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Abstract
We study mixed-integer programming (MIP) relaxation techniques for the solution of
non-convexmixed-integer quadratically constrained quadratic programs (MIQCQPs).
We present MIP relaxation methods for non-convex continuous variable products. In
this paper, we consider MIP relaxations based on separable reformulation. The main
focus is the introduction of the enhanced separable MIP relaxation for non-convex
quadratic products of the form z = xy, called hybrid separable (HybS). Addition-
ally, we introduce a logarithmic MIP relaxation for univariate quadratic terms, called
sawtooth relaxation, based on Beach (Beach in J Glob Optim 84:869–912, 2022). We
combine the latter with HybS and existing separable reformulations to derive MIP
relaxations of MIQCQPs. We provide a comprehensive theoretical analysis of these
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techniques, underlining the theoretical advantages of HybS compared to its predeces-
sors. We perform a broad computational study to demonstrate the effectiveness of the
enhanced MIP relaxation in terms of producing tight dual bounds for MIQCQPs. In
Part II, we study MIP relaxations that extend the MIP relaxation normalized multi-
parametric disaggregation technique (NMDT) (Castro in J Glob Optim 64:765–784,
2015) and present a computational studywhich also includes theMIP relaxations from
this work and compares them with a state-of-the-art of MIQCQP solvers.

Keywords Quadratic programming · MIP relaxations · Discretization · Binarization ·
Piecewise linear approximation

1 Introduction

In this work, we study relaxations of general mixed-integer quadratically constrained
quadratic programs (MIQCQPs). More precisely, we consider discretization tech-
niques for non-convex MIQCQPs that allow for relaxations of the set of feasible
solutions based on mixed-integer programming (MIP) formulations. To this end, we
study a number of MIP formulations that form relaxations of the quadratic equations
z = x2 and z = xy. These MIP relaxations can then be applied to MIQCQPs by intro-
ducing auxiliary variables and constraints for each quadratic term to form a relaxation
of the overall problem. In particular, we consider the strength of various MIP relax-
ations applied directly to a given problem, which is the simplest approach to enable the
solution ofMIQCQPs via anMIP solver. Our focus here is to analyze these approaches
both theoretically and computationally with respect to the quality of the dual bound
they deliver for MIQCQPs. Dual bounds give a lower bound for the optimal value in
a minimization problem. The term comes from the so-called dual program, which can
also be used to determine such bounds.
Background MIQCQPs naturally arise in the solution of many real-world optimiza-
tion problems, stemming e.g. from the contexts of power supply systems [2], gas
networks [19, 27], water management [23] or pooling/mixing [6, 10, 15, 30, 31].
See [25, 37] and the references therein for more examples. For the solution of such
problems, there are a number of different approaches, which differ in case the prob-
lems are convex or non-convex. Within this work, we focus on the most general case,
i.e. non-convex MIQCQPs, and only require finite upper and lower bounds on the
variables.

In the literature, a variety of solution techniques for non-convex MIQCQPs exists.
Themost prominent class among them areMcCormick-based techniques, see e.g. [12–
14, 16, 35, 36]. For quadratic programs, in particular, convexification can be applied
to bivariate monomials xy by introducing a new variable z = xy and constructing
the convex hull over the bounds on x and y. This yields the so-called McCormick
relaxation, which is the smallest convex set containing the feasible set of the equation
z = xy for given finite bounds on x and y. This relaxation is known to be a polytope
described by four linear inequalities (see [34]), and it is tighter the smaller the a priori
knownbounds on x and y are.Hence, one standard solution approach is spatial branch-
and-bound, where the key idea is to split the domain recursively into two subregions.
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For instance, one can choose the two subregions where x � x̄ and x � x̄ , respectively,
for some value x̄ . By branching on subregions, we can improve the convexification
of the feasible region by adding valid inequalities to the subproblems. Thus, applying
spatial branch-and-bound in conjunction with convexification (such as McCormick
Relaxations) sequentially tightens the relaxation of the problem.

Alternatively, similar effects can be achieved through some kind of binarization.
This is a general term that describes the conversion of continuous or integer variables
into binary variables. By branching on these new binary variables, we also partition
the space into subproblems in a way that simulates spatial branch-and-bound. The
binarization of the partition makes the resulting problem a piecewise linear (p.w.l. )
relaxation of the original problem with binary auxiliary variables. McCormick-based
methods can differ in the way the partition and the binarization are performed. The
partition can be performed purely on one variable or on both variables, equidistantly
or non-equidistantly. The binarization can be done linearly or logarithmically in the
number of partition elements, see [32, 40]. In a broader sense, (axial-)spatial branching
for bilinear terms can also be seen as a piecewise McCormick linearization approach.
Here, the partition is not performed a priori, but rather an initial partition is refined
via branching on continuous variables. An overview of spatial-branching techniques
can be found in [8].

Another common idea for linearizing variable products is to use quadratic con-
vex reformulations as in [7, 9, 21, 22, 26]. This technique transforms the non-convex
parts of the problem into univariate terms via reformulations. In [7], the authors apply
diagonal perturbation to convexify the quadratic matrices. The resulting univariate
quadratic correction terms are then linearized by introducing new variables and con-
straints of the form zi = x2i , which are then approximated by p.w.l. functions. The
binarization of the univariate p.w.l. functions is done logarithmically by using the so-
called sawtooth function, introduced in [42]. An advantage of this approach is that only
linearly many expressions of the form zi = x2i have to be linearized instead of quadrat-
ically many equations of the form zi j = xi x j , with respect to the dimension of the
original quadratic matrix. This approach yields a convex MIQCQP relaxation instead
of the MIP relaxation obtained via direct modeling using bilinear terms. See also [1]
that adapts the branch and bound approach αBB [3] to general twice differentiable
objectives by providing convex reformulations via perturbations.

A further set of approaches relies on separable reformulations of the non-convex
variable products, as done e.g. in [5]. Here, each term of the form xy is reformulated
as a sum of separable univariate terms, for example using the equivalent reformulation
xy = 1/2(x2 + y2 − (x − y)2) = 1/2(r + s − t) with r = x2, s = y2, and t = (x − y)2

as described by [4]. The univariate constraints, here equations of the form r = x2,
s = y2, and t = (x − y)2, are then relaxed. Again, this approach can be combined
with a logarithmic encoding of the univariate linear segments, as in [7, 22]. In [5], the
authors analyze the following possible reformulations:

Bin1 : xy = (1/2(x + y))2 − (1/2(x − y))2 ,

Bin2 : xy = 1/2
(
(x + y)2 − x2 − y2

)
,

Bin3 : xy = 1/2
(
x2 + y2 − (x − y)2

)
.
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They prove that MIP-based approximations of each of these univariate reformulations
require fewer binary variables than a bivariate MIP-based approximation that guaran-
tees the same maximal approximation error, if this prescribed error is small enough.
However, this comes at the cost of weaker linear programming (LP) relaxations.

Alternatively, one can also obtain an MIP relaxation of xy directly via a bivariate
p.w.l. relaxation, see e.g. [5, 11, 27, 40]. Oneway to do this is to perform a triangulation
of the domain, which defines a p.w.l. approximation of the variable product. This
p.w.l. approximation can then easily be converted into a relaxation of the feasible
set by axis-parallel shifting, which yields a p.w.l. underestimator and overestimator.
Bivariate p.w.l. approximations can also be binarized using (logarithmically-many)
binary variables, see e.g. [27, 32, 40].
Contribution We compare different MIP relaxation approaches, both known ones,
and a new one, in terms of the dual bound, they impose for non-convex MIQCQPs.
We extend the separable approximation approaches Bin2 and Bin3 from [5] to MIP
relaxations for z = xy. Additionally, we introduce a novel MIP relaxation for z = xy
called hybrid separable (HybS) that is based on a sophisticated combination of Bin2
and Bin3 that allows us to relax only linearly-many univariate quadratic terms (in the
dimension of the quadratic matrix). In a theoretical analysis, we show that HybS has
theoretical advantages, such as fewer binary variables and better LP relaxations com-
pared to Bin2 and Bin3. We combine HybS, Bin2, and Bin3 with an MIP relaxation,
called sawtooth relaxation, for z = x2 that requires only logarithmically-many binary
variables with respect to the relaxation error. Thus, we can obtain MIP relaxations
for MIQCQPs. The sawtooth relaxation is an extension of the sawtooth approxima-
tion from [7], which has the strong property of hereditary sharpness. The hereditary
sharpness of an MIP formulation means that the formulation is tight in the space of
the original variables, even after branching on integer variables. We can show that the
sawtooth relaxation is also hereditary sharp.

Finally, we perform an extensive numerical study where we generate MIP relax-
ations of non-convexMIQCQPs. Foremost, we test the different relaxation techniques
in their ability to generate tight dual bounds for the original quadratic problems. We
will see that HybS has a clear advantage over its predecessors Bin2 and Bin3. This
effect becomes even more apparent on dense instances.

We present Part II of this work in a separate paper, where we studyMIP relaxations
that are distinctly different and are extensions of thenormalizedmultiparametric disag-
gregation technique (NMDT) [13]. We provide further theoretical and computational
analyses. The NMDT uses a combination of McCormick envelopes and selective dis-
cretization of variables; it was useful in some applications to chemical engineering. In
addition, we perform a comparison of HybS with NMDT-based methods and Gurobi
as an MIQCQP solver.
Outline We proceed as follows. In Sect. 2, we introduce several useful concepts and
notations used throughout the work. In Sect. 3, we present core formulations used
repeatedly in our linear relaxations of quadratic terms. In Sect. 4, we introduce the new
MIP relaxation HybS for equations of the form z = xy. In Sect. 5, we prove various
properties about the strengths of this MIP relaxation focusing on volume, sharpness,
andoptimal choice of breakpoints. InAppendixBweprove that the sawtooth relaxation
is hereditarily sharp. In Sect. 6, we present our computational study.
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2 MIP formulations

In this work, we study relaxations of general mixed-integer quadratically constrained
quadratic programs (MIQCQPs), which are defined as

min x�Q0x + c0 · x,

s.t. x�Q j x + c j · x + b j � 0 j = 1, . . . ,m,

xi ∈ [x
¯ i

, x̄i ] i = 1, . . . , k,
xl ∈ {0, 1} l = k + 1, . . . , n,

(1)

for Q0, Q j ∈ Rn×n , c0, c j ∈ Rn and b j ∈ R, j = 1, . . .m.
Throughout this article, we use the following convenient notation: for any two

integers i � j , we define �i, j�:={i, i + 1, . . . , j}, and for an integer i � 1 we
define �i�:=�1, i�. We will denote sets using capital letters but also use capital let-
ters for matrices, some functions, and the number of layers L . We typically denote
variables using lowercase letters and vectors of variables using boldface. For a vector
u = (u1, . . . , un) and some index set I ⊆ �n�, we write uI :=(ui )i∈I . Thus, e.g.
u�i� = (u1, . . . , ui ). Furthermore, we introduce the following notation: for a function
F : X → R and a subset B ⊆ X , let graB(F), epiB(F) and hypB(F) denote the
graph, epigraph and hypograph of the function F over the set B, respectively. That
is,

graB(F):={(u, z) ∈ B × R : z = F(u)},
epiB(F):={(u, z) ∈ B × R : z � F(u)},
hypB(F):={(u, z) ∈ B × R : z � F(u)}.

In the following, we introduce the concept of MIP formulations as well as properties
regarding MIP formulations which will be used later on.

We will study mixed-integer linear sets, so-called mixed-integer programming
(MIP) formulations, of the form

P IP:={(u, v, z) ∈ Rd+1 × [0, 1]p × {0, 1}q : A(u, v, z) � b}

for some matrix A and vector b of suitable dimensions. The linear programming (LP)
relaxation or continuous relaxation PLP of P IP is given by

PLP:={(u, v, z) ∈ Rd+1 × [0, 1]p × [0, 1]q : A(u, v, z) � b}.

We will often focus on the projections of these sets onto the variables u, i.e.

proju(P
IP):={u ∈ Rd+1 : ∃(v, z) ∈ [0, 1]p × {0, 1}q s.t. (u, v, z) ∈ P IP}. (2)

The corresponding projected linear relaxation proju(P
LP) onto the u-space is defined

accordingly.
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In order to assess the quality of an MIP formulation, we will work with several
possible measures of formulation strength. First, we define notions of sharpness, as
in [7, 29]. These relate to the tightness of the LP relaxation of an MIP formulation.
Whereas properties such as total unimodularity guarantee an LP relaxation to be a
complete description for the mixed-integer points in the full space, we are interested
here in LP relaxations that are tight descriptions of the mixed-integer points in the
projected space.

Definition 1 (Sharpness) We say that the MIP formulation P IP is sharp if

proju(P
LP) = conv(proju(P

IP))

holds. Further, we call it hereditarily sharp if, for all I ⊆ �q� and ẑ ∈ {0, 1}|I |, we
have

proju(P
LP|z I= ẑ) = conv

(
proju(P

IP|z I= ẑ)
)
.

Sharpness expresses a tightness at the root node of a branch-and-bound tree. Hereditar-
ily sharp means that fixing any subset of binary variables to 0 or 1 preserves sharpness,
and therefore this means sharpness is preserved throughout a branch-and-bound tree.

In this article, we study certain non-polyhedral sets U ⊆ Rd+1 and will develop
MIP formulations P IP to form relaxations of U in the projected space, as defined in
the following.

Definition 2 (MIP relaxation) For a setU ⊆ Rd+1 we say that anMIP formulation P IP

is an MIP relaxation of U if

U ⊆ proju(P
IP).

Given a function F : [0, 1]d → R, we will mostly consider

U = gra[0,1]d (F) ⊆ Rd+1.

In particular, we will focus on either

U = {(x, z) ∈ [0, 1]2 : z = x2} or U = {(x, y, z) ∈ [0, 1]3 : z = xy}.

We now define several quantities to measure the error of an MIP relaxation.

Definition 3 (Error) For anMIP relaxation P IP of a setU ⊆ Rd+1, let ū ∈ proju(P
IP).

We then define the pointwise error of ū as

E(ū,U ):=min{|ud+1 − ūd+1| : u ∈ U , u�d� = ū�d�}.

We next define the following two error measures for P IP w.r.t. U :
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1. The maximum error of P IP w.r.t. U is defined as

Emax(P IP,U ):= max
ū∈proju(P IP)

E(ū,U ).

2. The average error of P IP w.r.t. U is defined as

Eavg(P IP,U ):= vol(proju(P
IP) \U ).

Via integral calculus, the second, volume-based error measure can be interpreted as
the average pointwise error width of all points u ∈ proju(P

IP). Note that whenever the
volume of U is zero (i.e. it is a lower-dimensional set), the average error just reduces
to the volume of proju(P

IP).
Both of the defined error quantities for an MIP relaxation P IP can also be used to

measure the tightness of the corresponding LP relaxation PLP. In Sect. 5.3.2, we use
these to compare formulations when PLP is not sharp.

3 Core relaxations

In the definition of the MIP relaxations studied in this work, we repeatedly make use
of several “core” formulations for specific sets of feasible points. They are introduced
in the following.

For our relaxations of MIQCQPs, we will frequently need to consider terms of
the form z = xy for continuous or integer variables x and y within certain bounds
Dx :=[x

¯
, x̄] and Dy :=[y

¯
, ȳ], respectively. To this end, we introduce the function

F : D → R, F(x, y) = xy, D:=Dx ×Dy , and refer to the set of feasible solutions to
the equation z = xy via the graph of F , i.e. graD(F) = {(x, y, z) ∈ D×R : z = xy}.
In order to simplify the exposition, we will, for example, often write graD(xy) or
refer to a relaxation of the equation z = xy instead of graD(F). We will do this
similarly for the epigraph and hypograph of F as well as for the univariate function
f : Dx → R, f (x) = x2 and equations of the form z = x2, for example.

3.1 McCormick envelopes

The convex hull of the equation z = xy for (x, y) ∈ D is given by a set of linear
equations known as the McCormick envelope. See [34].

M(x, y):= {
(x, y, z) ∈ [x

¯
, x̄] × [y

¯
, ȳ] × R : (4)

}
. (3)

x
¯

· y + x · y
¯

− x
¯

· y
¯

� z � x̄ · y + x · y
¯

− x̄ · y
¯
,

x̄ · y + x · ȳ − x̄ · ȳ � z � x
¯

· y + x · ȳ − x
¯

· ȳ. (4)
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3.2 Sawtooth-basedMIP formulations

Wenext recall anMIP formulation for approximating equations of the form z = x2 that
requires only logarithmically-many binary variables in the number of linear segments.
It makes use of an elegant p.w.l. formulation for gra[0,1](x2) from [42] using the
recursively defined sawtooth function presented in [39] to formulate the approximation
of gra[0,1](x2), as described in [7].

