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EXTENSION OF SWITCH POINT ALGORITHM TO

BOUNDARY-VALUE PROBLEMS ∗

WILLIAM W. HAGER†

Abstract. In an earlier paper (https://doi.org/10.1137/21M1393315), the Switch Point Al-
gorithm was developed for solving optimal control problems whose solutions are either singular or
bang-bang or both singular and bang-bang, and which possess a finite number of jump discontinuities
in an optimal control at the points in time where the solution structure changes. The class of control
problems that were considered had a given initial condition, but no terminal constraint. The theory
is now extended to include problems with both initial and terminal constraints, a structure that
often arises in boundary-value problems. Substantial changes to the theory are needed to handle this
more general setting. Nonetheless, the derivative of the cost with respect to a switch point is again
the jump in the Hamiltonian at the switch point.

Key words. Switch Point Algorithm, Singular Control, Bang-Bang Control, Boundary-value
Problems
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1. Introduction. An earlier paper [1] develops the Switch Point Algorithm for
initial-value problems with bang-bang or singular solutions. This paper extends the
algorithm to problems with terminal constraints. More precisely, we consider fixed
terminal time control problem of the form

minC(x(T )) subject to ẋ(t) = f(x(t),u(t)), u(t) ∈ U(t),

xI(0) = bI , xE(T ) = bE ,
(1.1)

where x : [0, T ] → R
n is absolutely continuous, u : [0, T ] → R

m is essentially bounded,
C : Rn → R, f : Rn × R

m → R
n, U(t) is a closed and bounded set for each t ∈ [0, T ],

I and E are subsets of {1, 2, . . . , n}, and xI denotes the subvector of x associated
with indices i ∈ I. The vectors bI and bE are given initial and terminal values for
the state. It is assumed that |I|+ |E| = n, where |S| denotes the number of elements
in a set S, and the dynamics f and the objective C are continuously differentiable.
Here and throughout the paper, differential equations should hold almost everywhere
on [0, T ]. Problems of this form arise in boundary-value problems such as the fish
harvesting problem in [26], which is also studied in the PhD thesis [6] of Summer
Atkins.

With the notation given above, the paper [1] considered an initial value problem
where |I| = n and |E| = 0. In this special case, any u satisfying the control constraint
is feasible, and the associated state is the solution to an initial value problem. When
|E| > 0, components of the initial state corresponding to i ∈ Ic, the complement of I,
are unknown. The nonspecified components of the initial state along with the control
u must be chosen to satisfy the boundary condition xE(T ) = bE . Due to the terminal
constraint, the theory developed in [1] is no longer applicable.

The costate associated with (1.1) satisfies the linear differential equation

ṗ(t) = −p(t)∇xf(x(t),u(t)), pJ (0) = 0, pF (T ) = ∇FC(x(T )), (1.2)
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where J and F denote the complements of I and E respectively, p : [0, T ] → R
n is

a row vector, the objective gradient ∇FC is a row vector whose i-th component is
the partial derivative of C with respect to xi, i ∈ F , and ∇xf denotes the Jacobian
of the dynamics with respect to x. Due to the terminal constraint xE(T ) = bE ,
the objective is only a function of xF (T ). Under the assumptions of the Pontryagin
minimum principle, a local minimizer of (1.1) and the associated costate have the
property that

H(x(t),u(t),p(t)) = inf{H(x(t),v,p(t)) : v ∈ U(t)} (1.3)

for almost every t ∈ [0, T ], where H(x,u,p) = pf(x,u) is the Hamiltonian.
When the Hamiltonian is linear in the control and the feasible control set has the

form

U(t) = {v ∈ R
m : α(t) ≤ v ≤ β(t)},

where α and β : [0, T ] → R
m, it is often possible to decompose [0, T ] into a finite

number of disjoint subintervals (si, si+1), where 0 = s0 < s1 < . . . < sN = T , and
on each subinterval, each component of an optimal control is either singular or bang-
bang. Moreover, by singular control theory [29], it is often possible to express the
control in feedback form as u(t) = φi(x(t), t) for all t ∈ (si, si+1) for some function φi

defined on a larger interval containing (si, si+1). In the Switch Point Algorithm, the
original control problem is solved by optimizing over the choice of the si, 0 < i < N .
In other words, if Fi(x, t) := f(x,φi(x, t)) and F(x, t) := Fi(x, t) for all t ∈ (si, si+1),
0 ≤ i < N , then (1.1) is replaced by the problem

min
s

C(x(T )) subject to ẋ(t) = F(x(t), t), xI(0) = bI , xE(T ) = bE . (1.4)

