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Abstract
In this contribution, we present a full overview of the continuous stochastic gradi-
ent (CSG) method, including convergence results, step size rules and algorithmic
insights. We consider optimization problems in which the objective function requires
some form of integration, e.g., expected values. Since approximating the integration
by a fixed quadrature rule can introduce artificial local solutions into the problemwhile
simultaneously raising the computational effort, stochastic optimization schemes have
become increasingly popular in such contexts. However, known stochastic gradient
type methods are typically limited to expected risk functions and inherently require
many iterations. The latter is particularly problematic, if the evaluation of the cost
function involves solving multiple state equations, given, e.g., in form of partial dif-
ferential equations. To overcome these drawbacks, a recent article introduced the CSG
method, which reuses old gradient sample information via the calculation of design
dependent integration weights to obtain a better approximation to the full gradient.
While in the original CSG paper convergence of a subsequence was established for
a diminishing step size, here, we provide a complete convergence analysis of CSG
for constant step sizes and an Armijo-type line search. Moreover, new methods to
obtain the integration weights are presented, extending the application range of CSG
to problems involving higher dimensional integrals and distributed data.
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1 Introduction

In this contribution, we present a full overview of the continuous stochastic gradient
(CSG) method, including convergence results, step size rules, algorithmic insights
and applications from topology optimization. The prototype idea for CSG was first
proposed in [1]. Therein, it was shown that for expected-valued objective functions,
CSG with diminishing step sizes and exact integration weights (see Sect. 3) almost
surely produces a subsequence converging to a stationary point [1, Theorem 20].

This work generalizes this result, providing proofs for almost sure convergence of
the full sequence of iterates in the case of constant step sizes (Theorems 5.1 and 5.2)
and backtracking line search techniques (Theorem 6.1). Additionally, the convergence
results hold in a less restrictive setting and for generalized approaches to the integration
weight calculation (seeSect. 3). Before going into details,wewant to explain the reason
for introducingwhat seems like yet another first-order stochastic optimization scheme.

1.1 Motivation

Within PDE-constrained optimization, settings with expected-valued objective func-
tions arise in numerous applications, ranging from purely stochastic settings, like
machine learning or noisy simulations [2, 3], to fully deterministic problems, in which
one is interested in a design that is optimal for an infinite set of outer parameters, e.g.
[4–7]. In this work, we assume the stochasticity to appear solely in the objective
function. For problems in which the underlying state equation itself includes uncer-
tainties, different techniques have been proposed in the past [8–11]. Moreover, we
restrict our convergence analysis to the finite-dimensional case, and leave a general-
ization to infinite-dimensional spaces, see, e.g., [12, 13], for future work. Especially in
large scale settings, one usually does not consider deterministic approaches (see, e.g.,
[14, 15]) for the solution of such problems, as they are generally too computation-
ally expensive or even intractable. Instead, one uses stochastic optimization schemes,
like the Stochastic Gradient (SG) [16] or Stochastic Average Gradient (SAG) method
[17]. A large number of schemes have been derived from these and thoroughly ana-
lyzed, including sequential quadratic programming for stochastic optimization [18,
19], quasi-Newton stochastic gradient schemes [20–23] and the well known adaptive
gradient schemes Adam & AdaGrad [24, 25], to name some prominent examples.

Problematically, such methods rely on a heavily restrictive setting, in which the
objective function value of a design u is simply given as the expected value of some
quantity j , i.e., J (u) = Ex [ j(u, x)]. Even the basic setting of nesting two expectation
values, i.e., J (u) = Ey[ j2(y,Ex [( j1(u, x)])], is beyond the scope of the mentioned
schemes and requires special techniques, e.g. the Stochastic Composition Gradient
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The continuous stochastic gradient method… 937

Descent (SCGD) method [26], which itself is again only applicable in this specific
setting.

Problems with such complex structures arise in several applications, see, e.g., [27],
where we investigate an application from the field of optimal nanoparticle design.
Therein, our main interest lies in the optical properties of nanoparticles. Specifically,
the color of particulate products, which has been of great interest for many fields of
research [28–33], is what we are trying to optimize for. This and similar applications
serve only as motivation in this paper. However, in the numerical analysis of CSG
[27], it is demonstrated that CSG indeed represents an efficient approach to such
problems. While a detailed introduction to this setting is given in [27], we want to
briefly summarize the problems arising in this application.

To obtain the color of a particulate product, we need to calculate the important
optical properties of the nanoparticles in the product. For each particle design, this
requires solving the time-harmonic Maxwell’s equations, which, depending of the
setting, is numerically expensive. Furthermore, the color of the whole product is not
determined by the optical properties of a single particle. Instead, we need to average
these properties over, e.g., the particle design distribution and their orientation in the
particulate product. Afterwards, the averaged values are used to calculate intermediate
results for the special setting. These results then need to be integrated over the range of
wavelengths, which are visible to the human eye, to obtain the color of the particulate
product. Finally, the objective function uses the resulting color in a nonlinear fashion,
before yielding the actual objective function value. In general, the objective function
has the form

J (u) = j3
(
u,Ey

[
j2(u, y,Ex [ j1(u, x, y)])])

and can easily involve even more convoluted terms in more advanced settings.
On the one hand, the computational cost of deterministic approaches to such prob-

lems range from tremendous to infeasible, since j1 is typically not easy to evaluate. On
the other hand, standard schemes from stochastic optimization, like the onesmentioned
above, simply cannot solve the full problem. Thus, we are in the need for a general
method to tackle optimization problems, which are given by arbitrary concatenations
of nonlinear functions and expectation values.

1.2 Properties of CSG

As mentioned in the previous section, the CSG method aims to offer a new approach
to optimization problems that involve integration of properties, which are expensive
to evaluate. In each iteration, CSG draws a very small number (typically 1) of random
samples, as is the case for SG.However, instead of discarding the information collected
through these evaluations after the iteration, these results are stored. In later iterations,
all of the information collected along the way is used to build an approximation
to the full objective function and its gradient, by a special linear combination. The
weights appearing in this linear combination, which we call integration weights, can
be calculated in several different fashions, which are detailed in Sect. 3.

This approach of approximating an unknown function by old sample information
is similar to surrogate methods from Bayesian optimization [34–36], but differs from
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these techniques in an important aspect: While surrogate models require a rather
low combined dimension of design and integration, the performance of CSG is only
impacted by the dimension of integration. This is demonstrated in [27], where a prob-
lem with high dimensional design is optimized subject to a rather low dimensional
integration.

As a key result for CSG, we are able to show that the approximation error in both the
gradient and the objective function approximation vanishes during the optimization
process (Lemma 4.6). Thus, in the course of the iterations, CSG more and more
behaves like an exact full gradient algorithm and is able to solve optimization problems
far beyond the scope of standard SG-type methods. Furthermore, we show that this
special behaviour results in CSG having convergence properties similar to full gradient
descentmethods,while keeping advantages of stochastic optimization approaches, i.e.,
each step is computationally cheap. To be precise, our main results consist of proving
convergence to a stationary point for constant step sizes (Theorem 5.1) and an Armijo-
type line search (Theorem 6.1), which is based on the gradient and objective function
approximations of CSG.

1.3 Limitations of themethod

While CSG combines advantages of deterministic and stochastic optimization
schemes, the hybrid approach also yields drawbacks, which we try to address through-
out this contribution. As mentioned earlier, the intended application for CSG lies in
expected-valued optimization problems, in which solving the state problem is compu-
tationally expensive. Inmany other settings that heavily rely on stochastic optimization
methods, e.g., neural networks, the situation is different.Here,we can efficiently obtain
a stochastic (sub-)gradient, meaning that we are better off simply performing millions
of SG iterations, than a few thousand CSG steps. In these situations, the inherent
additional computational effort that lies within the calculation of the CSG integration
weights (see Sect. 3) is no longer negligible and usually can not be compensated by
the improved gradient approximation.

Furthermore, while the design dimension has almost no impact on the performance,
the convergence rate of CSGworsens as the dimension of integration increases. While
this can be avoided, if the objective function imposes additional structure, it remains
a drawback in general. A detailed analysis of this issue can be found in [27].

We emphasize that CSG and SG-type methods share many similarities. However,
their intended applications are complementary to each other, with SG preferring objec-
tive functions of simple structure and computationally cheap sampling, while CSG
prefers the opposite.

1.4 Structure of the paper

Section 2 states the general framework of this contribution as well as the basic assump-
tions we impose throughout the paper. Furthermore, the general CSG method is
presented.

The integration weights, which play an important role in the CSG scheme, are
detailed in Sect. 3. Therein, we introduce four different methods to obtain weights
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which satisfy the necessary assumptions made in Sect. 2 and analyze some of their
properties. The section also describes techniques to implement mini-batches in the
CSG method.

Auxiliary results concerning CSG are given in Sect. 4. This includes the important
gradient approximation property of CSG (Lemma 4.6) and details on how to generalize
CSG to even broader settings (Remark 4.1). The first main result, i.e., convergence for
constant steps (Theorem 5.1 and Theorem 5.2), is presented in Sect. 5.

Afterwards, in Sect. 6, we incorporate an Armijo-type line search in the CSG
method and provide a convergence analysis for the associated optimization scheme
(Theorem 6.1). Furthermore, we introduce heuristics to efficiently approximate some
hyperparameters. The resulting SCIBL-CSGmethod (Algorithm 4) achieves identical
convergence results, but does not require any step sizes tuning.

The key features of CSG are numerically demonstrated for academic examples in
Sect. 7. A detailed numerical analysis of CSG, concerning the performance for non-
academic examples and convergence rates, is not part of this contribution, as this can
be found in [27].

2 Setting and assumptions

In this section, we introduce the general setting as well as formulate and motivate the
assumptionsmade throughout this contribution.Additionally, the basicCSGalgorithm
is presented.

2.1 Setting

As mentioned above, the convergence analysis of the CSG method is carried out in a
simplified setting, where the objective function is given by a single expected value.
For the general case, see Remark 4.1.

Since our convergence analysis will heavily rely on the similarities between CSG
and a full gradient scheme, we adapt the standard deterministic setting of an L-smooth
objective function (Remark 2.3). Moreover, as the CSG method approximates gradi-
ents by a nearest neighbor model, we require all appearing functions to be Lipschitz
continuous with respect to all arguments (Assumption 2.3).

