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Abstract

We consider a class of difference-of-convex (DC) optimization problems where the objective
function is the sum of a smooth function and a possibly nonsmooth DC function. The applica-
tion of proximal DC algorithms to address this problem class is well-known. In this paper, we
combine a proximal DC algorithm with an inexact proximal Newton-type method to propose an
inexact proximal DC Newton-type method. We demonstrate global convergence properties of the
proposed method. In addition, we give a memoryless quasi-Newton matrix for scaled proximal
mappings and consider a two-dimensional system of semi-smooth equations that arise in calcu-
lating scaled proximal mappings. To efficiently obtain the scaled proximal mappings, we adopt a
semi-smooth Newton method to inexactly solve the system. Finally, we present some numerical
experiments to investigate the efficiency of the proposed method, which show that the proposed
method outperforms existing methods.
Keywords: Nonsmooth optimization proximal DC algorithm inexact proximal Newton-type
method memoryless quasi-Newton method semi-smooth Newton method

1 Introduction

In this paper, we consider minimization of the following composite function:

min
x∈Rn

f(x) := g(x) + h(x), (1)

where g : Rn → R is an L-smooth function, and h : Rn → R ∪ {∞} is a difference-of-convex (DC)
function:

h(x) = h1(x)− h2(x), (2)
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where h1 : Rn → R ∪ {∞} is a proper lower semi-continuous (lsc) convex function and h2 : Rn → R

is a continuous convex function. This problem appears in statistics and machine learning. Typically
in machine learning, g is a loss function, such as the least square function, the logistic loss function,
or the nonconvex quadratic function, and h is a regularizer. Although the well-known ℓ1 regularizer
is intended as an approximation of the ℓ0-norm, it is convex and not sufficient as the approximation.
Thus, several improved approximations have been proposed, including the Smoothly Clipped Absolute
Deviation (SCAD) [10, 12], the Minimax Concave Penalty (MCP) [12, 39], the ℓ1−2 regularizer [38], the
truncated ℓ1 regularizer [13, 21, 22], the Capped ℓ1 regularizer [12, 40], and the Log-Sum Penalty [6,
12]. Note that these regularizers are DC functions formulated by (2). We note that a usual DC
programming requires g to be DC functions, i.e.,

g(x) = g1(x)− g2(x) (3)

where g1 and g2 are convex. Then, (1) can be regarded as DC optimization of the form

f(x) = (g1(x) + h1(x)) − (g2(x) + h2(x)).

If necessary, we can consider DC decomposition of g, but this paper directly deal with the nonconvex
form.

In the case h(x) = h1(x), the proximal gradient method can be used [1, 11]. The Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA) [2], which is a proximal gradient method with Nesterov’s
acceleration scheme, was proposed to accelerate the approach. As an alternative acceleration scheme,
a proximal Newton-type method has also been studied [15]. Although usual proximal mappings can
be easily obtained for some special cases [1, 7], the computing cost of scaled proximal mapping is very
expensive. Hence, inexact proximal Newton-type methods, which inexactly calculate scaled proximal
mappings, have been proposed (see, for example, [5, 14, 18, 24, 33]). The proximal Newton-type
method is also known as the Successive Quadratic Approximation (SQA) method.

The DC Algorithm (DCA) is a classical algorithm [35] for solving DC optimization problems. In our
problem settings, the proximal DCA (pDCA) [13] can be used. To accelerate the algorithm, Wen et
al. [36] incorporated Nesterov’s acceleration scheme into the pDCA, creating pDCA with extrapolation
(pDCAe). Another acceleration approach is pDCA based on the Newton method [32]. Recently, Liu
and Takeda [19] extended an inexact SQA method to DC optimization.

In this paper, we propose an inexact proximal DC Newton-type method. The findings and contribu-
tions of this paper are summarized as follows.

• We propose an inexact proximal DC Newton-type method, which is an extension of the inexact
proximal Newton-type method [24] to DC optimization problems, and show its global conver-
gence. Specifically, our key contributions are concrete choices for quasi-Newton matrices of the
scaled proximal mappings and an efficient numerical method for solving the subproblem. In the
inexact SQA method proposed by Liu and Takeda [19], the method requires strong convexity
of g to solve the subproblem and obtain the scaled proximal mappings. On the other hand, our
method (Algorithm 1) can be directly applied to (1) without assuming strong convexity of g.

• As mentioned above, the computing cost of scaled proximal mappings is expensive in general
cases. In this paper, we consider (a) concrete choices for quasi-Newton matrices in scaled prox-
imal mappings and (b) an efficient numerical method for computing scaled proximal mappings.
Specifically, we deal with a modification of memoryless quasi-Newton matrices proposed by
Nakayama et. al. [24]. Then, the scaled proximal mappings can be obtained by solving a two-
dimensional system of semi-smooth equations (33). To solve the semi-smooth equation, we use
the semi-smooth Newton method (Algorithm 2).
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• In numerical experiments, we compare the proposed method with other existing methods and
show the efficiency of the proposed method.

This paper is organized as follows. In Section 2, we propose an inexact proximal DC Newton-type
method. We briefly introduce the inexact proximal Newton-type method [24] in Section 2.1, and
we extend the inexact proximal Newton-type method to DC optimization problems in Section 2.2.
In Section 3, we show the global convergence properties of the proposed method. In Section 4,
we introduce the memoryless quasi-Newton formula [24] (Section 4.1) and give an efficient method
for computing scaled proximal mappings (Section 4.2). In Section 5, we present some numerical
experiments to show the efficiency of the proposed method in comparison with existing methods.
Finally, we conclude and provide remarks in Section 6.

Throughout this paper, we denote the identity matrix, the ℓ2 norm, and the ℓ1 norm by I ∈ R
n×n,

‖ · ‖, and ‖ · ‖1, respectively. For a symmetric positive definite matrix A and a proper convex function
h̃, a scaled proximal mapping is defined by

ProxA
h̃
(y) ≡ argmin

x∈Rn

(
h̃(x) +

1

2
‖x− y‖2A

)
,

where ‖x‖A =
√
xTAx. In the case A = I, we omit the superscript and it is the usual proximal

mapping. Finally, ∂h̃(·) is the subdifferential of a convex function h̃, ∂CL(·) is the Clarke differential
of a nonlinear mapping L, and we denote the i-th component of a vector v by (v)i.

2 Inexact proximal DC Newton-type method

We first introduce the inexact proximal Newton-type method [24] in Section 2.1. Then in Section 2.2,
we extend the method to DC optimization problems and propose an inexact proximal DC Newton-type
method.

2.1 Inexact proximal Newton-type method

Consider the special case h(x) = h1(x), namely

min
x∈Rn

f(x) := g(x) + h1(x).

For solving the problem, we briefly review a framework of the inexact proximal Newton-type method
proposed by Nakayama et al. [24]. The method generates a sequence {xk} according to

xk+1 = xk + ηkdk,

where xk ∈ R
n is the k-th approximation to a solution, ηk > 0 is a step size and dk ∈ R

n is a search
direction given by

dk = x+
k − xk. (4)

Here, x+
k is an approximation solution of the following subproblem

argmin
x∈Rn

g(xk) +∇g(xk)
T (x − xk) +

1

2
(x− xk)

TBk(x− xk) + h1(x), (5)

3



which is the sum of h1 and a quadratic model of g at xk, where Bk ∈ R
n×n is symmetric positive

definite and an approximation of the Hessian ∇2g(xk). If the above minimization problem is solved
exactly, then

x+
k = ProxBk

h1
(xk −Hk∇g(xk)) (6)

holds, where Hk = B−1
k . The optimality condition of (5) is given by

0 ∈ ∇g(xk) +Bk(x
+
k − xk) + ∂h1(x

+
k ).