In order to solve (1.4) efficiently, we develop an algorithm for computing the
derivative of the objective with respect to a switch point. This formula allows us
to utilize gradient, conjugate gradient, and quasi-Newton methods in the solution
process. Let C(s) denote the objective in (1.4) parameterized by the switch points si,
0 < i < N . Under a smoothness assumption for each Fi and invertibility assumptions
for submatrices of related fundamental matrices, we obtain the following formula:

∂C

∂si
(s) = Hi−1(x(si),p(si), si)−Hi(x(si),p(si), si), 0 < i < N, (1.5)

where Hi(x,p, t) = pFi(x, t), and the row vector p : [0, T ] → R
n is the solution to

the linear differential equation

ṗ(t) = −p(t)∇xF(x(t), t), t ∈ [0, T ], pF (T ) = ∇FC(x(T )), pJ(0) = 0. (1.6)

This matches the formula given in [1, Thm. 2.4] in the case |E| = 0. Summer Atkins
in her thesis [6] also obtains this formula in the special case of the fish harvesting
problem. Since F could jump at si, the existence of the Jacobian in (1.6) is generally
restricted to the open intervals (si, si+1), and the differential equation only needs to
hold almost everywhere.

See the earlier paper [1] for a detailed survey of literature concerning bang-bang
and singular control problems, which includes the papers [2, 3, 4, 5, 8, 9, 10, 11,
20, 21, 24, 25, 31, 32]. In more recent work [27], the authors develop a method
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for solving bang-bang and singular optimal control problem using adaptive Legen-
dre–Gauss–Radau collocation [12, 13, 19, 22, 23, 28] in which the structure of the
solution is first determined, and a regularization technique is used in the singular re-
gions, while the switch points are treated as free parameters in the optimization. The
gradient methods that might be used in conjunction with the derivatives provided in
the current paper do not require regularization, however, as discussed in Section 7, a
good starting guess for the switch points is needed to ensure convergence.

The paper is organized as follows. Section 2 provides an existence result for a
system of nonlinear equations. This key result is the basis for a stability analysis of
the boundary-value problem associated with (1.1). In Section 3, stability with re-
spect the terminal boundary constraint is analyzed, while Section 4 analyzes stability
with respect to a switch point. In Section 5, the results of the previous sections are
combined to obtain the derivative formula (1.5). Section 6 discusses problems where
a singular control depends on both state and costate. Finally, Section 7 explores
numerical issues.

Notation and Terminology. Throughout the paper, ‖ · ‖ is any norm on R
n.

The ball with center c ∈ R
n and radius ρ is denoted Bρ(c) = {x ∈ R

n : ‖x− c‖ ≤ ρ}.
The expression O(θ) denotes a quantity whose norm is bounded by c‖θ‖, with c is
a constant that is independent of θ. The Jacobian of f(x,u) with respect to x is
denoted ∇xf(x,u); its (i, j) element is ∂fi(x,u)/∂xj . For a real-valued function such
as C, the gradient ∇C(x) is a row vector, while ∇FC(x) is a row vector whose i-th
component, i ∈ F , is the partial derivative of C with respect to xi. For a vector
x ∈ R

n and a set I ⊂ {1, 2, . . . , n}, xI is the subvector consisting of elements xi,
i ∈ I. If A ∈ R

m×n is a matrix, and R and C are subsets of the row and column
numbers respectively, then ARC is the submatrix corresponding to rows in R and
columns in C. All vectors in the paper are column vectors except for the costate p

which is a row vector.

2. An Existence Result. In order to derive the formula (1.5) for the derivative
of the objective with respect to a switch point, we first need to analyze the stability
of the boundary-value problem in (1.1). This analysis is done using the proposition
stated below. The proposition is a very special case of a general theorem given in [18,
Thm. 2.1]. The general result, formulated in a Banach space with set-valued maps,
has broad application in the convergence analysis of numerical algorithms, as seen in
papers such as [14, 15, 16, 17]. The special case stated here is for finite dimensional
point-to-point maps which is sufficient for handling the analysis of (1.1). This result
is closely related to Newton’s method, a favorite topic of Asen L. Dontchev, whom
we remember in this volume.

Proposition 2.1. Suppose that g : Rn → R
n is continuously differentiable in

Br(0) for some r > 0, and define δ = ‖g(0)‖. Let L ∈ R
n×n be an invertible matrix

with γ := ‖L−1‖ and with the property that for some ǫ > 0,

‖∇g(θ)− L‖ ≤ ǫ for all θ ∈ Br(0). (2.1)

If ǫγ < 1 and δ ≤ r(1−γǫ)/γ, then there exists a unique θ ∈ Br(0) such that g(θ) = 0.