Definition 2.1 (Objective Function) For do, dr ∈ N, we introduce the set of admissible
optimization variablesU ⊆ R

do and the parameter setX ⊆ R
dr . The objective function

J : U → R is defined as

J (u) := E [ j(u, X)] =
∫

X
j(u, x)μ(dx),

where we assume j ∈ C1(U × X ; R) to be measurable and X ∼ μ. The (simplified)
optimization problem is then given by

min
u∈U

∫

X
j(u, x)μ(dx). (1)
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Since U and X are finite-dimensional, we do not have to consider specific norms
on these spaces due to equivalence of norms and can instead choose them problem
specific. In the following, we will denote them simply by ‖ · ‖U and ‖ · ‖X .

During the optimization, we need to draw independent random samples of the
random variable X , as stated in the following assumption.

Assumption 2.1 (Sample Sequence) The sequence of samples (xn)n∈N is a sequence
of independent identically distributed realizations of the random variable X ∼ μ.

Remark 2.1 (Almost Sure Density) We define the support of the measure μ as the
(closed) subset

supp(μ) := {x ∈ X : μ (Bε(x)) > 0 for all ε > 0} ⊆ R
dr .

It is important to note, that a sample sequence satisfying Assumption 2.1 is dense in
supp(μ) with probability 1. This can be seen as follows:

Let x ∈ supp(μ) and ε > 0. Then, given an independent identically distributed
sequence x1, x2, . . . ∼ μ, we have

P
(
xn /∈ Bε(x)

) = 1 − μ(Bε(x)) < 1.

Hence, by the Borel–Cantelli Lemma [37, Theorem 2.7],

P
(
xn /∈ Bε(x) for all n ∈ N

) = 0.

Thus, the sequence (xn)n∈N is dense in supp(μ) with probability 1.

Remark 2.2 (Almost Sure Convergence Results) The (almost sure) density of the sam-
ple sequence plays a crucial role in the upcoming proofs. Hence, the convergence
results presented in this contribution all hold in the almost sure sense. However, to
improve the readability, we refrain from always mentioning this explicitly.

Moreover, the sets U and X need to satisfy additional regularity conditions. Since
CSG handles constraints by projecting steps onto the set of admissible designs U , we
need to ensure this operation is well-defined. Furthermore, the approximation property
(Lemma 4.6) of the nearest neighbor model in CSG is fundamentally based on the
density of sample points (xn)n∈N, which is why we require supp(μ) to be bounded.

Assumption 2.2 (Regularity of U ,X and μ) The set U ⊆ R
do is compact and convex.

The set X ⊆ R
dr is bounded with supp(μ) ⊆ X .

Notice that the second part of Assumption 2.2 can always be achieved, as long as
supp(μ) ⊆ R

dr is bounded.
Finally, as in the deterministic case,we assume the gradient of the objective function

to be Lipschitz continuous, in order to obtain convergence for constant step sizes.

Assumption 2.3 (Regularity of j) The function ∇1 j : U ×X → R
do is bounded and

Lipschitz continuous, i.e., there exists constants C, L j ∈ R>0 such that

‖∇1 j(u, x)‖ ≤ C,
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‖∇1 j(u1, x1) − ∇1 j(u2, x2)‖ ≤ L j
(‖u1 − u2‖U + ‖x1 − x2‖X

)

for all u, u1, u2 ∈ U and x, x1, x2 ∈ X .

Remark 2.3 (Regularity of ∇ J ) By Assumptions 2.1 to 2.3, J : U → R is L-smooth,
i.e., there exists L > 0 such that

‖∇ J (u1) − ∇ J (u2)‖ ≤ L‖u1 − u2‖U for all u1, u2 ∈ U .

2.2 The CSGmethod

Given a starting point u1 ∈ U and a random parameter sequence x1, x2, . . . according
to Assumption 2.1, the basic CSG method is stated in Algorithm 1. In each itera-
tion, the inner objective function j and gradient ∇1 j are evaluated only at the current
design-parameter-pair (un, xn). Afterwards, the integrals appearing in J and ∇ J are
approximated by a linear combination, consisting of all samples accumulated in pre-
vious iterations.

The coefficients (αk)k=1,...,n appearing in Step 4 of Algorithm 1, which we call
integration weights, are what differentiates CSG from other stochastic optimization
schemes. In [1], where the main idea of the CSG method was proposed for the first
time, a special choice of how to calculate these weights was already presented. A recap
of this procedure as well as several new methods to obtain the integration weights is
given in detail in Sect. 3.

Furthermore, PU appearing in Step 8 of Algorithm 1 denotes the orthogonal pro-
jection (in the sense of ‖ · ‖U ), i.e.,

PU (u) := argmin
ū∈U

‖u − ū‖U .

The final general assumption we will use throughout this contribution is related to the
integration weights mentioned above.

Assumption 2.4 (Integration Weights) Denote the sequence of designs and random
parameters generated by Algorithm 1 until iteration n ∈ N by (uk)k=1,...,n and
(xk)k=1,...,n , respectively. Define kn : X → {1, . . . , n} as

kn(x) := argmin
k=1,...,n

(‖un − uk‖U + ‖x − xk‖X
)
. (2)

We assume the integration weights appearing in Algorithm 1 satisfy the following:
For all n ∈ N, there exists a probability measure μn on X such that

(a) The integration weights
(
α

(n)
k

)
k=1,...,n in iteration n ∈ N are given by

α
(n)
k =

∫

X
δkn(x)(k)μn(dx) for all k = 1, . . . , n, (3)

where δkn(x)(k) corresponds to the Dirac measure of kn(x).
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942 M. Grieshammer et al.

(b) The measures (μn)n∈N converge weakly to μ, i.e., μn ⇒ μ for n → ∞, where

μn ⇒ μ iff
∫

X
f (x)μn(dx) →

∫

X
f (x)μ(dx) for all f ∈ C0,1(X ,R).

There is a very simple idea hidden behind the technicalities of Assumption 2.4. Con-
dition (3) states that the integration weights should be somehow based on a nearest
neighbor approximation

∇1 j(un, x) ≈ ∇1 j
(
ukn(x), xkn(x)

)
,

while the conditionμn ⇒ μ ensures that the weight of a sample is reasonably chosen,
i.e.,

α
(n)
k =

∫

X
δkn(x)(k)μn(dx) ≈

∫

X
δkn(x)(k)μ(dx).

Remark 2.4 (Choice of Neighbor) For some x ∈ X , there mighty not exist a unique
nearest neighboring sample to (un, x). As a result, kn(x), as defined in (2), may consist
of more than one index, resulting in x to be counted towards multiple integration
weights in (3). Thus, if kn(x) is not unique,we have to pick one of the nearest neighbors
and neglect the other possible choices. However, it is not important how we make that
choice, so we could, for example, replace (2) by

k̃n(x) := min

{

argmin
k=1,...,n

(‖un − uk‖U + ‖x − xk‖X
)
}

,

or choose an index at random in these special instances. Thus, in the remainder of this
work, we refrain from imposing a specific choice of neighbors and use the notationally
reduced formulation (2), essentially assuming that the set of x ∈ X with more than
one nearest neighbor to (un, x) is of μn-measure zero.

Due to thefinite-dimensional setting, all convergence results proven in this contribution
hold independent of the chosen norm on U ×X implied by (2). However, the specific
choice may strongly influence the behavior (see, Sect. 3.5) and performance of CSG.
Further insight on the integration weights and multiple methods to obtain weights
satisfying Assumption 2.4 are given in the following Sect. 3.

3 Integration weights

In this section, we present four methods on how to obtain integration weights sat-
isfying Assumption 2.4 in practice. The methods differ greatly in their associated
computational cost and accuracy, allowing us to make an appropriate choice in differ-
ent settings. Moreover, two of the proposed techniques require no knowledge about
the underlying measure μ, allowing us to use them in purely data-driven applications.
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Algorithm 1 General CSG Method
while Termination condition not met do

Sample objective function (optional):
jn = j(un , xn)

Sample gradient:
gn = ∇1 j(un , xn)

Calculate integration weights:
αk
Calculate search direction:
Ĝn = ∑n

k=1 αk gk
Compute objective function value approximation (optional):

Ĵn = ∑n
k=1 αk jk

Choose step size:
τn
Gradient step:

un+1 = PU
(
un − τn Ĝn

)

Update index:

n ← n + 1

end while

The general CSG method as proposed in [1] for the simplified setting (1). Further information on how to
carry out the integration weight calculation in practice is given in Section 3.

We start with a brief motivation: Suppose that we are currently in the 9th iteration
of the CSG algorithm. So far, we have sampled∇1 j(u, x) at nine points (ui , xi )i=1,...,9
and the full gradient at the current design is given by

∇ J (u9) =
∫

X
∇1 j(u9, x)μ(dx).

In Fig. 1, the situation is shown for the case dr = do = 1. How can we use the samples(∇1 j(ui , xi )
)
i=1,...,9 in an optimal fashion, to build an approximation to ∇ J (u9)?

3.1 Exact weights

To approximate the value of the integral along the bold line, we may use a nearest
neighbor approximation. The underlying idea is visualized in Fig. 2. Thus, we define
the sets

Mk := {
x ∈ X : ‖un − uk‖U + ‖x − xk‖X

< ‖un − u j‖U + ‖x − x j‖X for all j ∈ {1, . . . , n} \ {k}}.

By construction, Mk contains all points x ∈ X , such that (un, x) is closer to (uk, xk)
than to any other previous point we evaluated ∇1 j at. The full gradient is then approx-
imated in a piecewise constant fashion by

∇ J (un) =
∫

X
∇1 j(un, x)μ(dx)
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944 M. Grieshammer et al.

Fig. 1 The grey dots represent
our nine sample points
(ui , xi ) ∈ U × X . The full
gradient of the objective
function is obtained by
integrating ∇1 j(u9, ·) along the
blue line (Color figure online)

=
n∑

k=1

∫

Mk

∇1 j(un, x)μ(dx)

≈
n∑

k=1

∇1 j(uk, xk)μ(Mk).

Therefore, we call αex
k = μ(Mk) exact integration weights, since they are based on

an exact nearest neighbor approximation. These weights were first introduced in [1]
and offer the best approximation to the full gradient. However, the calculation of the
exact integration weights requires full knowledge of the measure μ and is based on a
Voronoi tessellation [38], which is computationally expensive for high dimensions of
U × X .