Let L be an positive integer and let FL be the piecewise linear interpolation of
x2 at uniformly spaced breakpoints i

2L
for i = 0, 1, . . . , 2L ; see Fig. 1. This func-

tion has a convenient recursive definition [39, 42]. To this end, define the “tooth”
function G : [0, 1] → [0, 1], G(x) = min{2x, 2(1 − x)}. Subsequently, we define
compositions of the tooth function

G j :=G ◦ G ◦ . . . ◦ G︸ ︷︷ ︸
j

. (5)

Under this notation, we can formally define the function FL : [0, 1] → [0, 1],

FL(x):=x −
L∑

j=1

2−2 j G j (x). (6)

We summarize useful information from [7, 42] about the approximation FL . These
properties will be used in our analysis of the models that we propose.

Proposition 1 ([7, 42]) The function FL satisfies the following properties:

1. The function FL is the piecewise linear interpolation of x2 at uniformly spaced
breakpoints i

2L
for i = 0, 1, . . . , 2L; see Fig.1. The shifted piecewise linear func-

tion FL − 2−2L−2 has each affine part being the tangent to x2 at the midpoint
i
2L

+ 1
2L+1 ; see Fig.2.

2. It holds 0 � FL(x) − x2 � 2−2L−2 for all x ∈ [0, 1].
Equivalently, 0 � x2 − (FL(x) − 2−2L−2) � 2−2L−2 for all x ∈ [0, 1].

3. It holds FL(x)−2−2L−2 = x2 if and only if x = i
2L

+ 1
2L+1 with i = 0, 1, . . . , 2L−

1.
4. The function FL is convex on the interval [0, 1].
Following [7], we create an MIP formulation to encode this piecewise linear func-

tion. We create variables g j to represent the output of a “sawtooth” function of x and
binary variables α ∈ {0, 1}L that represent decision in G(x) that either 2x � 2(1− x)
or 2(1− x) � 2x . In particular, we design the formulation such when α ∈ {0, 1}L , the
relationship between g j and g j−1 is g j = min{2g j−1, 2(1− g j−1)} for j = 1, . . . , L ,

To this end, we define a formulation parameterized by the depth L ∈ N:

SL :=
{
(x, g,α) ∈ [0, 1] × [0, 1]L+1 × {0, 1}L : (8)

}
. (7)
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Fig. 1 An illustration of the functions G j and FL that underlie the construction of our MIP formulations

Fig. 2 The successive piecewise linear approximations of x2 shifted down to be underestimators. The
markers indicate the places where the underestimators coincide with x2 and in fact, show that the affine
segments are tangent lines to the function. The inequality z � FL (x) − 2−2 L−2 in fact creates 2L tangent
lower bounds

g0 = x,
2(g j−1 − α j ) � g j � 2g j−1 j = 1, . . . , L,

2(α j − g j−1) � g j � 2(1 − g j−1) j = 1, . . . , L.

(8)

Using the relationships (5) and (6) between x and g, any constraint of the form z = x2

can be approximated via the function

f L : [0, 1] × [0, 1]L+1 →[0, 1],

f L(x, g) = x −
L∑

j=1

2−2 j g j , (9)
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Fig. 3 The sawtooth relaxation from Definition 5 at depths L = 0, 1, 2. The shaded region is the relaxation.
Some additional inequalities are plotted to help visualize the inequalities with respect to the functions F j

for an integer L � 0. We use the above definitions to give an MIP formulation that
approximates equations of the form z = x2.

Definition 4 (SawtoothApproximation, [7])Given some L ∈ N, thedepth-L sawtooth
approximation for z = x2 on the interval x ∈ [0, 1] is given by

{
(x, z) ∈ [0, 1]2 : ∃(g,α) ∈ [0, 1]L+1 × {0, 1}L : z = f L(x, g), (x, g,α) ∈ SL

}
.

(10)

The set (10) is a compact approximation of gra[0,1](x2) in terms of the number of
variables and constraints.

Based on the sawtooth approximation, we can now present the sawtooth relaxation
for z = x2 from [7], illustrated in Fig. 3, which arises by shifting each approximat-
ing function F j , j = 0, . . . , L , down by its maximum error 2−2 j−2 (established in
Proposition 1, Item 2) and then adding additional outer-approximation cuts to x2 at
x = 0 and x = 1 (Fig. 4).
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Definition 5 (Sawtooth Relaxation, SR [7]) Given some L ∈ N, the depth-L sawtooth
relaxation for z = x2 on the interval x ∈ [0, 1] is given by

{
(x, z) ∈ [0, 1] × R : ∃(g,α) ∈ [0, 1]L+1 × {0, 1}L : (12)

}
. (11)

z � f L(x, g),

z � f j (x, g) − 2−2 j−2 j = 0, . . . , L
z � 0, z � 2x − 1,

(x, g,α) ∈ SL .

(12)

Remark 1 (Transformation to General Bounds) To this point, the sawtooth MIP for-
mulations were presented for x2 with x ∈ [0, 1]. However, all sawtooth-based MIP
formulations can be extended to general intervals x ∈ [x

¯
, x̄] by mapping [x

¯
, x̄] to

[0, 1] via the substitution x̂ = x−x
¯x̄−x
¯

∈ [0, 1] and applying the sawtooth formulation to
model the equation

ẑ = x̂2 =
(
x−x

¯x̄−x
¯

)2 = x2−2xx
¯
+x
¯
2

(x̄−x
¯
)2

= z−2xx
¯
+x
¯
2

(x̄−x
¯
)2

= z−x
¯
(2x−x

¯
)

(x̄−x
¯
)2

.

Thus, for general intervals, we first apply the approximation to ẑ = x̂2, then add the
equations

x̂ = x−x
¯x̄−x
¯
, ẑ = z−x

¯
(2x−x

¯
)

(x̄−x
¯
)2

.

In our computational study in Sect. 6, these constraints are implemented as defining
expressions for x̂ and ẑ, and the MIP formulations are constructed for x̂ and ẑ then.
See Appendix A for the generalized MIP formulations under this transformation. �

Now, we consider the LP relaxation of SL , where each variable α j is relaxed to the
interval [0, 1]. Then, via the constraints (8), we see that the weakest lower bounds on
each g j w.r.t. g j−1 can be attained via setting α j = g j−1, yielding a lower bound of 0.
Thus, after projecting out α, the LP relaxation of SL in terms of just x and g can be
stated as

T L =
{
(x, g) ∈ [0, 1] × [0, 1]L+1 : (13)

}
.

g0 = x,
g j � 2(1 − g j−1) j = 1, . . . , L,

g j � 2g j−1 j = 1, . . . , L.

(13)

The sawtooth relaxation (11) is sharp by Theorem 1 (proved later in this work),
which follows in much the same way as the sharpness of the sawtooth approxima-
tion (10), as established in [7, Theorem 1]. Thus, the LP relaxation of the sawtooth
relaxation (11) yields the same lower bound on z as the MIP version due to sharp-
ness and the convexity of FL . This allows us to define an LP outer approximation for
inequalities of the form z � x2:
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846 B. Beach et al.

Fig. 4 The tightened sawtooth relaxations RL,L1 from Definition 7 for the pairs (L, L1) =
(0, 1), (0, 2), (1, 2). By increasing L1 beyond L , we tighten the lower bound by creating more inequalities.
This is done by only adding linearly-many variables and inequalities in the extended formulation to gain
exponentially-many equally spaced cuts in the projection

Definition 6 (Sawtooth Epigraph Relaxation, SER) Given some L ∈ N, the depth-L
sawtooth epigraph relaxation for z � x2 on the interval x ∈ [0, 1] is given by

QL :=
{
(x, z) ∈ [0, 1] × R : ∃g ∈ [0, 1]L+1 : (15)

}
. (14)

z � f j (x, g) − 2−2 j−2 j = 0, . . . , L,

z � 0, z � 2x − 1,
(x, g) ∈ T L .

(15)
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We will prove in Proposition 2 that the maximum error for the sawtooth epigraph
relaxation is 2−2L−4.

Finally, we combine the depth-L sawtooth relaxation (11) with the depth-L1 saw-
tooth epigraph relaxation (14) for some L1 � L to obtain a sawtooth relaxation which
is stronger in the lower bound, but uses the same number of binary variables.

Definition 7 (Tightened Sawtooth Relaxation, TSR) Given some L, L1 ∈ N with
L1 � L , the tightened sawtooth relaxation for z = x2 on the interval x ∈ [0, 1] with
upper-bounding depth L and lower-bounding depth L1 is given by

RL,L1 :={(x, z) ∈ [0, 1] × R : ∃(g,α) ∈ [0, 1]L1+1 × {0, 1}L : (17)}. (16)

z � f L(x, g�0,L�), (17a)

(x, g�0,L�,α) ∈ SL , (17b)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(x, g) ∈ T L1 ,

z � f j (x, g) − 2−2 j−2 j = 0, . . . , L1,

z � 0,

z � 2x − 1.

(17c)

(17d)

(17e)

(17f)

We connect the last constraints with a brace since there are all defining constraints
for QL1 . Since we define QL1 in the projection space (x, z), we cannot simply write
(x, g) ∈ QL1 since we need the same α and g to apply to the other constraints as well.

We will prove in Theorem 1 that the tightened sawtooth relaxation is also sharp, and
in Theorem 2 that it is hereditarily sharp.

4 MIP relaxations for non-convexMIQCQPs

In this section, we focus onMIP relaxations for bilinear equations of the form z = xy.
For convenience, we define a completely denseMIQCQP as anMIQCQP for which all
terms of the form x2i and xi x j appear in either the objective or in some constraint. The
novel formulationHybS presented herein is an extension of existing formulations Bin2
and Bin3, designed to significantly reduce the number of binary variables required to
reach the same level of relaxation accuracy compared to its original predecessors
Bin2 and Bin3 for completely dense MIQCQPs, which will also be introduced in the
following.

4.1 Separable MIP relaxations

We present three MIP relaxations based on separable reformulations. A separable
reformulation turns a multivariate expression into a sum of univariate functions. To
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this end, we make use of the reformulation approaches Bin2 and Bin3, given via

Bin2 : xy = 1
2 ((x + y)2 − x2 − y2),

Bin3 : xy = 1
2 (x

2 + y2 − (x − y)2),

see e.g. [5], and combine them with the sawtooth relaxation (16) to derive MIP relax-
ations for the occurring equations of the form z = xy. While the following MIP
relaxations on Bin2 and Bin3 are natural extensions of the MIP approximations stud-
ied in [5] to MIP relaxations, we will also combine both reformulations to a new
formulation in which the MIP relaxation requires significantly less binary variables if
it is used to solve problems of the form (1) As a reminder, in the definitions below,
the notation M is used to describe the McCormick envelope.

Remark 2 In [5], Bin1: xy = (1/2(x + y))2 − (1/2(x − y))2 is also discussed as a
possible separable reformulation. However, for completely dense MIQCQPs, Bin1
requires a number of binary variables that is by a factor of roughly 2 greater than that
required for Bin2 and Bin3. This is due to the fact that for each bivariate product xi x j ,
we need to discretize both (1/2(xi + x j ))2 and (1/2(xi − x j ))2 instead of only one of
the two squares for Bin2 and Bin3. Therefore, we omit Bin1 in the following. �
Definition 8 (Bin2) The MIP relaxation Bin2 of z = xy, x, y ∈ [0, 1]2, with a lower-
bounding depth L1 ∈ N and an upper-bounding depth L ∈ N, is defined as follows:

p = x + y
z = 1/2(z p − zx − zy)

(x, y, z) ∈ M(x, y)
(x, zx ), (y, zy), (p, z p) ∈ RL,L1

x, y ∈ [0, 1], p ∈ [0, 2].

(18)

Definition 9 (Bin3) The MIP relaxation Bin3 of z = xy, x, y ∈ [0, 1]2, with a lower-
bounding depth L1 ∈ N and an upper-bounding depth of L ∈ N, is defined as follows:

p = x − y
z = 1/2(zx + zy − z p)

(x, y, z) ∈ M(x, y)
(x, zx ), (y, zy), (p, z p) ∈ RL,L1

x, y ∈ [0, 1], p ∈ [−1, 1].

(19)

Note that we apply the tightened sawtooth relaxation RL,L1 , defined in (16), not only
to x, y ∈ [0, 1], but also to the variable p, where the domain is either [0, 2] or [−1, 1].
This is done by following the transformation in Remark 1 to map p and z p to the
interval [0, 1] and then applying (16) to the transformed variables.

We now combine Bin2 and Bin3 to derive an MIP relaxation for z = xy based on
bounding z in the following two ways:

z � 1/2(x2 + y2 − (x − y)2),
z � 1/2((x + y)2 − x2 − y2),
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and then replacing each right-hand side with proper upper and lower bounds. We
choose this setting so that we only have to model lower bounds for the (x − y)2- and
(x+ y)2-terms and can thus apply the sawtooth epigraph relaxation (14) to circumvent
the use of binary variables for these terms. To this end, we introduce the continuous
auxiliary variables p1, p2, zx , zy , z p1 , z p2 and z to obtain an equivalent relaxation for
z = xy:

p1 = x + y, p2 = x − y, (20a)

zx � x2, zy � y2, (20b)

z p1 � p21, z p2 � p22, (20c)

z � zx + zy − z p1, z � z p2 − zx − zy . (20d)

Finally, we replace x2 and y2 in the non-convex constraints (20b) with a sawtooth
relaxation (17a) of depth L and p21 and p22 in the convex constraints (20c) by a sawtooth
epigraph relaxation (17f) with depth L1 to obtain a relaxation of z = xy in (20d). The
resulting model is especially interesting as, in contrast to Bin2 and Bin3, it does
not require binary variables to model equations of the form p21 = (x + y)2 and
p22 = (x − y)2, since we only need to incorporate lower bounds as used in QL .

Definition 10 (Hybrid Separable HybS) Let x, y ∈ [0, 1], and let L, L1 ∈ N. The
following MIP relaxation for z = xy, which combines the relaxations Bin2 and Bin3,
is called the hybrid separable MIP relaxation, in short HybS, with a lower-bounding
depth of L1 and an upper-bounding depth of L:

p1 = x + y, p2 = x − y
(x, zx ), (y, zy) ∈ RL,L1

(p1, z p1), (p2, z p2) ∈ QL1

1/2(z p1 − zx − zy) � z � 1/2(zx + zy − z p2)
(x, y, z) ∈ M(x, y)

x, y ∈ [0, 1], p1 ∈ [0, 2], p2 ∈ [−1, 1].

(21)

As QL1 in (21) is originally defined for variables in [0, 1], we again use the transfor-
mation from Remark 1 to extend it to other domains.

Note that, when some constraint of an MIQCQP has a completely dense quadratic
matrix, the number of (20c)-type constraints is quadratic in the dimension of x . Thus,
the number of binary variables for Bin2 and Bin3 is in O(n2L), while the formulation
HybS requires only nL binary variables. As we will show in Sect. 5, the formulation
HybS also has a strictly tighter LP relaxation than that of either formulation Bin2
or Bin3. This implies a smaller volume of the projected LP relaxation as well. We
also note, however, that the MIP relaxation is not strictly tighter. For example, let
L = L1 = 1 and consider the point (x, y) = ( 14 ,

3
4 ). The upper bound on z = xy

produced by the MIP relaxation Bin2 at this point is z � 3
16 , i.e. the exact value. The

MIP relaxation HybS (as well as Bin3), however, has a weaker upper bound of z � 1
4

at this point.
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Table 1 A summary of characteristics of the different MIP relaxations. Binary variables and constraints
are given in the worst-case, in which every possible quadratic term must be modeled, for example if some
matrix Qi is completely dense

MIP relax # Bin. variables # Constraints Max. error Avg. error

HybS nL n( 12 (5n − 3) + 2n(L + L1)) 2−2L−2 1
3 2

−2L

Bin2 1
2 (n2 + 1)L n( 12 (3n − 1) + (n + 1)(L + L1)) 2−2L−1 1

2 2
−2L

Bin3 1
2 (n2 + 1)L n( 12 (3n − 1) + (n + 1)(L + L1)) 2−2L−1 1

2 2
−2L

When we apply any of the separable formulations Bin2, Bin3 and HybS to compute
dual bounds for MIQCQPs in Sect. 6, all original univariate quadratic terms of the
form x2i (i.e. those not resulting from any reformulations) aremodeled via the tightened
sawtooth relaxation (16).