If we solve (5) inexactly, then there exists a gradient residual rk such that

rk ∈ ∇g(xk) +Bk(x
+
k − xk) + ∂h1(x

+
k ).

We accept x+
k as an approximation solution of (5) if

‖rk‖Hk
≤ (1 − θk)‖x+

k − xk‖Bk
, θk ∈ [θ̄, 1], (7)

is satisfied, where θk is a parameter and θ̄ ∈ (0, 1] is a constant. We can find a simple example to
achieve the above inexact condition in [20, Section 2] and [24, Section 4].

2.2 Inexact proximal DC Newton-type method

In this section, we propose a new algorithm, which is an extension of the inexact proximal Newton-
type method introduced in Section 2.1. We first consider the following linear approximation of h2 at
xk:

h2(x) ≈ h2(xk) + ξTk (x− xk),

where ξk ∈ ∂h2(xk) is a subgradient. Combining the above and (5), we have the following subproblems
where x+

k is the solution:

argmin
x∈Rn

(∇g(xk)− ξk)
T (x− xk) +

1

2
‖x− xk‖2Bk

+ h1(x). (8)

Similarly to (6), if (8) is solved exactly, then

x+
k = proxBk

h (xk −Hk(∇g(xk)− ξk)) (9)

holds. If we solve (8) inexactly, namely,

x+
k ≈ proxBk

h (xk −Hk(∇g(xk)− ξk)), (10)

then there exists a gradient residual rk such that

rk ∈ ∇g(xk)− ξk +Bk(x
+
k − xk) + ∂h1(x

+
k ). (11)

We accept x+
k as (10) if (7) is satisfied. We give a concrete choice of rk and a numerical method in

Section 4.2.

We define a search direction dk by (4). For the line search, we select the step size ηk satisfying the
condition

f(xk + ηkdk) ≤ f(xk) + δηk((∇g(xk)− ξk)
T dk + h1(x

+
k )− h1(xk)) (12)

by using backtracking scheme, where δ ∈ (0, 1). Summarizing the above arguments, we give Algo-
rithm 1.
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Algorithm 1 Inexact proximal DC Newton-type method

Require: x0 ∈ dom(f), δ ∈ (0, 1), θ̄ ∈ (0, 1], 0 < βmin ≤ βmax < 1, ε > 0
for k = 0, 1, 2... do

Choose Bk.
Choose ξk ∈ ∂h2(xk) and θk ∈ [θ̄, 1].
Compute x+

k satisfying (11) and (7).
dk ← x+

k − xk

if the stopping condition ‖dk‖ ≤ ε is satisfied then

stop.
end if

ρ← 1
while condition

f(xk + ρdk) ≤ f(xk) + δρ((∇g(xk)− ξk)
T dk + h1(x

+
k )− h1(xk))

is not satisfied do

Choose β ∈ [βmin, βmax].
ρ← βρ

end while

ηk ← ρ
xk+1 ← xk + ηkdk

end for

In Algorithm 1, we adopt ‖dk‖ ≤ ε as a stopping condition, because dk = 0 implies that xk is a
critical point (see Theorem 1 in Section 3). Though we can use another stopping condition, we must
in this case use the same stopping condition in the algorithm for finding x+

k (namely, Algorithm 2 in
Section 4.2).

We note that Algorithm 1 is identical to the inexact proximal Newton-type method [24] when h2 = 0
(ξk = 0), and that it corresponds to pDCA [13] when Bk = L × I and ηk = 1 for all k. Although
the algorithm is similar to the method proposed by Liu and Takeda [19], the inexact role of the
subproblem and the line search scheme are different.

3 Convergence properties

In this section, we show the global convergence of Algorithm 1. Throughout this paper, we use the
following definition [13, 35].

Definition 1. If
0 ∈ ∇g(x∗) + ∂h1(x

∗)− ∂h2(x
∗) (13)

holds, then we call x∗ a critical point of (1).

Note that the above condition is a weaker condition than the directional stationary condition, which
implies that x̃ satisfies

f ′(x̃; d) := lim
η→0+

f(x̃+ ηd)− f(x̃)

η
≥ 0 for all d ∈ R

n. (14)

We call x̃ a directional stationary point of (1) if (14) holds. Almost all pDCA type methods aim to
find a critical point. We show that the proposed method converges to a critical point.
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To show the global convergence, we make the following standard assumptions.

Assumption 1. 1. The function g : Rn → R is continuously differentiable and its gradient ∇g is
Lipschitz continuous, namely, there exists a positive constant L such that

‖∇g(u)−∇g(v)‖ ≤ L‖u− v‖, ∀u, v ∈ R
n. (15)

2. h1 : Rn → R ∪ {∞} is a proper lsc convex function and h2 : Rn → R is a continuous convex
function.

Assumption 2. There exist positive constants m and M such that

m‖u‖2 ≤ ‖u‖2Bk
= uTBku ≤M‖u‖2 ∀u ∈ R

n. (16)

We first give the following lemma. This is a DCA version of [24, Lemma 2], so the proof given in
Appendix A for self-containedness is similar to the proof in [24].

Lemma 1. Suppose that Assumptions 1–2 hold. Let the sequence {xk} be generated by Algorithm 1.
Then for all η ∈ (0, 1],

f(xk + ηdk) ≤ f(xk) + η((∇g(xk)− ξk)
Tdk + h1(x

+
k )− h1(xk)) +

η2L

2
‖dk‖2, (17)

and
(∇g(xk)− ξk)

T dk + h1(x
+
k )− h1(xk) ≤ −θ̄‖dk‖2Bk

(18)

are satisfied.

Remark 1. Since it follows from (16), (17) and (18) that

f(xk + ηdk) ≤ f(xk) + η

(
ηL

2m
− θ̄

)
‖dk‖2Bk

(19)

holds, f(xk + ηdk) ≤ f(xk) if η < 2m
L
θ̄. Therefore, the sequence {f(xk)} is decreasing.

The next lemma implies that ηk is bounded away from 0. This lemma is a DCA version of [24,
Lemma 3] and follows from a similar proof (see Appendix B).

Lemma 2. Suppose that all assumptions of Lemma 1 are satisfied. Then there exists ηk such that
the line search condition (12) is satisfied. Moreover, the following holds:

η̄ ≡ βmin min

{
1,

2m

L
θ̄(1− δ)

}
≤ ηk ≤ 1. (20)

Using Lemmas 1–2, we obtain the following global convergence theorems of Algorithm 1.

Theorem 1. Suppose that Assumptions 1–2 hold. Let the sequence {xk} be generated by Algorithm
1. Then, the following statements hold:

(i) If dk = 0, then xk is a critical point of (1).

(ii) If f is directionally differentiable and xk is a directional stationary point of (1), then dk = 0.

6



Proof: (i) If dk = 0, then it follows from (7) that rk = 0, and, hence, x+
k = xk holds. Thus, the

condition (11) and ξk ∈ ∂h2(xk) yield

0 ∈ ∇g(xk) + ∂h1(xk)− ξk ⊆ ∇g(xk) + ∂h1(xk)− ∂h2(xk).

(ii) It follows from (19) that

f(xk + ηdk)− f(xk)

η
≤ −θ̄‖dk‖2Bk

+
ηL

2m
‖dk‖2Bk

.