Note that, in the special case dim(X ) = 1, the calculation of the tessellation can
be circumvented, regardless of dim(U). Instead, the intersection points of the line
{un} ×X and all faces of active Voronoi cells can be obtained directly by solving the
equations appearing in the definition of Mk . This, however, still requires us to solve
O(n2) quadratic equations per CSG iteration.

3.2 Exact hybrid weights

In some settings, the dimension of X can be very small compared to the dimension
of U . Hence, we might avoid computing a Voronoi tessellation in U × X by treating
these spaces separately. For this, we introduce the sets

M̃i := {
x ∈ X : ‖x − xi‖X < ‖x − x j‖X for all j ∈ {1, . . . , n} \ {i}}.
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Fig. 2 For the exact integration
weights, αi represents to the
measure of the line segment that
lies in the Voronoi cell around
(ui , xi ). The grey cells
correspond to samples with
integration weight 0

Denoting by 1Mk the indicator function of Mk , we define the exact hybrid weights as

αeh
k =

n∑

i=1

1Mk (xi )μ
(
M̃i

)
.

Notice that the sets Mk still appear in the definition of the exact hybrid weights, but do
not need to be calculated explicitly. Instead, we only have to find the nearest sample
point to (un, xi )i=1,...,n , which can be done efficiently even in large dimensions. We
do, however, still require knowledge of μ. The idea of the exact hybrid weights is
captured in Fig. 3.

3.3 Inexact hybrid weights

To calculate the integration weights in the case that the measure μ is unknown, we
may approximateμ

(
M̃i

)
empirically. All that is required for this approach is additional

samples of the random variable X . To be precise, we draw enough samples such that
in iteration n, we have in total f (n) samples of X , where f : N → N is a function
which is strictly increasing and satisfies f (n) ≥ n for all n ∈ N. It is important to
note, that we still evaluate ∇1 j(un, ·) at only one of these points, which we denote by
x jn . Thus, exchangingμ

(
M̃i

)
by its empirical approximation yields the inexact hybrid

weights

αih
k = 1

f (n)

n∑

i=1

1Mk (x ji )
f (n)∑

m=1

1M̃ ji
(xm).
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946 M. Grieshammer et al.

Fig. 3 The red stars on the bold
line represent the points (un , xi ).
For each cell, we determine the
number of these points inside the
cell and combine their
corresponding measures μ

(
M̃i

)
,

indicated by the colored line
segments. Since dim(X ) = 1 in
the shown example, the sets M̃i
are simply intervals, where the
endpoints are given by the
midpoints of two neighboring xi

Fig. 4 The red stars on the bold
line represent the points
(un , xi )i=1,..., f (n). Similar to
the exact hybrid weights, for
each cell of the Voronoin
diagramm, we count the points
(un , x ji )i=1,...,n inside the cell
(marked by dashed lines).
Instead of assigning them the
weights μ

(
M̃ ji

)
, we weight

them by an empirical
approximation to this quantity,
i.e., by the percentage of random
samples (xi )i=1,..., f (n) that lie
in M̃ ji

How fast f grows determines not only the quality of the approximation, but also the
computational complexity of the weight calculation. Based on the choice of f , the
inexact hybrid weights interpolate between the exact hybrid weights and the empirical
weights, which will be introduced below. In Fig. 5, this behavior is shown for functions
of the form f (n) = �nβ� with β ≥ 1. Figure4 illustrates the general concept of the
inexact hybrid weights.
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Fig. 5 Median of the results for
problem (20), initialized with
1000 random starting points, for
empirical weights, exact hybrid
weights and several inexact
hybrid weights. The function f
appearing in the inexact hybrid
weights was chosen as
f (n) = �nβ�

3.4 Empirical weights

The empirical weights offer a computationally cheap alternative to the methods men-
tioned above. Their calculation does not require any knowledge of the measure μ. For
the empirical weights, the quantity μ(Mk) is directly approximated by its empirical
counterpart, i.e.,

αe
k = 1

n

n∑

i=1

1Mk (xi ).

The corresponding picture is shown in Fig. 6. By iteratively storing the distances
‖xi − x j‖, i, j < n, the empirical weights can be calculated very efficiently.

3.5 Metric onU × X

Asmentioned afterAssumption 2.4, the convergence results proven in this contribution
are independent of the specific inner norms on U and X , denoted by ‖ · ‖U and ‖ · ‖X .
Furthermore, they also hold if we substitute the outer norm on U × X , appearing in
(2), e.g., by a generalized L1-outer norm, i.e.,

∥∥(u, x)
∥∥U×X = c1‖u‖U + c2‖x‖X ,

with c1, c2 > 0. While this does not seem particularly helpful at first glance, it in fact
allows to drastically change the practical performance of CSG. By altering the ratio
ξ = c2

c1
, the CSG gradient approximation tends to consider fewer (ξ < 1) or more

(ξ > 1) old samples in the linear combination. The effect such a choice can have in
practice is visible in the numerical analysis of CSG in [27].
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948 M. Grieshammer et al.

Fig. 6 The empirical weights
assign each line segment to its
empirical measure, i.e., the
fraction of points (un , xi ) (red
stars) which lie inside the
corresponding cell

Fig. 7 Voronoi diagrams for the integration weight calculation, given the sample points (ui , xi )i=1,...,9.
Different ratios ξ in the norm on U × X lead to SG-like behavior (left, ξ = 0.01) or averaging over all
samples (right, ξ = 100)

To be precise, choosing ξ � 1 results in the nearest neighbor being predominantly
determined by the distance in design. In the extreme case, this means that CSG initially
behaves more like a traditional SG algorithm. Analogously, ξ � 1will initially yield a
gradient approximation, in which all old samples are used, even if they differ greatly in
design (for discrete measure μ, this corresponds to SAG). The corresponding Voronoi
diagrams are shown in Fig. 7.

For the sake of consistency, all numerical examples will use the Euclidean norm
‖ · ‖2 as inner norms and we fix ξ = 1.
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3.6 Properties of the integration weights

In this section, wewill show that each of the previously presentedmethods of obtaining
integration weights satisfies Assumption 2.4. For this, we first have to identify the
corresponding measures μn and then need to argue why they converge weakly to the
true measure μ.

Starting with the empirical weights αe, we see that, in the sense of Assumption 2.4,
they correspond to the empirical measure (see, e.g., [39])

μe
n := 1

n

n∑

i=1

δxi ,

since

Ĝe
n =

n∑

i=1

αe
i ∇1 j(ui , xi ) =

n∑

i=1

1

n

n∑

m=1

1Mi (xm)∇1 j(ui , xi )

=
n∑

i=1

1

n

n∑

m=1

δkn(xm )(i)∇1 j(ui , xi ) =
n∑

i=1

∫

X
δkn(x)(i)∇1 j(ui , xi )μ

e
n(dx).

It was shown in [40, Theorem 3], that μe
n ⇒ μ for n → ∞, where ⇒ denotes the

weak convergence of measures (in our case, the weak-* convergence in dual space
theory, see, e.g., [41, Section 4.3]):

νn ⇒ ν iff
∫

X
f (x)νn(dx) →

∫

X
f (x)ν(dx) for all f ∈ C0,1(X ,R).

Likewise, the measures associated with the other integration weights are given by

μex
n = μ, μeh

n =
n∑

i=1

δxi μ
(
M̃i

)
and μih

n =
n∑

i=1

δx ji
μe

f (n)

(
M̃ ji

)
.

Now, μex
n ⇒ μ is clear. For μeh

n , given any f ∈ C0,1(X ,R), we have

∣∣∣∣

∫

X
f (x)μeh

n (dx) −
∫

X
f (x)μ(dx)

∣∣∣∣ =
∣∣∣∣∣

n∑

i=1

f (xi )μ(M̃i ) −
∫

X
f (x)μ(dx)

∣∣∣∣∣

=
∣
∣∣∣∣

n∑

i=1

∫

M̃i

(
f (xi ) − f (x)

)
μ(dx)

∣
∣∣∣∣

≤
n∑

i=1

∫

M̃i

L f ‖x − xi‖X μ(dx)

123



950 M. Grieshammer et al.

≤ L f

n∑

i=1

diam
(
M̃i ∩ supp(μ)

) ∫

M̃i

μ(dx)

≤ L f max
i=1,...,n

{
diam

(
M̃i ∩ supp(μ)

)} → 0.

Here, we used the almost sure density of (xn)n∈N, see Remark 2.1, together with the
definition of M̃i , to conclude

diam
(
M̃i ∩ supp (μ)

) := sup
x, y ∈ M̃i

x, y ∈ supp (μ)

‖x − y‖X
n→∞−−−→ 0 for all i ∈ N.

Lastly, μih
n ⇒ μ follows from combining μeh

n ⇒ μ and μe
n ⇒ μ with the triangle

inequality.

3.7 Batches, patches and parallelization

All methods for obtaining the integration weights presented above heavily relied on
evaluating the gradient ∇1 j only at a single sample point (un, xn) per iteration. In
other words, Algorithm 1 has a natural batch size of 1. While we certainly do not
want to increase this number too much, stochastic mini-batch algorithms outperform
classic SG in some instances, especially if the evaluation of the gradient samples
∇1 j

(
un, x

(i)
n

)
i=1,...,N can be done in parallel.

Increasing the batch size N in CSG leaves the question of how the integration
weights should be obtained. We could, of course, simply collect all evaluation points
and calculate the weights as usual. This, however, may significantly increase the com-
putational cost, effectively scaling it by N . In many instances, there is a much more
elegant solution to this problem, which lets us include mini-batches without any addi-
tional weight calculation cost.

Assume, for simplicity, that X is an open interval and that μ corresponds to a
uniform distribution, i.e., there exist a < b ∈ R such that

J (u) = 1

b − a

∫ b

a
j(u, x)dx .

Given N ∈ N, we obtain

J (u) = 1

b − a

∫ b

a
j(u, x)dx = 1

b − a

N∑

i=1

∫ a+i b−a
N

a+(i−1) b−a
N

j(u, x)dx

= 1

b − a

∫ a+ b−a
N

a

N∑

i=1

j
(
u, x + (i − 1) b−a

N

)
dx =: 1

b − a

∫ a+ b−a
N

a
j̃(u, x)dx .

Thus, we can include mini-batches of size N ∈ N into CSG by performing the fol-
lowing steps in each iteration:
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Fig. 8 To obtain a mini-batch of
six samples points, the domain
X is subdivided into six patches,
indicated by the blue lines. In
each iteration, a sample point xn
is drawn in patch X1 (grey) and
afterwards translated into all
other patches (Color figure
online)

xn

1.) Draw random sample xn ∈ (
a, a + b−a

N

)
.