Moreover, we have the bound

‖θ‖ ≤
δγ

1− ǫγ
. (2.2)

3. Stability with Respect to Terminal Constraint. In analyzing the dif-
ferentiability of the objective in (1.4) with respect to a switch point, there no loss in
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generality in focusing on the caseN = 2, where there is a single switch point s ∈ (0, T )
and the dynamics switches from F0 to F1 at t = s:

F(x, t) = F0(x, t) for all t ∈ [0, s) and F(x, t) = F1(x, t) for all t ∈ (s, T ].

It is assumed that there exists a feasible, absolutely continuous state x which satisfies
the constraints of (1.4). That is, x satisfies

ẋ(t) = F(x(t), t), xI(0) = bI , xE(T ) = bE . (3.1)

Throughout the paper, x denotes a solution to this problem. In this section, we focus
on the following question: If the endpoint constraint bE in (3.1) is changed to bE+π,
does there exist a solution xπ to the perturbed problem

ẋ(t) = F(x(t), t), xI(0) = bI , xE(T ) = bE + π, (3.2)

and is the solution change bounded in terms of ‖π‖? The following assumption is
used in this analysis.

Dynamics Smoothness. For ρ > 0, define the tubes

T0 = {(χ, t) : t ∈ [0, s+ ρ] and χ ∈ Bρ(x(t))},

T1 = {(χ, t) : t ∈ [s− ρ, T ] and χ ∈ Bρ(x(t))}.

It is assumed that on Tj , j = 0 or 1, Fj is continuously differentiable, while Fj(χ, t)
is Lipschitz continuously differentiable in χ, uniformly in t, with Lipschitz constant
L.

Let us define θ∗ = xJ (0), and let us consider the initial-value problem

ẏ(t) = F(y(t), t), yI(0) = bI , yJ(0) = θ∗ + θ. (3.3)

For θ = 0, y = x, the solution of (3.1), since yJ (0) = xJ (0). Under Dynamics
Smoothness, it follows from [1, Cor. 2.3] that (3.3) has a solution yθ when ‖θ‖ is
sufficiently small, and we have the bound

‖yθ(t)− x(t)‖ = ‖yθ(t)− y0(t)‖ ≤ eLt‖θ‖ for all t ∈ [0, T ]. (3.4)

By the continuity of ∇xFj on Tj , for j = 0 or 1, it follows that there is a constant β
such that

‖∇xF(χ, t)‖ ≤ β for all t ∈ [0, T ] and χ ∈ Bρ(x(t)). (3.5)

A sharper estimate for the difference y−x is obtained from the solution zθ of the
linearized problem

ż(t) = ∇xF (x(t), t)z(t), zI(0) = 0, zJ (0) = θ. (3.6)

Since ∇xF(x(t), t) is continuous on [0, s) and on (s, T ], the solution to the linear
differential equation (3.6) has a bound

zθ(t) = O(θ) for all t ∈ [0, T ]. (3.7)

Define for all t ∈ [0, T ] and α ∈ [0, 1],

δ(t) = yθ(t)− x(t) − zθ(t) and x(α, t) = x(t) + α(yθ(t)− x(t)). (3.8)
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Differentiating δ and utilizing a Taylor expansion with integral remainder term, we
obtain for all t ∈ [0, T ], t 6= s, δ̇(t) = ẏθ(t)− ẋ(t)− żθ(t) =

F(yθ(t), t)− F(x(t), t) −∇xF(x(t), t)zθ(t) = (3.9)
(
∫ 1

0

∇xF(x(α, t), t) dα

)

(yθ(t)− x(t)) −

(
∫ 1

0

∇xF(x(t), t) dα

)

zθ(t) =

(
∫ 1

0

[∇xF(x(α, t), t) −∇xF(x(t), t)] dα

)

zθ(t) +

(
∫ 1

0

∇xF(x(α, t), t) dα

)

δ(t).