Remark 3 We can alternatively obtain a convex mixed-integer quadratic relaxation of
z = xy by directly incorporating the convex quadratic constraints zx � x2, zy � y2,
z p1 � p21 and z p2 � p22 in (20) exactly instead of using p.w.l. relaxations. This
variation could be implemented using a convex solver instead of a linear solver. �

Remark 4 (BinaryVariables andDenseMIQCQPs)Whenmodeling Problem (1) using
the MIP relaxations Bin2 and Bin3 at depth L , we have L binary variables created
whenever the tightened sawtooth relaxation RL,L1 is used. For Bin2, we need the
relaxations (xi , zxi ) ∈ RL,L1 and (pi j , z pi j ) ∈ RL,L1 for all pairs i 	= j , where

pi j = xi + x j . Note that pi j = p ji . Thus, we need (n + 1
2 (n − 1)2)L = 1

2 (n
2 + 1)L

binary variables.
We have the same result for Bin3, where instead we have pi j = xi − x j for all

pairs i 	= j . Although this means pi j 	= p ji , we still have p2i j = p2j i . Thus, a careful

implementation also has 1
2 (n

2 + 1)L binary variables.
HybS uses significantly fewer binary variables as it only requires (xi , zxi ) ∈ RL,L1

for each i . Hence, there are only nL binary variables. Surprisingly, this relaxation
halves the error bound from Bin2 and Bin3. The strength in this approach is gained
without quadratically-many binary variables by using the tightening set QL1 with the
p1-and p2-variables. �

5 Theoretical analysis

In this section, we give a theoretical analysis of the presented MIP relaxations for the
equation z = xy over x, y ∈ [0, 1] as well as the equation z = x2 over x ∈ [0, 1],
respectively, in order to allow for a comparison of structural properties between them
(Fig. 5). In particular, we will analyze their maximum and average errors, formulation
strengths, i.e. (hereditary) sharpness and LP relaxation volumes, as well as the optimal
placement of breakpoints to minimize average errors. The results we will arrive at are
summarized in Table 1.
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Fig. 5 Maximum overestimation andmaximum underestimation of theMIP relaxation Bin2 defined in (18).
In the left column, we show the case L = L1 = 1. In the right column, we show L = 1 and L1 → ∞

5.1 Maximum error

We start the error analysis by discussing the maximum errors of the presented MIP
relaxations.

5.1.1 Core formulations

First, we discuss the maximum errors of the core formulations from Sect. 3.1. For the
sawtooth approximation (10), the maximum error is an overestimation by 2−2L−2, see
[7]. The maximum error of the sawtooth epigraph relaxation is 2−2 L−4, which we
prove in the following. The tightened sawtooth relaxation stated in (16) uses the saw-
tooth approximation for overestimation while the lower bound, which is incident with
the sawtooth epigraph relaxation (14), gains an extra layer of accuracy, with a max-
imum error of 2−2L−4. Due to the overestimator, the (tightened) sawtooth relaxation
has the same maximum error of 2−2L−2 as the sawtooth approximation.

Proposition 2 (Error of the sawtooth epigraph relaxation) The maximum error of the
sawtooth epigraph relaxation QL for z � x2 with x ∈ [0, 1] defined in (14) is 2−2L−4.

Proof The lower-bounding inequalities on z induced by the (x, z)-projection of the
sawtooth epigraph relaxation, i.e. projx,z(Q

L), are exactly the supporting valid lin-
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Fig. 6 Maximumoverestimation andmaximumunderestimation of theMIP relaxationHybSdefined in (21).
In the left column, we show the case L = L1 = 1. In the right column, we show L = 1 and L1 → ∞

ear inequalities to z � x2 at the points xk := k
2L+1 , k = 0, . . . , 2L ; see Proposition

1. The maximum error is attained at the intersection of two consecutive linear seg-
ments on the boundary of the feasible region defined by these inequalities, i.e. at
(x̄k, zk):=(

xk+xk+1
2 , xkxk+1) = ((k + 1

2 )2
−L−1, k(k + 1)2−2 L−2). Thus, the maxi-

mum error is given by

Emax(QL , epi[0,1](x2)) =
(
(k + 1

2 )2
−L−1

)2 − k(k + 1)2−2L−2 = 2−2L−4,

independent of the choice of k. ��
In addition to the sawtooth-based formulations, we useMcCormick relaxations as core
formulations to form MIP relaxations of MIQCQPs. For the McCormick relaxation
of the equation z = xy over the box domain [x

¯
, x̄] × [y

¯
, ȳ], the maximum under- and

overestimation is 1
4 (x̄ − x

¯
)(ȳ− y

¯
), attained at (x, y) = ( 12 (x¯

+ x̄), 1
2 (y
¯
+ ȳ)), see e.g.

[33, page 23].
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5.1.2 Separable MIP relaxations

In order to generate MIP relaxations of MIQCQPs with either the Bin2, Bin3, or
the HybS approach, we need to discretize univariate quadratic terms and products of
variables.
Univariate Quadratic Terms in MICQCP’s. First, for univariate quadratic terms,
i.e., z = x2, in MIQCQPs, we use the tightened sawtooth relaxation to discretize in
either approach. The tightened sawtooth relaxation has a maximum error of 2−2 L−2,
as shown in Proposition 1.
Bivariate Products in MICQCP’s. Second, for bivariate products, i.e., z = xy, in
MIQCQPs, we use a different separable reformulation in each approach. In the follow-
ing, we derive upper bounds, purely depending on L , and lower bounds, depending
on L and L1, on the maximum errors for variable products. Depending on the refor-
mulation, we have to address two different maximum error scenarios in the bounds on
z.
We start with the maximum error in the relaxations for z in which x2 and y2 are
overestimated and p2 is underestimated. This applies to the upper and lower bound on
z in HybS, the lower bound on z in Bin2, and the upper bound on z in Bin3. In each
of these cases, the maximum overestimation of both zx = x2 and zy = y2 with the
sawtooth relaxation is 2−2L−2, occurring at the grid centers xk = yk = (k + 1

2 )2
−L ,

k = 0, . . . , 2L − 1. If we combine these points, xk and yk , with a point on the graph
of p2, i.e. z p = p2, this point has an approximation error 0 and we obtain a lower
bound for the maximum error in the relaxation of z = xy. Namely, if P IP

L,L1
denotes

either of the MIP relaxations Bin2, Bin3 or HybS of gra[0,1]2(xy) with depths L, L1,
we have

Emax(P IP
L,L1

, gra[0,1]2(xy))) � 1
2 (((x

2
k + 2−2L−2) − x2k ) + ((y2k + 2−2L−2) − y2k )

+ ((p2 + 0) − p2))

� 1
2

(
2−2L−2 + 2−2L−2 + 0

)

= 2−2L−2,

independent of the choice of k. This yields the following proposition.

Proposition 3 The maximum error in the MIP relaxations Bin2, Bin3 and HybS for
z = xy with x, y ∈ [0, 1] is at least 2−2L−2.

Furthermore, themaximumunderestimation of p2 is 2−2L1−2 (twice the domainwidth,
which means the error quadruples). This means we have an upper bound of

1

2
(2−2L−2 + 2−2L−2 + 2−2L1−2) = 2−2L−2 + 2−2L1−3

on the maximum error in the lower bound on z in Bin2, the upper bound on z in Bin3
and both the upper and lower bound on z in HybS. We can use this observation to give
an upper bound on the maximum error in the MIP relaxation HybS for z = xy. See
Fig. 6 for the maximum over- and underestimation of the HybS MIP relaxation.
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Proposition 4 The maximum error in the MIP relaxation HybS for z = xy with
x, y ∈ [0, 1] is at most 2−2 L−2 + 2−2L1−3.

Next, we consider the upper bound on z in Bin2 and the lower bound on z in Bin3.Here,
we are interested in the overestimation of p2 and the underestimation of x2 and y2. The
maximum overestimation of p2 is 2−2L (again, doubling the domain width quadruples
the error). Combined with the maximum underestimation of the sawtooth relaxation
for x2 and y2 of 2−2L1−4, this yields an upper bound on the maximum error on z of

1

2
(2−2L + 2−2L1−4 + 2−2L1−4) = 2−2L−1 + 2−2L1−4

in terms of overestimation in Bin2 and underestimation in Bin3. Thus, we obtain the
following upper bound for the maximum error in Bin2 and Bin3. See Fig. 5 for the
maximum over- and underestimation of the Bin2 MIP relaxation.

Proposition 5 The maximum error in the MIP relaxations Bin2 and Bin3 for z = xy
with x, y ∈ [0, 1] is at most 2−2 L−1 + 2−2L1−3.

In summary, we have the same lower bound for the maximum error of 2−2 L−2 in
Bin2, Bin3 and HybS. However, the known upper bound 2−2L−1 + 2−2L1−4 in HybS
is slightly better than that of Bin2 and Bin3 with 2−2 L−1 + 2−2L1−3.

Remark 5 In the MIP relaxations Bin2, Bin3, and HybS, increasing L1 does not intro-
duce any new binary variables. Therefore, we note that in our computations in Sect. 6
we choose L1 to be significantly larger than L , such that the maximum error depends
primarily on L . As L1 increases to infinity, the maximum errors in all three MIP
relaxations converge to 2−2L−2. �

5.2 Average error andminimizing the average error

In this section, we will study the average error of an MIP relaxation by computing
the volume enclosed by the projected MIP relaxation as an additional measure of its
relaxation quality.

First, we compute the volumes of all presented MIP relaxations. Then we prove
that the uniform discretizations, which are used by definition in each MIP formulation
in this article, are indeed optimal in terms of minimizing the volume of the projected
MIP relaxation if the number of discretization points is fixed (i.e. if L and L1 are
fixed).

In all separable formulations, we use the sawtooth relaxation (11) for equations
of the form z = x2. In [7, Propostion 6], the authors show that the volume of this
relaxation RL,L is 3/16 · 2−2 L . Furthermore, from [7, Proposition 5] it follows that for
any fixed number of breakpoints a uniform discretization minimizes the volume of the
sawtooth epigraph relaxation.

Next, we consider the volumes for the MIP relaxations of z = xy. We start by
showing that Bin2, Bin3 and HybS induce a grid structure in terms of relaxation error
and have constant volumes over the resulting grid pieces. While the grid structure for
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HybS is obvious, we have yet to show it for Bin2 and Bin3. From [5, Table 4], we
further know that for L, L1 → ∞ the z-values in the projected LP relaxation of Bin2
(18) are bounded from below by the convex function CL

2 : [x
¯
, x̄] × [y

¯
, ȳ] → R and

from above by the concave function CU
2 : [x

¯
, x̄] × [y

¯
, ȳ] → R,

CL
2 (x, y) = 1

2
((x + y)2 − (x̄ + x

¯
)x + x̄ x

¯
− (ȳ + y

¯
)y + ȳ y

¯
), (22)

CU
2 (x, y) = 1

2
((x
¯

+ x̄ + y
¯

+ ȳ)(x + y) − (x
¯

+ y
¯
)(x̄ + ȳ) − x2 − y2). (23)

The same holds for Bin3 (19) and the convex and concave functions CL
3 : [x

¯
, x̄] ×

[y
¯
, ȳ] → R and CU

3 : [x
¯
, x̄] × [y

¯
, ȳ] → R,

CL
3 (x, y) = 1

2
(x2 + y2 − (x̄ + x

¯
− ȳ − y

¯
)(x − y) + (x̄ − ȳ)(x̄ − y

¯
)), (24)

CU
3 (x, y) = 1

2
((x
¯

+ x̄)x − x
¯
x̄ + (y

¯
+ ȳ)y − y

¯
ȳ − (x − y)2). (25)

As the upper bound on the z-value in HybS is the same as that for Bin2 and the lower
bound is the same as that for Bin3, the respective projected LP relaxations PLP

L,L1
in

the limit for Bin2, Bin3 and HybS are

[Bin2]: lim
L,L1→∞(projx,y,z(P

LP
L,L1

)) = {(x, y, z) ∈ [0, 1]2 × R :
CL
2 (x, y) � z � CU

2 (x, y)},
(26)

[Bin3]: lim
L,L1→∞(projx,y,z(P

LP
L,L1

)) = {(x, y, z) ∈ [0, 1]2 × R :
CL
3 (x, y) � z � CU

3 (x, y)},
(27)

[HybS]: lim
L,L1→∞(projx,y,z(P

LP
L,L1

)) = {(x, y, z) ∈ [0, 1]2 × R :
CL
3 (x, y) � z � CU

2 (x, y)}.
(28)

In the following discussion, we will let L1 → ∞ in all three formulations. This
simplifies the proofs considerably and is relevant in so far as in our computations we
use a relatively high value of L1 = 10, which has a resulting maximum error below
the standard accuracy of state-of-the-art MIP solvers (10−6) and yet has no influence
on the number of binary variables and uses only O(L1) constraints. Although for
different values of L1 the volumes are different, the hierarchy of MIP relaxations
that we establish is independent of this choice. We start with the volume of the MIP
relaxation HybS.

Proposition 6 Let P IP
(Lx ,Ly),L1

be the MIP relaxation HybS from (21) without the
McCormick inequalities, wherewe nowallow for independent discretization depths Lx

and Ly to overestimate x2 and y2, respectively (i.e. with (x, zx ) ∈ RLx ,L1 and
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(y, zy) ∈ RLy ,L1 ), i.e.

p1 = x + y, p2 = x − y
(x, zx ) ∈ RLx ,L1 (y, zy) ∈ RLy ,L1

(p1, z p1), (p2, z p2) ∈ QL1

1/2(z p1 − zx − zy) � z � 1/2(zx + zy − z p2)
x, y ∈ [0, 1], p1 ∈ [0, 2], p2 ∈ [−1, 1].

Then the volume of P IP
(Lx ,Ly),L1

converges to the same value over each grid piece

of the form [kx2−Lx , (kx + 1)2−Lx ] × [ky2−Ly , (ky + 1)2−Ly ], where kx ∈ �0, 2Lx �
and ky ∈ �0, 2Ly � for L1 → ∞. Furthermore, for the total volume of P IP

(Lx ,Ly),L1
, we

have

lim
L1→∞ vol

(
projx,y,z(P

IP
(Lx ,Ly),L1

)
)

= 1
6 (2

−2Lx + 2−2Ly ).

Proof Since FL1 → x2 uniformly over [0, 1] as L1 → ∞, we have

lim
L1→∞{(p, z p) ∈ [0, 1] × R : (p, z p) ∈ QL1}

= {(p, z p) ∈ [0, 1] × R : (p, z p) ∈ epi[0,1](p2)}

under Hausdorff distance. In HybS, we have (p1, z p1), (p2, z p2) ∈ QL1 (via the
transformation in Remark 1) as well as p1 = x + y and p2 = x − y. Thus, we have
in the limit, as L1 → ∞:

z p1 � (x + y)2 and z p2 � (x − y)2.

Furthermore, since FL(x) � x2 for all x ∈ [0, 1], L ∈ {Lx , Ly}, and (x, zx ) ∈
RLx ,L1 , (y, zy) ∈ RLy ,L1 , we obtain

zx � FLx (x) and zy � FLy (y).

Therefore, the inequality

1/2(z p1 − zx − zy) � z � 1/2(zx + zy − z p2)

from (21) implies the following in the limit:

1/2((x + y)2 − FLx (x) − FLy (y)) � z � 1/2(FLx (x) + FLy (y) − (x − y)2).

Now we apply these inequalities to grid pieces of the form [x
¯
, x̄] × [y

¯
, ȳ]. Let

x
¯
:=kx2−Lx , x̄ :=(kx +1)2−Lx , y

¯
:=ky2−Ly and ȳ:=(ky+1)2−Ly , and definewx :=x̄−

x
¯

= 2−Lx as well as wy :=ȳ − y
¯

= 2−Ly . Then, as FLx (x) = −(x̄ + x
¯
)x + x̄ x

¯
for
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x ∈ [x
¯
, x̄] and FLx (y) = −(ȳ + y

¯
)y + ȳ y

¯
for y ∈ [y

¯
, ȳ], the above bounds on z

are exactly the envelopes CL
2 (x, y) for the lower bound and CU

3 (x, y) for the upper
bound, respectively. Thus, by Proposition 11, which is proved later, the volume of
projx,y,z(P

IP
(Lx ,Ly),L1

) over the grid piece is

1
6 (wxw

3
y + wyw

3
x ) = 1

62
−(Lx+Ly)(2−2Lx + 2−2Ly )

in the limit. Note that this does not depend on the choice of kx and ky (and thus the
choice of grid piece).

Since we have 2Lx L y grid pieces overall, the total volume in the limit is then given
by

lim
L1→∞ vol(projx,y,z(P

IP
(Lx ,Ly),L1

)) = 2Lx L y2−(Lx+Ly)(2−2Lx + 2−2Ly )

= 1
6 (2

−2Lx + 2−2Ly ).

which finishes the proof. ��
The following proposition establishes the volumes of the MIP relaxations and grid
structure for the MIP relaxations Bin2 and Bin3. As this derivation is extensive, we
prove it in Appendix C.

Proposition 7 Let P IP
L,L1

be either theMIP relaxationBin2 from (18)or Bin3 from (19).
Then the volume of P IP

L,L1
converges to the same value over each grid piece of the

form [k2−(L−1), (k + 1)2−(L−1)] × [k2−(L−1), (k + 1)2−(L−1)], where k ∈ �0, 2L�.
Furthermore, for the total volume we have

lim
L1→∞ vol

(
projx,y,z(P

IP
L,L1

)
) = 1

22
−2L .

Now that we have calculated the average error, i.e. the volume of the MIP relaxations,
for uniform breakpoints, we show that among all possible breakpoint choices, uniform
placement of breakpoints minimizes the average error. For z = x2 and the sawtooth
functions, this has already been shown in [7]; for equations z = xy it still has to be
shown. We prove average error minimization for uniform breakpoint placement in
HybS and do not consider the formulations Bin2 and Bin3 here, as they are hard to
analyze in this respect, which is also mentioned in [5] for approximations. In Propo-
sition 6, we have shown that HybS has a grid structure where on each grid piece, the
average error is 1

6 (wxw
3
y + wyw

3
x ), where wx and wy are the widths of the grid piece

in x- and y-direction respectively. In the following, we consider a piecewise relaxation
defined via these grid pieces and show that the total average error is minimized by a
uniform breakpoint placement, as is the result of HybS.