Since (14) with x̃ = xk yields

0 ≤ lim
η→0+

f(xk + ηdk)− f(xk)

η
≤ −θ̄‖dk‖2Bk

,

we have dk = 0 by (16).

Therefore, the proof is complete.

The theorem suggests that dk 6= 0 is possible when xk is a critical point, but not when it is a
directional stationary point. This is a desirable property, because the directional stationary condition
is a stronger condition than (13).

In the rest of this section, we assume ‖dk‖ 6= 0 for all k. Otherwise, a critical point has already been
found. The next theorem means that the proposed method converges globally to a critical point.

Theorem 2. Suppose that Assumptions 1–2 hold. Let the sequence {xk} be generated by Algorithm
1. If the objective function f is bounded below, then

lim
k→∞

‖dk‖ = 0. (21)

Furthermore, if {xk} is bounded, then any accumulation point of {xk} is a critical point of (1).

Proof: From Lemma 2, there exists a step size satisfying the line search condition (12). Therefore,
by (12), (16), (18), and (20), we have

f(xk+1)− f(xk) ≤ δηk((∇g(xk)− ξk)
T dk + h1(x

+
k )− h1(xk))

≤ −δη̄θ̄‖dk‖2Bk

≤ −δη̄θ̄m‖dk‖2
≤ 0.

Hence the sequence {f(xk)} is nonincreasing. Since f is bounded below, the sequence {f(xk)} must
converge to some limit, which implies that

lim
k→∞

{f(xk+1)− f(xk)} = 0.

Thus, (21) holds. It follows from (7), (16) and (21) that

lim
k→∞

‖rk‖ = 0.

Let x̄ be an accumulation point of {xk}. Since ∂h1 is closed and ξk → ξ̄ ∈ ∂h2(x̄), it follows from (4),
(11), and (21) that

0 ∈ ∇g(x̄) + ∂h1(x̄)− ξ̄ ⊆ ∇g(x̄) + ∂h1(x̄)− ∂h2(x̄),

completing the proof.
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4 Choices of Bk and computing scaled proximal mappings

We present concrete choices of Bk in Section 4.1 and a numerical method for solving subproblem (8)
in Section 4.2.

4.1 Memoryless quasi-Newton matrices

In this subsection, we establish concrete choices of Bk. For this purpose, we first consider the quasi-
Newton updating formula and introduce the modified spectral scaling Broyden family proposed by
Nakayama et al. [24, Eq. (13)]:

Bk = Bk−1 −
Bk−1sk−1s

T
k−1Bk−1

sTk−1Bk−1sk−1
+ γk

zk−1z
T
k−1

sTk−1zk−1
+ φ̂kv̂k−1v̂

T
k−1, (22)

v̂k−1 =
√
sTk−1Bk−1sk−1

(
zk−1

sTk−1zk−1
− Bk−1sk−1

sTk−1Bk−1sk−1

)
,

where γk > 0 is a scaling parameter, φ̂k is a parameter of the Broyden family,

sk−1 = xk − xk−1 and zk−1 = (∇g(xk)−∇g(xk−1)) + νksk−1, (23)

where νk ≥ 0 is a modified parameter such that νk ≤ ν̄ and

sTk−1zk−1 = sTk−1((∇g(xk)−∇g(xk−1)) + νksk−1) ≥ ν‖sk−1‖2 (24)

hold for fixed constants ν and ν̄. In our numerical experiments (Section 5), to achieve (24), we use

νk =




0, if sTk−1yk−1 ≥ ν̃‖sk−1‖2

max
{
0,− sT

k−1yk−1

sT
k−1

sk−1

}
+ ν̃, otherwise,

(25)

which is called Li-Fukushima’s regularization [16], where ν̃ > 0 is a constant parameter. We note that

(24) is satisfied with ν = ν̃ and ν̄ = L+ ν̃ when (15) holds. If we choose φ̂k such that φ̂k > φ̂∗
k, then

Bk updated by (22) is symmetric positive definite, where

φ̂∗
k = − (sTk−1zk−1)

2

(sTk−1Bk−1sk−1)(zTk−1B
−1
k−1zk−1)− (sTk−1zk−1)2

< 0. (26)

Furthermore, Nakayama et al. [24] proposed the memoryless modified spectral scaling Broyden family,
which is given by (22) with Bk−1 = I. In this paper, we improve the method by applying a sizing
technique, and proposing (22) with Bk−1 = τkI:

Bk = τkI − τk
sk−1s

T
k−1

sTk−1sk−1
+ γk

zk−1z
T
k−1

sTk−1zk−1
+ τkφkvk−1v

T
k−1, (27)

vk−1 =
√
sTk−1sk−1

(
zk−1

sTk−1zk−1
− sk−1

sTk−1sk−1

)
,

where τk > 0 is a sizing parameter. Note that sizing is a standard technique for the quasi-Newton
method (see, for example [26, 34]). If we choose φk such that φk > φ∗

k, then Bk updated by (27) is
symmetric positive definite, where

φ∗
k = − (sTk−1zk−1)

2

(sTk−1sk−1)(zTk−1zk−1)− (sTk−1zk−1)2
< 0,

8



which is (26) with Bk−1 = τkI. The inverse of (27) is given by

Hk =
1

τk
I − 1

τk

zk−1z
T
k−1

zTk−1zk−1
+

1

γk

sk−1s
T
k−1

sTk−1zk−1
+

1

τk
φH
k wk−1w

T
k−1,

wk−1 =
√
zTk−1zk−1

(
sk−1

sTk−1zk−1
− zk−1

zTk−1zk−1

)
,

where

φH
k =

φ∗
k(1− φk)

φ∗
k − φk

.

To obtain the uniformly positive definiteness of Bk, we restrict the interval of φk to

φ1φ
∗
k ≤ φk ≤ φ2, (28)

where 0 ≤ φ1 < 1 and φ2 > 0 are constants. We choose γk and τk satisfying the conditions

γ ≤ γk ≤ γ and τ ≤ τk ≤ τ, (29)

where γ, γ, τ , and τ are positive constants such that 0 < γ ≤ γ and 0 < τ ≤ τ hold. Then the
following proposition holds.

Proposition 3. Suppose Assumption 1 is satisfied, and Bk is given by (27). If (24), (28) and (29)
hold, then (16) holds.

We note that Proposition 3 with τk = 1 is proven in [24, Proposition 1]. Dividing (27) by τk, we have

1

τk
Bk = I − sk−1s

T
k−1

sTk−1sk−1
+

γk
τk

zk−1z
T
k−1

sTk−1zk−1
+ φkvk−1v

T
k−1.

Then, since
γ

τ
≤ γk

τk
≤ γ

τ
holds form (29), we can prove the proposition in almost the same way as

[24, Proposition 1].

From Theorem 2 and Proposition 3, we have the following convergence result.

Theorem 4. Suppose Assumption 1 holds. Let the sequence {xk} be generated by Algorithm 1 with
(27). If (24), (28) and (29) hold and the objective function f is bounded below, then (21) holds.
Furthermore, if {xk} is bounded, then any accumulation point of {xk} is a critical point of (1).

4.2 Semi-smooth Newton method for computing scaled proximal map-

pings

In this section, we consider the numerical method for solving subproblem (8). Since the structure of
the subproblem is the sum of a smooth convex function and a nonsmooth convex function, we can use
proximal gradient methods, for example. However, computational costs for solving such subproblems
become high (especially when the dimension is large) because the dimension of the subproblem is the
same as the original problem (1). Thus, we adopt Becker et al.’s technique [3] to solve the subproblem.