Take θ in (3.4) small enough that yθ(t) lies in the tube around x(t) where ∇xF is
Lipschitz continuous. If L is the Lipschitz constant for ∇xF, then we have

‖∇xF(x(α, t), t) −∇xF(x(t), t)‖ ≤ αL‖yθ(t)− x(t)‖ = O(θ) (3.10)

by (3.4). Take the norm of each side of (3.9). On the right side of (3.9), the coefficient
of zθ is O(θ) by (3.10), while zθ is O(θ) by (3.7). Since ‖∇xF(x(α, t), t)‖ ≤ β for
all α ∈ [0, 1] and t ∈ [0, T ] by (3.5), the right side of (3.9) has the bound O(‖θ‖2) +
β‖δ(t)‖. On the left side, exploit the fact from [1, Lem. 2.1] that the derivative of a
norm is bounded by the norm of the derivative to obtain

d‖δ(t)‖

dt
≤ ‖δ̇(t)‖ ≤ O(‖θ‖2) + β‖δ(t)‖. (3.11)

By the initial conditions for yθ, x, and zθ in (3.3), (3.1), and (3.6) respectively,
δ(0) = 0. This observation, together with (3.11) and Gronwall’s inequality yield

‖(yθ − x)− zθ‖ = ‖δ(t)‖ = O(‖θ‖2). (3.12)

Thus zθ provides an O(‖θ‖2) approximation to the difference yθ − x.
The linearized problem (3.6) plays a fundamental role in the stability analysis of

(3.1). Finding a solution of the perturbed problem (3.2) is equivalent to finding the
starting condition θ in (3.3) with the property that yθ(T ) = bE + π. Since zθ is a
close approximation to yθ − x, we could choose θ so that zθ(T ) = π, in which case

yθ(T ) = x(T ) + zθ(T ) +O(‖θ‖2) = bE + π +O(‖θ‖2).

Therefore, for this choice of θ, the solution of (3.3) satisfies the perturbed boundary
condition to within O(‖θ‖2).

The fundamental matrix Φ : [0, T ] → R
n×n associated with the linear system

ż(t) = ∇xF (x(t), t)z(t) is the solution to the initial-value problem

Φ̇(t) = ∇xF (x(t), t)Φ(t), Φ(0) = I, (3.13)

where I is the n×n identity matrix. The solution z of the linearized problem (3.6) is
equal to the fundamental matrix times the initial condition. Due to the special choice
of the initial condition in (3.6), the θ that yields zE(T ) = π is the solution to the
linear system of equations ΦEJ(T )θ = π, where ΦEJ represents the submatrix of Φ
associated with columns J and rows E. If this square submatrix is invertible, then
θ = ΦEJ(T )

−1π. With these insights, we have the following result:
Lemma 3.1. Suppose that ΦEJ(T ) is invertible and let γ = ‖Φ−1

EJ (T )‖. For π

in a neighborhood N of the origin, the perturbed boundary-value problem (3.2) has a

solution xπ and

‖xπ
J(0)− xJ (0)‖ = ‖xπ

J(0)− θ∗‖ ≤ c‖π‖ for all π ∈ N , (3.14)
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where c is a constant that approaches γ as ‖π‖ approaches 0.

Proof. We apply Proposition 2.1 with L = ∇g(0), where g(θ) = yθE(T )−bE−π

and yθ is the solution of (3.3). Both bE and π are independent of θ so their derivatives
are 0. From the analysis in [30, Chap. 1.6], the derivative of yθE(T ) with respect to
θ, evaluated at θ = 0 is L = ΦEJ(T ). Moreover, it follows from [30, Chap. 1.6] that
∇g(θ) is continuously differentiable at θ = 0. Choose ǫ small enough that ǫγ < 1
and then choose r small enough that (2.1) holds; by continuity of the derivative of
g at θ = 0, (2.1) holds for r sufficiently small. Since g(0) = π, we have δ = ‖π‖.
Choose ‖π‖ small enough that δ ≤ r(1 − γǫ)/γ. Since all the requirements for (2.2)
have now been satisfied, there exists a unique θ ∈ Br(0) such that g(θ) = 0, or
equivalently, such that yθE(T ) = bE+π. By (2.2), ‖θ‖ ≤ c‖π‖, where c = γ/(1− ǫγ)
is independent of π. Since yθ satisfies both the initial and terminal conditions for xπ

in (3.2), we can take xπ = yθ. At t = 0,

xπ
J(0) = yθJ(0) = θ∗ + θ,

which rearranges to give (3.14). As ǫ tends to zero, we can let r also approach zero, in
which case the denominator in (2.2) tends to one and the ball containing the solution
θ to g(θ) = 0 tends to zero.