Proposition 8 Let 0 = x0 < x1 < . . . < xn = 1 and 0 = y0 < y1 < . . . < ym = 1 be
sets of breakpoints. For each grid piece [xi−1, xi ] × [y j−1, y j ], consider a relaxation
of gra[0,1]2(xy) with average error 1

6 (wxiw
3
y j + wy jw

3
xi ), where wxi :=xi − xi−1 and

wy j :=y j − y j−1 are the widths of the grid piece with i ∈ �n� and j ∈ �m�. Then a
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uniform spacing of these breakpoints minimizes the average error overall piecewise
relaxations of this form.

Proof The problem of minimizing the average error of a piecewise relaxation of this
form can be formulated as

min 1
6

∑n
i=1

∑m
j=1(wxi w

3
y j + wy jw

3
xi )

s.t.
∑n

i=1wxi = 1∑m
j=1wy j = 1

wxi � 0 i = 1, . . . , n
wy j � 0 j = 1, . . . ,m.

(29)

The objective function in (29) sums the average errors over the single grid pieces while
the constraints ensure that all single grid lengths sum up to 1 and are greater than or
equal to 0. The objective function can be rewritten to

1
6

n∑

i=1

m∑

j=1

(wxi w
3
y j + wy jw

3
xi )

= 1
6

⎛

⎝
n∑

i=1

m∑

j=1

(wxiw
3
y j ) +

n∑

i=1

m∑

j=1

(wy j w
3
xi )

⎞

⎠

= 1
6

⎛

⎝
n∑

i=1

wxi

m∑

j=1

w3
y j +

m∑

j=1

wy j

n∑

i=1

w3
xi

⎞

⎠

= 1
6

⎛

⎝1 ·
m∑

j=1

w3
y j + 1 ·

n∑

i=1

w3
xi

⎞

⎠

= 1
6

m∑

j=1

w3
y j + 1

6

n∑

i=1

w3
xi .

Thus, (29) decomposes into two independent problems where the respective optimal
solutions x∗ and y∗, can be composed to create (x∗, y∗), which is optimal for the
original problem (29). The subproblems are

min
∑n

i=1 w3
xi

s.t.
∑n

i=1 wxi = 1
wxi � 0 i = 1, . . . , n

(30)

and

min
∑m

j=1 w3
y j

s.t.
∑m

j=1 wy j = 1
wy j � 0 j = 1, . . . ,m.

(31)
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These are exactly the sawtooth-area optimization problems from [7, Proposition 5],
such that a uniform placement of the breakpoints where each wxi = 1

n is optimal for
(30), and wy j = 1

m is optimal for (31). Consequently, a uniform placement of grid

points is optimal for (29) and the total volume is 1
6 (

1
m2 + 1

n2
). ��

Remark 6 Let P IP
L,L be a depth-L HybSMIP relaxation of gra[0,1]2(xy) from (21), with

L = L1. Since P IP
L,L satisfies the uniform spacing of breakpoints discussed in Proposi-

tion 8, we see that P IP
L,L is an optimal piecewise relaxation in the sense of minimizing

the average error, attaining the average error of Eavg(P IP
L,L , gra[0,1]2(xy)) = 1

32
−2 L .

�

5.3 Formulation strength

In the previous section, we discussed the maximum and average errors incurred from
using certain discretizations. We will now consider the strength of the resulting MIP
relaxations by analyzing their LP relaxation. First, we will check for sharpness and
later compare them via the volume of the projected LP relaxation. Sharpness means
that the projected LP relaxation equals the convex hull of the set to be formulated. If we
now consider the volume of a projected LP relaxation, it can minimally be the volume
of the convex hull, which precisely holds if the formulation is sharp. If a formulation is
not sharp, the volume of the projected LP relaxationmeasures howmuch a formulation
deviates from sharpness. The volume of LP relaxation as a measure of formulation
strength was previously used in [5].

5.3.1 Sharpness

We start with the core formulations from Sect. 3. It is well known that the McCormick
relaxation yields the convex hull of the feasible set of z = xy over box domains.
Therefore, it is obviously sharp. In [7], it is shown that the sawtooth approximation
for z = x2 is sharp. We use this result to prove that sharpness also holds for the
tightened sawtooth relaxation (16). See Fig. 4 for examples of this relaxation under
different parameter choices.

Theorem 1 (Sharpness of the tightened sawtooth relaxation) Consider the tightened
sawtooth relaxation P IP

L,L1
described in (16) in the space of (x, z, g,α) for L, L1 ∈ N

with L � L1. The MIP relaxation P IP
L,L1

is sharp.

Proof sketch Define

P IP+
L,L1

:={(x, z, g,α) ∈ [0, 1] × R × [0, 1]L1+1 × {0, 1}L : (17b, 17c, 17a),

P IP−
L,L1

:={(x, z, g,α) ∈ [0, 1] × R × [0, 1]L1+1 × {0, 1}L : (17b, 17c, 17d, 17 f )}.

Then P IP
L,L1

is sharp if and only if both P IP+
L,L1

and P IP−
L,L1

are sharp. This simplification

holds since P IP
L,L1

= P IP+
L,L1

∩ P IP−
L,L1

and since the upper bound P IP+
L,L1

strictly overesti-

mates x2, while the lower bound, P IP−
L,L1

strictly underestimates x2, such that sharpness
of the two can be considered separately.
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Now, the sharpness of P IP+
L,L1

follows directly from the sharpness of the sawtooth

approximation (10), which holds by [7, Theorem 1]. For the sharpness of P IP−
L,L1

, the
proof closely follows the proof of sharpness in [7, Theorem 1], except that, after
choosing some fixed x ∈ [0, 1], we frame the contradiction as follows:

1. Choose g∗ as in [7, Theorem 1], and choose the minimum possible value of z∗
given g∗, such that z∗ attains one of its lower bounds.

2. Observe that the chosen solution admits a feasible solution in P IP
L,L1

, such that if it
is minimal in the LP, then we are done.

3. Suppose for a contradiction that there exists a better z-minimal solution (ẑ, ĝ) than
the proposed solution (z∗, g∗), such that some incident lower bound must have
been improved.

4. Observe that the improved incident lower bound must be of the form z �
f j (x, g∗) − 2−2L−2 for some j � 0, as the lower bounds 0 and 2x − 1 do not
change with the choice of g∗. Thus, f j (x, g∗) − 2−2 L−2 � f j (x, ĝ) − 2−2 L−2

5. Show that f j (x, ĝ)− f j (x, g∗) < 0, a contradiction on the choice of (ŷ, ĝ). Thus,
the solution (z∗, g∗) was optimal to begin with, and therefore sharpness must hold.

The proof that f j (x, g∗) − f j (x, g∗) < 0 follows in exactly the same manner as [7,
Theorem 1] and is thus omitted here. ��

In [7], besides sharpness, it is further shown that the sawtooth approximation is also
hereditarily sharp. The following theorem states that the same is true for the tightened
sawtooth relaxation (16) and z = x2.

Theorem 2 The tightened sawtooth relaxation for z = x2 is hereditarily sharp.

As the proof of Theorem 2 takes up a significant amount of space, we moved it to
Appendix B.

Next, we show that neither of the MIP relaxations Bin2, Bin3 nor HybS for z = xy
are sharp. That is, their projectedLP relaxation does not equalM(x, y) for any L, L1 ∈
N. Note that we have included the McCormick inequalities in the definitions of Bin2,
Bin3 and HybS to make the formulations stronger. The following proofs, however,
refer to the fact that if one omits the McCormick inequalities in these formulations,
then they are not sharp. Together with the McCormick inequalities, of course, they are
sharp trivially.

Proposition 9 Let P IP
L,L1

be the MIP relaxation HybS for z = xy stated in (21). Then,
without the inequalities from the McCormick envelope M(x, y), P IP

L,L1
is not sharp

for any L, L1 ∈ N.

Proof Without the McCormick envelope, the HybS MIP relaxation P IP
L,L1

, and its
LP-relaxation PLP

L,L1
, become strictly tighter as either L or L1 increases. Thus, we

have

projx,y,z(P
LP
L,L1

) ⊇ lim
L,L1→∞ projx,y,z(P

LP
L,L1

)

and

conv(projx,y,z(P
IP
1,1)) ⊇ conv(projx,y,z(P

IP
L,L1

)) for any L, L1 ∈ N.

123



Enhancements of discretization approaches for non-convex… 861

We now show
(
limL,L1→∞ projx,y,z(P

LP
L,L1

)
)

\ conv(projx,y,z(P IP
1,1)) 	= ∅, which

implies projx,y,z(P
LP
L,L1

)\ conv(projx,y,z(P IP
L,L1

)) 	= ∅, such that P IP
L,L1

is not sharp
for any L, L1 ∈ N. The argument works in the following manner:

projx,y,z(P
LP
L,L1

) \ conv(projx,y,z(P IP
L,L1

))

⊇
(

lim
L,L1→∞ projx,y,z(P

LP
L,L1

)

)
\ conv(projx,y,z(P IP

1,1)) 	= ∅
⇒ projx,y,z(P

LP
L,L1

) \ conv(projx,y,z(P IP
L,L1

)) 	= ∅
⇒ projx,y,z(P

LP
L,L1

) 	= conv(projx,y,z(P
IP
L,L1

)).

To this end, we show that there exist points (x, y, z) ∈ limL,L1→∞ projx,y,z(P
LP
L,L1

)

with (x, y, z) /∈ projx,y,z(P
IP
1,1). Observe that, for any L , the point (x, x) is feasible

within the LP relaxation of the tightened sawtooth relaxation (16) for x2, with αi =
gi−1, gi = 0. Thus, for all L, L1 � 0 and for all x̂, ŷ ∈ [0, 1]2, we have that PLP

L,L1
,

and thus also its limit limL,L1→∞ projx,y,z(P
LP
L,L1

), admits the values zx = x̂, zy = ŷ

and z p1 = (x̂ + ŷ)2. Therefore, for (x, y) = (0, 1
4 ), we obtain

z = 1
2 ((x + y)2 − x − y) = − 3

16 ,

such that (0, 1
4 ,− 3

16 ) ∈ PLP∞,∞.
Next, in order to prove (0, 1

4 ,− 3
16 ) /∈ conv(projx,y,z(P

IP
1,1)), we show min{z :

(y, z) ∈ projy,z(P
IP
1,1|x=0)} = − 1

8 . If this holds, then we have min{z : (y, z) ∈
conv(projy,z(P

IP
1,1|x=0))} = − 1

8 , such that (0, 1
4 ,− 3

16 ) /∈ conv(projx,y,z(P
IP
1,1)). We

derive a representation of projy,z(P
IP
1,1|x=0) that becomes an LP after branching spa-

tially at y = 1
2 to resolve the upper bound on zy . We then minimize z over both

branches via solving an MIP.
Let x = 0. Then the bounds on z, zx , zy, z p1 within projx,y,z(P

IP
1,1) are

zx � 0, zy � y − 1
4 min{2y, 2(1 − y)} = max{ y2 ,

3y−1
2 }

z p1 � 4
( y
2 − 1

4 min{2 y
2 , 2(1 − y

2 ) − 1
16 }

) = max{y − 1
4 , 3y − 9

4 }
z p1 � 4( y2 − 1

4 ) = 2y − 1

z p1 � 0

z p1 � 4(2 y
2 − 1) = 4(y − 1)

z � z p1 − zx − zy
y ∈ [0, 1].

Note that the two pieces of the upper bound on zy meet at y = 1
2 . Using this to

separatelyminimize z over the above set, once over y ∈ [0, 1
2 ] andonceover y ∈ [ 12 , 1],

e.g. using an MIQCQP solver, we obtain two globally minimizing solutions with
z = − 1

8 , namely at y = 1
4 and at y = 3

4 . Thus, we conclude that (0, 1
4 ,− 3

16 ) /∈
conv(projx,y,z(P

IP
1,1)), such that P IP

L,L1
is not sharp for any 1 � L � L1. ��
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Proposition 10 Let P IP
L,L1

be either of the two MIP relaxations Bin2(18) or Bin3(19).
Then, without the inequalities from the McCormick envelope M(x, y), P IP

L,L1
is not

sharp for any L, L1 ∈ N.

Proof Since Bin2 (18) has the same lower-bounding constraints as HybS, the proof
follows directly from Proposition 9. Moreover, for Bin3 (19), the proof follows in
exactly the same way as the proof of Proposition 9, except for the upper-bounding
version of the same point, (x, y, z) = (0, 1

4 ,
3
8 ), and acting on the upper-bounding

constraints from (21) and maximizing z instead. As the proof is very similar, with the
corresponding upper bound z = 1

8 on projy,z(P
IP
1,1|x=0), we omit it here. ��

5.3.2 LP relaxation volume

Having proved that none of the separable MIP relaxations is sharp, which implies that
they are also not hereditarily sharp, we now turn to consider the volume of projected
LP relaxations.

For L = L1, the volume for the tightened sawtooth formulation (7) is 3
162

−2L ,which
has been shown in [7]. For general L1, by integrating over the overapproximation and
underapproximation errors separately with the same analysis as in [7], we can derive
a general volume of 1

62
−2 L + 1

482
−2L1 . We omit the precise calculation here.

In our analysis of the separable MIP relaxations, we only consider the limits for
L, L1 → ∞. This allows us to evaluate the volumes independently of the underlying
discretizations. For the additional volumes resulting from discretization errors, we
refer to [7, Appendix], where the volume over the error function of the sawtooth
approximation is given. We start with HybS.

Proposition 11 Let PLP
L,L1

be the LP relaxation of the MIP relaxation HybS
stated in (21) over the general domain [x

¯
, x̄] × [y

¯
, ȳ]. Without the McCormick

envelope constraints, the volume of the limit of the projected LP relaxation
limL,L1→∞ projx,y,z(P

LP
L,L1

) is 1
6 (wxw

3
y+wyw

3
x ), wherewx = x̄−x

¯
andwy = ȳ− y

¯
.

Proof The z-values in the projected LP relaxation of (21) are bounded by the convex
function CL

2 and the concave function CU
3 , which are stated above in (22) and (25),

respectively. The volume of the projected LP relaxation (21) is then calculated via
integration: ∫ x̄

x
¯

∫ ȳ

y
¯

(CU
3 (x, y) − CL

2 (x, y))dydx = 1
6 (wxw

3
y + wyw

3
x ).

��
Proposition 12 Let PLP

L,L1
be the LP relaxation of either the MIP relaxation Bin2 or

Bin3 stated in (18) and (19) over the domain [x
¯
, x̄] × [y

¯
, ȳ]. Without the McCormick

envelope constraints, the volume of the limit of the projected LP relaxation is

lim
L,L1→∞ vol(projx,y,z(P

LP
L,L1

)) = 1

12
wxwy(2w

2
x + 3wxwy + 2w2

y),

where wx = x̄ − x
¯
and wy = ȳ − y

¯
.
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Proof The z-values in the projected LP relaxation of (18) and (19) are bounded by
the convex function CL

2 and the concave function CU
3 , which are stated above in (22)

and (25), respectively. The volume calculation is then done via integration:

∫ x̄

x
¯

∫ ȳ

y
¯

(CU
3 (x, y) − CL

3 (x, y))dydx =
∫ x̄

x
¯

∫ ȳ

y
¯

(CU
2 (x, y) − CL

2 (x, y))dydx

= 1

12
wxwy(2w

2
x + 3wxwy + 2w2

y).

��
We use Proposition 11 and Proposition 12 to prove that HybS yields strictly tighter
LP relaxations than Bin2 and Bin3.

Proposition 13 Without the McCormick envelope constraints, the LP relaxation of the
MIP relaxation HybS in the limit as L, L1 → ∞ is strictly tighter than that of Bin2
or Bin3. Moreover, the volume of the projected LP relaxation of formulation HybS in
the limit as L, L1 → ∞ is smaller by 1

4w
2
xw

2
y .

Proof In [5, Appendix, Proposition 2] it has been shown that CL
2 is a tighter convex

underestimator than CL
3 and that CU

3 is a tighter concave overestimator than CU
2 for

z = xy. Thus, since the HybS approach converges to CL
2 as an underestimator

and CL
3 as an overestimator, it is strictly tighter than either of Bin2 or Bin3. The

volume calculation can again be done via integration:

∫ x̄

x
¯

∫ ȳ

y
¯

(CU
2 (x, y) − CL

2 (x, y))dydx −
∫ x̄

x
¯

∫ ȳ

y
¯

(CU
3 (x, y) − CL

2 (x, y))dydx

=
∫ x̄

x
¯

∫ ȳ

y
¯

(CU
3 (x, y) − CL

3 (x, y))dydx −
∫ x̄

x
¯

∫ ȳ

y
¯

(CU
3 (x, y) − CL

2 (x, y))dydx

= 1

4
w2
xw

2
y > 0.

