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Abstract
Let A ∈ R

m×n \ {0} and P := {x : Ax ≤ 0}. This paper provides a procedure to
compute an upper bound on the following homogeneous Hoffman constant

H0(A) := sup
u∈Rn\P

dist(u, P)

dist(Au,Rm−)
.

In sharp contrast to the intractability of computing more general Hoffman constants,
the procedure described in this paper is entirely tractable and easily implementable.

1 Introduction

Hoffman constants for systems of linear inequalities, andmore general error bounds for
feasibility problems, play a central role in mathematical programming. In particular,
Hoffman constants provide a key building block for the convergence of a variety
of algorithms [1, 3, 10, 11, 13, 23]. Since Hoffman’s seminal work [7], Hoffman
constants and more general error bounds has been widely studied [2, 4, 6, 12, 14, 18,
24, 25]. However, there has been very limited work on algorithmic procedures that
compute or bound Hoffman constants. The only two references that appear to tackle
this computational challenge are the 1995 article by Klatte and Thiere [9] and themore
recent 2021 article by Peña, Vera, and Zuluaga [16]. However, as it is discussed in
both [9] and [16], there are limitations on the algorithmic schemes proposed in both
these articles.

The central goal of this paper is to devise a procedure that computes an upper bound
on the following homogeneous Hoffman constant H0(A). Suppose A ∈ R

m×n . Let
P := {x : Ax ≤ 0} and define H0(A) as
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H0(A) := sup
u∈Rn\P

dist(u, P)

dist(Au,Rm−)
.

For notational convenience, by convention let H0(A) := 0 when P = R
n . This occurs

precisely when A = 0.
To position this work in the context of Hoffman constants, we next recall the local

and global Hoffman constants H(A, b) and H(A) associated to linear systems of
inequalities defined by A. The homogeneous Hoffman constant H0(A) is a special
case of the following local Hoffman constant H(A, b). Suppose A ∈ R

m×n and
b ∈ ARn + R

m+. Let PA(b) := {x ∈ R
n : Ax ≤ b} and define H(A, b) as

H(A, b) := sup
u∈Rn\PA(b)

dist (u, PA(b))

dist (Au − b,Rm−)
.

It is evident that H0(A) = H(A, 0) and thus H0(A) is bounded above by the following
global Hoffman constant H(A). Suppose A ∈ R

m×n . Define

H(A) := sup
b∈ARn+R

m+
H(A, b).

In his seminal paper [7], Hoffman showed that H(A) is finite and consequently so are
H0(A) and H(A, b) for all b ∈ ARn + R

m+.
The articles [9, 16] propose algorithms to compute or estimate the global Hoffman

constant H(A). These algorithms readily yield a computational procedure to bound
H0(A). However, as it is detailed in [9, 16], except for very special cases the computa-
tion or even approximation of H(A) is an extremely challenging problem. Indeed, the
recent results in [15] show that the Stewart-Todd condition measure χ(A) [20, 21] is

the same as H(A)whereA =
[

A
−A

]
. Since the quantity χ(A) is known to be NP-hard

to approximate [8], so is H(A). The computation of the (non-homogeneous) local
Hoffman constant H(A, b), as discussed in [2, 25], also poses similar computational
challenges. In sharp contrast, the procedure proposed in this paper for upper bounding
the more specialized Hoffman constant H0(A) is entirely tractable and easily imple-
mentable for any A ∈ R

m×n . The bound is a formalization of the following three-step
approach detailed in Sect. 2.

First, upper bound H0(A) in the following two special cases:

(i) When Ax̂ < 0 for some x̂ ∈ R
n or equivalently when AT y = 0, y ≥ 0 ⇒ y = 0.

(See Proposition 1.)
(ii) When AT ŷ = 0 for some ŷ > 0 or equivalently when Ax ≤ 0 ⇒ Ax = 0. (See

Proposition 2.)