We now introduce the following theorem, which can be proved by using [3, Theorem 3.4], as shown
in Appendix C.
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Theorem 5. Let x̄, u1, u2 ∈ R
n, τ > 0,

B = τI + u1u
T
1 − u2u

T
2 , (30)

α = (α1, α2)
T and

ζ(α) = x̄− α1

τ
u1 + α2(τI + u1u

T
1 )

−1u2. (31)

If u1 and u2 are linearly independent, (30) is positive definite, and h1 is proper lsc convex, then

ProxBh1
(x̄) = Prox 1

τ
h1
(ζ(α∗)), (32)

where the mapping L : R2 → R
2 is defined by

L(α) :=
(
uT
1 (x̄+ α2(τI + u1u

T
1 )

−1u2 − Prox 1
τ
h1
(ζ(α))) + α1

uT
2 (x̄− Prox 1

τ
h1
(ζ(α))) + α2

)
(33)

and α∗ is a unique root of L(α) = 0.

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) formula (namely, (27) with φk = 0) can be rewritten
as the form (30) with

τ = τk, u1 =

√
γk

sTk−1zk−1
zk−1, u2 =

√
τk

‖sk−1‖
sk−1. (34)

Therefore, we can compute x+
k in (10) by setting in (32)

x̄ = xk −Hk(∇g(xk)− ξk) (35)

and inexactly solving the following system of equations:

Find α ∈ R
2 such that L(α) = 0. (36)

We emphasize that L is a two-dimensional function, so the computational costs for solving the system
are expected to be very cheap. Theorem 5 assumes that u1 and u2 are linearly independent. If u1 and
u2 are linearly dependent, then (30) becomes a rank-one update and hence we can adopt [3, Theorem
3.8]. Moreover, at least in our numerical experiments by using the BFGS formula (namely, (34)), the
linear independence assumption is almost always satisfied. Therefore, in the remainder of this section,
we suppose that u1 and u2 are linearly independent.

Hereafter, we consider how to solve system (36). Since the function L in (33) involves a nonsmooth
term Prox 1

τ
h1
(ζ(α))), the function L is also nonsmooth. However, since h1 is a proper lsc convex

function, Prox 1
τ
h1

is single-valued, continuous, and nonexpansive (namely, Lipschitz continuous with

the modulus 1), and thus L is also Lipschitz continuous. Moreover, in many applications, Prox 1
τ
h1

is

(strongly) semi-smooth, and then L is also (strongly) semi-smooth. For example, Prox 1
τ
h1

is strongly

semi-smooth when h1 is the ℓ1-norm. Other practical regularizers are (strongly) semi-smooth (see,
for example, [27, 37]).

In general, a semi-smooth Newton method [28] can be used to solve a system of semi-smooth equations.
Under mild assumptions, the method converges (quadratically) superlinearly for (strongly) semi-
smooth functions. Accordingly, we adopt the semi-smooth Newton method to solve system (36).

To develop a semi-smooth Newton method for (36), we first consider a stopping criterion for the
algorithm. Considering (32) and (35), we can rewrite (10) as

x+
k = Prox 1

τ
h1
(ζ(ᾱ)), (37)

where ᾱ ∈ R
2 is an approximate solution of (36) such that (7) and (11) hold. To define the residual

rk in (7) and (11), we give the following proposition, whose proof is given in Appendix D.
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Proposition 6. Suppose all assumptions of Theorem 5 hold. Let U = [−u1, u2] ∈ R
n×2, H = B−1

and x̄ = x−H(∇g(x)− ξ). Then the following holds for all α:

UL(α) ∈ ∇g(x)− ξ +B(Prox 1
τ
h1
(ζ(α)) − x) + ∂h1(Prox 1

τ
h1
(ζ(α))).

It follows from Proposition 6, (11), and (37) that we can regard UL(α) as the residual.

To guarantee the global convergence, we define the following merit function:

Ψ(α) =
1

2
‖L(α)‖2,

and adopt a standard line search technique. Summarizing the above arguments, we give Algorithm 2.

Algorithm 2 semi-smooth Newton method with line search

Require: α0 ∈ R
2, xk, u1, u2 ∈ R

n, τ > 0, σ ∈ (0, 1/2), ρ ∈ (0, 1), θk ∈ [θ̄, 1], ε > 0
Bk ← τI + u1u

T
1 − u2u

T
2

Hk ← B−1
k

x̄← xk −Hk∇g(xk)
U ← [−u1, u2]
for j = 0, 1, 2, ... do

x+
k ← Prox 1

τ
h1

(ζ(αj))

rk ← UL(αj)
dk ← x+

k − xk

if either condition (7) or ‖dk‖ ≤ ε is satisfied then

stop.
end if

Select Vj ∈ ∂CL(αj).
pj ← −V −T

j L(αj)
l← 0
while condition

Ψ(αj + ρlpj) ≤ (1− 2σρl)Ψ(αj) (38)

is not satisfied do

l ← l + 1
end while

tj ← ρl

αj+1 ← αj + tjpj
end for

Remark 2. Note that ε in Algorithm 2 is the constant appearing in Algorithm 1. Thus, if Algorithm 2
is stopped by ‖dk‖ ≤ ε, then Algorithm 1 is also stopped. Otherwise, we have ‖dk‖ > ε holds for all j.
It follows from Proposition 6 and (7) that the stopping condition of Algorithm 2 can be rewritten by

‖UL(αj)‖Hk
≤ (1− θk)‖Prox 1

τ
h1

(ζ(αj))− xk‖Bk
= (1 − θk)‖dk‖Bk

. (39)

Thus, it suffices to show limj→∞ αj = α∗ (α∗ is the unique solution of L(α) = 0), instead of (39).

Next, we consider the global convergence properties for Algorithm 2. There are many studies on global
convergence properties for semi-smooth Newton methods with line search under the assumption that

11



the merit function Ψ is continuously differentiable (see [9, 31, 30, 29] for example). However, to
the best of our knowledge, there are not many studies on a global convergence property for the
nondifferentiable case. Thus, we provide the proofs for the global convergence of the algorithm in
Appendix E.

Theorem 7. Consider Algorithm 2. Suppose that all assumptions of Theorem 5 hold and Prox 1
τ
h1

is
directionally differentiable. In addition, assume that the level set at the initial point:

S0 = {α | Ψ(α) ≤ Ψ(α0)}
is bounded and any element of ∂CL(α) is nonsingular for any α ∈ S0. If the condition

Ψ′(αj ; pj) ≤ (VjL(αj))
T pj (40)

holds for all j, then the sequence {αj} generated by Algorithm 2 either terminates at the unique
solution α∗ of (36) or converges to α∗.

As mentioned above, in many applications, Prox 1
τ
h1

is semi-smooth. Because a semi-smooth func-
tion is directionally differentiable, the assumption of the directional differentiability of Prox 1

τ
h1

is
reasonable.

Since the function ‖ · ‖2 is continuously differentiable and L is Lipschitz continuous, it follows from
[9, Proposition 7.1.11] that

∂CΨ(α) = {V L(α) | V ∈ ∂CL(α)}.

Therefore, any element of ∂CΨ(α) can be expressed by the form V L(α) for some V ∈ ∂CL(α), and
conversely V L(α) ∈ ∂CΨ(α) holds for any V ∈ ∂CL(α). Thus, it follows from [9, Proposition 7.1.17]
that there exists Vj ∈ ∂CL(αj) such that Ψ′(αj ; pj) = (VjL(αj))

T pj, which yields (40). Though it
is not obvious how to choose Vj satisfying (40) in practice, in our numerical experiments reported in
Section 5, there was no case where condition (40) was violated.