��

6 Computational results

In the previous sections, we have shown the theoretical advantages of HybS compared
toBin2 and Bin3,most importantly that it requires fewer binary variables tomodelMIP
relaxations of variable products with the same accuracy. As the density of quadratic
matrices inMIQCQPs increases, this advantage becomes larger, leading to amaximum
of O(n) binary variables for HybS and O(n2) binary variables for Bin2 and Bin3;
see Table 1. In general, the number of binary variables of an MIP relaxation is crucial
for its solution time. Hence, the theoretical results suggest that the HybS formulation
yields MIP relaxations that are faster to solve than the Bin2 and Bin3 relaxations.
Consequently, shorter run times or better primal and dual bounds after certain run time
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limits can be expected. To analyze these MIP relaxations for z = xy, it is preferable to
use a model for the x2 terms that requires as few binaries as possible. Otherwise, the
impact of fewer binaries for HybS might not be that noticeable, since the difficulty of
the various MIP models might then be more determined by the MIP formulations of
the x2 terms. The sawtooth relaxation does exactly that with its logarithmic number of
binary variables. Furthermore, we proved that it is also a hereditary sharp formulation.
In the computational study, we first compare both run times and dual bounds of the
MIP relaxations. MIP relaxations are primarily used to deliver dual bounds for the
MIQCQPs. The best dual bound of an MIP relaxation is then a valid dual bound for
theMIQCQP. However, with increasing accuracy of the relaxations, the solution times
also increase. Therefore, both the run time (for coarser relaxations) and the best dual
bounds (for finer relaxations) are important measures if we want to compare different
MIP relaxations with the same accuracy.

Complementary to this, in a second part of the study we investigate to what extent
theMIP solutions can serve as a starting point to find feasible solutions to theMIQCQP.
A common heuristic approach is to fix any integer variables from the original problem
according to the MIP solution and solve the resulting QCQP to local optimality. The
starting points of the continuous variables of the original problem again correspond to
the values of the MIP solution. As before, our theoretical results imply that the HybS
relaxations are generally more likely to findMIP solutions after certain run time limits
due to the smaller number of binary variables. Presumably, this translates to a higher
probability of finding feasible solutions to the MIQCQP using the heuristic approach.
In detail, we solve MIP relaxations using either HybS, Bin2, or Bin3 in combination
with the sawtooth relaxation using Gurobi [28] and a callback function that uses the
non-linear programming (NLP) solver IPOPT [41] to find local optimal solutions for
the QCQP.

All instances were solved in Python 3.8.3, via Gurobi 9.5.1 and IPOPT 3.12.13 on
the ‘Woody’ cluster, using the “Kaby Lake” nodes with two Xeon E3-1240 v6 chips
(4 cores,HTdisabled), running at 3.7GHZwith 32GBofRAM.Formore information,
see the Woody Cluster Website of Friedrich-Alexander-Universität Erlangen-Nürn-
berg. The global relative optimality tolerance in Gurobi was set to the default value of
0.01%, for all MIPs and MIQCQPs.

6.1 Study design

In the following, we explain the design of our study and go into detail regarding the
instance set as well as the various parameter configurations.
Instances. We consider a three-part benchmark set of 60 instances: 20 non-convex
boxQP instances from [7, 17, 22] and earlier works, 20 AC optimal power flow
(ACOPF) instances from the NESTA benchmark set (v0.7.0) (see [18]), previously
used in [2], and 20 MIQCQP instances from the QPLIB [24]. In Appendix D links
that contain download options and detailed descriptions of the instances can be found.
For an overview of the IDs of all instances, see Table 8. The benchmark set is equally
divided into 30 sparse and 30 dense instances. We call an instance dense if either the
objective function and/or at least one quadratic function in the constraint set is of the
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Table 2 In the study, we consider the parameters cuts, depth, and formulation on 60 MIQCQP instances
and thus solve (2 · 4) · 3 · 60 = 1440 MIP relaxations

Depth Formulation Instances

L = 1, 2, 4, 6 Bin2 boxQP (20 instances)

L1 = L Bin3 ACOPF (20 instances)

Tightened HybS QPLIB (20 instances)

L = 1, 2, 4, 6

L1 = max{2, 1.5L}

Table 3 Maximum error for
different values of L

HybS Bin2/Bin3

L = 1 2e−02 3e−02

L = 2 5e−03 8e−03

L = 4 3e−04 5e−04

L = 6 2e−05 3e−05

form x�Qx, where x ∈ R
n are all variables of the problem and Q ∈ R

n,n is a matrix
with at least 25% of its entries being nonzero.
Parameters. For each instance, we solve the resulting MIP relaxation of each method
from Sect. 4 using various approximation depths of L ∈ {1, 2, 4, 6} and a time limit
of 8h. In Sect. 6.1, we have listed the maximum errors associated with each L , which
are derived from the values in Table 1. All sawtooth and separable MIP relaxations
are solved once with L1 = L and once with a tightened underestimator version for
univariate quadratic terms where L1 = max{2, 1.5L}. This tightening is done as
described in Definition 7 by adding linear cuts and without introducing further binary
variables. In the separable methods HybS, Bin2, and Bin3 this leads to a tightening
of the relaxation of z = xy terms as well as of z = x2 terms in the original MIQCQP.
We refer to the tightened MIP relaxations as T-HybS, T-Bin2, and T-Bin3. Table
2 gives an overview of the different parameters in our study. In total, we have 24
parameter configurations for 60 original problems, which means that we solve 1440
MIP instances. In Table 3, we list the maximum error in our different models under
changing L.
Callback function. Solving all MIP relaxations, we use a callback function with
the local NLP solver IPOPT that works as follows: given any MIP-feasible solution,
the callback function fixes any integer variables from the original problem (before
applying any of the discretization techniques from this work) according to this solution
and then solves the resulting QCCP, the original MIQCQP with fixed binaries, locally
via IPOPT in an attempt to find a feasible solution for the original MIQCQP problem.

6.2 Number of binaries

In advance of the results of the study, we provide another table that shows, how many
binary variables can be saved relatively with HybS compared to Bin2 and Bin3. In
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Table 4 Average number of binary variables per instance and the relative percentage of binary variables in
HybS models compared to those of Bin2 and Bin3

Sparse Dense
Bin2/Bin3 HybS rel (%) Bin2/Bin3 HybS rel (%)

L=1 318 231 72.8 987 61 6.2

L=2 579 406 70.2 1972 119 6.1

L=4 1102 756 68.6 3942 236 6.0

L=6 1625 1106 68.0 5912 352 6.0

Table 4 we specify how many variables occur on average with each method in the
MIP relaxation models. Apart from a few original variables of the MIQCQPs, the
main part of the binary variables comes from the MIP relaxations of quadratic terms.
Since Bin2 and Bin3 require exactly the same number of binary variables for each
univariate or bivariate MIP relaxation, only Bin2 is listed in Table 4. The table shows
that HybS requires close to two-thirds of the binary variables on the sparse instances.
The difference is much greater on the dense instances, where HybS requires only
nearly 6% of the binary variables of Bin2 and Bin3. Both numbers are in line with our
theoretical findings. Assuming, we had an MIQCQP instance with only one variable
product xi x j and we would set L = 1, then there would be three binary variables
each for Bin2 and Bin3, while we would need only two for HybS. The fact that this
effect is significantly stronger for dense instances stems from the quadratic increase of
binary variables in dense matrices for Bin2 and Bin3 compared to the linear increase
for HybS.

6.3 Results

In the following, we present the results of our study at a detailed level. In particular,
we aim to answer the following questions regarding run times, dual bounds, and the
ability to find feasible solutions for the MIQCQPs:

– Is our enhanced method HybS computationally superior to its predecessors Bin2
or Bin3?

– Is it beneficial to use tightened versions of the MIP relaxations HybS, Bin2, and
Bin3, i.e., to choose L1 > L?

We point out that in Part II of this work, we also present a more detailed comparison
with different MIP relaxation methods and the state-of-art MIQCQP solver Gurobi.

6.3.1 Run times

We start with a discussion on the run times for the different methods. Here, we use
the shifted geometric mean, which is a common measure for comparing two different
MIP-based solution approaches. The shifted geometric mean of n numbers t1, . . . , tn
with shift s is defined as

( ∏n
i=1(ti + s)

)1/n − s. It has the advantage that it is neither
affected by very large outliers (in contrast to the arithmetic mean) nor by very small
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Table 5 Shifted geometric mean for run times on all instances

Bin2 T-Bin2 Bin3 T-Bin3 HybS T-HybS

All

L = 1 74.62 95.53 74.67 96.69 31.00 44.55

L = 2 174.87 265.15 271.16 265.70 67.62 77.07

L = 4 940.70 895.52 754.62 895.13 172.59 395.29

L = 6 1301.88 1485.40 1104.60 1484.55 455.38 859.92

Sparse

L = 1 40.47 42.10 39.59 42.91 33.66 48.78

L = 2 63.64 81.66 93.12 81.88 62.65 66.49

L = 4 362.13 367.90 297.24 367.98 154.53 253.81

L = 6 499.46 602.40 487.41 601.63 380.29 441.66

Dense

L = 1 236.27 443.88 245.83 444.68 26.01 36.77

L = 2 1020.66 2131.53 1818.35 2134.26 77.82 100.90

L = 4 3872.15 3348.79 2991.87 3344.09 203.47 761.74

L = 6 4850.41 5137.58 3396.35 5139.58 583.77 2145.94

Bold values indicate the best run time in each row

outliers (in contrast to the geometric mean). We use a typical shift s = 10. Moreover,
we only include those instances in the computation of the shifted geometric mean,
where at least one solution method delivered an optimal solution within the run time
limit of 8 hours.

In Table 5, the shifted geometric mean values of the run times for solving the
separable MIP relaxations on all instances are given. Here, HybS clearly outperforms
all other methods, including its tightened variant T-HybS. HybS is at least a factor of
two faster than (T-)Bin2 and (T-)Bin3. Tightening HybS, Bin2, and Bin3 results in
comparable but slightly higher run times for Bin2 and Bin3 and partially in notably
higher run times for HybS, e.g. by a factor of more than two in case of L = 4.

For sparse instances, the same picture emerges, although the benefit of HybS is
not as great as before, see the second block in Table 5. Conversely, the advantage of
HybS increases dramatically for dense instances. Here, HybS is at least a factor of
five faster than (T-)Bin2 and (T-)Bin3, see the third block in Table 5. Tightening the
three methods again leads to mostly slightly higher run times for Bin2 and Bin3 and
to considerably higher run times for HybS.

6.3.2 Dual bounds

Asmentioned before,MIP relaxations are primarily used to deliver (tight) dual bounds
for MIQCQPs. Thus, we now compare the tightness of the dual bounds provided by
the various methods. To this end, we compute relative optimality gaps gp,s :=|dp,s −
bp|/|bp| for all methods s (with a certain L value) and instances p of the benchmark
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Table 6 Arithmetic (left) and geometric (right) mean of relative optimality gaps (in %) on all instances for
separable MIP relaxations

BIN2 T-BIN2 BIN3 T-BIN3 HybS T-HybS

All

L = 1 65.04/8.39 47.32/8.84 46.35/8.35 47.33/8.84 46.13/7.94 46.04/7.57

L = 2 45.99/7.92 37.35/7.32 36.65/6.67 37.36/7.32 33.07/4.96 32.33/4.50

L = 4 45.07/4.36 40.86/4.04 35.53/4.24 51.89/4.08 24.84/1.81 31.42/1.90

L = 6 48.42/2.53 45.53/2.80 41.84/2.75 57.68/2.81 32.97/1.05 53.75/1.83

Sparse

L = 1 24.30/14.34 23.30/13.50 23.73/13.88 23.30/13.50 23.85/14.01 23.53/13.70

L = 2 21.11/11.39 20.33/10.44 20.78/10.87 20.33/10.43 21.21/11.52 20.39/10.36

L = 4 15.18/3.06 14.90/2.08 14.92/2.45 14.87/2.08 14.93/2.19 15.04/2.13

L = 6 11.23/0.93 12.09/0.84 12.41/0.89 12.07/0.83 10.91/0.72 11.65/0.74

Dense

L = 1 105.77/4.90 71.34/5.78 68.98/5.03 71.37/5.79 68.40/4.50 68.56/4.19

L = 2 70.88/5.50 54.36/5.13 52.52/4.09 54.40/5.13 44.94/2.14 44.28/1.96

L = 4 74.97/6.22 66.82/7.84 56.14/7.36 88.92/8.02 34.76/1.49 47.80/1.69

L = 6 85.61/6.89 78.97/9.34 71.27/8.54 103.28/9.51 55.04/1.52 95.86/4.56

Bold values indicate the best run time in each row

set, where dp,s is the corresponding best dual bound found by method s and bp is the
best-known primal bound for instance p.

Table 6 shows the arithmetic and geometric means of the relative optimality gaps
for all 60 instances. Please note that we rounded each gap below 0.0001 to avoid
multiplications by 0 for the geometric mean. First, the arithmetic mean decreases with
higher L values but then starts to increase again. This pattern indicates the presence
of more outliers with higher L values, leading to inconsistencies in the arithmetic
mean. On the other hand, the geometric mean shows a tendency that with higher L
values, we can expect tighter dual bounds for the considered instances. This trend is
more consistent and reflects a more balanced view of overall performance. HybS often
achieves the lowest geometric mean values, which indicates its superior performance.
In summary, the geometric means in Table 6 emphasize the effectiveness of higher L
values for tighter dual bounds, with HybS standing out as a particularly strong method
based on the considered data. Comparing the tightened versions (T-Bin2, T-Bin3, and
T-HybS) with their non-tightened counterparts, the results are mixed. The tightened
versions yield similar optimality gaps, with some showing slightly better and others
slightly worse performance depending on different L values. However, there is no
clear trend, suggesting that there is generally no advantage to tightening the methods.

Dividing the benchmark set into sparse and dense instances, gives a similar picture
for dense instances as on the full benchmark set, see the third block inTable 6.However,
a different trend can be seen for sparse instances in Table 6. Here, for higher L values,
both the arithmetic and geometric means consistently decrease, while HybS again
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Fig. 7 Performance profiles to dual bounds of separable MIP relaxations on all instances

outperforms Bin2 and Bin3. In contrast to the full benchmark set, the tightening is
now slightly beneficial for all three methods.

Additionally, we provide performance profile plots as proposed by Dolan andMore
[20] to illustrate the scaling of the dual bounds, see Figs. 7, 8 and 9. The intention here
is to obtain a more sophisticated picture of how the various methods perform if we
allow the dual bounds to lie within a given factor of the best overall dual bound. The
performance profiles work as follows: Let dp,s again be the best dual bound obtained
byMIP relaxation s for instance p after a certain time limit.With the performance ratio
rp,s :=dp,s/mins dp,s , the performance profile function value P(τ ) is the percentage
of problems solved by approach s such that the ratios rp,s are within a factor τ ∈ R

of the best possible ratios. All performance profiles are generated with the help of
Perprof-py by Siqueira et al. [38]. In addition to the performance profiles across all
instances, we also show performance profiles for the dense and sparse subsets of the
instance set. Please note that in minimization problems, the higher the value of a dual
bound, the better it is. Since lower values are considered better in performance profiles,
we simply take the inverse of the dual bound as the value to be compared.

In Fig. 7 the performance profiles of the separable MIP relaxations with regard to
dual bounds using all instances can be seen. Starting with L = 2, the newly introduced
methods HybS and T-HybS deliver significantly better dual bounds. Except for L = 2,
where T-HybS dominates HybS, we do not obtain better dual bounds by tightening the
separable MIP relaxations. With L = 4 and L = 6, HybS yields dual bounds that are
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Fig. 8 Performance profiles to dual bounds of separable MIP relaxations on sparse instances

within a factor 1.05 of the overall best bounds among separable MIP relaxations for
nearly all instances. The other methods require a corresponding factor of at least 1.2.
In Figs. 8 and 9, we divide the benchmark set into sparse and dense instances again
to obtain a more in-depth look at the benefits of HybS. For sparse instances, using
HybS and T-HybS has no clear advantage, as Fig. 8 shows. However, with L = 1 and
L = 2, the tightened variants deliver notably better dual bounds. For L = 1, the dual
bounds computedwith T-Bin2 and T-Bin3 are in almost all cases the overall best-found
bounds. Their counterparts Bin2 and Bin3 are only able to provide the overall best
bounds for about 50% of the instances. For L = 2, we see a similar picture. T-Bin2
and T-Bin3 deliver the best bounds for roughly 80% of the instances, while Bin2 and
Bin3 achieve this only in 40% of the cases.