2.) Evaluate ∇1 j(un, ·) at each

x (i)
n = xn + (i − 1) b−a

N , i = 1, . . . , N .

3.) Compute

∇1 j̃(un, xn) =
N∑

i=1

∇1 j
(
un, x

(i)
n

)
.

4.) Calculate integration weights (αk)k=1,...,n as usual for (uk, xk)k=1,...,n and set

Ĝn =
n∑

k=1

αk∇1 j̃(uk, xk).

It is straightforward to apply this idea to higher dimensional rectangular cuboids. Fur-
thermore, the process of subdividing X into smaller patches and drawing the samples
in only one of these regions X1 ⊆ X can be generalized to more complex settings
as well. However, it is necessary that translating the sample xn into the other patches
preserves the underlying probability distribution X ∼ μ, e.g., ifμ is induced by a Lip-
schitz continuous density function and the different patches are obtained by reflecting,
translating, rotating and scaling X1. A conceptual example is shown in Fig. 8.

The effect of introducing mini-batches into CSG is tested for the optimization
problem

min
u∈[−5,5]2

1

2

∫

X
‖u − x‖22dx, (4)

by dividing X = [− 1
2 ,

1
2

]2
into small squares of sidelength 1

N , achieving a batch size
of N 2. The results of 500 optimization runs with random starting points are given
in Fig. 9. Although increasing the batch size does, as expected, not influence the rate
of convergence, it still improves the overall performance and should definitely be
considered for complex optimization problems, especially if the gradient sampling
can be performed in parallel.
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Fig. 9 Median distance of the
CSG iterates to the optimal
solution u∗ = 0 ∈ R

2 of (4) in
each iteration. The batch size
used is equal to N2, where
different values of N are
indicated by the different colors.
For all runs, a constant step size
of τ = 1

2 was chosen (Color
figure online)

4 Auxiliary results

From now on, unless explicitly stated otherwise, we will always assume Assumptions
2.1 to 2.4 to be satisfied. In this section, we collect some auxiliary results known from
the convergence analysis of gradient descent schemes, like Lemma 4.1. Afterwards,
we focus on more specific results concerning the density of the sample point sequence
(un, xn)n∈N, that are later used to prove the approximation property of CSG (Lemma
4.6). Said property represents the most distinguishing feature between CSG and other
stochastic optimization methods and plays the most important role for our later con-
vergence results in Sects. 5 and 6. Note that similar results were already obtained in
[1]. Therein, however, the argumentation relied heavily on the usage of diminishing
step sizes and exact integration weights. The results presented here hold in amore gen-
eral setting and allow for the analysis of continuous stochastic optimization schemes
beyond pure gradient methods in the future, see Remark 4.2.

Definition 4.1 (Stationary Points) Let J ∈ C1(U) be given. We say u∗ ∈ U is a
stationary point of J , if

PU
(
u∗ − t∇ J (u∗)

) = u∗ for all t > 0. (5)

Furthermore, we denote by

S(J ) := {u ∈ U : PU (u − t∇ J (u)) = u for all t > 0}

the set of all stationary points of J . Note that, under Assumption 2.2, (5) is equivalent
to

PU
(
u∗ − t∇ J (u∗)

) = u∗ for some t > 0.

Gradient descent methods for L-smooth objective functions have thoroughly been
studied in the past (e.g. [42, 43]). The key ingredients for obtaining convergence results
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with constant step sizes are the descent lemma and the characteristic property of the
projection operator, which we state in the following.

Lemma 4.1 (Descent Lemma) If J : U → R is L-smooth, then it holds

J (u1) ≤ J (u2) + ∇ J (u2)
�(u1 − u2) + L

2
‖u1 − u2‖2U ∀u1, u2 ∈ U .

Lemma 4.2 (Characteristic Property of Projection) For a projected step in direction
Ĝn, i.e., un+1 = PU (un − τnĜn), the following holds:

Ĝ�
n (un − un+1) ≥ ‖un − un+1‖2U

τn
.

Proof Lemma 4.1 corresponds to [44, Lemma 5.7]. Lemma 4.2 is a direct consequence
of [44, Theorem 6.41]. ��

Before we move on to results that are specific for the CSG method, we state a
general convergence result, which will be helpful in the later proofs.

Lemma 4.3 (Finitely Many Accumulation Points) Let (un)n∈N ⊆ R
d be a bounded

sequence. Suppose that (un)n∈N has only finitely many accumulation points and it
holds ‖un+1 − un‖ → 0. Then (un)n∈N is convergent.

Proof Let {ū1, . . . , ūK } be the accumulation points of (un)n∈N and define

δ0 := min
i, j∈{1,...,K }

i �= j

‖ūi − ū j‖,

i.e, the minimal distance between two accumulation points of (un)n∈N. The accumu-
lation point closest to un is defined as:

ū(n) := argmin
u∈{ū1,...,ūK }

‖un − u‖.

Next up, we show that there exists N ∈ N such that for all n ≥ N it holds
‖un − ū(n)‖ < δ0

4 . We prove this by contradiction.
Thus, we assume there exist infinitely many n ∈ N such that ‖un − ū(n)‖ ≥ δ0

4 .
This subsequence is again bounded and therefore must have an accumulation point.
By construction, this accumulation point is no accumulation point of (un)n∈N, which
is a contradiction.

Now, let N1 ∈ N be large enough such that ‖un − ū(n)‖ < δ0
4 for all n ≥ N1. By

our assumptions, there also exists N2 ∈ N with ‖un+1 − un‖ < δ0
4 for all n ≥ N2.

Define N := max{N1, N2}.
Let n ≥ N and assume for contradiction that ū(n) �= ū(n + 1). We obtain

dist
(Bδ0/4(ū(n)) , Bδ0/4(ū(n + 1))

) ≥ δ0
2 > δ0

4 > ‖un − un+1‖ for all n ≥ N ,
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where dist(A, B) := infx∈A,y∈B ‖x − y‖ for A, B ⊆ R
d . This is a contradiction to

‖un+1 − un‖ < δ0
4 for all n ≥ N .

We thus conclude that un ∈ Bδ0/4
(
ū(n)

)
implies un+1 ∈ Bδ0/4

(
ū(n)

)
as well. Since

ū(n) is the only accumulation point on Bδ0/4
(
ū(n)

)
, it follows that un → ū(N ).

��

4.1 Results for CSG approximations

From now on, let (un)n∈N denote the sequence of iterates generated by Algorithm 1.
In this section, we want to show that the CSG approximations Ĵn and Ĝn in the course
of iterations approach the values of J (un) and ∇ J (un), respectively. This is a key
result for the convergence theorems stated in Sect. 5 and Sect. 6.

Lemma 4.4 (Density Result in X ) Let (xn)n∈N be the random sequence appearing in
Algorithm 1. For all ε > 0 there exists N ∈ N such that

min
n∈{1,...,N } ‖xn − x‖X < ε for all x ∈ supp(μ).

Proof Utilizing the compactness of supp(μ) ⊆ R
dr , there exists T ∈ N such that(Bε/2(mi )

)
i=1,...,T is an open cover of supp(μ) consisting of balls with radius ε

2
centered at points mi ∈ supp(μ). Thus, for each x ∈ supp(μ) we can find ix ∈
{1, . . . , T } with x ∈ Bε/2(mix ). Hence, by Remark 2.1, for each i = 1, . . . , T , there
exists ni ∈ N satisfying

‖xni − mi‖X < ε
2 .

Defining

N := max
i∈{1,...,T } ni < ∞,

for all x ∈ supp(μ) we have

min
n∈{1,...,N } ‖x − xn‖X ≤ min

n∈{1,...,N }
(‖x − mix ‖X + ‖mix − xn‖X

)

< ε
2 + min

n∈{1,...,N } ‖mix − xn‖X < ε
2 + ε

2 = ε.

��
Lemma 4.5 (Density Result in U × X ) Let (un)n∈N, (xn)n∈N be the sequences of
optimization variables and sample sequence appearing in Algorithm 1. For all ε > 0
there exists N ∈ N such that

Zn(x) := min
k∈{1,...,n}

(‖un − uk‖U + ‖x − xk‖X
)

< ε

for all n > N and all x ∈ supp(μ).
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Proof SinceU is compact, we can find a finite cover
(Bε/4(mi )

)
i=1,...,T ofU consisting

of T ∈ N balls with radius ε
4 centered at points mi ∈ U . Define I ⊆ {1, . . . , T } as

I := {
i ∈ {1, . . . , T } : un ∈ Bε/4(mi ) for infinitely many n ∈ N

}
.

By our definition of I , for each i ∈ {1, . . . , T } \ I there exists Ñi ∈ N such that
un /∈ Bε/4(mi ) for all n > Ñi . Setting

N1 := max
i∈{1,...,T }\I Ñi ,

it follows that

un /∈ Bε/4(mi ) for each n > N1 and all i ∈ {1, . . . , T } \ I . (6)

For i ∈ I let
(
u
n(i)
t

)
t∈N be the subsequence consisting of all elements of (un)n∈N

that lie in Bε/4(mi ). Observe that
(
x
n(i)
t

)
t∈N is independent and identically distributed

according to μ, since for all A ⊆ supp(μ) and each i ∈ I , it holds

P
(
xn ∈ A || un ∈ Bε/4(mi )

) = μ(A) for all n ∈ N.

Thus, by Remark 2.1,
(
x
n(i)
t

)
t∈N is dense in supp(μ) with probability 1 for all i ∈ I .

By Lemma 4.4, we can find Ki ∈ N such that

min
t∈{1,...,Ki }

∥
∥x − x

n(i)
t

∥
∥
X < ε

2 for all x ∈ supp(μ). (7)

Define

N2 := max
i∈I max

t∈{1,...,Ki }
n(i)
t

as well as N := max(N1, N2). Notice that this definition of N implies for all i ∈ I
and all n > N

{
n(i)
t : t ∈ {1, . . . , Ki }

}
⊆ {1, . . . , n}.