Second, use a canonical partition A =
[
AB

AN

]
of the rows of A such that AN is as

in case (i) and AB is as in case (ii) above. (See Proposition 3.)
Third, upper bound H0(A) by stitching together the Hoffman constants H0(AB),

H0(AN ), and a third Hoffman constantH(L, K ) associated to the intersection of the
subspace L := {x : ABx = 0} and the cone K := {x : AN x ≤ 0}. (See Theorem 1.)
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The above steps suggest the following computational procedure to upper bound
H0(A): First, compute the partition B, N . Second, compute upper bounds on H0(AB)

and on H0(AN ). Third, upper bound H(L, K ). Section3 details this procedure. As
explained in Sect. 3, the total computational work in the entire procedure consists of
two linear programs, two quadratic programs, a convex program, and a singular value
calculation, all of which are computationally tractable. This is noteworthy in light of
the challenges associated to estimating the Hoffman constants H(A) and H(A, b). A
Python implementation and some illustrative examples of this procedure are publicly
available at https://github.com/javi-pena.

For ease of notation and computability, we assume throughout the paper that the
norm in R

m satisfies the following componentwise compatibility condition: if y, z ∈
R
m and |y| ≤ |z| componentwise then ‖y‖ ≤ ‖z‖. The componentwise compatibility

condition in particular implies that for all u ∈ R
n

dist(Au,Rn−) = ‖(Au)+‖

where (Au)+ = max{Au, 0} componentwise. Consequently,

H0(A) = sup
u∈Rn\P

dist(u, P)

‖(Au)+‖ .

Observe that most of the usual norms in R
m , including the �p norms for 1 ≤ p ≤ ∞

satisfy the componentwise compatibility condition.
We conclude this introduction by highlighting that our developments for bound-

ing H0(A) rely critically on the features of homogeneous systems of inequalities. In
contrast to non-homogeneous systems of inequalities and more general affine cone
inclusions, homogeneous systems of inequalities and more general homogeneous
affine cone inclusions possess a number of attractive properties as discussed in [5,
17, 19, 22]. In particular, although it is tempting to conjecture that a bound on the
non-homogeneous Hoffman constant H(A, b) could be obtained from some H0(Ab)

via homogenization, that is not the case as we next detail. Indeed, consider the natural
homogenization Abz ≤ 0 of the system of inequalities Ax ≤ b where

Ab :=
[
A − b
0 − 1

]
, z :=

[
x
t

]
.

The following example shows that H(A, b) cannot be bounded above by any reason-
able multiple of H0(Ab). Suppose 0 < ε < 1 and let

A =
⎡
⎣ 1 ε

−1 ε

0 −1

⎤
⎦ , b =

⎡
⎣1
1
0

⎤
⎦ .
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326 J. F. Peña

Then

Ab =

⎡
⎢⎢⎣

1 ε −1
−1 ε −1
0 −1 0
0 0 −1

⎤
⎥⎥⎦ .

For ease of computation, suppose all relevant spaces are endowed with the infinite
norm. Hence the remarks following Proposition 1 below imply that H0(Ab) ≤ 1/(1−
ε) ≤ 2. On the other hand, H(A, b) ≥ 1/ε because Ax ≤ b implies that x2 ≤ 1/ε
and thus for u = [

0, 2/ε
]T we have ‖(Au − b)+‖∞ = 1 but ‖u − x‖∞ ≥ 1/ε =

1/ε · ‖(Au − b)+‖∞ for any x such that Ax ≤ b. Since this holds for any 0 < ε < 1,
it follows that H(A, b) cannot be bounded above in terms of H0(Ab).

2 Upper bounds on H0(A)

2.1 Upper bounds on H0(A) in two special cases

We next consider two special cases that can be seen as dual counterparts of each other.

Proposition 1 Suppose A ∈ R
m×n and Ax̂ < 0 for some x̂ ∈ R

n or equivalently
AT y = 0, y ≥ 0 ⇒ y = 0. Then

H0(A) ≤ max
y∈Rm

‖y‖≤1

min
x∈Rn

Ax≤y

‖x‖. (1)

Proof For ease of notation, let H denote the right-hand side expression in (1), that is,

H := max
y∈Rm

‖y‖≤1

min
x∈Rn

Ax≤y

‖x‖ = max
y∈Rm\{0} min

x∈Rn

Ax≤y

‖x‖
‖y‖ .