We now introduce local convergence properties of Algorithm 2. Although the proof is almost the same
as [31, 30], we provide the proof in Appendix F for the readability.

Theorem 8. Assume that all assumptions of Theorem 7 hold and Prox 1
τ
h1

is semi-smooth. If Algo-

rithm 2 generates an infinite sequence {αj}, then {αj} converges to the unique solution α∗ of (36)
Q-superlinearly. Moreover, if Prox 1

τ
h1

is strongly semi-smooth, then {αj} converges to the solution
α∗ Q-quadratically.

In Theorem 7, we assume the boundedness of the level set at the initial point. We now consider a
sufficient condition to guarantee this assumption for any initial point α0. For this purpose, we restrict
the approximate matrix to the BFGS formula, namely (34). The proof of the following proposition is
given in Appendix G.

Proposition 9. Let τ , u1 and u2 be given in (34). Suppose that Assumption 1 and conditions (24)
and (29) hold. Moreover, assume that u1 and u2 are linearly independent and there exists a positive
constant c̄ such that

‖v‖ ≤ c̄ ∀v ∈ ∂h1(x) (41)

for any x ∈ domh1 = {x | h1(x) <∞}. Then, the function Ψ is coercive, namely, the following holds:

lim
‖α‖→∞

Ψ(α) =∞.

For example, if h1(x) = λ‖x‖1 (λ > 0), then ∂h1(x) ⊂ [−λ, λ]n, and hence ∂h1(x) is bounded for any
x ∈ R

n. Thus, condition (41) holds for a typical class of regularizer.
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5 Numerical experiments

In this section, we investigate the numerical performance of Algorithm 1. We test least squares
problems with the ℓ1−2 regularizer in Section 5.1 and with the log-sum penalty in Section 5.2. All
the numerical experiments were performed in MATLAB 2019b on a PC with 2 GHz Quad-Core Intel
Core i5 and 16GB RAM running macOS Catalina.

5.1 Least squares problems with ℓ1−2 regularizer

We consider the least squares problems with the ℓ1−2 regularizer [38]:

min
x∈Rn

1

2
‖Ax− b‖2 + λ‖x‖1 − λ‖x‖, (42)

where A ∈ R
m×n, b ∈ R

m, and λ > 0 is a regularization parameter.

To solve (42), we test the six methods given in Table 1. In mBFGS(S-Newton) and mBFGS(V-FISTA),

we use the memoryless BFGS formula, which is (27) with φk = 0, γk =
sT
k−1zk−1

zT

k−1
zk−1

, τk = 1 and (25) with

ν̃ = 10−6. Note that these parameters were used in [24] 1. In mSR1(V-FISTA), we use the memoryless

SR1 formula, which is (27) with φk =
γks

T

k−1zk−1

(γkzk−1−sk−1)T sk−1
, γk = 0.8

sT
k−1zk−1

zT

k−1
zk−1

, τk = 1 and (25). In L-

BFGS(TFOCS), we use the limited memory BFGS method [25, 26] as Bk. For the line search in
Algorithm 1, we set δ = 0.5 and βk = 0.5. To solve the subproblem (10) in mBFGS(S-Newton), we
use Algorithm 2 with σ = 10−4, ρ = 0.5, and α0 = (0, 0)T and we set θk = 0.99. We choose (52) in
Appendix H as Vj in Algorithm 2. As mentioned in Section 4.2, there was no case where condition
(40) was violated. For mBFGS(V-FISTA) and mSR1(V-FISTA), we use Variant-FISTA (V-FISTA)
and set θk = 0.1, as in [24]. For L-BFGS(TFOCS), we use the Templates for First-Order Conic
Solvers (TFOCS) [4], which is a well-known software for solving convex programming. Here, pDCAe
is the proximal DCA with extrapolation proposed by Wen et al. [36] and we use the same parameters
as [36]2. The nmAPG approach is the nonmonotone accelerated proximal gradient method proposed
by Li and Lin [17]3, which is a well-known efficient proximal gradient-type method for nonconvex
functions. Note that mSR1(V-FISTA) corresponds to the method of Liu and Takeda [19], and L-
BFGS(TFOCS) corresponds to a DCA version of the proximal Newton-type method [15], although
they are slightly different. For all methods and problems, the initial point x0 ∈ R

n was set as the
zero vector. The stopping conditions were

‖x+
k − xk‖ ≤ 10−5max{1, ‖xk‖}

for Algorithm 1, and ‖xk+1 − xk‖ ≤ 10−5max{1, ‖xk‖} for the other tested methods.

For A and b in (42), we generate a matrix and a vector randomly following Wen et al. [36]: (i) We
generate a matrix A with independent and identically distributed (i.i.d.) standard Gaussian entries,
and then normalize this matrix so that the columns of A have unit norms. (ii) A subset T of size
p is then chosen uniformly at random from {1, 2, 3, · · · , n} and a p-sparse vector x̂ ∈ R

n with i.i.d.
standard Gaussian entries on T is generated. (iii) We set b = Ax̂+0.01u, where u ∈ R

m is a random
vector with i.i.d. standard Gaussian entries.

1Conditions (24) and (29) hold with ν = 10−6, ν̄ = L+ 10−6, γ = ν

(L+ν̄)2
and γ = 1

ν
.

2In pDCAe, the constant L in (15) is computed via the MATLAB code “L=norm(A*A’)”; when m ≤ 2000, and by
“opts.issym = 1; L= eigs(A*A’,1,’LM’,opts);” otherwise.

3We implement Algorithm 4 in the supplemental of [17].
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Table 1: Tested methods
Method name Algorithm How to solve (10)

mBFGS(S-Newton) Algorithm 1 with memoryless BFGS formula Algorithm 2
mBFGS(V-FISTA) Algorithm 1 with memoryless BFGS formula V-FISTA [24]
mSR1(V-FISTA) Algorithm 1 with memoryless SR1 formula V-FISTA [24]
L-BFGS(TFOCS) Algorithm 1 with limited memory BFGS method TFOCS [4]

pDCAe proximal DCA with extrapolation [36] -
nmAPG nonmonotne accelerated proximal gradient method [17] -

We consider (m,n, p) = (720l, 2560l, 80l) for l = 1, 2, ..., 5. For each triple (m,n, p), we generate 20
instances randomly according to the above steps.

Fig. 1 and 2, respectively, show the average central processing unit (CPU) time and average number
of iterations for each l with λ = 0.01 (top-left), λ = 0.005 (top-right), λ = 0.001 (bottom-left) and
λ = 0.0005 (bottom-right). In Fig. 2, we use the same markers as in Fig. 1, so we omit the legend.

For all cases, mBFGS(S-Newton) was superior to or at least comparable with the other methods
from the viewpoint of CPU time and the number of iterations. On the other hand, mSR1(V-FISTA)
was comparable with mBFGS(S-Newton) for λ = 0.01, but the performance of mSR1 (V-FISTA)
deteriorated slightly as λ decreased. For mBFGS(V-FISTA), the number of iterations tended to
increase as λ decreased. L-BFGS(TFOCS) had the lowest number of iterations, but the worst CPU
time due to the high computing costs. For pDCAe, the CPU time was comparable with that of
mBFGS(S-Newton) for λ = 0.001 and 0.005. However, this method deteriorated as λ became large,
and the number of iterations was high for all cases. For nmAPG, the performance was in the middle
of all methods. Summarizing the results, the numerical experiments showed the effectiveness of
Algorithm 1 with Algorithm 2.