For dense instances, the picture is much clearer. Here, HybS and T-HybS are con-
siderably better than Bin2, Bin3, and their tightened variants, particularly from L = 2
to L = 6; see Fig. 9. With L = 2, HybS and T-HybS are able to compute dual bounds
that are within a factor 1.05 of the overall best bounds for nearly all instances. All
other methods require a corresponding factor of more than 1.2. For L = 4 and L = 6,
we obtain by HybS the best overall bounds for roughly 90% of all instances, while all
other approaches provide the best bounds for less than 50% of the instances. With the
exception of L = 2, where tightening HybS results in slightly better dual bounds, the
tightened versions of the separable MIP relaxations attain significantly weaker dual
bounds than their corresponding counterparts.
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Fig. 9 Performance profiles to dual bounds of separable MIP relaxations on dense instances

6.3.3 Feasible solutions

Finally, we highlight some important results on primal bounds. Table 7 gives the
number of feasible solutions that the separable MIP methods were able to find in
combination with IPOPT as the local QCQP solver. The quality of the correspond-
ing solutions is computed in terms of relative optimality gaps, where we used the
best-known dual bounds from the literature or computed them using Gurobi and our
methods. Regarding the ability to find feasible solutions, all separable methods per-
formquite similarly and findmore feasible solutionswith higher L values.With L = 6,
HybS in combination with IPOPT is able to compute feasible solutions to the original
MIQCQP for 51 out of 60 benchmark instances, 43 of which have a relative optimality
gap below 1% and 40 of which are even globally optimal, i.e., which have a gap below
0.01%. All in all, HybS offers a slight advantage in terms of finding feasible solutions
when coupled with IPOPT.

6.4 Discussion

All in all, the clear winner among the separable methods is HybS. For large L values,
HybS provides the best bounds, the shortest run times, and finds in combination with
IPOPT the most and best feasible solutions for the original MIQCQP instances. This

123



872 B. Beach et al.

Table 7 Number of feasible solutions found with different relative optimality gaps

Bin2 T-Bin2 Bin3 T-Bin3 HybS T-HybS

L = 1 23/29/39 24/31/38 29/33/40 24/31/38 31/33/40 30/33/43

L = 2 28/32/39 33/33/38 32/35/43 33/33/38 32/37/44 32/36/42

L = 4 39/42/51 35/40/48 38/41/49 35/40/48 41/44/50 38/44/49

L = 6 40/43/46 37/42/45 39/42/47 37/42/46 40/43/51 38/43/50

Bold values indicate the best run time in each row
The first number corresponds to a gap of less than 0.01%, the second to a gap of less than 1% and the third
number indicates the number of feasible solutions

advantage is especially noticeable on dense instances and consistent with the theo-
retical findings from Sect. 5. While in HybS the number of binary variables increases
linearly in the number of variable products, it increases quadratically in Bin2 and Bin3.
On the one hand, this results in short run times for the HybS models or better bounds
after certain run time limits. On the other hand, with significantly fewer binaries we
are more likely to find feasible solutions for the MIP relaxations. As the accuracy
increases, the MIP relaxations lead to solutions with smaller and smaller MIQCQP
feasibility violations. Therefore, at higher L values, we are more likely to find an
MIQCQP feasible solution using the heuristic IPOPT approach, which coincides with
Table 7.

Furthermore, based on the computational results, a tightening of the separablemeth-
ods is not advisable, except for sparse instanceswith small L values. This ismost likely
due to the large number of additional constraints that are needed to underestimate p21
and p22; see Table 1.

In Part II of this work, we revisit the idea of tightening MIP relaxations for the
normalized multiparametric disaggregation technique (NMDT) introduced in [13]. In
addition, we perform a comparison of HybS with NMDT-based methods and Gurobi
as an MIQCQP solver. To this end, we reuse the results of HybS from Part I.

7 Conclusion

We introduced an enhanced MIP relaxation for non-convex quadratic products of
the form z = xy, called hybrid separable (HybS). We showed that HybS has clear
theoretical advantages over its predecessors Bin2 and Bin3, all based on separable
reformulation of xy to univariate quadratic terms. Most importantly, HybS requires a
significantly lower number of binary variables and has a tighter linear programming
relaxation. In addition to this enhanced MIP relaxation for z = xy, we introduced a
hereditary sharp MIP relaxation called sawtooth relaxation for z = x2 terms, which
requires only a logarithmic number of binary variables with respect to the relaxation
error. We combined the sawtooth relaxation and HybS to obtain MIP relaxations for
MIQCQPs.

In a broad computational study, we compared HybS against its predecessors from
the literature, which we again combined with the sawtooth relaxation for univariate
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quadratic terms. We showed that HybS determines far better dual bounds, while also
exhibiting shorter run times. Finally, HybS is also able to find high-quality solutions
to the original quadratic problems when used in conjunction with a primal solution
callback function and a local non-linear programming solver.
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A MIP relaxations on general intervals

In this section, we generalize the MIP relaxations for gra[0,1]2(xy) and gra2[0,1](x2)
discussed in this article to general box domains (x, y) ∈ [x

¯
, x̄]× ∈ [y

¯
, ȳ] and x ∈

[x
¯
, x̄], where x

¯
< x̄ , y

¯
< ȳ and x

¯
, x̄, y

¯
, ȳ ∈ R. by giving explicit formulations for

general bounds on x and y.

A.1 MIP relaxations for bivariate quadratic equations

First, we consider MIP relaxations for z = xy and give an explicit model of HybS for
general box domains. We omit the formulation of Bin2 and Bin3 here, as these work
analogously to HybS.

In the HybS MIP relaxation, in addition to the variables x and y, we must also
transform the variables p1 = x + y and p2 = x − y and their respective bounds. In
the following, the sawtooth modeling (x, zx ) ∈ RL,L1 , (y, zy) ∈ RL,L1 , (p1, z p1) ∈
QL1 , (p2, z p2) ∈ QL1 is performed according to Remark 1. HybS (21) for general
box domains then reads as follows:

p1 = x + y

p2 = x − y

(x, zx ) ∈ RL,L1
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(y, zy) ∈ RL,L1

(p1, z p1 ) ∈ QL1

(p2, z p2 ) ∈ QL1

z p1 � (wx + wy)
2 f j

( p1−x
¯
−y
¯wx+wy
, g p1) + (x

¯
+ y

¯

)
(2p2 − x

¯
− y

¯
) j ∈ 0, . . . , L1

z p2 � (wx + wy)
2 f j

(
p2−x

¯
+ȳ

wx+wy
, g p2 ) + (x

¯
− ȳ

)
(2p2 − x

¯
+ ȳ) j ∈ 0, . . . , L1

zx � w2
x f

L (
x−x

¯wx
, gx ) + x

¯
(2x − x

¯
)

zy � w2
y f

L (
y−y

¯wy
, gy) + y

¯
(2y − y

¯
)

z � 1
2 (z p1 − zx − zy)

z � 1
2 (zx + zy − z p2 )

(x, y, z) ∈ M(x, y)

x ∈ [x
¯
, x̄]

y ∈ [y
¯
, ȳ]

p1 ∈ [x
¯

+ y
¯
, x̄ + ȳ]

p2 ∈ [x
¯

− ȳ, x̄ − y
¯
]. (32)

A.2 MIP relaxations for univariate quadratic equations

In order to MIP relaxations for z = x2 where x ∈ [x
¯
, x̄] with x

¯
< x̄ and x

¯
, x̄ ∈ R,

we introduce the auxiliary variable x̂ ∈ [0, 1] and apply each original MIP relaxation
to model ẑ = x̂2. In addition, we map x̂ and ẑ back to [0, 1], yielding

x̂ = x−x
¯wx
, ẑ = y−x

¯
(2x−x

¯
)

w2
x

, with x ∈ [x
¯
, x̄],

cf. Remark 1.With this transformation, we are able to formulate the tightened sawtooth
relaxation for x ∈ [x

¯
, x̄]. The tightened sawtooth relaxation (16) for general box

domains then reads

{(x, z) ∈ [x
¯
, x̄] × R : ∃(x̂, ẑ, g,α) ∈ [0, 1] × R × [0, 1]L1+1 × {0, 1}L : (34)},(33)

where the constraints are

x̂ = x−x
¯wx

ẑ = y−x
¯
(2x−x

¯
)

w2
x

(x̂, g�0,L�,α) ∈ SL(x̂)
(x̂, g) ∈ T L1(x̂)

ẑ � f L(x̂, g�0,L�)

ẑ � f j (x̂, g) − 2−2 j−2 j ∈ 0, . . . , L1
ẑ � 0
ẑ � 2x̂ − 1.

(34)
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We note that generalizing the sawtooth epigraph relaxation (14) works analogously.

B Proof of Theorem 2: hereditary sharpness of the tightened
sawtooth relaxation

This section is devoted to proving Theorem 2 which states that the tightened sawtooth
relaxation (16) for z = x2 is hereditarily sharp. This is a similar, albeit, more difficult
result than the related one in [7] regarding the original sawtooth approximation. It
is not clear how to obtain the former as a corollary of the latter. Furthermore, we
use the result of [7] to shorten the work needed here. Before we begin the proof, we
first introduce some required notation and restate several helpful results from [7]. For
integers L1 � L � 0, let P IP

L,L1
be the tightened sawtooth relaxation from (16) in

the space of (x, z, g,α) and let PLP
L,L1

be its LP relaxation, where in the latter all α-
variables are relaxed to the interval [0, 1]. For convenience, and to avoid the variable
redundancy g0 = x throughout this section, we will omit the use of g0 and use the
abbreviated notation g = g�1,L1�.

To further simplify the notation, we omit the subscript L, L1 when the context is
clear and simply write P IP and PLP instead of P IP

L,L1
and PLP

L,L1
.

Now let I ⊆ �L� be the index set of the binary variables α which are fixed to given
values α

¯
∈ {0, 1}I . This can be thought of as considering the branch in a branch-and-

bound tree where α = α
¯
holds. Then we wish to show that at this node in the tree,

sharpness also holds. More precisely, the goal is to show that P IP is sharp under the
restriction α I = α

¯
, where α I = [αi1 , . . . , αi|I | ]� and I = {i1, . . . , i|I |}. Hereditary

sharpness of P IP then means

conv(projx,z(P
IP|α I=α

¯
)) = projx,z(P

LP|α I=α
¯
).

In order to show this result, we cover P IP|α I=α
¯
using the following two sets, which

encapsulate the upper and lower bounds w.r.t. z, respectively:

P̂ IP,α
¯ :={(x, z, g,α) ∈ [0, 1]2 × [0, 1]L1 × {0, 1}L : α I = α

¯
, (17b, 17c, 17a)},

P̌ IP,α
¯ :={(x, z, g,α) ∈ [0, 1]2 × [0, 1]L1 × {0, 1}L : α I = α

¯
, (17b, 17c, 17d, 17 f )}.

(35)

Observation 1 It holds P IP|α I=α
¯

= P̂ IP,α
¯ ∩ P̌ IP,α

¯ , and the formulation P IP is heredi-
tarily sharp if and only if both P̂ IP,α

¯ and P̌ IP,α
¯ are sharp.

Sharpness of P̂ IP,α
¯ . This follows directly from [7, Theorem3]: the theoremestablishes

hereditary sharpness of the sawtooth approximation (10), which has the same upper-
bounding constraints on z as (16). Thus, it remains for us to show that P̌ IP,α

¯ is sharp.
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Sharpness of P̌ IP,α
¯ . Before beginning the proof, we set up some helpful notation.

First, we define the projections onto (x, g,α):

P̌ IP,α
¯(x,g,α):= projx,g,α(P̌ IP,α

¯ ),

P̌LP,α
¯(x,g,α):= projx,g,α(P̌LP,α

¯ ).
(36)

In particular, these variables must satisfy (17b) and (17c). We also define the corre-
sponding projections onto x , namely

X̌ IP:= projx (P̌
IP,α

¯ ) and X̌LP:= projx (P̌
LP,α

¯ ).

Next, we define the lower-bounding functions f̌ j : [0, 1] × [0, 1]L1+1 → [0, 1],

f̌ j (x, g) = f j (x, g) − 2−2 j−2 j = 0, . . . , L1,

f̌ −1(x, g) = 2x − 1,
f̌ −2(x, g) = 0.

(37)

Note that f̌ −1 and f̌ −2 do not actually depend on g. Further, note that there is a slight
abuse of the notation above, since technically f j has the domain [0, 1] × [0, 1] j+1;
however, we assume the reader will interpret the functional expressions as f j (x, g� j�)

instead. We also define the lower-bounding functions F̌ j : [0, 1] → [0, 1],

F̌ j (x) = F j (x) − 2−2 j−2 j = 0, . . . , L1,

F̌−1(x) = 2x − 1,
F̌−2(x) = 0

(38)

in terms of only x , based on the functions FL from (6), as the j-th p.w.l. underestimator
to z = x2 in the construction of the sawtooth relaxation, as defined in Sect. 3.2. Further,
define f̌ : [0, 1] × [0, 1]L → [0, 1] and F̌ : [0, 1] → [0, 1] with

f̌ (x, g) = max
j∈�−2,L�

f̌ j (x, g) and F̌(x) = max
j∈�−2,L�

F̌ j (x).

Observation 2 The function F̌ is convex as it is the maximum of a finite set of convex
functions.

Finally, we define the following sets with respect to j :

P̌ IP,α
¯j :={(x, z, g,α) : (x, g,α) ∈ P̌ IP,α

¯(x,g,α), z � f̌ j (x, g)}, j = −2, . . . , L1,

P̌LP,α
¯j :={(x, z, g,α) : (x, g,α) ∈ P̌LP,α

¯(x,g,α), z � f̌ j (x, g)}, j = −2, . . . , L1,
(39)

and have P̌ IP,α
¯ = ⋂L1

j=−2 P̌
IP,α

¯j or, equivalently,

P̌ IP,α
¯ = {(x, z, g,α) : (x, g,α) ∈ P̌ IP,α

¯(x,g,α), z � max
j∈−2,...,L1

f̌ j (x, g)}.

123



Enhancements of discretization approaches for non-convex… 877

This applies analogously to P̌LP,α
¯ .

We now state some important results from [7] that establish bounds on each vari-
able gi within P̌LP,α

¯(x,g,α) and a closed-form optimal solution for g when minimizing z

within P̌ IP,α
¯ or any P̌ IP,α

¯j .

Lemma 1 (Bounds in Projection, Lemma 3 from [7]) For all i ∈ �0, L�, we have
projgi (P̌

LP,α
¯(x,g,α)) = conv(projgi (P̌

IP,α
¯(x,g,α)))=:[ai , bi ] 	= ∅. Furthermore, it holds that

[aL , bL ] = [0, 1], and [ai−1, bi−1] can be computed from [ai , bi ] as

[ai−1, bi−1] =

⎧
⎪⎨

⎪⎩

[ 1
2ai ,

1
2bi

]
, if i ∈ I and ᾱi = 0,

[
1 − 1

2bi , 1 − 1
2ai

]
, if i ∈ I and ᾱi = 1,

[ 1
2ai , 1 − 1

2ai
]
, if i /∈ I .

(40)

Note that in the last case, ai−1 � 1
2 and bi−1 � 1

2 hold.

Note that Lemma 1 with i = 0 and g0 = x yields X̌LP = conv(X̌ IP), via

X̌LP = projx (P̌
LP,α

¯ ) = conv(projx (P̌
IP,α

¯ )) = conv(X̌ IP), (41)

which has also been used in [7].
Next, we adapt Lemma 5 from [7], which establishes that, when minimizing or

maximizing z within PLP
L,L |α I=α

¯
given a fixed value for x̊ , each gi can directly be

computed from gi−1 and the bounds established in Lemma 1. In particular, for the
sawtooth relaxation (i.e. I = ∅), when minimizing z over the MIP-feasible points
with a fixed x , we find that gi = min{2gi−1, 1 − 2gi−1}. That is, the g-variables
take one of the two upper bounds that restrict them. However, in this section, we have
fixed several of the α-variables and have thus changed the feasible domain for each
g-variable. Now, it could be that bi becomes an additional upper bound.

Lemma 2 (Adapted from Lemma 5 from [7]) Let ai and bi be defined as in Lemma 1
for all i ∈ �L1� and let x̊ ∈ [a0, b0]. Further, define g∗ as

g∗
0 :=x̊

g∗
i :=min{bi , 2gi−1, 1 − 2gi−1} i ∈ �L1� \ I

g∗
i :=Gi (gi−1) i ∈ I ,

where, for i ∈ I , it holds Gi (gi−1) = 2gi−1 if αi = 0, and Gi (gi=1) = 2(1 − gi−1)

otherwise. Then we have

g∗ ∈ argmin{z : (z, g) ∈ projz,g(P̌
LP,α

¯ |x=x̊ )}, (42a)

g∗ ∈ argmin{z : (z, g) ∈ projz,g(P̌
LP,α

¯j |x=x̊ )} ∀ j ∈ �−2, L1�. (42b)

That is, each gi with unfixed αi can take on one of its upper bounds w.r.t. gi−1 when
minimizing z within P̌LP,α

¯ |x=x̊ and P̌LP,α
¯j |x=x̊ . Furthermore, this choice is unique for
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all i � j , i.e.

|argmin{z : (z, g� j�) ∈ projz,g� j�
(P̌LP,α

¯j )|x=x̊ )}| = 1.

Finally, there exists some j ∈ �−2, L1� for which

f̌ j (x̊, g∗) = min{z : (z, g) ∈ projz,g(P̌
LP,α

¯ )|x=x̊ )}. (43)

Proof The proofs of the optimality results (42a) and (42b) on g∗ for j � 1 closely
follow the structure of the proof of Theorem 1, with the same underlying reasoning
as in the proof of [7, Lemma 5]. In fact, the uniqueness of the optimizer also follows
from the proof. Thus, the details are omitted here. To establish the optimality results
for j � 0, we observe that in this case f̌ j is purely a function of x , such that the
choice of g has no effect on f̌ j , and g∗ is thus still optimal.