4. Stability with respect to the Switch Point. In order to obtain the deriva-
tive of the objective in (1.4) with respect to the switch point, we need to analyze the
effect of perturbations in the switch point s. Let F+ be defined by

F+(x, t) =

{

F0(x, t) for all t ∈ [0, s+∆s),
F1(x, t) for all t ∈ (s+∆s, T ],

where |∆s| ≤ ρ. Hence, F+ is the dynamics gotten by changing the switch point from
s to s+∆s. The boundary-value problem associated with the perturbed switch point
is

ẋ(t) = F+(x(t), t), xI(0) = bI , xE(T ) = bE , (4.1)

and a solution, if it exists, is denoted x+. The goal in this section is to show that
when the invertibility condition of Lemma 3.1 holds, the perturbed problem (4.1) has
a solution that is stable with respect to the perturbation ∆s.

Let y+
θ denote the solution to the perturbed initial-value problem

ẏ(t) = F+(y(t), t), yI(0) = bI , yJ (0) = θ∗ + θ, (4.2)

where θ∗ = xJ (0). When θ = 0, we omit the θ subscript on y+

θ so y+ := y+
0 . Since

F+ = F0 on [0, s), assuming ∆s > 0, it follows that

y+(t) = y+
0 (t) = x(t) for all t ∈ [0, s). (4.3)

For t ∈ (s, T ], it is shown in [1, (2.12)–(2.14)] that

‖y+(t)− x(t)‖ = O(∆s) on (s, T ], which implies y+
E(T ) = bE − π (4.4)

for some π = O(∆s) since x(T ) = bE . By (4.3) and (4.4), y+ lies inside the tubes
around x given in Dynamic Smoothness when ∆s is sufficiently small. Moreover, as in
(3.4), it follows from Dynamics Smoothness and [1, Cor. 2.3] that (4.2) has a solution
y+

θ when |∆s| ≤ ρ and ‖θ‖ is sufficiently small, and we have the bound

‖y+
θ (t)− y+(t)‖ ≤ eLt‖θ‖ for all t ∈ [0, T ]. (4.5)
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Combine (4.3)–(4.5), and the triangle inequality to obtain

‖y+

θ (t)− x(t)‖ = O(∆s) +O(θ) for all t ∈ [0, T ]. (4.6)

Now let us consider whether a solution exists to (4.1), assuming a solution to the
original system (3.1) exists when ∆s = 0. As in the previous section, our approach is
to focus on the initial-value problem (4.2) and try to choose θ such that y+

θ = x+ is
a solution of (4.1). In particular, if we choose θ such that

(

y+
θ (T )− y+

0 (T )
)

E
= π,

then combining this with (4.4) gives

y+
θE = y+

E + π = bE − π + π = bE .

Thus y+

θ satisfies the same boundary conditions as those for a solution x+ of (4.1).
With this insight, the following result is established:

Lemma 4.1. If ΦEJ(T ) is invertible, then for ∆s in a neighborhood of 0, the

problem (4.1), with perturbed switch point s+∆s, has a solution x+, and we have

‖x+
J (0)− xJ (0)‖ = ‖x+

J (0)− θ∗‖ ≤ c|∆s| for all ∆s near 0, (4.7)

where c is a constant that is independent of ∆s.
Proof. The lemma is stated in terms of the fundamental matrix Φ that arises in

the unperturbed problem of Section 3, and which satisfies

Φ̇(t) = ∇xF (x(t), t)Φ(t), Φ(0) = I.

If the proof technique of Lemma 3.1 is applied to the problem (4.1) with a perturbed
switch point, then the associated fundamental matrix is the solution of

Φ̇
+
(t) = ∇xF

+(y+(t), t)Φ+(t), Φ+(0) = I. (4.8)

Since x(t) = y+
0 (t) = y+(t) and F+ = F on the interval [0, s], it follows that Φ+(t) =

Φ(t) on [0, s]. On the interval [s, s+∆s], Φ is associated with the dynamics F1 while
Φ+ is associated with the dynamics F0, so the fundamental matrices satisfy

Φ̇(t) = ∇xF1(x(t), t)Φ(t) and Φ̇
+
(t) = ∇xF0(y

+(t), t)Φ+(t) on [s, s+∆s]

with the initial condition Φ(s) = Φ+(s). Since F0 and F1 are smooth and the starting
conditions for Φ(t) and Φ+(t) at t = s are the same, it follows that the difference
D = Φ+ − Φ satisfies ‖D(s + ∆s)‖ = O(∆s). On the interval [s + ∆s, T ], the
fundamental matrices satisfy

Φ̇(t) = ∇xF1(x(t), t)Φ(t) and Φ̇
+
(t) = ∇xF1(y

+(t), t)Φ+(t).