Figure 1: Average CPU time to solve (42)
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Figure 2: Average number of iterations to solve (42)

5.2 Least squares problems with log-sum penalty

We consider the least squares problems with the log-sum penalty [6]:

min
x∈Rn

1

2
‖Ax− b‖2 + λ

n∑

i=1

log

(
1 +
|(x)i|
ǫ

)
, (43)

where A ∈ R
m×n, b ∈ R

m, λ > 0 is a regularization parameter, and ǫ is a parameter. Since this
problem can be rewritten as

min
x∈Rn

1

2
‖Ax− b‖2
︸ ︷︷ ︸

g(x)

+
λ

ǫ
‖x‖1

︸ ︷︷ ︸
h1(x)

−λ

n∑

i=1

( |(x)i|
ǫ
− log (|(x)i|+ ǫ) + log ǫ

)

︸ ︷︷ ︸
h2(x)

,

we can adopt Algorithm 1.

In this subsection, we generate A and b as in Section 5.1, and set ǫ = 0.5. We test with the same
settings as in Section 5.1. Since mBFGS(V-FISTA) and L-BFGS(TFOCS) performed poorly in pre-
liminary experiments, we omit these methods.

Fig. 3 and 4, respectively, show average CPU time and average number of iterations for each l with
λ = 0.01 (top-left), λ = 0.005 (top-right), λ = 0.001 (bottom-left) and λ = 0.0005 (bottom-right).
Fig. 4 uses the same markers as Fig. 3, so we omit the legend.

These experiments have the same tendencies as Section 5.1. For all cases, mBFGS(S-Newton) was
superior to the other methods from the perspectives of CPU time and the number of iterations.
Though the number of iterations was almost the same mBFGS(S-Newton) and mSR1(V-FISTA),
mBFGS(S-Newton) had better CPU time. Thus, this implies that Algorithm 2 is efficient.
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Figure 3: Average CPU time to solve (43)

6 Concluding remarks

We proposed an inexact proximal DC Newton-type method (Algorithm 1) and showed its global con-
vergence properties. We established concrete choices for the memoryless quasi-Newton matrices (27)
for the scaled proximal mappings. Moreover, we adopted the semi-smooth Newton method (Algo-
rithm 2) in the computing scaled proximal mappings. In our numerical experiments, the proposed
algorithm outperformed existing methods for two classes of DC regularized least squares problems.

Appendix A Proof of Lemma 1

Proof: It follows from η ∈ (0, 1], xk + ηdk = ηx+
k + (1 − η)xk and the convexity of h1 that

h1(xk + ηdk) ≤ ηh1(x
+
k ) + (1 − η)h1(xk).

On the other hand, ξk ∈ ∂h2(xk) implies

h2(xk) + ηξTk dk ≤ h2(xk + ηdk).

From the inequalities and Assumption 1, we obtain

f(xk + ηdk)− f(xk) = g(xk + ηdk)− g(xk)

+ h1(xk + ηdk)− h1(xk)− h2(xk + ηdk) + h2(xk)

≤ (∇g(xk)− ξk)
T (ηdk) +

L

2
‖ηdk‖2 + η

(
h1(x

+
k )− h1(xk)

)

= η
(
(∇g(xk)− ξk)

T dk + h1(x
+
k )− h1(xk)

)
+

η2L

2
‖dk‖2.
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Figure 4: Average number of iterations to solve (43)

Therefore, (17) holds.

Since it follows from (4) and (11) that

rk −∇g(xk) + ξk −Bkdk ∈ ∂h1(x
+
k ),

we obtain
h1(x

+
k ) + (rk −∇g(xk) + ξk −Bkdk)

T (−dk) ≤ h1(xk).

Hence, we have
(∇g(xk)− ξk)

T dk + h1(x
+
k )− h1(xk) ≤ rTk dk − ‖dk‖2Bk

. (44)

Using (7) and the Cauchy-Schwarz inequality, we get

rTk dk − ‖dk‖2Bk
≤ ‖rk‖Hk

‖dk‖Bk
− ‖dk‖2Bk

≤ −θ̄‖dk‖2Bk
. (45)

Combining (44) with (45), we obtain (18), completing the proof.

Appendix B Proof of Lemma 2

Proof: For any 0 < η ≤ 2m
L
θ̄(1− δ), we have from (16) and (18),

Lη

2
‖dk‖2 ≤ mθ̄(1− δ)‖dk‖2

≤ (1− δ)θ̄‖dk‖2Bk

≤ −(1− δ)((∇g(xk)− ξk)
T dk + h1(x

+
k )− h1(xk)).
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Hence, it follows from (17) that

f(xk + ηdk)− f(xk) ≤ ηδ((∇g(xk)− ξk)
Tdk + h1(x

+
k )− h1(xk)).

This means that the line search condition (12) is satisfied for all

0 < η ≤ min

{
1,

2m

L
θ̄(1− δ)

}
.

Therefore, since we use the backtracking line search with βk ∈ (0, 1),

βk min

{
1,

2m

L
θ̄(1 − δ)

}
≤ ηk ≤ 1

holds. It follows from the above and βmin ≤ βk that we have (20). Hence, this lemma is proved.

Appendix C Proof of Theorem 5

To prove Theorem 5, we introduce the following theorem [3, Theorem 3.4].

Theorem 10. Let V = D ±∑r
i=1 uiu

T
i ∈ R

n×n be symmetric positive definite, where D ∈ R
n×n is

symmetric positive definite and ui ∈ R
n. Let U = (u1, ..., ur). If r ≤ n, U is full rank and h1 is

proper lsc convex, then
ProxVh1

(x̄) = ProxDh1
(x̄∓D−1Uα∗),

where the mapping L : Rr → R
r is defined by

L(α) = UT (x̄ − ProxDh1
(x̄∓D−1Uα)) + α

and α∗ ∈ R
r is the unique root of L(α) = 0.

By using this theorem, we can prove Theorem 5.

Proof: (Proof of Theorem 5) Let P = τI + u1u
T
1 , B = P − u2u

T
2 . Then, from Theorem 10 with

V = B and D = P , we have
ProxBh1

(x̄) = ProxPh1
(x̄+ α∗

2P
−1u2),

where the mapping L2 : R→ R is defined by

L2(α2) = uT
2 (x̄− ProxPh1

(x̄+ α2P
−1u2)) + α2

and α∗
2 ∈ R is the root of L2(α2) = 0. We next consider ProxPh1

(x̄ + α∗
2P

−1u2). Applying Theorem
10 with D = τI and V = P , we have

ProxPh1
(x̄+ α∗

2P
−1u2) = ProxτIh1

(x̄+ α∗
2P

−1u2 −
α∗
1

τ
u1)

where the mapping L1 : R→ R is defined by

L1(α1) = uT
1 (x̄+ α∗

2P
−1u2 − ProxτIh1

(x̄+ α∗
2P

−1u2 −
α1

τ
u1)) + α1

and α∗
1 ∈ R is the root of L1(α1) = 0. We now note that

ProxτIh1
(·) = argmin

x∈Rn

h1(x) +
1

2
‖x− ·‖2τI = argmin

x∈Rn

1

τ
h1(x) +

1

2
‖x− ·‖2 = Prox 1

τ
h1
(·).
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Summarizing the above relations, we have (32).