Finally, to fulfil (43), let jmax ∈ �−2, L1� be chosen such that

max
j∈�−2,L1�

f̌ j (x̊, g∗) = f̌ jmax(x̊, g∗).

Then we have

min{z : (z, g) ∈ projz,g(P̌
LP,α

¯ )|x=x̊ )} = max
j∈�−2,L1�

f̌ j (x̊, g∗) = f̌ jmax(x̊, g∗)

= min{z : (z, g) ∈ projz,g(P̌
LP,α

¯jmax
)|x=x̊ )} � min{z : (z, g) ∈ projz,g(P̌

LP,α
¯ )|x=x̊ )},

as required. ��
The next auxiliary result we need is a lemma concerning reflections over x = 1

2 in

P̌ IP,α
¯(x,g,α) and P̌LP,α

¯(x,g,α) for the case where α1 is not fixed.

Lemma 3 Let L � 0, let x̊ ∈ X̌ IP and assume 1 /∈ I , so that α1 is not fixed. Then

projg,α�2,L�
(P̌ IP,α

¯(x,g,α)|x=x̊ ) = projg,α�2,L�
(P̌ IP,α

¯(x,g,α)|x=1−x̊ ). (44)

Furthermore,

x̊2 − f̌ j (x̊, g∗) = (1 − x̊)2 − f̌ j (1 − x̊, g∗) for all j ∈ �0, L1�. (45)

That is, the maximum errors from the lower bounds coincide. Similarly,

x̊2 − f̌ −2(x̊, g∗) = (1 − x̊)2 − f̌ −1(1 − x̊, g∗), (46)

x̊2 − f̌ −1(x̊, g∗) = (1 − x̊)2 − f̌ −2(1 − x̊, g∗), (47)

where g∗ is defined on Lemma 2. Lastly,

x̊2 − f̌ (x̊, g∗) = (1 − x̊)2 − f̌ (1 − x̊, g∗). (48)
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Proof Recall that P̌ IP,α
¯(x,g,α) is formed from the constraints in SL and T L1 , along with

fixing binary variables α I = α
¯
. It is easy to check that (x̊, g,α) ∈ P̌ IP,α

¯(x,g,α) if an only

if (1 − x̊, g, ᾱ) ∈ P̌ IP,α
¯(x,g,α), where ᾱ1:=1 − α1 and ᾱi :=αi for i ∈ I\{1}. Thus, (44)

holds due to this correspondence.
For j ∈ �0, L1�, we have

x̊2 − f̌ j (x̊, g∗) = x̊2 −
⎛

⎝x̊ −
j∑

i=1

2−2i g∗
i − 2−2 j−2

⎞

⎠

= (
1 − 2x̊

) + x̊2 −
⎛

⎝(
1 − 2x̊

) + x̊ −
j∑

i=1

2−2i g∗
i − 2−2 j−2

⎞

⎠

= (
1 − x̊

)2 −
⎛

⎝1 − x̊ −
j∑

i=1

2−2i g∗
i − 2−2 j−2

⎞

⎠

= (1 − x̊)2 − f̌ j (1 − x̊, g∗).

Thus (48) holds. Similarly, (47) holds as

x̊2 − f̌ −1(x̊, g∗) = x̊2 − (2x̊ − 1)

= (
1 − x̊

)2

= (1 − x̊)2 − f̌ −2(1 − x̊, g∗).

Lastly, (46) holds by considering the substitution x̊ ← 1 − x̊ from (47).
The same secondary result holds if f̌ j (x, g) is replaced with f̌ (x, g). This follows

since each constituting function (for the pair j = −1, j = −2) is symmetric about
x = 1

2 w.r.t. the maximum error; the pointwise maximum over the functions retains

the same symmetry. Similarly, the same result holds if I = ∅, such that X̌ = [0, 1]. ��
The following lemma formalizes the convex hull of convex functionswhose domain

is a finite union of closed and bounded intervals. By gaps, we refer to the open intervals
in the convex hull of the domain but do not intersect the domain.

Lemma 4 Let X ⊆ R be a finite union of compact intervals, and let F : conv(X) → R
be a convex function. For any x̄ ∈ conv(X) \ X, define

x̄−:=max{x ∈ X : x < x̄} and x̄+:=min{x ∈ X : x > x̄}.

Now define FX : conv(X) → R,

FX (x) =

⎧
⎪⎨

⎪⎩

F(x), if x ∈ X ,

λF(x−) + (1 − λ)F(x+),
if x /∈ X , for x = λx− + (1 − λ)x+,

with λ ∈ (0, 1).

(49)
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Fig. 10 The projected MIP convex hull for L = 2, L1 = 3 where we fix α2 = 0. In particular, note that at
the boundary points ∂ X̌ IP = {0, 2

8 , 6
8 , 1}, the tight lower-bounding inequalities are z � 0, z � 2x − 1 and

z � F1 − 2−4. Thus, on the gap ( 28 , 6
8 ) the functions F̌2, F̌3 are not needed to describe the convex hull

of the MIP

Then we have

conv(epiX (F)) = epiconv(X)(FX ).

This lemma is proved in Appendix C. We are now ready to prove Theorem 2.
We denote the boundary of the set X by ∂X .

Proof of Theorem 2 As discussed before, we only need to show that P̌ IP,α
¯L,L1
is sharp to

conclude that P IP
L,L1

is hereditarily sharp. In particular, we need to show that

conv(projx,z(P̌
IP,α

¯L,L1
)) = projx,z(P̌

LP,α
¯L,L1
).

Reduction to L1 = L: Recall that L1 � L holds by definition.

Claim We claim that it suffices to reduce L1 to L to conclude hereditary sharpness of
P IP
L,L1

.

Claim proof Assume that L1 > L holds. To construct P̌ IP,α
¯L,L1
from P̌ IP,α

¯L,L1−1, we simply
maintain the same fixing α I = α

¯
, then add a new variable gL1 � 0, together with the

new constraints

gL1 � 2gL1−1, gL1 � 2(1 − gL1−1), (from (17c) via (13))

z � x −
L1∑

i=1

2−2i gi − 2−2L1−2. (from (17d))

We then note the following:
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1. It holds P̌ IP,α
¯L,L1

⊆ P̌ IP,α
¯L,L1−1, since L1 > L1−1, and thus there are more inequalities

used to define P̌ IP,α
¯L,L1
.

2. We have P̌ IP,α
¯L,L1
|x∈∂ X̌ IP = P̌ IP,α

¯L,L1−1|x∈∂ X̌ IP . To see this, first notice that ∂ X̌ IP ⊆
{ i
2L

: i ∈ �2L�}, since I ⊆ �L�. Thus, for L1 > L , the inequality z � x −
∑L1

i=1 2
−2i gi − 2−2L1−2 is not tight at any of these points in ∂ X̌ IP; see Proposition

1, Item 3.
3. It follows from the previous equation that for any x̄ ∈ ∂ X̌ IP, we have

projx,z(P̌
IP,α

¯L,L1−1|x=x̄ ) = projx,z(P̌
IP,α

¯L,L1
|x=x̄ ) = {(x, z) : z � F̌(x), x = x̄}.

4. When we restrict to the domain conv(X̌ IP) \ X̌ IP and consider the convex hulls, we
have equality as we reduce L1, i.e.

conv(projx,z(P̌
IP,α

¯L,L1−1)|x∈conv(X̌ IP)\X̌ IP) = conv(projx,z(P̌
IP,α

¯L,L1
)|x∈conv(X̌ IP)\X̌ IP).

This is due to Item 2, the convexity of F̌ and Lemma 4.

Thus, the convex hull remains unchanged across the gaps in X̌ IP, and since the LP
relaxation does not weaken, sharpness in lower bound is maintained; see Fig. 10. This
implies that P̌ IP,α

¯L,L1
is sharp if P̌ IP,α

¯L,L1−1 is sharp. The claim then holds by induction. �

We now proceed to prove sharpness of P̌ IP,α
¯L,L by induction on L .

Base case: If L = 0, then there are no binary variables and, hence, nothing to branch
on; therefore, the result holds trivially.

Induction on L: For the inductive step, we assume that P̌ IP,α̃
¯L−1,L−1 is hereditarily sharp

for all possible fixings of α-variables, and show that P̌ IP,α
¯L,L is hereditarily sharp.

We begin by observing that

projx,z
(
P̌ IP,α

¯L,L

)
= epiX̌ IP(F̌).

By Lemma 4, it follows that

conv(epiX̌ IP(F̌)) = epiconv(X̌ IP)

(
F̌X̌ IP

)
,

where F̌X̌ IP is defined as in Lemma4. Thus, provingTheorem2 is equivalent to proving
that

projx,z(P̌
LP,α

¯L,L ) = epiconv(X̌ IP)
(F̌X̌ IP).

In particular, it suffices to show that for any x̊ ∈ conv(X̌ IP), we have

F̌X̌ IP(x̊) = min
g∈P̌LP,α

¯L,L |x=x̊

f̌ (x̊, g) (51)
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which we do in the following.
Case I : x̊ ∈ X̌ IP. By Theorem 1, P IP

L,L is sharp (i.e. when I = ∅). Thus, the LP lower

bounds on z coincide with the MIP lower bounds for MIP-feasible points x ∈ X̌ IP,
such that we have projx,z(P̌

LP,α
¯L,L )|x∈X̌ IP = epiX̌ IP(F̌)|x∈X̌ IP . This implies (51).

Case II : x̊ ∈ conv(X̌ IP)\X̌ IP.Let x̊−, x̊+ ∈ X̌ IP as defined inLemma4. Since x̊ /∈ X̌ IP,
it follows that x̊−, x̊+ ∈ ∂ X̌ IP.
Case II.A : 1 /∈ I . Assume 1 /∈ I .
Case II.A.1 : [x̊−, x̊+] ⊆ ∂ X̌ IP ∩ [0, 1/2]. We make use of the induction hypothesis
here. To this end, we will work with L − 1 layers. We will decorate variables and
parameters from the smaller set using “˜”.

Define α̃
¯
:=α

¯
and Ĩ :={i − 1 : i ∈ I }, i.e. the same variables αi are fixed but with

indices decremented by 1. Now, define the linear map

Φ : [0, 1] × [0, 1] × [0, 1]L−1 × [0, 1]L−1 → [0, 1] × [0, 1] × [0, 1]L × [0, 1]L

such that (x̃, z̃, g̃, α̃) �→ (x, z, g,α) is defined via

x = x̃
2 , z = z̃

4 ,

g1 = x̃, g�2,L� = g̃,

α1 = x̃, α�2,L� = α̃.

(52)

For convenience, under the definitions above, we write x = Φx (x̃), z = Φz(z̃),
g = Φg( g̃), and α = Φα(α̃), and note that g0 = x and g̃0 = x̃ .

Claim Φ
(
P̌ IP,α̃

¯L−1,L−1

)
= P̌ IP,α

¯L,L

∣∣∣
x∈conv(X̌ IP∩[0,1/2]).

Claim proof Let (x̃, z̃, g̃, α̃) ∈ P̌LP,α̃
¯L−1,L−1 such that z̃ is minimal, and let (x, z, g,α) =

Φ(x̃, z̃, g̃, α̃). We will show that (x, z, g,α) ∈ P̌ IP,α
¯L,L

∣∣∣
x∈conv(X̌ IP∩[0,1/2]). To do so, we

reference the formula (35), and show that Constraints (17b), (17c), (17d) and (17f)
hold for (x, z, g,α).

Since z̃ is minimal, we have z̃ = ˜̌f
j
(x̃, g̃) for some j . We claim that z = f̌ j ′(x, g)

for some j ′.
If j � 0, then, noting that 1

4 x̃ = 1
2 x̃ − 1

4 x̃ = x − 1
4g1, we have

z = Φz(z̃)
= 1

4 ( f̌
j (x̃, g̃))

= 1
4

(
x̃ − ∑ j

i=1 2
−2i g̃i − 2−2 j−2

)

= x − 1
4g1 − 1

4

(∑ j
i=1 2

−2i g̃i − 2−2 j−2
)

= x − ∑ j+1
i=1 2−2i gi − 2−2( j+1)−2 = f̌ j+1(x, g).

If j = −1, we have

z = Φz(z̃) = 1
4 ( f̌

−1(x̃, g̃)) = 1
4 (2x̃ − 1) = x − 1

4 = f̌ 0(x, g).
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Finally, if j = −2, then

z = Φz(z̃) = 1
4 ( f̌

−1(x̃, g̃)) = 0 = f̌ −2(x, g).

Thus, we have that Φz(z̃) � f̌ j (Φx (x̃),Φg( g̃)) for all j 	= 1, where the absence
of f̌ −1(x, g) is due to the fact that f̌ −1(x, g) � 0 for x ∈ [0, 1

2 ], such that that the

corresponding bound is inactive on Φx (
˜̌X
LP

).
Note that the above calculations also imply that, for all j̃ ∈ �−2, L − 1� and for

all (x̃, g̃) ∈ projx,g(P̃
LP
(x,g,α)), we have for some j ∈ �−2, L� that Φz(

˜̌f
j̃
(x̃, g̃)) =

f̌ j (Φx (x̃),Φg(g)). Further, since each j̃ maps to a unique j (with only the inactive

j = −1 skipped), this implies that Φz(
˜̌f (x̃, g̃)) = f̌ (Φx (x̃),Φg(g)). Thus, we can

conclude that (17d) and (17f) hold.
Next, we argue that (x, g,α) ∈ projx,g,α�2,L�

(P̌LP,α
¯(x,g,α)). This implies in particular

that (17b) as well as (17c) hold and that we have α I = α
¯ I
.

Since g1 = x̃ = 2x , we observe that P̌LP,α
¯(x,g,α) can be written as the set of points

(x, g,α) ∈ [0, 1] × [0, 1]L × [0, 1]L such that

g0 = x
gi = 2gi−1 i = 1 or i ∈ I , α

¯ i
= 0

gi = 2(1 − gi−1) i ∈ I , α
¯ i

= 1
|gi−1 − αi | � gi � min(2gi−1, 2(1 − gi−1)) i ∈ �L� \ I , i � 2

α I = α
¯ Ix, gi , αi ∈ [0, 1] i ∈ �L�.

In this form, it is straightforward to confirm (x, g,α) ∈ P̌LP,α
¯(x,g,α) from the corre-

sponding form for P̃LP
(x,g,α): since the indices for both the map on g and on the shift

from Ĩ to I are shifted by 1 in the same direction, with the same choice of α
¯
, all

equality constraints on gi , i ∈ Ĩ , are preserved through the mapping. Further, the
relationship between each gi and gi−1 is likewise preserved, as the corresponding
αi is the same, and finally the choice of g1 is feasible given x . Thus, all constraints
are satisfied, such that (x, g,α) ∈ P̌LP,α

¯(x,g,α), yielding for the choice of z above that

(x, z, g,α) ∈ P̌LP,α
¯L,L |x∈conv(X̌ IP∩[0,1/2]).

Further, from the form for P̌LP,α
¯(x,g,α) above, we observe that Φx (

˜̌X
IP

) = X̌ IP ∩ [0, 1
2 ]

and Φx (
˜̌X
LP

) = conv(X̌ IP ∩[0, 1
2 ]). To show the first part, we have already shown that

Φx (
˜̌X
IP

) ⊆ X̌ IP ∩ [0, 1
2 ]. To prove the other direction, we simply reverse the map for

any (x, g,α) ∈ P̌ IP,α
¯(x,g,α)|x∈[0,1/2], ignoring α1: letting x̃ = g1 = x

2 , g̃ = g�2,L� and

α̃ = α�2,L�, it is easy to confirm (x̃, g̃, α̃) ∈ P̃(x,g,α).

To show that projx
(
Φ(P̌LP,α̃

¯L−1,L−1)
)

= conv(X̌ IP ∩ [0, 1
2 ]), we observe that

conv(X̌ IP)|x∈[0,1/2] is a closed interval with boundary points in X̌ IP∩[0, 1
2 ] = Φx (

˜̌X
IP

),
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such that conv(X̌ IP ∩ [0, 1
2 ]) = conv(Φx (

˜̌X
IP

)) = Φx (conv(
˜̌X
IP

)) = Φx (
˜̌X
LP

), since
Φ is linear in x . �

We now show two facts:

Claim 1 Let x̊ ∈ ˜̌X
LP

and z̃∗ ∈ argmin{z̃ : (z̃, g̃) ∈ projz̃, g̃(P̌
LP,α̃

¯L−1,L−1|x̃=x̊ )} with the
corresponding solution g̃∗ defined in Lemma 2. Then

( 1
4 z̃

∗, Φg( g̃
∗)

) ∈ argmin
{
z : (z, g) ∈ projz,g(P̌

LP,α
¯L,L |x=Φx (x̃))

}
.