Observe that H < +∞ because the assumption on A implies that ARn +R
m+ = R

m .
We need to show that H0(A) ≤ H . To that end, let P := {x ∈ R

n : Ax ≤ 0} and
suppose that u ∈ R

n\P . Let y := (Au)+ ∈ R
m . The construction of H implies that

there exists x ∈ R
n such that Ax ≤ −y and ‖x‖ ≤ H · ‖y‖ = H · ‖(Au)+‖. Thus

x + u ∈ P because

A(x + u) = Ax + Au ≤ −y + Au = −(Au)+ + Au ≤ 0.

Furthermore ‖(x+u)−u‖ = ‖x‖ ≤ H ·‖(Au)+‖. Since this holds for all u ∈ R
n \ P ,

it follows that H0(A) ≤ H .

In addition to the simple direct proof above, an alternative proof of Proposition 1 can
also be obtained from [16]. Indeed, [16, Proposition 2] implies that when A ∈ R

m×n

satisfies the assumption in Proposition 1, the right-hand side in (1) is precisely the
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An easily computable upper bound on the Hoffman constant... 327

global Hoffman constant H(A) which is at least as large as H0(A) as previously
noted.

For computational purposes, it is useful to note that when Rm is endowed with the
�∞ norm, the upper bound in Proposition 1 can be computed via the following convex
optimization problem:

min{‖x‖ : Ax ≥ 1}.

In particular, any x̄ ∈ R
n such that Ax̄ ≥ 1 yields the upper bound

H0(A) ≤ ‖x̄‖.

The following proposition, which can be seen as a dual counterpart of Proposition 1,
relies on the dual norms in R

m and R
n . More precisely, suppose both R

m and R
n are

endowed with their canonical inner products. In each case let ‖ · ‖∗ denote the norm
defined as

‖u‖∗ = max‖x‖≤1
〈u, x〉 .

Proposition 2 Suppose A ∈ R
m×n is such that AT ŷ = 0 for some ŷ > 0 or equiva-

lently Ax ≤ 0 ⇒ Ax = 0. Then

H0(A) ≤ max
v∈AT(Rm)
‖v‖∗≤1

min
y∈Rm+,AT y=v

‖y‖∗. (2)

Proof We shall assume that A �= 0 as otherwise H0(A) = 0 and (2) trivially holds.
Again for ease of notation, let H denote the right-hand side expression in (2), that is,

H := max
v∈AT(Rm )
‖v‖∗≤1

min
y∈Rm+,AT y=v

‖y‖∗ = max
v∈AT(Rm )

v �=0

min
y∈Rm+,AT y=v

‖y‖∗

‖v‖∗ .

Observe that H < +∞ because the assumption on A implies that AT
R
m+ = AT

R
m .

We need to show that H0(A) ≤ H . To that end, let P := {x ∈ R
n : Ax ≤ 0} =

{x ∈ R
n : Ax = 0} and suppose that u ∈ R

n\P . Let

x̄ := arg min
x∈P

‖u − x‖ = arg min
x :Ax=0

‖u − x‖.

The optimality conditions of the latter problem imply that there exists v ∈ AT
R
m with

‖v‖∗ = 1 such that

‖u − x̄‖ = 〈v, u − x̄〉 .
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328 J. F. Peña

The construction of H implies that there exists y ∈ R
m+ such that AT y = v and

‖y‖∗ ≤ H . Since v = AT y we have

‖u − x̄‖ = 〈v, u − x̄〉 =
〈
AT y, u − x̄

〉
= 〈y, A(u − x̄)〉 = 〈y, Au〉 .

In addition, since y ∈ R
m+ and ‖y‖∗ ≤ H , we also have

‖u − x̄‖ = 〈y, Au〉 ≤ 〈
y, (Au)+

〉 ≤ ‖y‖∗ · ‖(Au)+‖ ≤ H · ‖(Au)+‖.

Since this holds for all u ∈ R
n \ P , it follows that H0(A) ≤ H .

For computational purposes, it is useful to note that when Rm is endowed with the
�∞ norm, the upper bound in Proposition 2 can be computed as follows

max
v∈AT(Rm )
‖v‖∗≤1

min
y∈Rm+
AT y=v

1T y.