By (6), for all n > N there exists i ∈ I such that

‖un − mi‖U < ε
4 .
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Now, given x ∈ supp(μ) and n > N , we choose j ∈ I such that un ∈ Bε/4(m j ).
Thus, it holds

Zn(x) = min
k∈{1,...,n}

(‖un − uk‖U + ‖x − xk‖X
)

≤ min
t∈{1,...,K j }

(∥∥un − u
n( j)
t

∥∥
U + ∥∥x − x

n( j)
t

∥∥
X

)

≤ min
t∈{1,...,K j }

(
‖un − m j‖U + ∥∥m j − u

n( j)
t

∥∥
U + ∥∥x − x

n( j)
t

∥∥
X

)

< ε
4 + ε

4 + ε
2 = ε,

where we used (7) and un, un( j)
t

∈ Bε/4(m j ) in the last line. ��

Lemma 4.6 (Approximation Results for J and ∇ J ) The approximation errors for ∇ J
and J vanish in the course of the iterations, i.e.,

∥∥∥Ĝn − ∇ J (un)
∥∥∥ → 0 and

∣∣∣ Ĵn − J (un)
∣∣∣ → 0 for n → ∞.

Proof Denote by νn the measure corresponding to the integration weights according
to (3). For x ∈ supp(μ), we define the closest index in the current iteration kn(x) as

kn(x) := argmin
k=1,...,n

(‖un − uk‖U + ‖x − xk‖X
)
,

i.e., we have

‖un − ukn(x)‖U + ‖x − xkn(x)‖X = Zn(x).

Now, it holds

∥∥Ĝn−∇ J (un)
∥∥

=
∥∥∥
∥∥

n∑

i=1

∫

X
δkn(x)(i)∇1 j(ui , xi )νn(dx) −

∫

X
∇1 j(un, x)μ(dx)

∥∥∥
∥∥

≤
∥∥∥∥
∥

∫

X

( n∑

i=1

δkn(x)(i)∇1 j(ui , xi ) − ∇1 j(un, x)
)
νn(dx)

∥∥∥∥
∥

+
∥∥∥∥

∫

X
∇1 j(un, x)νn(dx) −

∫

X
∇1 j(un, x)μ(dx)

∥∥∥∥

≤ L j

∫

X
Zn(x)νn(dx) +

∥∥
∥∥

∫

X
∇1 j(un, x)νn(dx) −

∫

X
∇1 j(un, x)μ(dx)

∥∥
∥∥ ,

where L j is the Lipschitz constant of ∇1 j as defined in Assumption 2.3.
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First, since Zn is uniformly (in n) Lipschitz continuous, we obtain

∫

X
Zn(x)νn(dx) =

∫

X
Zn(x)μ(dx) +

∫

X
Zn(x)νn(dx) −

∫

X
Zn(x)μ(dx)

≤
∫

X
Zn(x)μ(dx) + LZ · dW (νn, μ).

Here, LZ corresponds to the Lipschitz constant of Zn and dW denotes the Wasserstein
distanceof themeasure νn andμ. ByAssumption2.2,X is bounded andbyAssumption
2.4, we have νn ⇒ μ. Thus, [45, Theorem 6] yields dW (νn, μ) → 0. Additionally,
since Zn is bounded and converges pointwise to 0 (see Lemma 4.5), we use Lebesgue’s
dominated convergence theorem and conclude

∫

X
Zn(x)μ(dx) → 0 for n → ∞.

For the second part, let Qn be an arbitrary coupling of νn and μ, i.e., Qn(· ×X ) = νn
and Qn(X ×·) = μ. Utilizing the Lipschitz continuity of ∇1 j (Assumption 2.3) once
again, we obtain

∥∥∥∥

∫

X
∇1 j(un, x)νn(dx) −

∫

X
∇1 j(un, x)μ(dx)

∥∥∥∥

≤
∥
∥∥∥

∫

X×X
(∇1 j(un, x) − ∇1 j(un, y)

)
Qn(d(x, y))

∥
∥∥∥

≤ L j

∫

X×X
‖x − y‖X Qn(d(x, y)).

Denote the set of all couplings of νn and μ by Q. Since Qn was arbitrary, it holds

∥∥∥
∥

∫

X
∇1 j(un, x)νn(dx) −

∫

X
∇1 j(un, x)μ(dx)

∥∥∥
∥

≤ L j · inf
Qn∈Q

∫

X×X
‖x − y‖X Qn(d(x, y))

= L j · dW (νn, μ) → 0 for n → ∞,

finishing the proof of
∥∥∥Ĝn − ∇ J (un)

∥∥∥ → 0. The second part of the claim follows

analogously.
��

As a final remark before starting the convergence analysis, we want to give further
details on the class of problems that can be solved by the CSG algorithm.

Remark 4.1 (Generalized Setting) Suppose that, in addition to U ,X and J as defined
in the introduction, we are given a convex set V ⊆ R

d1 for some d1 ∈ N and a contin-
uously differentiable function F : V ×R → R. Now, if we consider the optimization
problem
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min
(u,v)∈U×V

F(v, J (u)), (8)

the gradient of the objective function with respect to (u, v) is given by

∇F(v, J (u)) =
( ∇1F(v, J (u))

∇ J (u)∂2F(v, J (u))

)
.

It is a direct consequence of Lemma 4.6, that

∥∥∥
∥

( ∇1F(vn, Ĵn)
Ĝn∂2F(vn, Ĵn)

)
− ∇F(vn, J (un))

∥∥∥
∥ → 0 for n → ∞.

Thus, we can use the CSG method to solve (8) and all our convergence results carry
over to this setting, as long as the new objective function satisfies Assumption 2.3.

Furthermore, let Y ⊆ R
d2 for some d2 ∈ N. Assume that we are given a probability

measure ν such that the pair (Y, ν) satisfies the same assumptions we imposed on
(X , μ) and consider the optimization problem

min
(u,v)∈U×V

∫

Y
F̃(v, J (u), y)ν(dy). (9)

Again, the gradient of this objective function can be approximated by the CSGmethod,
if F̃ : V × R × Y → R is Lipschitz continuously differentiable.

It is clear that we can continue to wrap around functions or expectation values in
these fashions indefinitely. Therefore, we see that the scope of the CSG method is far
larger than problems like (1) and includes many settings, which stochastic gradient
descent methods can not handle, like nested expected values, tracking of expected
values and many more.

A numerical example for a composite objective function, where CSG is compared
to a method from the literature, can be found in Sect. 7.2.

Remark 4.2 Carefully observing the proofs above, it can be seen that the approxima-
tion property (Lemma 4.6) almost surely holds for any sequence of designs, regardless
of the method it is obtained by. Thus, the results presented in this section are a con-
sequence of the underlying stochastic approximation scheme through our integration
weights and do not depend on the outer gradient descent method, in which they are
used. Therefore, for future work, wemay even consider combining the approximations
Ĵn and Ĝn with more advanced optimization schemes from literature.

5 Convergence results for constant step size

Our first result considers the special case in which the objective function J appearing
in (1) has only finitely many stationary points on U . The proof of this result serves as
a prototype for the later convergence results, as they share a common idea.
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To illustrate the practical performance of CSGwith constant step sizes, an academic
example is presented in Sect. 7.1.

Theorem 5.1 (Convergence for Constant Steps) Assume that J has only finitely many
stationary points on U .

Then CSG with a positive constant step size τn = τ < 2
L converges to a stationary

point of J with probability 1.

We want to sketch the proof of Theorem 5.1 before going into details. In the deter-
ministic case, Lemma 4.1 and Lemma 4.2 are used to show that J (un+1) ≤ J (un) for
all n ∈ N. It then follows from a telescopic sum argument that ‖un+1 −un‖ → 0, i.e.,
every accumulation point of (un)n∈N is stationary (compare [43, Theorem 5.1] or [44,
Theorem 10.15]).

In the case of CSG, we can not guarantee monotonicity of the objective function
values (J (un))n∈N. Instead, we split the sequence into two subsequences. On one
of these subsequences, we can guarantee a decrease in function values, while for the
other sequence we can not. However, we prove that the latter sequence can accumulate
only at stationary points of J . The main idea is then that (un)n∈N can have only one
accumulation point, because “switching" between several points conflicts with the
decrease in function values that must happen for steps in between.

Proof of Theorem 5.1 The following arguments are being made for a fixed sample
sequence (xn)n∈N and the corresponding trajectory of designs (un)n∈N. Moreover,
during the proof, we construct several subsequences of (un)n∈N. By construction and
Assumption 2.1, the associated subsequences of (xn)n∈N are again independent iden-
tically distributed realizations of X ∼ μ. Thus, each of these subsequences is dense in
supp(μ)with probability 1. Since this property is required for the following arguments,
we assume that (xn)n∈N satisfies this condition.

By Lemma 4.1 we have

J (un+1) − J (un) ≤ ∇ J (un)
� (un+1 − un) + L

2 ‖un+1 − un‖2U
= Ĝ�

n (un+1 − un) + L
2 ‖un+1 − un‖2U +

(
∇ J (un) − Ĝn

)�
(un+1 − un) .

Utilizing Lemma 4.2 and the Cauchy-Schwarz inequality, we now obtain

J (un+1) − J (un)

≤ ( L
2 − 1

τ

) ‖un+1 − un‖2U +
∥∥∥∇ J (un) − Ĝn

∥∥∥ · ‖un+1 − un‖U

=
(( L

2 − 1
τ

) ‖un+1 − un‖U +
∥∥
∥∇ J (un) − Ĝn

∥∥
∥
)

‖un+1 − un‖U . (10)

Since L
2 − 1

τ
< 0, our idea is the following:

Steps that satisfy

∥∥∥∇ J (un) − Ĝn

∥∥∥ ≤ 1
2

( 1
τ

− L
2

) ‖un+1 − un‖U , (11)
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i.e., steps with small errors in the gradient approximation, will yield decreasing func-
tion values.

On the other hand, the remaining steps will satisfy ‖un+1 − un‖U → 0, due to
‖∇ J (un)− Ĝn‖ → 0 (see Lemma 4.6). With this in mind, we distinguish three cases:
In Case 1, (11) is satisfied for almost all steps, while in Case 2 it is satisfied for only
finitely many steps. In the last case, there are infinitely many steps satisfying and
infinitely many steps violating (11).

Case 1: There exists N ∈ N such that
∥
∥∥∇ J (un) − Ĝn

∥
∥∥ ≤ 1

2

( 1
τ

− L
2

) ‖un+1 − un‖U for all n ≥ N .