We next aim to show the existence and the uniqueness of the solution α∗. The existence is immediately
guaranteed by Theorem 10. To show uniqueness, we choose any two solutions of L(α) = 0, say
α̂ = (α̂1, α̂2)

T , ᾱ = (ᾱ1, ᾱ2)
T ∈ R

2. Then, it follows from L(α̂) = L(ᾱ) that




uT
1 (α̂2(τI + u1u

T
1 )

−1u2 − Prox 1
τ
h1
(ζ(α̂))) + α̂1

= uT
1 (ᾱ2(τI + u1u

T
1 )

−1u2 − Prox 1
τ
h1
(ζ(ᾱ))) + ᾱ1,

−uT
2 Prox 1

τ
h1
(ζ(α̂)) + α̂2 = −uT

2 Prox 1
τ
h1
(ζ(ᾱ)) + ᾱ2.

Thus, the relations Prox 1
τ
h1
(ζ(ᾱ)) = ProxBh1

(x̄) = Prox 1
τ
h1
(ζ(α̂)) and the second equality yield α̂2 =

ᾱ2. Further, the first equality implies α̂1 = ᾱ1. Therefore, we have α̂ = ᾱ, which implies that the
solution of L(α) = 0 is unique, completing the proof.

Appendix D Proof of Proposition 6

Proof: For simplicity, we set x̂ = Prox 1
τ
h1
(ζ(α)). It follows from (30), (33) and u1u

T
1 (τI+u1u

T
1 )

−1 =

I − τ(τI + u1u
T
1 )

−1 that

UL(α) = −u1u
T
1 x̄− α2u1u

T
1 (τI + u1u

T
1 )

−1u2 + u1u
T
1 x̂− α1u1 + u2u

T
2 x̄− u2u

T
2 x̂+ α2u2

= (−u1u
T
1 + u2u

T
2 )(x̄ − x̂)− α2u1u

T
1 (τI + u1u

T
1 )

−1u2 − α1u1 + α2u2

= (τI −B)(x̄ − x̂)− α2u2 + α2τ(τI + u1u
T
1 )

−1u2 − α1u1 + α2u2

= B(x̂− x̄) + τ(x̄ − x̂)− α1u1 + τα2(τI + u1u
T
1 )

−1u2. (46)

On the other hand, x̂ = Prox 1
τ
h1
(ζ(α)) implies

τ(ζ(α) − x̂) ∈ ∂h1(x̂).

Therefore, it follows from (31), (46), x̄ = x−H(∇g(x) − ξ), and BH = I that

UL(α) = B(x̂ − x̄) + τ
(
x̄− x̂− α1

τ
u1 + α2(τI + u1u

T
1 )

−1u2

)

= B(x̂ − x̄) + τ(ζ(α) − x̂)

= ∇g(x) − ξ +B(x̂ − x) + τ(ζ(α) − x̂)

∈ ∇g(x)− ξ +B(x̂− x) + ∂h1(x̂).

This completes the proof.

Appendix E Proof of Theorem 7

To prove Theorem 7, we first give the following lemma.

Lemma 3. Assume that Prox 1
τ
h1

is B-differentiable. Let ᾱ ∈ R
2 be a point such that L(ᾱ) 6= 0

and any element of ∂CL(ᾱ) is nonsingular. Then, there exist a positive constant t̄ and a compact
neighborhood N (ᾱ) of ᾱ such that the following statements hold for any α ∈ N (ᾱ):

(a) L(α) 6= 0 and any element of ∂CL(α) is nonsingular.
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(b) For p = −V −TL(α) and V ∈ ∂CL(α) satisfying

Ψ′(α; p) ≤ (V L(α))T p, (47)

the inequality

Ψ(α+ tp) ≤ (1− 2σt)Ψ(α) (48)

holds for any t ∈ (0, t̄].

Proof: Since Prox 1
τ
h1

is local Lipschitz continuous, L is also local Lipschitz continuous, and so

∂CL(α) is compact for any α. Since any element of ∂CL(ᾱ) is nonsingular, there exists a compact
neighborhood T (ᾱ) ⊃ ∂CL(ᾱ) such that any element of T (ᾱ) is nonsingular. Because ∂CL is upper
semi-continuous and ∂CL(α) is compact for any α, we can choose T (ᾱ) ⊃ ∂CL(ᾱ) and a compact
neighborhood N (ᾱ) of ᾱ such that L(α) 6= 0 and ∂CL(α) ⊂ T (ᾱ) hold for any α ∈ N (ᾱ). Thus, (a)
is satisfied.

Next, we show (b). Since Prox 1
τ
h1

is local Lipschitz continuous and directionally differentiable, L is

B-differentiable [8, Definition 3.1.2]. Thus, it follows from (47) and [8, Proposition 3.1.3] that the
following relations hold for any t > 0:

Ψ(α+ tp) = Ψ(α) + Ψ′(α; tp) + o(‖tp‖)
= Ψ(α) + tΨ′(α; p) + o(‖tp‖)
≤ Ψ(α) + t(V L(α))T p+ o(‖tp‖)
= Ψ(α)− t‖L(α)‖2 + o(‖tp‖)
= (1− 2t)Ψ(α) + o(‖tp‖). (49)

From the above arguments, for any α ∈ N (ᾱ), it holds that ∂CL(α) ⊂ T (ᾱ) and T (ᾱ) is compact.
Hence, p = −V −TL(α) is bounded. In addition, since N (ᾱ) is compact and L(α) 6= 0 for any
α ∈ N (ᾱ), there exists a positive constant Ψ̃ such that Ψ̃ ≤ Ψ(α) for any α ∈ N (ᾱ). Therefore, it
follows from σ ∈ (0, 1/2) and (49) that

Ψ(α+ tp) ≤ (1− 2σt)Ψ(α)− 2t(1− σ)Ψ̃ + o(t).

Thus, there exists a positive constant t̄ such that (48) holds for any t ∈ (0, t̄].

From Lemma 3, we immediately have the following property.

Remark 3. Consider Algorithm 2. If any element of ∂CL(αj) is nonsingular and (40) holds, then
the line search condition (38) is achieved for some finite number l.

By using Lemma 3, we prove Theorem 7.

Proof: (Proof of Theorem 7) If L(αj) = 0 for some j ≥ 0, we have the desired result. Thus,
we consider the case where L(αj) 6= 0 for all j ≥ 0. It follows from Remark 3 and the line search
condition (38) that {Ψ(αj)} is a nonincreasing sequence. Hence, {αj} ⊂ S0 holds. Since the level set
S0 is compact, {αj} has at least one accumulation point.

We show the theorem by contradiction. Assume that there exists an accumulation point α̂ such that
L(α̂) 6= 0 (namely, Ψ(α̂) > 0), and consider a subsequence {αji} such that {αji} → α̂ (i → ∞). For
sufficiently large i, the relation {αji} ⊂ N (α̂) holds, where N (α̂) is the neighborhood appearing in

Lemma 3 with ᾱ = α̂. Let l̂ be the smallest nonnegative integer such that ρl̂ ≤ t̄, where t̄ is the
positive constant appearing in Lemma 3. Then, it follows from (48) that

Ψ
(
αji + ρl̂pji

)
≤
(
1− 2σρl̂

)
Ψ(αji)
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holds for sufficiently large i. From the backtracking rule of the algorithm, ρl̂ ≤ tji is satisfied. Hence,
taking into account ji + 1 ≤ ji+1, we have

Ψ(αji+1
) ≤ Ψ(αji+1) = Ψ(αji + tjipji) ≤ (1− 2σtji)Ψ(αji) ≤

(
1− 2σρl̂

)
Ψ(αji).

