α2
t

)
.

Then by Kronecker Lemma, E

[∥∥∥ 1√
k

∑k
t=1M(k, t)η

(3)
t

∥∥∥2] = 1
k

∑k
t=1O (αt) −→ 0.

It is left to show the asymptotic normality of the first term on the right hand side of (55).

Indeed, by the similar way to [32, Lemma 6 in Appendix B], we may obtain that

E

∥∥∥∥∥ 1√
k

k−1∑
t=0

P
(4)
k − 1√

k

k−1∑
t=0

(
1ᵀ

n
⊗ Id

)
ε∗t

∥∥∥∥∥
2
 −→ 0,

1√
k

k∑
t=1

(
1ᵀ

n
⊗ Id

)
ε∗t

d→ N

(
0,

1

n2
S1

)
and

1√
k

k∑
t=1

β

uᵀv

n∑
j=1

∇gj(x∗)Tj

(
Gj(x

∗;φ
′
j,k+1)− gj(x∗)

)
d→ N

(
0,

(
β

uᵀv

)2

S2

)
,

where

ε∗t = [(∇G1(x
∗;φ1,t)∇F1(g(x∗); ζ1,t)−∇g1(x∗;φ1,t)∇f1(g(x∗)))ᵀ , · · · ,

(∇Gn(x∗;φn,t)∇Fn(g(x∗); ζn,t)−∇gn(x∗;φn,t)∇fn(g(x∗)))ᵀ]ᵀ .

Note that H−1θ =

 nH−1 −uᵀv
β H−1

0 uᵀv
nβ Id

 and φi,k is independent of φ
′
i,k. Then

1√
k

k∑
t=1

H−1θ η
(1)
t

d−→ N

0,

 H−1 (S1 + S2) (H−1)ᵀ − 1
nH
−1S2

− 1
nS2(H

−1)ᵀ 1
n2S2


 .

The proof is complete.

Theorem 3 shows that Polyak-Ruppert averaged iterates of the proposed method converge in

distribution to a normal random vector for any agent. Different from the traditional asymptotic

normality results on SA based methods [3, 8], the asymptotic covariance matrix in (50) has two

parts, H−1S1(H
−1)ᵀ and H−1S2(H

−1)ᵀ, where the first one is induced by the randomness of

gradient and the second one is induced by the randomness of the inner function. Indeed, the

asymptotic normality on the SAA scheme for stochastic compositional optimization has been

studied by Dentcheva et al. [5]. To the best of our knowledge, Theorem 3 is the first asymptotic

normality result for the SA based method on distributed stochastic compositional optimization

problem.

4 Experimental Results

We test the proposed method for two applications, i.e., model-agnostic meta learning problem

and logistic regression problem.
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Figure 1: Meta-training and meta-test.

4.1 Model-agnostic meta learning

Model-agnostic meta learning (MAML) is a powerful tool for learning a new task by using

the prior experience from related tasks [9]. It is to find a good initialization parameter from

similar learning tasks such that taking several gradient steps would produce good results on new

tasks, and the optimizations model is

min
x∈Rd

1

M

M∑
m=1

fm (x− α∇fm(x)) , (56)

where m = 1, 2, · · · ,M is the index of training tasks, α is the adaptation stepsize, fm(x) =

E [Fm(x; ζm)] is the loss function of task m. We illustrate the empirical performance of AB-

DSCSC to solve MAML problem (56) and compare it with GP-DSCGD and GT-DSCGD [10].

The setting of MAML is as follows [2, 10]. Each task m ∈ M = {1, 2, · · · ,M} maps the

input b to a sine wave s(b; am, φm) := am sin(b + φm) where the amplitude am and phase φm
of the sinusoid vary across tasks. The tasks’ parameters am and φm are sampled uniformly

from [0.1, 5] and [0, 2π] respectively, input domain of b is uniform on [5,−5]. The regressor of

s(b; am, φm) is a fully-connected neural network ŝ(b;x), which consists of two hidden layers with

40 ReLU nodes. The loss function fm(z) = Eb
[
‖ŝ(b; z)− am sin(b+ φm)‖2

]
and the one-step

adaptation stepsize α = 0.01.

In this experiment, we generate a directed graph G of 5 agents by adding random links to a

ring network. Each agent is assigned with 200 training tasks, i.e. M = 1000 in problem (56). We

utilize 2500 new tasks of sinusoidal regression to test the obtained parameters. For AB-DSCSC,

stepsize αk = 0.01, βk = 0.8 and communication graphs GA = GBᵀ = G. For GP-DSCGD and

GT-DSCGD, stepsize η = 0.03, γ = 3, βk = 0.33, and set the underlying graph2 of G as the

communication graph. In each task, we use 10 samples for training and testing.