In this case, it follows from (10) that J (un+1) ≤ J (un) for all n ≥ N . Therefore, the
sequence (J (un))n∈N is monotonically decreasing for almost every n ∈ N. Since J is
continuous and U is compact, J is bounded and we therefore have J (un) → J̄ ∈ R.
Thus, it holds

−∞ < J̄ − J (uN ) =
∞∑

n=N

(
J (un+1) − J (un)

) ≤ 1
2

( L
2 − 1

τ

) ∞∑

n=N

‖un+1 − un‖2U .

Since 1
2

( L
2 − 1

τ

)
< 0, wemust have ‖un+1−un‖U → 0. Let

(
unk

)
k∈N be a convergent

subsequence with unk → u ∈ U .
By Lemma 4.6, we have Ĝnk → ∇ J (u) and thus

0 = lim
k→∞ ‖unk+1 − unk‖U

= lim
k→∞

∥∥∥PU
(
unk − τ Ĝnk

) − unk

∥∥∥
U

= ∥∥PU
(
u − τ∇ J (u)

) − u
∥∥
U ,

i.e., every accumulation point of (un)n∈N is stationary. Since J has only finitely many
stationary points, Lemma 4.3 yields the convergence of (un)n∈N to a stationary point
of J .

Case 2: There exists N ∈ N such that
∥∥∥∇ J (un) − Ĝn

∥∥∥ > 1
2

( 1
τ

− L
2

) ‖un+1 − un‖U for all n ≥ N .

By Lemma 4.6, we have ‖∇ J (un) − Ĝn‖ → 0. Since 1
2

( 1
τ

− L
2

)
> 0, the above

inequality directly implies ‖un+1 − un‖U → 0. Analogously to Case 1, we conclude
that (un)n∈N converges to a stationary point of J .

Case 3: There are infinitely many n ∈ N with

∥∥∥∇ J (un) − Ĝn

∥∥∥ ≤ 1
2

( 1
τ

− L
2

) ‖un+1 − un‖U
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and infinitely many n ∈ N with

∥∥
∥∇ J (un) − Ĝn

∥∥
∥ > 1

2

( 1
τ

− L
2

) ‖un+1 − un‖U .

In this case,we split (un)n∈N disjointly in the two sequences (ua(n))n∈N and (ub(n))n∈N,
such that we have

∥∥∥∇ J (ua(n)) − Ĝa(n)

∥∥∥ ≤ 1
2

( 1
τ

− L
2

) ‖ua(n)+1 − ua(n)‖U for all n ∈ N

and
∥
∥∥∇ J (ub(n)) − Ĝb(n)

∥
∥∥ > 1

2

( 1
τ

− L
2

) ‖ub(n)+1 − ub(n)‖U for all n ∈ N.

We call (ua(n))n∈N the sequence of descent steps. For (ub(n))n∈N, observe that, as in
Case 2, we directly obtain

‖ub(n)+1 − ub(n)‖U → 0 (12)

and every accumulation point of (ub(n))n∈N is stationary. Therefore, as in the proof of
Lemma 4.3, for all ε > 0 there exists N ∈ N such that

min
i∈{1,...,K } ‖ub(n) − ui‖U < ε for all n ≥ N , (13)

where u1, . . . , uK denote the K ∈ N accumulation points of (ub(n))n∈N.
Now, we prove by contradiction that J (u1) = J (u2) = . . . = J (uK ).
Suppose that this is not the case. Then we have at least M ≥ 2 function values of

accumulation points and

F := {J (u) : u = u1, . . . , uK } = { f1, f2, . . . , fM }

for some f1 > f2 > . . . > fM ∈ R. Now, choose ε > 0 small enough, such that

2ε < min
i, j∈{1,...,K }

i �= j

‖ūi − ū j‖ and cL ε < f1 − f2,

where cL denotes the Lipschitz constant of J . By (12) and (13), there exists N ∈ N

such that for all n ≥ N we have

‖ub(n)+1 − ub(n)‖U < ε
4 and min

i∈{1,...,K } ‖ub(n) − ui‖U < ε
4 . (14)

Therefore, for n ≥ N and i ∈ {1, . . . , K }, we have

ub(n) ∈ B ε
4
(ui ) �⇒ ub(n)+1 ∈ B ε

2
(ui ) (15)

�⇒ ub(n)+1 /∈ B ε
4
(u j ) for all j �= i . (16)
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Especially, for all n ≥ N and all i = 1, . . . , K it holds

ub(n) ∈ B ε
4
(ui ) �⇒ J (ub(n)+1) ≤ J (ui ) + cL ε

2 . (17)

It follows from (14) and (16) that for n ≥ N + 1:

(A) If ub(n) ∈ B ε
4
(ui ) and ub(n+1) ∈ B ε

4
(u j ) for some j �= i , then there must be at

least one descent step between ub(n) and ub(n+1).
(B) If ub(n) ∈ B ε

4
(ui ) and ub(n)−1 /∈ B ε

4
(ui ), then ub(n)−1 must be a descent step.

Observe that (A) follows directly from (14) and (16), as moving from the vicinity
of ui to a neighborhood of u j requires that there is an intermediate step un with
mini∈{1,...,K } ‖ub(n) − ui‖U ≥ ε

4 . Similarly, (B) is just the second condition in (16)
reformulated.

Note that, given u j , uk with J (u j ) = f1 and J (ui ) ≤ f2, we have

J (u) ≤ f2 + L J ε

4
< f1 − L J ε

4
≤ J (v) for all u ∈ B ε

4
(ui ) and v ∈ B ε

4
(u j ).

Thus, starting at u ∈ B ε
4
(ui ), we can not reach v ∈ B ε

4
(u j ) by descent steps alone.

Now, let i ∈ {1, . . . , K } be chosen such that J (ui ) ≤ f2 and let n0 ≥ N be chosen
such that ub(n0) ∈ B ε

4
(ui ) and ub(n0)+1 /∈ B ε

4
(ui ). Using (15) and (17), we obtain

J (ub(n0)+1) ≤ J (ui ) + cL ε

2

≤ f2 + cL ε

2

< f1 − cL ε

2
< J (u) for all u ∈ B ε

4

(
J−1({ f1}) ∩ {u1, . . . , uK }

)
.

Therefore, descent steps can never reach B ε
4

(
J−1({ f1} ∩ {u1, . . . , uK })) again! It

follows from item (B), that un /∈ B ε
4

(
J−1({ f1}) ∩ {u1, . . . , uK }) for all n ≥ b(n0)+1,

in contradiction to J−1({ f1}) ∩ {u1, . . . , uK } consisting of at least one accumulation
point of (un)n∈N. Hence, we have

J (u1) = . . . = J (uK ) =: J̄ . (18)

Next, we show that every accumulation point of (ua(n))n∈N is stationary. We prove
this by contradiction.
Assume there exists a non-stationary accumulation point u of (ua(n))n∈N. Observe
that

min
i∈{1,...,K } ‖u − ui‖U > 0.
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Case 3.1: J (u) < J̄ .
Then, by the same arguments as above, there exists N ∈ N and ε > 0 s.t.

un /∈
K⋃

i=1

B ε
4
(ui ) for all n ≥ N .

This is a contradiction to u1, . . . , uK being accumulation points of (un)n∈N.
Case 3.2: J (u) > J̄ .
In this case, there exists N ∈ N and ε > 0 such that un /∈ B ε

4
(u) for all n ≥ N . This

is a contradiction to u being an accumulation point of (un)n∈N.
Case 3.3: J (u) = J̄ .
Since u is an accumulation point of (ua(n))n∈N, there exists a subsequence (ua(nk))k∈N
with ua(nk) → u. The sequence (ua(nk)−1)k∈N is bounded and therefore has at least
one accumulation point u−1 and a subsequence (ua(nkt )−1)t∈N with ua(nkt )−1 → u−1.
It follows that

PU (u−1 − τ∇ J (u−1)) = lim
t→∞PU

(
ua(nkt )−1 − τ Ĝa(nkt )−1

)

= lim
t→∞ ua(nkt )

= u.

As u is not stationary by our assumption, u−1 �= u and u−1 is no stationary point of
J . Thus, Lemma 4.1 combined with Lemma 4.2 yields

J (u) − J (u−1) ≤ ( L
2 − 1

τ

) ‖u−1 − u‖2U < 0.

Therefore, u−1 is an accumulation point of (ua(n))n∈N, which satisfies J (u−1) >

J (u) = J̄ . This, however, is impossible, as seen in Case 3.2.
In conclusion, in Case 3, all accumulation points of (un)n∈N are stationary. Thus,

on every convergent subsequence we have ‖unk+1 − unk‖U → 0. Since (un)n∈N is
bounded, this already implies ‖un+1−un‖U → 0. Now, Lemma 4.3 yields the claimed
convergence of (un)n∈N to a stationary point of J .

��
The idea of the proof above still applies in the case that J is constant on some

parts of U , i.e., J can have infinitely many stationary points. We obtain the following
convergence result:

Theorem 5.2 LetS(J ) be the set of stationary points of J onU as defined inDefinition
4.1. Assume that the set

N := {
J (u) : u ∈ S(J )

} ⊆ R

is of Lebesgue-measure zero. Then, with probability 1, every accumulation point of
the sequence generated by CSG with constant step size τ < 2

L is stationary and we
have convergence in function values.
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Remark 5.1 Comparing Theorem 5.1 and Theorem 5.2, observe that under the weaker
assumptions on the set of stationary points of J , we no longer obtain convergence for
the whole sequence of iterates. To illustrate why that is the case, consider the function
J : Rdo → R given by J (u) = cos(π‖u‖22) and U = {u ∈ R

do : ‖u‖22 ≤ 3
2 }. Then,S(J ) = {0} ∪ {u ∈ U : ‖u‖2 = 1}, i.e., every point on the unit sphere is stationary.

Thus, we can not use Lemma 4.3 at the end of the proof to obtain convergence of
(un)n∈N. Theoretically, it might happen that the iterates (un)n∈N cycle around the
unit sphere, producing infinitely many accumulation points, all of which have the
same objective function value. This, however, did not occur when testing this example
numerically.

Remark 5.2 While the assumption in Theorem 5.2 seems unhandy at first, there is
actually a rich theory concerning such properties. For example, Sard’s Theorem [46]
and generalizations [47] give that the assumption holds if J ∈ Cdo and U has smooth
boundary. Even though it can be shown that there exist functions, which do not satisfy
the assumption (e.g. [48, 49]), such counter-examples need to be precisely constructed
and will most likely not appear in any application.