The reciprocal of the latter quantity in turn is the radius of the largest ball in AT(Rm)

centered at 0 and contained in the set

{AT y : y ∈ R
m+, 1T y = 1} = {AT y : y ∈ R

m+, 1T y ≤ 1}.

Therefore, if in addition R
n is endowed with the �2 norm then any ȳ ∈ R

m++ with
1T ȳ = 1 and AT ȳ = 0 yields the upper bound

H0(A) ≤ 2

σ+
min(A

TȲ )
, (3)

where Ȳ = Diag(ȳ) and σ+
min(A

TȲ ) denotes the smallest positive singular value of

ATȲ . To see why (3) holds, observe that if v ∈ AT
R
m and ‖v‖2 ≤ σ+

min(A
T Ȳ )

2 then
2v = ATȲ z for some ‖z‖2 ≤ 1. The latter implies that |Ȳ z| ≤ ȳ componentwise and
thus 2v = AT(ȳ + Ȳ z) with

ȳ + Ȳ z ∈ R
m+ and 1T(ȳ + Ȳ z) ≤ 2 · 1T ȳ = 2.

In particular, v ∈ {AT y : y ∈ R
m+, 1T y ≤ 1}. Since this holds for any v ∈ AT

R
m with

‖v‖2 ≤ σ+
min(A

T Ȳ )

2 , it follows that the radius of the largest ball in AT(Rm) centered at
0 and contained in the set

{AT y : y ∈ R
m+, 1T y = 1} = {AT y : y ∈ R

m+, 1T y ≤ 1}.

is at least
σ+
min(A

T Ȳ )

2 .
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2.2 Upper bound on H0(A) for general A

Anupper bound on H(A) for general A ∈ R
m×n follows by stitching together the cases

in the above two propositions via the the canonical partition result in Proposition 3
and the additional Hoffman constant H(L, K ) defined in (4) below.

The following result is a consequence of the classical Goldman-Tucker partition
theorem. To make our exposition self-contained, we include a proof.

Proposition 3 Let A ∈ R
m×n. There exists a unique partition B ∪ N = {1, . . . ,m}

such that

AB x̂ = 0, AN x̂ < 0 for some x̂ ∈ R
n

and

AT
B ŷB = 0 for some ŷB > 0.

Proof Let N ⊆ {1, . . . ,m} be the largest subset of {1, . . . ,m} such that

Ax ≤ 0 and AN x < 0

has a solution. In other words,

N := {i ∈ {1, . . . ,m} : Ax ≤ 0 and (Ax)i < 0 for some x ∈ R
n}.

Observe that N is well-defined and unique and thus so is B := {1, . . . ,m} \ N .
Furthermore the construction of N implies that ABx = 0 and AN x < 0 for some
x ∈ R

n . Hence to finish the proof it suffices to show that

AT
B yB= 0, yB > 0

has a solution. To that end, for i ∈ {1, . . . ,m} let ei ∈ R
n is the vector with i-th

component equal to one and all other equal to zero. Observe that i ∈ B if and only if
the following system of equations and inequalities does not have a solution:

[
A ei

] [
x
t

]
≤ 0,

[
0 1

] [
x
t

]
> 0.

Farkas Lemma thus implies that i ∈ B if and only if the following system of equations
and inequalities has a solution:

[
AT

eTi

]
y =

[
0
1

]
, y ≥ 0.

Since this holds for each i ∈ B, it follows that AT
B yB = 0, yB > 0 has a solution.
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We should note that, depending on A, the set N in Proposition 3 could be any subset
of {1, . . . ,m}. In particular, N = ∅ if AT y = 0 for some y > 0, and N = {1, . . . ,m}
if Ax < 0 for some x ∈ R

n . For instance, N = ∅ if A =
[
1

−1

]
and N = {1, 2} if

A =
[
1
1

]
.

Suppose L ⊆ R
n is a linear subspace and K ⊆ R

n is a closed convex cone. Let

H(L, K ) = sup
u∈Rn\L∩K

dist(u, L ∩ K )

max{dist(u, L), dist(u, K )} , (4)

with the convention that H(L, K ) = 0 when L ∩ K = R
n .