2The underlying graph of a directed graph G
′
is an undirected graph obtained by replacing all directed edges

of G
′
with undirected edges.
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We run AB-DSCSC, GP-DCSGD and GT-DCSGD for 5000 iterations and record their per-

formance on the training loss and test loss in Figure 1, where the solid curve, dash-dot curve and

dashed curve display the averaged training loss of AB-DSCSC, GT-DCSGD and GP-DCSGD

over different agents respectively. We can observe from Figure 1 (left) that the three methods

achieve similar performance. Figure 1 (right) depicts the test loss on new tasks after 10 gradient

descent steps with the learned model parameters as the initialization. Again, the three methods

achieve similar performance on the new tasks and they are well adaptable to new tasks as test

loss decreasing quickly.

4.2 Conditional stochastic optimization

We consider a modified logistic regression problem, in which the inner and outer randomness

are independent of each other[13],

min
x∈Rd

h(x) =
1

n

n∑
i=1

1

mi −mi−1

mi∑
j=mi−1+1

log

(
1 + exp

(
−bj

(
1

l

l∑
s=1

φs + aj

)ᵀ

x

))
, (57)

where n = 50, mi = 20i, l = 10000, aj ∼ N(0, Id), bj ∈ {1,−1}, φs ∼ N(0, Id). Obviously,

problem (57) falls in the form of DSCO with inner function

gi(x) =

[
−bmi−1+1

(
1

l

l∑
s=1

φs + ami−1+1

)ᵀ

x, · · · , − bmi

(
1

l

l∑
s=1

φs + ami

)ᵀ

x

]ᵀ
,

outer function fi(z) = 1
mi−mi−1

∑mi
j=mi−1+1 log (1 + exp (zj)), zj is the j-th component of vector

z ∈ Rmi .
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Figure 2: Optimality gap and residual.

Similarly, we generate a directed graph G of 50 agents by adding random links to a ring

network, and set communication graphs GA = GBᵀ = G for AB-DSCSC. The communication

graph of GP-DCSGD and GT-DSCGD is also set as the underlying graph of G. The stepsize
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αk = 0.01/k0.55, βk = 0.8/k0.6 for AB-DSCSC and η = 0.03, γ = 3, βk = 0.33/k0.6 for GP-

DCSGD and GT-DCSGD.

Note that problem (57) is a convex optimization problem, we solve it by centralized gradient

descent and denote the optimal solution as x∗. Then, we run AB-DSCSC, GP-DCSGD and

GT-DCSGD for 10000 iterations and record their performance on the averaged optimality gap
1
n

∑n
i=1 ‖xi,k − x∗‖2 and average residual 1

n

∑n
i=1(h(xi,k) − h(x∗)) in Figure 2. Obviously, the

three methods can solve the problem efficiently and achieve similar performance.
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Appendix

Lemma 6. Let αk = a/(k + b)α, a > 0, b ≥ 0, α ∈ (1/2, 1]. Under Assumptions 1-2 and the

condition that objective function h(x) is µ-strongly convex,

E

[〈
x̄k − x∗,−αk

(
uᵀ

n
⊗ Id

)
ξk

〉]
≤ ‖u‖cbc0

2n(1− τB)

(
c2bnCgCf
(1− τB)2

+ 4nCgCf

)
α2
k,

where cb = max
{
c,
|||B−In|||B

τB
c
}

, c0 is some constant scalar.

Proof. Recall the definition x̄k =
(
uᵀ

n ⊗ Id
)
xk in Lemma 2,

x̄k − x∗ = x̄k−1 − x∗ − αk−1
(
uᵀ

n
⊗ Id

)
yk−1 = x̄1 − x∗ −

k−1∑
t=1

αt

(
uᵀ

n
⊗ Id

)
yt,

and then

E

[〈
x̄k − x∗,−αk

(
uᵀ

n
⊗ Id

)
ξk

〉]
= E

[〈
x̄1 − x∗ −

k−1∑
t=1

αt

(
uᵀ

n
⊗ Id

)
yt,−αk

(
uᵀ

n
⊗ Id

)
ξk

〉]

= −αkE

[〈
x̄1 − x∗ −

k−1∑
t=1

αt

(
uᵀ

n
⊗ Id

)
yt,

(
uᵀ

n
⊗ Id

) k∑
t=1

B̃(k, t)εt

〉]
,
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where εt = Ht−Jt, Ht and Jt are defined in (10) and Lemma 2 respectively, the second equality

follows from (31). Note that E

[〈
x̄0 − x∗,

(
uᵀ

n ⊗ Id
)
B̃(k, t)εt

〉 ∣∣∣∣Ft] = 0 and

E

[〈(
uᵀ

n
⊗ Id

)
yt1 ,

(
uᵀ

n
⊗ Id

)
B̃(k, t2)εt2

〉 ∣∣∣∣Ft2] = 0 (t1 < t2),

where Fk is defined in (34). Then

E

[〈
x̄k − x∗,−αk

(
uᵀ

n
⊗ Id

)
ξk

〉]
≤ αk

k−1∑
t1=1

t1∑
t2=1

αt1
‖u‖2

2n2

∣∣∣∣∣∣∣∣∣B̃(k, t2)
∣∣∣∣∣∣∣∣∣ (E

[
‖yt1‖2

]
+ E

[
‖εt2‖

2
])