Subtracting the two equations, the difference D satisfies

Ḋ(t) = ∇xF1(y
+(t), t)D(t) + [∇xF1(x(t), t) −∇xF1(y

+(t), t)]Φ(t), (4.9)

where D(s + ∆s) = O(∆s). Choose ∆s small enough that y+ lies within the tubes
associated with Dynamics Smoothness. Hence, (4.4), Dynamics Smoothness, and the
Lipschitz property for ∇xF1 imply that the coefficient of Φ in (4.9) is O(∆s). By
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the boundedness of y+ and Φ, it follows that the solution D of the linear equation
(4.9) satisfies D(T ) = O(∆s). Since ΦEJ(T ) is invertible by assumption, then so is
Φ+

EJ(T ) for |∆s| sufficiently small and Φ+
EJ(T ) converges to ΦEJ(T ) as ∆s tends to

zero. Let us take ∆s small enough that ‖Φ+
EJ (T )

−1‖ ≤ γ+ := 2γ.

Observe that the analysis of Φ and Φ+ concern the case where θ = 0. Next, θ is
introduced into the analysis. Similar to the approach in the proof of Lemma 3.1, we
take L = ∇g(0) = Φ+

EJ (T ) where Φ+ is the solution of (4.8), g(θ) = y+
θE(T ) − bE ,

and y+

θ is the solution of (4.2). Note that ∇g(θ) is the EJ submatrix of Φ+

θ (T ) where

Φ̇
+

θ (t) = ∇xF
+(y+

θ (t), t)Φ
+
θ (t), Φ+(0) = I. (4.10)

Subtract the equation (4.8) for Φ+ from (4.10) to obtain an equation for the difference
D+ = Φ+

θ −Φ+:

Ḋ+(t) = ∇xF
+(y+

θ (t), t)D
+(t) + [∇xF

+(y+

θ (t), t)−∇xF
+(y+(t), t)]Φ+(t), (4.11)

where D+(0) = 0. By the Lipschitz property for ∇xF0 and ∇xF1 and by (4.5), the
coefficient of Φ+ in (4.11) is O(θ) when |∆s| ≤ ρ and θ is sufficiently small. Since y+

θ

and Φ+ are both uniformly bounded, it follows from (4.11) that ‖D+(T )‖ = O(θ).
In our context, the left side of (2.1) is

‖∇g(θ)−∇g(0)‖ ≤ ‖Φ+

θ (T )−Φ+(T )‖ = ‖D+(T )‖ ≤ c‖θ‖,

for some constant c independent of θ and |∆s| ≤ ρ. Choose ǫ > 0 such that ǫγ+ < 1,
and choose r small enough that ‖D+(T )‖ ≤ ǫ when ‖θ‖ ≤ r.

By (4.4), δ = ‖g(0)‖ = ‖y+
E(T )−bE‖ = O(∆s). Choose ∆s smaller, if necessary,

to ensure that δ ≤ r(1 − γ+ǫ)/γ+. Hence, by Proposition 2.1, there exists a unique
θ ∈ Br(0) such that g(θ) = 0, or equivalently, such that y+

θE(T ) = bE . Moreover,
x+ = y+

θ is a solution of the perturbed problem (4.1) and ‖θ‖ ≤ c|∆s| where c =
γ+/(1− ǫγ+) by (2.2). The identity x+ = y+

θ implies that

x+
J (0) = y+

θJ(0) = θ∗ + θ,

which rearranges to give (4.7) since θ = O(∆s).

5. Objective Derivative with Respect to Switch Point. Lemmas 3.1 and
4.1 will be combined to establish the formula (1.5) for the derivative of the objective
with respect to a switch point. Notice that this formula involves the costate p, which
must satisfy complementary boundary conditions to those of x. Since the costate
equation is linear, its solution can be expressed in terms of a fundamental matrix
denoted Ψ, the unique solution of the initial-value problem

Ψ̇ = −∇xF(x(t), t))
TΨ(t), Ψ(0) = I.

Since pJ (0) = 0 while pF (T ) = ∇FC(x(T )), a solution to the costate equation exists
when ΨFI(T ) is invertible.

Theorem 5.1. If Dynamics Smoothness holds, the objective C is continuously

differentiable, and both ΦEJ(T ) and ΨFI(T ) are invertible, then

∂C

∂s
(s) = H0(x(s),p(s), s) −H1(x(s),p(s), s), (5.1)
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where Hj(x,p, t) = pFj(x, t), j = 0 or 1, and the row vector p : [0, T ] → R
n is the

solution to the linear differential equation

ṗ(t) = −p(t)∇xF(x(t), t), t ∈ [0, T ], pF (T ) = ∇FC(x(T )), pJ(0) = 0. (5.2)

Proof. By Lemma 4.1, the problem with perturbed switch point has a solution
x+ for ∆s sufficiently small. Our goal is to evaluate the limit

lim
∆s→0

C(x+(T ))− C(x(T ))

∆s
.