In the remainder of this paper, we will use the following notation for A ∈ R
m×n :

Let B, N denote the canonical partition defined by A as in Proposition 3 and let
L ⊆ R

n, K ⊆ R
n be defined as

L := {x : ABx = 0}, K := {x : AN x ≤ 0},

with the convention that L = R
n if B = ∅ and K = R

n if N = ∅.
Observe that L is a linear subspace, K is a closed convex cone, and {x : Ax ≤

0} = L ∩ K . We now have all the necessary ingredients to upper bound H0(A).

Theorem 1 Suppose A ∈ R
m×n and the norm in R

m satisfies the componentwise
compatibility condition. Let B, N and L, K be as above. Then

H0(A) ≤ H(L, K ) · max{H0(AN ), H0(AB)}. (5)

Proof Suppose u ∈ R
n \ P . The construction of H(·, ·) and H0(·), and the com-

ponentwise compatibility condition imply that there exists x ∈ P = L ∩ K such
that

‖x − u‖ ≤ H(L, K ) · max{dist(u, L), dist(u, K )}
≤ H(L, K ) · max{H0(AB) · ‖(ABu)+‖, H0(AN ) · ‖(ANu)+‖}
≤ H(L, K ) · max{H0(AB), H0(AN )} · ‖(Au)+‖.

Since this holds for all u ∈ R
n \ P , the inequality in (5) follows.

Observe that unlike H0(A) that depends on the data representation A ∈ R
m×n of the

cone P = {x : Ax ≤ 0}, the constantH(L, K ) only depends on the sets L ⊆ R
n and

K ⊆ R
n . In particular, H(L, K ) does not depend on the norm in R

m while H0(A)

evidently does.
The next proposition provides an upper bound onH(L, K ) analogous to the upper

bounds on H0(A) in Propositions 1 and 2. It will be useful for the computational
procedure in Sect. 3.
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Proposition 4 Suppose L ⊆ R
n is a linear subspace and K ⊆ R

n is a closed convex
cone. Then

H(L, K ) ≤ 1 + 2 · max
u∈Rn

‖u‖≤1

min
x∈L,y∈K
x−y=u

‖x‖.

Proof To ease notation, let

H := max
u∈Rn

‖u‖≤1

min
x∈L,y∈K
x−y=u

‖x‖.

We need to show that H(L, K ) ≤ 1 + 2H . To that end, suppose u ∈ R
n\L ∩ K .

Let uL := arg min
v

{‖u − v‖ : v ∈ L} and uK := arg min
v

{‖u − v‖ : v ∈ K }. The
construction of H implies that there exist x ∈ L, y ∈ K such that ‖x‖ ≤ H ·‖uK −uL‖
and x − y = uK − uL . Hence uL + x = uK + y ∈ L ∩ K and

dist(u, L ∩ K ) ≤ ‖u − uL − x‖
≤ ‖u − uL‖ + ‖x‖
≤ ‖u − uL‖ + H · ‖uK − uL‖
≤ max{dist(u, L), dist(u, K )} + H · (dist(u, K ) + dist(u, L))

≤ (1 + 2H) · max{dist(u, L), dist(u, K )}.

Since this holds for any u ∈ R
n \ L ∩ K , it follows that

H(L, K ) ≤ 1 + 2H .

For computational purposes, it is useful to note that if x̄ ∈ L ∩ int(K ) is such that
x̄ + u ∈ K for all ‖u‖ ≤ 1 then Proposition 4 implies that

H(L, K ) ≤ 1 + 2‖x̄‖.

3 A computable procedure to bound H0(A)

We next describe a procedure to compute an upper bound on H0(A). The procedure
consists of four main steps. First, compute the partition B, N . Second, compute an
upper bound on H0(AB). Third, compute an upper bound on H0(AN ). Fourth, com-
pute an upper bound on H(L, K ). An upper bound on H0(A) thereby follows from
Theorem 1. For computational convenience, throughout this section we assume that
R
m is endowed with the �∞ norm and R

n is endowed with the �2 norm. A Python
implementation and some illustrative examples of this procedure are publicly available
at https://github.com/javi-pena
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Step 1: Partition B,N

The partition B, N can be obtained from any point (x, y, s, t) that satisfies the fol-
lowing systems of equations and inequalities for some t > 0:

AT y = 0
Ax + s = 0
y + s − t1 ≥ 0
1T y + 1Ts = 1
y ≥ 0, s ≥ 0.