Claim 2 We have z̃ = ˜̌F X̌ IP(x̃) if and only if Φz(z̃) = F̌X̌ IP(Φx (x̃)), such that

F̌X̌ IP(Φx (x̃)) = 4 ˜̌F X̌ IP(x̃).

By the sharpness of P̌ IP,α̃
¯L−1,L−1, these facts then imply that

F̌X̌ IP(Φx (x̃)) = 4 ˜̌F X̌ IP(x̃) = 4 min
g∈P̌LP,α̃

¯L−1,L−1|x=x̃

( f̌ (x̊, g)) = min
g∈P̌LP,α

¯L,L |x=Φx (x̃)

( f̌ (x̊, g)),

such that (51) holds.

Proof of Claim 1 Let x̃ ∈ ˜̌X
LP

and z̃∗:=min{z : (z, g) ∈ projz,g(P̌
LP,α̃

¯L−1,L−1|x=x̃ )}, and
let g̃∗ be the optimizing solution from Lemma 2. For convenience, let x̊ :=Φx (x̃) and

g∗:=Φg( g̃
∗). Then g∗ takes on the optimal form from Lemma 2, with z̃∗ = ˜̌f (x̃, g̃∗),

yielding

z∗:=Φz(z̃
∗) = Φz(

˜̌f (x̃, g̃∗)) = f̌ (x̊, g∗) = min{z : (z, g) ∈ projz,g(P̌
LP,α

¯L,L |x=x̊ )},

such that ( 14 z̃
∗, Φg( g̃

∗)) ∈ argmin{z : (z, g) ∈ projz,g(P̌
LP,α

¯L,L |x=x̂ )}, as required. As
a corollary, observing that ˜̌f (x̃) = min{z : (z, g) ∈ projz,g(P

LP− |x=x̊ )}, and likewise

for f̌ (x̊), we have that Φz(
˜̌f (x̃)) = 1

4
˜̌f (x̃) = f̌ (x̊). ��

Proof of Claim 2. In order to show z̃ = ˜̌F X̌ IP(x̃) if and only if Φz(ỹ) = F̌X̌ IP(Φx (x̃)),
we observe that, for any x̃ ∈ X̃ , we have Φx (x̃) ∈ X , and therefore

Φx (
˜̌F X̌ IP(x̃)) = Φx (

˜̌f (x̃)) = f̌ (Φx (x̃)) = F̌X̌ IP(Φx (x̃)).

Consequently, Φz(
˜̌F X̌ IP(x̃)) = F̌X̌ IP(Φx (x̃)) holds on X̃ . Now, by Lemma 4, across

any gap x̃−, x̃+ ∈ X̃ for which (x̃−, x̃+) ∩ X̃ = ∅ and x̃ ∈ [x̃−, x̃+], we have that
˜̌F X̌ IP(x̃) is on the line between the points (x̃−,

˜̌f (x̃−)) and (x̃+,
˜̌f (x̃+)). Thus, since
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x̊ :=Φx (x̃), and since Φ is linear in x and z, f̌ (x̊) lies on the line between the points

(Φx (x̃−),
˜̌f (x̃−))) and Φx ((x̃+),

˜̌f (x̃+)).

Now, observe that, since Φx (
˜̌X) = X ∩ [0, 1

2 ], we have that (x−, x+):=(Φx (x̃−),

Φx (x̃+)) is a gap in X , with x−, x+ ∈ X and (x−, x+) ∩ X = ∅. Furthermore, as

x+, x− ∈ X , we have that F̌X̌ IP(x̂) = Φx (
˜̌F X̌ IP(x̃−)), and similarly for x+. Then, by

Lemma 4, we have for x ∈ (x+, x−) that F̌X̌ IP(Φx (x̃)) = F̌X̌ IP(x) = Φx (F̌X̌ IP(x̃)), as
required.
Case II.A.2 : [x̊−, x̊+] ⊆ conv(X̌ IP ∩ [1/2, 1]). Applying Lemma 3 to P̌ IP,α

¯ , we

immediately recover sharpness on 1 − Φx (
˜̌X
LP

) = conv(X̌ IP ∩ [ 12 , 1]). To see

this, let x ∈ Φx (
˜̌X
LP

). Then, via Lemma 3, we obtain exactly the same feasible
regions for g,α with x = 1 − x̊ as with x = x̊ , i.e. projg,α�2,L�

(P̌ IP,α
¯(x,g,α)|x=x̊ ) =

projg,α�2,L�
(P̌ IP,α

¯(x,g,α)|x=1−x̊ ), and moreover, similar to Lemma 3, it is not hard to show

that we have x̊2 − F̌(x̂) = (1− x̊)2 − F̌(1− x̊). Thus, we have that both F̌(1− x̊) and
min

g∈P̌LP,α
¯L,L |x=x̊

( f̌ (1 − x̊, g)) maintain the same distance below (1 − x̊)2 as F̌X̌ IP(x̊)

and min
g∈P̌LP,α

¯L,L |x=x̊
( f̌ (x̊, g)), respectively. Since the second pair coincides, so must

the first pair, such that

F̌X̌ IP(1 − x̊) = min
g∈P̌LP,α

¯ |x=x̊

( f̌ (1 − x̊, g)),

and therefore sharpness holds on 1 − Φx (
˜̌X
LP

). ��
Case II.A.3 : 1

2 ∈ [x̊−, x̊+].
Since we showed sharpness on both conv(X̌ IP ∩ [0, 1

2 ]) and conv(X̌ IP ∩ [ 12 , 1]),
we only have to show sharpness on the gap (x̊−, x̊+) in X̌ IP. Note, in this case, 1

2 /∈
X̌ IP. We wish to show that ming∈P̌LP,α

¯ |x=x̊
( f̌ (x̊, g)) coincides with the line between

(x̊−, f̌ (x̊−)) and (x̊+, f̌ (x̊+)).
To show this, we first note that both endpoints coincide with f̌ jmax(x, g∗) for

some jmax, and by Lemma 3, both this value of j and the corresponding solution g∗
must be the same for both gap endpoints. Further, since x̊−, x̊+ are the endpoints of
a gap, we have that f̌ (x̊−) = x̊2− and f̌ (x̊+) = x̊2+. This can be seen as follows:
first, by [7, Lemma 6], we have that each f̌ j , j � 0, is incident with x2 exactly at
the points x = k

2 j + 1
2 j+1 , k = 0, . . . , 2 j − 1. Furthermore, the points at which the

α-vector changes, and thus the possible gaps in X̌ IP, are exactly the points x̊ = k2−L ,
which must take the form above for some j ∈ �0, L − 1�, so that F̌ j−1(x) = x2 for
x ∈ {x̊−, x̊+}. Since each other f̌ j (x) � x2 at these points, this yields f̌ (x) = x2 for
x ∈ {x̊−, x̊+}.

Now, let [a1, b1] be the bounds on g1 from Lemma 1. Then we have g∗
1 = b1:

through the mapping Φ, we have g∗
1 = x̃ = b̃0 at both x̊− and x̊+, where b̃0 is defined

in the manner of Lemma 1. Thus, since g1 is subject to every constraint in P̌ IP,α
¯(x,g,α)

that x̃ is in ˜̌P IP,α
¯(x,g,α), we have that b1 � b̃0 = g∗

1 � b1, such that g∗
1 = b1.
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Furthermore, by the convexity of projx,g
(
P̌LP,α

¯(x,g,α)

)
, since (x̊−, g∗), (x̊+, g∗) ∈

projx,g
(
P̌LP,α

¯(x,g,α)

)
, we have that (x̊, g∗) ∈ projx,g

(
P̌LP,α

¯(x,g,α)

)
for all x̂ ∈ (x̊−, x̊+).

Thus, we have for any such x̊ that

g∗
1 = b1 � min(2x̊, 2(1 − x̊), b1) � g∗

1 ,

yielding by Lemma 2 that g∗ ∈ argmin{z : (z, g) ∈ projz,g(P̌
LP,α

¯L,L )|x=x̊ }. Thus, we
have

f̌ (x̊, g∗) = min
g∈P̌LP,α

¯L,L |x=x̊

( f̌ (x̊, g)) = f̌ (x̊)

is linear in x̊ across the gap [x̊−, x̊+] and coincides with f̌ (x̊) at the endpoints, as
required. Therefore, we have that P̌LP,α

¯L,L is sharp across the gap. We have now estab-

lished sharpness of P̌LP,α
¯L,L over all of conv(P(x,g,α)), and thus the proof is complete for

1 /∈ I .
Case II.B: 1 ∈ I . Finally, to recover sharpness if 1 ∈ I , we only have to observe that
inserting 1 into I , thereby restricting α1 = 1 or α1 = 0, simply restricts P̌ IP,α

¯L,L to either

x ∈ Φx (X̌ IP) or x ∈ 1 − Φx (X̌ IP), on which sharpness holds exactly as the sharpness
result on the image of Φ (or its reflection) with 1 ∈ I , with one difference: we define
Φ so that α1 = α̂1. However, this difference has no effect on the z-minimal solutions
for g∗

1 within X̌LP, and thus no effect on sharpness. ��

C Auxiliary results and proofs

In this section of the appendix, we give the proofs of Lemma 4 and Proposition 7
which we have moved here for better readability.

C.1 Epigraphs over non-contiguous domains

Here we present the proof of Lemma 4.

Proof of Lemma 4 We first note that we have FX (x) � F(x) for all x ∈ conv(X): for
all x ∈ conv(X), we have that either FX (x) = F(x) or that FX (x) is the line between
two points on the graph of f , which must lie above the graph of f by the convexity
of f . Further, we have that FX is convex, as it is a maximum between the convex
function F and some of its secant lines, which are also convex.

Now, trivially, by the convexity of FX , we have

conv(epiX (F)) = conv(epiX (FX )) ⊆ conv(epiconv(X)(FX )) = epiconv(X)(FX )

To show that epiconv(X)(FX ) ⊆ conv(epiX (F)), let (x, y) ∈ epiconv(X)(FX ). Then
if x ∈ X , y � FX (x) = F(x), such that (x, y) ∈ epiX (F) ⊆ conv(epiX (F)). On
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the other hand, if x ∈ conv(X) \ X , then by definition of FX we have that there
exist some λ ∈ [0, 1] and x1, x2 ∈ X such that x = λx1 + (1 − λ)x2 and FX (x) =
λF(x1)+(1−λ)F(x2). Thenwe have that (x, y) is a convex combination of the points
(x1, f (x1)+(y−FX (x))) and (x2, F(x2)+(y−FX (x))), which are in epiX (F) (since
y − FX (x) � 0), yielding (x, y) ∈ conv(epiX (F)) as required. ��

C.2 Volume proof for Bin2 and Bin3

Now we prove Proposition 7.

Proof of Proposition 7 Let P IP
L,L1

be theMIP relaxation Bin2, where FL is the sawtooth

approximation of zx = x2 and zy = y2 that consists of secant lines to x2 between
consecutive breakpoints xk = k2−L and yk = k2−L for k ∈ �0, 2L�. Further, for
L1 → ∞ we have

lim
L1→∞{(p, z p) ∈ [0, 1] × R : (p, z p) ∈ QL1}

= {(p, z p) ∈ [0, 1] × R : (p, z p) ∈ epi[0,1](p2)}

under Hausdorff distance. As a result, we obtain

lim
L,L1→∞(projx,y,z(P

IP
L,L1

)) =
{
(x, y, z) ∈ [0, 1]2 × R :

1
2

(
(x + y)2 − FL(x) − FL(y)

)
� z � 1

2

(
4FL ( x+y

2

) − x2 − y2
)}

.

Now let andwx = wy = 2−(L−1) be the distance between any two consecutive break-
points xk, xk−1 and yk, yk−1, respectively, and consider the volume of projx,y,z(P

IP
L,L1

)

over the grid piece [xk−1, xk] × [yk−1, yk]:

lim
L,L1→∞ vol(projx,y,z(P

IP
L,L1

))

= 1
2

∫ xk

xk−1

∫ yk

yk−1

(
4FL

(
x+y
2

)
− x2 − y2 −

(
(x + y)2 − FL (x) − FL (y)

))
dydx

= 1
2

∫ xk

xk−1

∫ yk

yk−1

((
4FL

(
x+y
2

)
− (x + y)2

)
+ (FL (x) − x2) + (FL (y) − y2)

)
dydx

= wy
2

∫ xk

xk−1

(FL (x) − x2) dx + wx
2

∫ yk

yk−1

(FL (y) − y2) dy

+ 2
∫ xk

xk−1

∫ yk

yk−1

(
FL

(
x+y
2

)
− (

x+y
2 )2

)
dydx .

The first two integrals are each the overapproximation volumes for the sawtooth
approximation over two consecutive univariate domain segments, each of which has
an area of 1

62
−3L , see [7, Appendix A]. Thus, since wx = wy = 2 ∗ 2−L , we have

that the first two integrals add up to 2
32

−4 L .
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To process the third integral, we apply the two substitutions u = (x−xk−1)+(y−yk−1)
2

and v = (x−xk−1)−(y−yk−1)
2 . The integral then becomes

2
∫ xk

xk−1

∫ yk

yk−1

(
FL ( x+y

2

) − (
x+y
2 )2

)
dydx

= 2
∫ 2−L

0
(FL

(
u + xk−1+yk−1

2

)
− (u + xk−1+yk−1

2 )2)

∫ u

−u
1 dvdu

+ 2
∫ 2·2−L

2−L
(FL

(
u + xk−1+yk−1

2

)
− (u + xk−1+yk−1

2 )2)

∫ 2·2−L−u

−(2·2−L−u)

1 dvdu

= 4
∫ 2−L

0
u(FL

(
u + xk−1+yk−1

2

)
− (u + xk−1+yk−1

2 )2) du

+ 4
∫ 2·2−L

2−L
(2 · 2−L − u)(FL

(
u + xk−1+yk−1

2

)
− (u + xk−1+yk−1

2 )2) du

= 8
∫ 2−L

0
u(FL

(
u + xk−1+yk−1

2

)
− (u + xk−1+yk−1

2 )2) du (J1)

= 8
∫ 2−L

0
u(u(2−L − u)) du (J2)

= 8
∫ 2−L

0
(2−Lu2 − u3) du

= 8( 132
−4L − 1

42
−4L) = 2

32
−4L .

The steps J1 and J2 rely on the observation that FL is the secant line to x2 across the
intervals [ xk−1+yk−1

2 ,
xk−1+yk−1

2 +2−2L ] and [ xk−1+yk−1
2 +2−2 L ,

xk−1+yk−1
2 +2 ·2−2 L ],

due to the positions of xk−1 and yk−1. In addition, for some x̊ ∈ [xk−1, xk], the
error between and x2 and the secant line to x2 at points xk−1 and xk is given by
(x− xk−1)(xk − x) - the product of distances to each endpoint. Thus, for u ∈ [0, 2−L ],
we have

FL
(
u + xk−1+yk−1

2

)
− (u + xk−1+yk−1

2 )2 = u(2L − u),

yielding the validity of step J2. On the other hand, to show that step J1 is valid, we
observe for u ∈ [0, 2−L ] that

FL
(
u + xk−1+yk−1

2

)
− (u + xk−1+yk−1

2 )2 = (u − 2L)(2−2L − u)

holds, such that the second integral becomes the first integral under the substitution
ũ = 2−L − u, since the secant-error portion of the integrand is symmetric about
u = 2−L . Thus, the volume related to the second integral is 4

32
−4 L . The volume of

P IP
L,L1

over each grid piece converges to 2 · 2−4L , yielding a total volume convergence
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of

lim
L1→∞ vol(projx,y,z(P

IP
L,L1

)) = 22(L−1)(2 · 2−4L) = 1
22

−2L .

The proof for Bin3 is similar and therefore omitted here. ��

D Instance set

InTable 8we showa listing of all instances of the computational study fromSect. 6. The
boxQP instances are publicly available at https://github.com/joehuchette/quadratic-
relaxation-experiments. The ACOPF instances are also publicly available at https://
github.com/robburlacu/acopflib. The QPLIB instances are available at https://qplib.
zib.de/. In total, we have 60 instances, of which 30 are dense and 30 are sparse.

Table 8 IDs of all 60 instances used in the computational study

boxQP instances: spar

020-100-1 020-100-2 030-060-1 030-060-3 040-030-1

040-030-2 050-030-1 050-030-2 060-020-1 060-020-2

070-025-2 070-050-1 080-025-1 080-050-2 090-025-1

090-050-2 100-025-1 100-050-2 125-025-1 125-050-1

ACOPF instances: miqcqp_ac_opf_nesta_case

3_lmbd_api 4_gs_api 4_gs_sad 5_pjm_api 5_pjm_sad

6_c_api 6_c_sad 6_ww_sad 6_ww 9_wscc_api

9_wscc_sad 14_ieee_api 14_ieee_sad 24_ieee_rts_api 24_ieee_rts_sad

29_edin_api 29_edin_sad 30_fsr_api 30_ieee_sad 9_epri_api

QPLIB instances: QPLIB_

0031 0032 0343 0681 0682

0684 0698 0911 0975 1055

1143 1157 1423 1922 2882

2894 2935 2958 3358 3814

In bold are the IDs of the instances that are dense
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