Proof of Theorem 5.2 As in the proof of Theorem 5.1, we consider a fixed sample
sequence (xn)n∈N and the corresponding trajectory of designs (un)n∈N. Again, with
probability 1, we can assume all relevant subsequences of (xn)n∈N to be dense in
supp(μ). Now, proceeding analogously as in the proof of Theorem 5.1, we only have
to adapt two intermediate results in Case 3:

(R1) The objective function values of all accumulation points of (ub(n))n∈N are equal.
(R2) Every accumulation point of (ua(n))n∈N is stationary.

Assume first, that (R1) does not hold. Then there exist two stationary points u1 �= u2
with J (u1) < J (u2). Now, (A) and (B) shown in the proof of Theorem 5.1 yield
that there must exist an accumulation point u3 of (ub(n))n∈N, i.e., a stationary point,
with J (u1) < J (u3) < J (u2). Iterating this procedure, we conclude that the set
N ∩ [

J (u1), J (u2)
]
is dense in

[
J (u1), J (u2)

]
.

By continuity of u �→ PU
(
u − τ∇ J (u)

) − u and compactness of U , we see that

N ∩ [
J (u1), J (u2)

] = [
J (u1), J (u2)

]
,

contradicting our assumption that λ(N ) = 0.
For (R2), assume that (ua(n))n∈N has a non-stationary accumulation point u. Since

S(J ) is compact, it holds

dist({u},S(J )) > 0.

Thus, by the same arguments as in Case 3.1, 3.2 and 3.3 within the proof of Theorem
5.1, we observe that such a point u can not exist. ��
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6 Backtracking

Choosing an appropriate step size in practice is usually very challenging. While a
deterministic full gradient method is typically carried out with a line search scheme,
it is unclear how such techniques can be included in standard stochastic gradient
methods. However, since we have ‖Ĝn − ∇ J (un)‖ → 0 and ‖ Ĵn − J (un)‖ → 0 in
CSG, we can use these approximations to refine the step length by a backtracking line
search method, similar to the deterministic case.

The stabilizing effect of these augmentations can be seen in Sect. 7.3, where we
compare CSG with backtracking (Algorithm 3) to AdaGrad.

Definition 6.1 For simplicity, we define

sn(t) := PU
(
un − t Ĝn

)
.

Furthermore, given n gradient samples ∇1 j(ui , xi ) and n cost function samples
j(ui , xi ), by calculating the weights α

(n)
i (u) w.r.t. a given point u ∈ U , we define

J̃n(u) =
n∑

i=1

α
(n)
i (u) j(ui , xi ) and G̃n(u) =

n∑

i=1

α
(n)
i (u)∇1 j(ui , xi ),

which are approximations to J (u) and ∇ J (u) respectively.

Based on the well known Armijo-Wolfe conditions from continuous optimization
[50–52], we introduce the following step size conditions:

Definition 6.2 For 0 < c1 < c2 < 1, we call sn(τn) an Armijo step, if

J̃n(sn(τn)) ≤ Ĵn − c1Ĝ
�
n (un − sn(τn)) . (SW1)

Additionally, we Define the following Wolfe-type condition:

G̃n(sn(τn))
� (sn(τn) − un) ≥ c2Ĝ

�
n (sn(τn) − un) . (SW2)

We try to obtain a step size that satisfies (SW1) and (SW2) by a bisection approach,
as formulated in Algorithm 2. Since we can not guarantee to find a suitable step size,
we perform only a fixed number T ∈ N of backtracking steps. Notice that the curvature
condition (SW2) only has an influence, if un − τnĜn ∈ U (see line 6 in Algorithm
2). This way, we gain the advantages of a Wolfe line search while inside U , without
ruling out stationary points at the boundary of U .

For our convergence analysis, we assume that in each iteration of CSG with line
search, Algorithm 2 is initiated with the same ηn = η > 0. From a practical point
of view, we might also consider a diminishing sequence (ηn)n∈N of backtracking
initializations (see Sect. 7.3). The CSG method with backtracking line search (bCSG)
is given in Algorithm 3. Since all of the terms J̃n(sn(τn)), Ĵn and Ĝn appearing in
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(SW1) contain some approximation error when compared to J (sn(τn)), J (un) and
∇ J (un) respectively, especially the first iterations of Algorithm 3 might profit from a
slightly weaker formulation of (SW1). Therefore, in practice, we will replace (SW1)
by the non-monotone version

J̃n(sn(τn)) ≤ max
k∈{0,...,K } Ĵn−k − c1Ĝ

�
n (un − sn(τn)) , (SW1∗)

for some K ∈ {0, . . . , n}.

Algorithm 2 Backtracking Refinement
Given T ∈ N, 0 < c1 < c2 < 1 appearing in (SW1∗) and (SW2), un ∈ U , and η > 0,
set t = 1, a = 0, b = ∞, ηA = ∞.
while t ≤ T do

Calculate step s = PU (un − ηĜn), weights α
(n)
k (s) and J̃n(s), G̃n(s)

if (SW1∗) is not satisfied then
b = η

else if s = un − ηĜn and (SW2) is not satisfied then
a = η

ηA = η

else
break

end if
if b < ∞ then

η = a+b
2

else
η = 2a

end if
t ← t + 1

end while
if t = T + 1 and ηA < ∞ then

τn = ηA
else

τn = η

end if

6.1 Convergence results

For CSG with backtracking line search, we obtain the same convergence results as for
constant step sizes:

Theorem 6.1 (Convergence for Backtracking Line Search) Let S(J ) be the set of
stationary points of J on U as defined in Definition 4.1. Assume that

N := {
J (u) : u ∈ S(J )

} ⊆ R

is of Lebesgue-measure zero and T in Algorithm 2 is chosen large enough, such
that 2−T η < 2

L . Then, with probability 1, every accumulation point of the sequence
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Algorithm 3 Backtracking CSG (bCSG)
1: Given u0 ∈ U , and a positive sequence (ηn)n∈N,
2: while Termination condition not met do
3: Sample objective function:
4: jn = j(un , xn)

5: Sample gradient:
6: gn = ∇1 j(un , xn)

7: Calculate weights αk
8: Calculate search direction:
9: Ĝn = ∑n

k=1 αk gk
10: Compute objective function value approximation:

11: Ĵn = ∑n
k=1 αk jk

12: Calculate step size τn by Algorithm 2 with start at ηn
13: Gradient step:

14: un+1 = PU
(
un − τn Ĝn

)

15: Update index:

16: n ← n + 1

17: end while

(un)n∈N generated by Algorithm 3 is stationary and we have convergence in function
values.

If J satisfies the stronger assumption of having only finitely many stationary points,
(un)n∈N converges to a stationary point of J .

Proof Using the same notation as in the proof of Theorem 5.1, we again assume
the fixed sample sequence (xn)n∈N and all of its subsequences constructed in the
following to be dense in supp(μ), which holds with probability 1, see Remark 2.1.
Notice first, that there are only two possible outcomes of Algorithm 2: Either τn
satisfies (SW1), or τn = 2−T η < 2

L . Furthermore, as we have seen in the proof of
Lemma 4.3, for all ε > 0 almost all un lie in ε-Balls around the accumulation
points of (un)n∈N, since (un)n∈N is bounded. Therefore, J̃n(un+1) − J (un+1) → 0
and G̃n(un+1) − ∇ J (un+1) → 0 (compare Lemma 4.6). Since we already know that
the steps with constant step size τn = 2−T η < 2

L can be split in descent steps and
steps which satisfy ‖un+1 − un‖ → 0, we now take a closer look at the Armijo-steps,
i.e., steps with τn �= 2−T η.

If τn �= 2−T η, by (SW1) and Lemma 4.2, it holds

J (un+1) − J (un) ≤ −c1
‖un+1 − un‖2U

τ 2n
+

∣∣∣J (un) − Ĵn
∣∣∣ +

∣∣∣J (un+1) − J̃n(un+1)

∣∣∣

≤ −c1
‖un+1 − un‖2U

τ 2max
+

∣
∣∣J (un) − Ĵn

∣
∣∣ +

∣
∣∣J (un+1) − J̃n(un+1)

∣
∣∣ .

Therefore, we either have

∣∣∣J (un) − Ĵn
∣∣∣ +

∣∣∣J (un+1) − J̃n(un+1)

∣∣∣ ≤ c1
‖un+1 − un‖2U

τ 2max
,

123



968 M. Grieshammer et al.

in which case it holds J (un+1) ≤ J (un), or

∣
∣∣J (un) − Ĵn

∣
∣∣ +

∣
∣∣J (un+1) − J̃n(un+1)

∣
∣∣ > c1

‖un+1 − un‖2U
τ 2max

,

inwhich case J̃n(un+1)−J (un+1) → 0 and Ĵn−J (un) → 0 yield ‖un+1−un‖U → 0.
Thus, regardless of whether or not τn = 2−T η, we can split (un)n∈N in a subse-

quence of descent steps and a subsequence of steps with ‖un+1 −un‖U → 0. The rest
of the proof is now identical to the proof of Theorem 5.1 and Theorem 5.2. ��

6.2 Estimations for the lipschitz constant of∇J

We have already seen, that the Lipschitz constant L of ∇ J is closely connected with
efficient bounds on the step sizes. However, in general, we can not expect to have any
knowledge of L a priori. Thus, we are interested in an approximation of L , that can
be calculated during the optimization process.

Investigating the proof of Lemma 4.1 in [44]

J (u1) = J (u2) +
∫ 1

0
〈∇ J (u2 + t(u1 − u2)), u1 − u2〉 dt

= J (u2) + 〈∇ J (u2), u1 − u2〉

+
∫ 1

0

〈∇ J
(
u2 + t(u1 − u2)

) − ∇ J (u2), u1 − u2
〉
dt

≤ J (u2) + 〈∇ J (u2), u1 − u2〉

+
∫ 1

0

∥∥∇ J
(
u2 + t(u1 − u2)

) − ∇ J (u2)
∥∥ · ‖u1 − u2‖U dt

≤ J (u2) + 〈∇ J (u2), u1 − u2〉 +
∫ 1

0
Lt‖u1 − u2‖2U dt

= J (u2) + 〈∇ J (u2), u1 − u2〉 + L
2 ‖u1 − u2‖2U ,

we observe that we do not need the true Lipschitz constant L of ∇ J for the second
inequality. Instead, it is sufficient to choose any constant C = C(u1, u2) that satisfies

∥∥∇ J
(
u2 + t(u1 − u2)

) − ∇ J (u2)
∥∥ ≤ C‖u1 − u2‖U for all t ∈ [0, 1].