Let y+
θ be the solution of (4.2) associated with the solution x+ of (4.1); that is,

y+

θ = x+. Let Z be the solution to the following linearized system:

Ż(t) = ∇xF0(x(t), t)Z(t), t ∈ [0, s), ZI(0) = 0, ZJ(0) = θ, (5.3)

Ż(t) = ∇xF1(x(t), t)Z(t), t ∈ (s+∆s, T ], (5.4)

where

Z(s+∆s) = Z(s) + ∆s[F0(x(s), s)− F1(x(s), s)]. (5.5)

There is a unique solution to (5.3)–(5.5) due to the linearity of the first two equations.
Since θ = O(∆s) by Lemma 4.1 and the coefficient of Z in (5.3) is continuous, it
follows that Z(t) = O(∆s) for t ∈ [0, s]. Since F0(x(s), s) and F1(x(s), s) are both
continuous for t ∈ [s, s + ρ], ‖Z(s + ∆s)‖ = O(∆s). Finally, due to the linearity of
(5.4), we have

Z(t) = O(∆s) for t ∈ [0, s] ∪ [s+∆s, T ]. (5.6)

The difference between y+

θ − x and Z can be analyzed as in Section 3 in terms
of δ(t) = y+

θ (t) − x(t) − Z(t). By the initial conditions for y+
θ , for x = y0, and

for Z in (4.2), (3.3), and (5.3) respectively, it follows that δ(0) = 0. Exactly the
same expansions between (3.9) and (3.12) yield ‖δ(t)‖ = O(‖θ‖2) for all t ∈ [0, s].
Moreover, from Lemma 4.1 and the fact that θ is chosen such that y+

θ = x+, we have
‖θ‖ ≤ c|∆s|. Hence,

‖δ(t)‖ = O(|∆s|2) on [0, s]. (5.7)

Now consider the interval [s, s+∆s], |∆s| ≤ ρ. Since x+ and x are twice contin-
uously differentiable on (s, s+∆s), a Taylor expansion gives

x+(s+∆s) = x+(s) + ∆sF0(x
+(s), s) +O(|∆s|2), (5.8)

x(s+∆s) = x(s) + ∆sF1(x(s), s) +O(|∆s|2). (5.9)

Subtracting (5.9) and (5.5) from the (5.8) and referring to the definition of δ yields

δ(s+∆s) = δ(s) + ∆s[F0(x
+(s), s)− F0(x(s), s)] +O(|∆s|2). (5.10)

By (4.6) and the fact established in Lemma 4.1 that y+
θ = x+ with θ = O(∆s),

we have ‖x+(s) − x(s)‖ = O(∆s). Due to Dynamics Smoothness and the Lipschitz
continuity of F0, and the fact from (5.7) that δ(s) = O(|∆s|2), (5.10) implies that
δ(s+∆s) = O(|∆s|2).
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The final interval [s+∆s, T ] is treated exactly as in the expansions (3.9)–(3.12)
except that δ(0) = 0 in (3.12) should be replaced by δ(s+∆s) = O(|∆s|2). Nonethe-
less, we have ‖δ(t)‖ = O(|∆s|2) for all t ∈ [s+∆s, T ]. In summary,

‖δ(t)‖ = O(|∆s|2) for all t ∈ [0, s] ∪ [s+∆s, T ]. (5.11)

If p is the solution of (5.2), which exists by the invertibility assumption for
ΨFI(T ), and Z is the solution of (5.3)–(5.5), then we integrate over [s +∆s, T ] and
then integrate by parts to obtain

0 =

∫ T

s+∆s

p(t)

[

∇xF(x(t), t)Z(t) − Ż(t)

]

dt

=

∫ T

s+∆s

[

p(t)∇xF(x(t), t) + ṗ(t)

]

Z(t) dt− p(T )Z(T ) + p(s+∆s)Z(s+∆s)

= −pE(T )ZE(T )− pF (T )ZF (T ) + p(s+∆s)Z(s +∆s)

= −pE(T )ZE(T )−∇FC(x(T ))ZF (T )

+p(s+∆s)[Z(s) + ∆s(F0(x(s), s) − F1(x(s), s))], (5.12)

where the integral in the second equality vanishes due to (5.2) and the last equality
is due to (5.5). Similarly, an integral over [0, s] yields

0 =

∫ s

0

p(t)

[

∇xF(x(t), t)Z(t) − Ż(t)