≤ αk
k−1∑
t1=1

t1∑
t2=1

αt1
‖u‖2cb

2n2
τk−t2B

(
c2bnCgCf
(1− τB)2

+ 4nCgCf

)

≤ ‖u‖2cbc
2n2(1− τB)

(
c2bnCgCf
(1− τB)2

+ 4nCgCf

)
αkαk−1,

where cb = max
{
c,
|||B−In|||B

τB
c
}

and c is some constant scalar, the second inequality follows from

(19), (20) and (33), the third inequality follows from Lemma 3. Noting that limk→∞
αk−1

αk
= 1,

there exists constant c0 > c such that

E

[〈
x̄k − x∗,−αk

(
uᵀ

n
⊗ Id

)
ξk

〉]
≤ ‖u‖2cbc0

2n2(1− τB)

(
c2bnCgCf
(1− τB)2

+ 4nCgCf

)
α2
k.

The proof is complete.

Lemma 7. Let αk = a/(k + b)α, a > 0, b ≥ 0, α ∈ (1/2, 1). Suppose that

(a) Assumptions 1-2 hold;

(b) for any i ∈ V, there exist scalar Ci and matrix Ti such that∥∥∥∇fi(y)−∇fi(y
′
)−Ti

(
y − y′

)∥∥∥ ≤ Ci‖y − y′‖1+γ , ∀y, y′ ∈ Rp,

where γ ∈ (0, 1] satisfies that
∑∞

k=1
α
(1+γ)/2
k√

k
<∞.

Denote M(k, t) = α̃t
∑k

l1=t
Πl1
l2=t+1 (I2d − α̃kHθ) , N(k, t) = M(k, t)−H−1θ and

η
(1)
t =

 (
− n

uᵀv

) (
uᵀ

n ⊗ Id
)
ξt

β
uᵀv

∑n
j=1∇gj(x∗)Tj

(
Gj(x

∗;φ
′
i,t+1)− gj(x∗)

)
 .

We have

lim
k→∞

E

∥∥∥∥∥ 1√
k

k∑
t=1

N(k, t)η
(1)
t

∥∥∥∥∥
2
 = 0.
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Proof. Note that

η
(1)
t =

 (
− n

uᵀv

) (
uᵀ

n ⊗ Id
)
ξt

0

+

 0

β
uᵀv

∑n
j=1∇gj(x∗)Tj

(
Gj(x

∗;φ
′
i,t+1)− gj(x∗)

)


and

E [〈ξt1 , ξt2〉] = E
[
E
[
〈ξt1 , ξt2〉

∣∣Fmin{t1,t2}
]]

= E

〈ξmin{t1,t2},

min{t1,t2}∑
l=1

B̃(max{t1, t2}, l)εl

〉 (t1 ≤ t2),

E
[〈
Gj(x

∗;φ
′
i,t1)− gj(x∗), Gj(x∗;φ

′
i,t2)− gj(x∗)

〉 ∣∣Fmin{t1,t2}

]
= 0 (t1 6= t2),

where Ft is defined in (34). Then

E

∥∥∥∥∥ 1√
k

k∑
t=1

N(k, t)η
(1)
t

∥∥∥∥∥
2
 = E

E

∥∥∥∥∥ 1√
k

k∑
t=1

N(k, t)η
(1)
t

∥∥∥∥∥
2 ∣∣∣∣Fmin{t1,t2}


≤
(
‖u‖
uᵀv

)2
4

k

k∑
t1=1

k∑
t2=t1

|||N(k, t1)||||||N(k, t2)|||
t1∑
l=1

∣∣∣∣∣∣∣∣∣B̃(t2, l)
∣∣∣∣∣∣∣∣∣E [‖ξt1‖ ‖εl‖]

+
2

k

k∑
t=1

|||N(k, t)|||2E


∥∥∥∥∥∥ β

uᵀv

n∑
j=1

∇gj(x∗)Tj

(
Gj(x

∗;φ
′

i,t)− gj(x∗)
)∥∥∥∥∥∥

2


≤ cbcN (c2b + 1)nCfCg

(
‖u‖
uᵀv

)2
1

(1− τB)4
8

k

k∑
t1=1

|||N(k, t1)|||

+ n

(
β

uᵀv

)2
 n∑
j=1

‖∇gj(x∗)‖2‖Tj‖2
VgcN

2

k

k∑
t=1

|||N(k, t)|||,

where cb = max
{
c,
|||B−In|||B

τB
c
}
, cN = supk,t |||N(k, t)|||, the second inequality follows from the

fact supk,t |||N(k, t)||| <∞ [18, Lemma 1 (ii)], (19), (33), Lemma 5 (i) and Assumption 1 (c). By

[18, Lemma 1 (ii)],

lim
k→∞

1

k

k∑
t=1

|||N(k, t)||| = 0,

which implies limk→∞ E

[∥∥∥ 1√
k

∑k
t=1N(k, t)η

(1)
t

∥∥∥2] = 0. The proof is complete.
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