To motivate our approach, assume that J is twice continously differentiable. In this
case, a possible approximation to the constant Cn in iteration n is ‖∇2 J (un)‖. There-
fore, utilizing the previous gradient approximations, we obtain

Cn ≈
∥
∥∥∇2 J (un)

∥
∥∥ ≈ ‖∇ J (un) − ∇ J (un−1)‖

‖un − un−1‖U
≈

∥∥Ĝn − Ĝn−1
∥∥

‖un − un−1‖U
.
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Then,C−1
n yields a good initial step size for our backtracking line search.Tocircumvent

high oscillation of Cn , which may arise from the approximation errors of the terms
involved, we project Cn onto the interval [Cmin,Cmax] ⊆ R, where 0 < Cmin <

Cmax < 2T+1

L , i.e.,

Cn = min

{

Cmax , max

{

Cmin,

∥
∥∥Ĝn−Ĝn−1

∥
∥∥

‖un−un−1‖U

}}

. (19)

If possible, Cmin and Cmax should be chosen according to information concerning L .
However, tight bounds on these quantities are not needed, as long as T is chosen large
enough. The resulting SCIBL-CSG (SCaling Independent Backtracking Line search)
method is presented in Algorithm 4. Notice that SCIBL-CSG does not require any a
priori choice of step sizes and yields the same convergence results as bCSG.

Algorithm 4 SCIBL-CSG
Given u0 ∈ U ,
while Termination condition not met do

Sample objective function:
jn = j(un , xn)

Sample gradient:
gn = ∇1 j(un , xn)

Calculate weights αk
Calculate search direction:
Ĝn = ∑n

k=1 αk gk
Compute objective function value approximation:

Ĵn = ∑n
k=1 αk jk

Calculate Cn by (19).
Calculate step size τn by Algorithm 2 with start at 1

Cn
Gradient step:

un+1 = PU
(
un − τn Ĝn

)

Update index:

n ← n + 1

end while

7 Examples to illustrate key aspects of CSG performance

So far, all results presented indicate promising features of CSG in theory, but did not
provide any insight on the actual practical performance. While a detailed numerical
analysis of CSG can be found in [27], we want to investigate isolated key features
with the help of some academic examples.

To be precise, we start by comparing the performances of CSG and standard SG
for constant step sizes (Sect. 7.1). Afterwards, the generalized setting, mentioned in
Remark 4.1, is explored for a composite objective function (Sect. 7.2). Note that we
consider only the case of two nested expected values, because for more complex
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Fig. 10 Comparison of the iterates produced by 500 steps of SG (red/first row) andCSG (green/second row)
with 2000 random starting points u0 ∈ U . Both methods have been tested for the five different constant step
sizes τ ∈ {0.01, 0.1, 1, 1.9, 1.99} (first to fifth column). The shaded areas indicate the quantiles P0.1,0.9
(light) and P0.25,0.75 (dark), while the solid line represents themedian of the 2000 runs (Color figure online)

settings, there is a lack of efficient stochastic optimization techniques in the literature.
Lastly, the line search techniques presented in Sect. 6 are tested and compared to the
adaptive step sizes chosen in AdaGrad ( Sect. 7.3).

7.1 Academic example for constant step size

Define U = [− 1
2 ,

1
2

]
, X = [− 1

2 ,
1
2

]
and consider the problem

min
u∈U

1

2

∫

X
(u − x)2dx . (20)

It is easy to see that (20) has a unique solution u∗ = 0. Furthermore, the objective
function is L-smooth (with Lipschitz constant 1) and even strictly convex. Thus, by
Theorem 5.1, the CSG method with a constant positive step size τ < 2 produces a
sequence (un)n∈N that satisfies un → 0.

However, even in this highly regular setting, the commonly used basic SG method
does not guarantee convergence of the iterates for a constant step size.

To demonstrate this behavior of both CSG and SG, we draw 2000 random starting
points u0 ∈ U and compare the iterates produced by CSG and SG with five different
constant step sizes (τ ∈ {0.01, 0.1, 1, 1.9, 1.99}). The CSG integration weights were
calculated using the empirical method, i.e., the computationally cheapest choice. The
results are shown in Fig. 10.

As expected, the iterates produced by the SGmethod do not converge to the optimal
solution, but instead remain in a neighborhood of u∗. The radius of said neighbor-
hood depends on the choice of τ and decreases for smaller τ , see [53, Theorem
4.6].
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7.2 Example for a composite objective function

To study the performance of CSG in the generalized setting, we consider an optimiza-
tion problem in which the objective function is not of the type (1), but instead falls in
the broader class of possible settings mentioned in Remark 4.1. Thus, we introduce the
sets U = [0, 10], X = [−1, 1] and Y = (−3, 3) and define the optimization problem

min
u∈U

1

20

∫

Y

(
2y + 5

∫

X
cos

( u−x
π

)
dx

)2
dy. (21)

The optimal solution u∗ = π2

2 to (21) can be found analytically. The nonlinear fashion
in which the inner integral over X enters the objective function prohibits us from
using SG-type methods to solve (21). There is, however, the possibility to use the
stochastic compositional gradient descent method (SCGD), which was proposed in
[26] and is specifically designed for optimization problems of the form (21). Each
SCGD iteration consists of two main steps: The inner integral is approximated by
samples using iterative updatingwith a slow-diminishing step size. This approximation
is then used to carry out a stochastic gradient descent step with a fast-diminishing step
size.

For numerical comparison, we choose 1000 random starting points in [ 112 , 19
2 ], i.e.,

the right half of U . In our tests, the accelerated SCGD method (see [26]) performed
better than basic SCGD, mainly since the objective function of (21) is strongly convex
in a neighborhood of u∗. Thus, we compare the results obtained by CSG to the aSCGD
algorithm, for whichwe chose the optimal step sizes according to [26, Theorem 7]. For
CSG, we chose a constant step size τ = 1

30 , which represents a rough approximation
to the inverse of the Lipschitz constant L . The results are given in Fig. 11.

Furthermore, we are interested in the number of steps each method has to perform
such that the distance to u∗ lies (and stays) within a given tolerance. Thus, we also
analyzed the number of steps after which the different methods obtain a result within
a tolerance of 10−1 in at least 90% of all runs. The results are shown in Fig. 12.

7.3 Step size stability for bCSG

To analyze the proclaimed stability of bCSG with respect to the initially guessed step
size ηn , we set U = [−10, 10]5, X = [−1, 1]5 and consider the Problem

min
u∈U

J (u), (22)

where

J (u) = −
∫

X
20

1 + ‖u − x‖2 dx .

Problem (22) has the unique solution u∗ = 0 ∈ U , which can be found analytically.
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Fig. 11 Absolute error
‖un − u∗‖ during the
optimization process. From top
to bottom: aSCGD (red), CSG
with empirical weights (cyan),
CSG with inexact hybrid weights
with f (n) = �n1.5� (green) and
CSG with exact hybrid weights
(blue). The shaded areas indicate
the quantiles P0.1,0.9 (light) and
P0.25,0.75 (dark) (Color figure
online)

Fig. 12 Minimum number of
steps needed for the different
algorithms such that at least 90%
of the runs achieve an absolute
error smaller than the given
tolerance. the colors are chosen
in the same fashion as in Fig. 11.
The exact numbers for a
tolerance of 10−1 are 42 (exact
hybrid), 76 (inexact hybrid), 440
(empirical) and 1382 (aSCGD)

As a comparison to our method, we choose the AdaGrad [25] algorithm, as it is
widely used for problems of type (1). Both AdaGrad and bCSG start each iteration
with a presdescribed step size ηn > 0, based on which the calculation of the true step
size τn is performed (see Algorithm 2). We want to test the stability of both methods
with respect to the initially chosen step length. For this purpose, we set ηn = τ0

nd
,

where τ0 > 0, n is the iteration count and d ∈ [0, 1] is fixed.
For each combination of τ0 and d, we choose 1200 random starting points in U and

perform 500 optimization steps with both AdaGrad and backtracking CSG. Again, the
integration weight calculation in bCSG was carried out using the empirical method,
leading to a fasterweight calculationwhile decreasing the overall progress per iteration
performance. The median of the absolute error ‖u500 − u∗‖ after the optimization,
depending on d and τ0, is presented in Fig. 13.

While there are a few instanceswhereAdaGrad yields a better result than backtrack-
ingCSG,we observe that the performance ofAdaGrad changes rapidly, especiallywith

123



The continuous stochastic gradient method… 973

Fig. 13 Median final error ‖u500−u∗‖ after 500 iterations of AdaGrad (left) and bCSG (right). Depending
on the constants τ0 > 0 and d ∈ [0, 1], the initially chosen step size in each iteration is given by ηn = τ0n

−d

respect to the parameter d. The backtracking CSGmethod on the other hand performs
superior in most cases and is much less dependent on the choice of parameters.

8 Conclusion and outlook

In this contribution, we provided a detailed convergence analysis of the CSG method.
The calculation of the integration weights was enhanced by several new approaches,
which have been discussed and generalized for the possible implementation of mini-
batches.

We provided a convergence proof for the CSGmethodwhen carried out with a small
enough constant step size. Additionally, it was shown that CSG can be augmented by
an Armijo-type backtracking line search, based on the gradient and objective function
approximations generated by CSG in the course of the iterations. The resulting bCSG
scheme was proven to converge under mild assumptions and was shown to yield
stable results for a large spectrum of hyperparameters. Lastly, we combined a heuristic
approach for approximating the Lipschitz constant of the gradient with bCSG to obtain
a method that requires no a priori step size rule and almost no information about the
optimization problem.

For all CSG variants, the stated convergence results are similar to convergence
results for full gradient schemes, i.e., every accumulation point of the sequence of
iterates is stationary and we have convergence in objective function values. Further-
more, as is the case for full gradient methods, if the optimization problem has only
finitely many stationary points, the presented CSG variants produce a sequence which
is guaranteed to converge to one of these stationary points.

However, none of the presented convergence results for CSG give any indication
of the underlying rate of convergence. Furthermore, while the performance of all
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proposed CSG variants was tested on academic examples, it is important to analyze
how they compare to algorithms from literature and commercial solvers, when used
in real world applications.

Detailed numerical results concerning both of these aspects can be found in [27].
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