]

dt

=

∫ s

0

[

p(t)∇xF(x(t), t) + ṗ(t)

]

Z(t) dt− p(s)Z(s) + p(0)Z(0)

= −p(s)Z(s) (5.13)

since pJ (0) = 0 = ZI(0).
Since C is continuously differentiable at x(T ), the mean-value theorem gives

C(x+(T ))− C(x(T )) = ∇FC(x∆)[x+
F (T )− xF (T )], (5.14)

where x∆ is a point on the line segment connecting x+(T ) and x(T ). Add (5.12)–
(5.14) and substitute

x+(T )− x(T ) = x+(T )− x(T )− Z(T ) + Z(T ) = δ(T ) + Z(T )

to obtain C(x+(T ))− C(x(T )) =

∇FC(x∆)δF (T ) + [∇FC(x∆)−∇FC(x(T )]ZF (T ) + [p(s+∆s)− p(s)]Z(s)

−pE(T )ZE(T ) + ∆sp(s+∆s)[F0(x(s), s) − F1(x(s), s)]. (5.15)

Bounds are now obtained for each of the terms in (5.15). By (5.11), ‖δ(T )‖ =
O(|∆s|2) so |∇FC(x∆)δF (T )| = O(|∆s|2). Since the distance between x(t) and
x+(t) = y+

θ (t) is O(∆s) by (4.6) and Lemma 4.1, the distance between x∆ and x(T )
is also O(∆s). Since Z(T ) = O(∆s) by (5.6), it follows that ZF (T ) = O(∆s), while
the coefficient of ZF tends to zero as ∆s tends to zero. Similarly, Z(s) = O(∆s)
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by (5.6), and the coefficient of Z(s) tends to 0 as |∆s| tends to 0. Finally, since
x+
E(T ) = xE(T ) = bE and δ(T ) = O(|∆s|2), it follows that

O(|∆s|2) = ‖δE(T )‖ = ‖x+
E(T )− xE(T )− ZE(T )‖ = ‖ZE(T )‖,

which implies that pE(T )ZE(T ) = O(|∆s|2). Divide (5.15) by ∆s and let ∆s tend to
zero to obtain

∂C

∂s
(s) = lim

∆s→0

C(x+(T ))− C(x(T ))

∆s
= p(s)[F0(x(s), s) − F1(x(s), s)],

which completes the proof.

6. Singular Control Depending on Both State and Costate. The case
where a singular control depends on both the state and costate was analyzed in [1,
Sect. 3]. The basic idea is to view the state/costate pair (x,p) as a new generalized
state variable that must satisfy the endpoint conditions appearing in the first-order
optimality conditions. Next, a pair of generalized co-states are introduced correspond-
ing to the state and costate dynamics, which leads to a generalized Hamiltonian. The
formula for the derivative of the objective with respect to a switch point is the same
as the formula in the original formulation, however, the Hamiltonian is replaced by
the generalized Hamiltonian. The reader is referred to [1, Sect. 3] for details.

7. Algorithms. The derivative obtained in this paper is very useful when solving
a singular control problem using gradient-based methods; however, a good starting
guess for the switching points is needed. One useful approach for generating an
initial guess is to employ an Euler discretization with total variation regularization,
as explained in [1, Sect. 5] and with more detail in [7].

When a problem has multiple switch points, the derivative with respect to all the
switch points can be computed with one integration of the state dynamics, followed
by one integration of the costate dynamics. Since the derivative with respect a switch
point is related to the Hamiltonian change at the switch point, both the dynamics
and the costate should be evaluated accurately at the switch points.

When evaluating the objective or its gradient, one must also find the state that
satisfies the boundary conditions. Similar to the analysis in the paper, the state that
satisfies the boundary conditions can be computed by choosing θ so that yθ = x

satisfies the boundary conditions. Newton’s method is often a good approach for
computing θ.

8. Conclusions. The Switch Point Algorithm of [1] for an initial-value problem
was extended to handle both initial and terminal boundary conditions. The formula
for the derivative of the objective with respect to a switch point reduced to the change
in the Hamiltonian across a switch point. This was the same formula obtained for
an initial-value problem. Nonetheless, significant modifications in the analysis were
needed to handle terminal constraints. In particular, the existence and stability of
solutions to a boundary-value problem under perturbations in the terminal constraint
and in the switch points needed to be analyzed, and the invertibility of certain matri-
ces connected with the linearized state equation and with the costate equation were
required.

9. Acknowledgments. Many thanks to Christian Austin for pointing out Tay-
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for the solution of a differential equation with respect to an initial condition.
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