(6)

More precisely, if (x, y, s, t) satisfies (6) with t > 0 then B, N can be obtained as
follows:

B := {i : yi > 0}, N := {i : si > 0}.

Proposition 3 guarantees that a solution (x, y, s, t) to (6) with t > 0 always exists and
that the associated partition B, N is unique. Such a point (x, y, s, t) can be computed
via the following linear program:

max
x,y,s,t

t

AT y = 0
Ax + s = 0
y + s − t1 ≥ 0
1T y + 1Ts = 1
y ≥ 0, s ≥ 0.

(7)

Step 2: Upper bound on H0(AN)

Suppose N �= ∅ as otherwise H0(AN ) = 0. The remarks following Proposition 1
show that

H0(AN ) ≤ ‖x̄‖2

for any x̄ ∈ R
n such that AN x̄ ≥ 1. The best such upper bound can be computed via

the following quadratic program

x̄ := arg min{‖x‖22 : AN x ≥ 1}. (8)
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Step 3: Upper bound on H0(AB)

Suppose B �= ∅ as otherwise H0(AB) = 0. The remarks following Proposition 2 show
that

H0(AB) ≤ 2

σ+
min(A

T
BȲ )

for any ȳ ∈ R
B++ such that 1TB ȳ = 1 and AT

B ȳ = 0. Although the best such upper
bound is challenging to compute, an upper bound of this kind that is within a factor
of

√|B| of the best possible one can be computed via the following convex program

ȳ := arg min
y∈RB++

{
−

∑
i∈B

log(yi ) : 1TB y = 1, AT
B y = 0

}
. (9)

Step 4: Upper bound onH(L, K)

Suppose both N �= ∅ and B �= ∅ as otherwise H(L, K ) = 1 or H(L, K ) = 0. Let
Q be an orthonormal basis for L := {x : ABx = 0} and M = DAN Q where D is
the diagonal matrix with positive diagonal entries such that all rows of DAN have
Euclidean norm equal to one. Then the remarks following Proposition 4 imply that

H(L, K ) ≤ 1 + 2‖z̄‖2
for any z̄ ≥ 0 such that Mz̄ ≥ 1. The best such upper bound can be computed via the
following quadratic program

z̄ := arg min{‖z‖22 : Mz ≥ 1}. (10)

Putting it all together: A procedure to bound H0(A)

Theorem 1 allows us to stitch together the partition B, N and the upper bounds on
H0(AB), H0(AN ), and H(L, K ) to obtain an upper bound on H0(A) as detailed in
Algorithm 1 below.
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Algorithm 1 Upper bound on H0(A)

1: input: A ∈ R
m×n \ {0}

2: solve (7) to enough accuracy to get a solution (x, y, s, t) to (6) with t > 0
3: Let B := {i : yi > 0}, N := {i : si > 0}
4: if N �= ∅ then
5: solve (8) to enough accuracy to get x̄ ∈ R

n such that AN x̄ ≥ 1
6: end if
7: if B �= ∅ then
8: solve (9) to enough accuracy to get ȳ ∈ R

B++ such that 1TB ȳ = 1 and ATB ȳ = 0
9: end if
10: if N = ∅ then return the upper bound

H0(A) ≤ 2

σ+
min(A

T
BȲ )

11: end if
12: if B = ∅ then return the upper bound

H0(A) ≤ ‖x̄‖2
13: end if
14: let Q be an orthonormal basis for L := {x : ABx = 0} and M = DAN Q where D is the diagonal

matrix with positive diagonal entries such that all rows of DAN have Euclidean norm equal to one
15: solve (10) to enough accuracy to get z̄ such that Mz̄ ≥ 1
16: return the upper bound

H0(A) ≤ (1 + 2‖z̄‖2) · max

{
‖x̄‖2, 2

σ+
min(A

T
BȲ )

}
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copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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