Since 1− 2σρl̂ ∈ (0, 1) is a constant independent of i, we obtain

Ψ(α̂) = lim
i→∞

Ψ(αji) = 0.

Since this contradicts the assumption L(α̂) 6= 0, any accumulation point of {αj} is a solution of (36).
Moreover, from Theorem 5, problem (36) has a unique solution. Hence, the proof is complete.

Appendix F Proof of Theorem 8

Proof: It follows from Theorem 7, the sequence {αj} converges to the unique solution α∗. In the
same way as the proof of Lemma 3(a), we can show that there exists a compact neighborhood N ′(α∗)
such that any element of ∂CL(α) is nonsingular for any α ∈ N ′(α∗). Since N (α∗) is a compact set,
∂CL is upper semi-continuous, and αj ∈ N (α∗) for sufficiently large j, there exists a positive constant
ĉ1 such that

‖V −1
j ‖ ≤ ĉ1 for ∀Vj ∈ ∂CL(αj)

holds. Therefore, the (strongly) semi-smoothness yields

‖αj + pj − α∗‖ = ‖αj − V −T
j L(αj)− α∗‖

≤ ĉ1‖V T
j (αj − α∗)− L(αj) + L(α∗)‖ = o(‖αj − α∗‖) (50)

(= O(‖αj − α∗‖2 for the strongly semi-smooth case).

On the other hand, from the local Lipschitz continuity of L and [28, Theorem 3.1], there exist positive
constants ĉ2, ĉ3 satisfying

ĉ2‖αj − α∗‖ ≤ ‖L(αj)− L(α∗)‖ ≤ ĉ3‖αj − α∗‖.

Therefore, by (50), we have

Ψ(αj + pj) =
1

2
‖L(αj + pj)− L(α∗)‖2

= O(‖αj + pj − α∗‖2) = o(‖αj − α∗‖2) = o(‖L(αj)‖2) = o(Ψ(αj)),

which implies that the line search condition (38) holds with l = 0, namely, tj = 1. Thus, using (50),
we obtain

‖αj+1 − α∗‖ = o(‖αj − α∗‖)
(= O(‖αj − α∗‖2 for the strongly semi-smooth case),

and hence the proof is complete.

Appendix G Proof of Proposition 9

Proof: The definition (34) yields

uT
2 u2 = τk, uT

1 u1 =
γkz

T
k−1zk−1

sTk−1zk−1
, uT

1 u2 =

√
τkγksTk−1zk−1

‖sk−1‖
.

21



It follows from sTk−1zk−1 > 0 and the Cauchy–Schwarz inequality that

sTk−1zk−1

sTk−1sk−1
≤ zTk−1zk−1

sTk−1zk−1
.

Therefore, using (15), (23), (24), and (29), we have

τ ≤ uT
2 u2 ≤ τ̄ , γν ≤ γks

T
k−1zk−1

sTk−1sk−1
≤ uT

1 u1 ≤
γ̄(ν̄ + L)2

ν
,

and √
τγν ≤ uT

1 u2 ≤
√
τ̄ γ̄(ν̄ + L).

From (τkI + u1u
T
1 )

−1 = 1
τk
I − u1u

T

1

τ2
k
+τk‖u1‖2 , we get

uT
2 (τkI + u1u

T
1 )

−1u2 =
1

τk
uT
2 u2 −

(uT
1 u2)

2

τ2k + τk‖u1‖2
= 1− (uT

1 u2)
2

τ2k + τk‖u1‖2
,

which implies that

τγν

τ̄2 + τ̄ γ̄(ν̄+L)2

ν

≤ 1− uT
2 (τkI + u1u

T
1 )

−1u2 ≤
(uT

1 u2)
2

τ2k
≤ τ̄ γ̄(ν̄ + L)

τ2
.

By letting v = τk(ζ(α) − Prox 1
τ
k
h1
(ζ(α))) ∈ ∂h1(ζ(α)), it follows from (31) and (33) that

L(α) =
(

1
τk
uT
1 v + (1 + 1

τk
uT
1 u1)α1

1
τk
uT
2 v +

1
τk
uT
1 u2α1 + (1 − uT

2 (τkI + u1u
T
1 )

−1u2)α2

)
. (51)

On the other hand, from the assumption (41) and the above evaluations, the following relations hold:

|uT
1 v| ≤ c̄

√
γ̄(ν̄ + L)2

ν
, |uT

2 v| ≤ c̄
√
τ̄ .

Therefore, it follows from the above evaluations, (29), and (51) that there exist positive constants
ĉ4, ĉ5, and ĉ6 satisfying

ĉ4α
2
1 + (ĉ5α1 + ĉ6α2)

2 ≤ 1

2
‖L(α)‖2 = Ψ(α)

when ‖α‖ is sufficiently large. Therefore, the proof is complete.

Appendix H Choice for Vj

Proposition 11. Suppose that h1(x) = λ‖x‖1 (λ > 0). Let ζ and L be given in (31) and (33), and
let

Vj =

(
1 + 1

τ
uT
1 Wu1

1
τ
uT
2 Wu1

(u1 −Wu1)
T (τI + u1u

T
1 )

−1u2 1− uT
2 W (τI + u1u

T
1 )

−1u2

)
, (52)

where

W =



w1

. . .

wn


 and wi =

{
1 if |(ζ(αj))i| > λ

τ
,

0 otherwise,

for i = 1, . . . , n. Then, Vj ∈ ∂CL(αj) holds.
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Proof: For simplicity, we omit the subscript j and set

ū1 =
1

τ
u1 and ū2 = (τI + u1u

T
1 )

−1u2.

Then, we can rewrite ζ(α) and L(α) as

ζ(α) = x̄− α1ū1 + α2ū2

and

L(α) =
(
α1 + uT

1 x̄+ α2(u
T
1 ū2)− uT

1 Prox 1
τ
h1
(ζ(α))

α2 + uT
2 x̄− uT

2 Prox 1
τ
h1
(ζ(α))

)
,

respectively. When h1(x) = λ‖x‖1 (λ > 0) , the proximal mapping is given by

(
Prox 1

τ
h1
(ζ(α))

)
i
=





(ζ(α))i − λ
τ

if (ζ(α))i ≥ λ
τ
,

0 if |(ζ(α))i| < λ
τ
,

(ζ(α))i +
λ
τ

if (ζ(α))i ≤ −λ
τ
.

We now consider D = {α|L(α) is differenciable}. For ∀α ∈ D, we have

∇L(α) =




1 +
n∑

i=1

(u1)i(ū1)iω̄i

n∑

i=1

(ū1)i(u2)iω̄i

uT
1 ū2 −

n∑

i=1

(u1)i(ū2)iω̄i 1−
n∑

i=1

(u2)i(ū2)iω̄i


 ,

where

ω̄i =

{
1, |(ζ(α))i| > λ

τ
,

0, |(ζ(α))i| < λ
τ
.

Thus, the Clarke differential of L is given by

∂CL(α) =








1 +

n∑

i=1

(u1)i(ū1)iω̂i

n∑

i=1

(ū1)i(u2)iω̂i

uT
1 ū2 −

n∑

i=1

(u1)i(ū2)iω̂i 1−
n∑

i=1

(u2)i(ū2)iω̂i




∣∣∣∣∣∣
ω̂i





= 1 if |(ζ(α))i| > λ
τ
,

∈ [0, 1] if |(ζ(α))i| = λ
τ
,

= 0 if |(ζ(α))i| < λ
τ
.





.

Therefore, we obtain V ∈ ∂CL(α).
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