
SPIRAL: A superlinearly convergent incremental proximal
algorithm for nonconvex finite sum minimization∗

Pourya Behmandpoor† Puya Latafat† Andreas Themelis‡ Marc Moonen†

Panagiotis Patrinos†

Abstract
We introduce SPIRAL, a SuPerlinearly convergent Incremental pRoximal ALgorithm, for solving

nonconvex regularized finite sum problems under a relative smoothness assumption. Each iteration
of SPIRAL consists of an inner and an outer loop. It combines incremental gradient updates with
a linesearch that has the remarkable property of never being triggered asymptotically, leading to
superlinear convergence under mild assumptions at the limit point. Simulation results with L-BFGS
directions on different convex, nonconvex, and non-Lipschitz differentiable problems show that our
algorithm, as well as its adaptive variant, are competitive to the state of the art.

Keywords Finite sum minimization, nonsmooth nonconvex optimization, relative smoothness, superlin-
ear convergence, KL inequality
Mathematics Subject Classification (2000) 90C06, 90C25, 90C26, 49J52, 49J53, 90C53

1 Introduction
We study nonconvex nonsmooth finite sum optimization problems of the form:

minimizez∈Rn φ(z) := f(z) + g(z), where f(z) := 1
N

∑N
i=1 fi(z). (1.1)

The following basic assumptions are considered throughout the paper:

Assumption 1 (basic assumptions).
A1 fi : Rn → R is Li-smooth relative to a distance-generating function hi : Rn → R (cf. Definitions 2.1

and 2.3), i ∈ [N] := {1, . . . , N};
A2 g : Rn → R is proper and lower semicontinuous (lsc);
A3 a solution exists: arg minφ ̸= ∅.

∗P. Behmandpoor and M. Moonen acknowledge the research work carried out at the ESAT Laboratory of KU Leuven, in
the frame of Research Project FWO nr. G0C0623N ’User-centric distributed signal processing algorithms for next generation
cell-free massive MIMO based wireless communication networks’ and Fonds de la Recherche Scientifique - FNRS and
Fonds voor Wetenschappelijk Onderzoek - Vlaanderen EOS Project no 30452698 ’(MUSE-WINET) MUlti-SErvice WIreless
NETworks’. The scientific responsibility is assumed by its authors. The work of P. Latafat was supported by the Research
Foundation Flanders (FWO) grants 1196820N and 12Y7622N. The work of P. Patrinos was supported by the Research
Foundation Flanders (FWO) research projects G0A0920N, G086518N, G086318N, and G081222N; Research Council KU
Leuven C1 project No. C14/18/068; Fonds de la Recherche Scientifique – FNRS and the Fonds Wetenschappelijk Onderzoek
– Vlaanderen under EOS project 30468160 (SeLMA); European Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie grant agreement No. 953348.The work of A. Themelis was supported by the Japan
Society for the Promotion of Science (JSPS) KAKENHI grant JP21K17710.

†KU Leuven, Department of Electrical Engineering (ESAT-STADIUS), Kasteelpark Arenberg 10, 3001 Leuven, Belgium.
Emails: {pourya.behmandpoor,puya.latafat,marc.moonen,panos.patrinos}@esat.kuleuven.be

‡Kyushu University, Faculty of Information Science and Electrical Engineering (ISEE), 744 Motooka Nishi-ku, 819-0395
Fukuoka, Japan. Email: andreas.themelis@ees.kyushu-u.ac.jp

1

ar
X

iv
:2

20
7.

08
19

5v
2

 [
m

at
h.

O
C

]
 1

5
Ja

n
20

24

mailto:pourya.behmandpoor@esat.kuleuven.be
mailto:puya.latafat@esat.kuleuven.be
mailto:marc.moonen@esat.kuleuven.be
mailto:panos.patrinos@esat.kuleuven.be
mailto:pourya.behmandpoor@esat.kuleuven.be,puya.latafat@esat.kuleuven.be,marc.moonen@esat.kuleuven.be,panos.patrinos@esat.kuleuven.be
mailto:andreas.themelis@ees.kyushu-u.ac.jp

The minimization problem (1.1) has gained considerable attention across various disciplines includ-
ing machine learning (ML), signal and image processing, statistics, and control. Despite an upsurge in
developing optimization methods to address such a problem, the potential of low-memory quasi-Newton
methods has largely been neglected which can be partially attributed to the absence of theoretical founda-
tions for handling nonsmooth settings. In the smooth strongly convex settings, competitive convergence
rates compared to typical ML approaches have been documented in the ML community [47]. This work
aims to address such large-scale problems in their full generality in the nonconvex, nonsmooth problem
settings.

Stochastic gradient descent (SGD) is commonly employed for finite sum minimization problems. De-
spite it involving simple iterations, SGD requires a diminishing stepsize and, even in the strongly convex
setting, can only achieve sublinear rates of convergence. These limitations have prompted the develop-
ment of several stochastic and incremental methods such as SAG [61], SAGA [21], SDCA [62], SPIDER
[28], SVRG [36] and its extensions [55, 29], SARAH [51], and zeroSARAH [41], which primarily target
smooth functions (g = 0) and are often restricted to the convex regime. To accommodate composite non-
smooth cost functions of the form (1.1), studies such as [14], proxSGD [31], proxSAGA and proxSVRG
[56], proxSARAH [53], and SpiderBoost [70] have emerged recently.

The majority of the methods mentioned above incorporate a combination of stochastic and determin-
istic components in addressing the finite sum problem, aiming to diminish the variance of iterates toward
the optimal point. Notably, algorithms such as SAGA, SVRG, and SARAH employ an outer loop to
incorporate full gradients as the deterministic enhancement, along with an inner loop that incorporates
stochastic gradients using randomized sampling with replacement. Furthermore, these algorithms adopt
fixed stepsizes, in contrast to SGD which necessitates diminishing stepsizes to mitigate variance. In line
with the spirit of these methods, the porposed algorithm also utilizes both inner and outer loops.

In its inner loop, the algorithm investigated in this study can be perceived as an incremental approach
with a (shuffled) cyclic (randomized without replacement) sweeping rule. It should be mentioned that
when combined with SGD, this sweeping rule demonstrates superior convergence and implementation
efficiency [54, 5] compared to the randomized sweeping rule with replacement. Moreover, the analysis of
SGD with (randomized) sampling without replacement has recently emerged in convex regimes, providing
enhanced bounds compared to standard SGD [13, 16, 44, 32, 34]. Beyond SGD, the proposed algorithm,
in its basic form without a linesearch, can be considered as a memory-efficient variant of Finito [22]
and MISO [43]. It is worth noting that DIAG [46], proposed independently, studies the Finito/MISO
algorithm under a cyclic sweeping rule and in the strongly convex case. More recently, [40] provided a
comprehensive study of the above algorithms in the fully nonconvex setting. However, the above are all
limited to first-order methods.

In its outer loop, one distinguishing characteristic of the proposed algorithm, which sets it apart from
stochastic algorithms like SVRG and SARAH, is its utilization of quasi-Newton directions integrated
with a linesearch while preserving the advantageous low-memory characteristic. In the context of this
study, various methodologies have been explored to address nonconvex nonsmooth composite functions by
employing quasi-Newton directions. For instance, methods presented in [68, 66, 1] have demonstrated the
application of quasi-Newton directions to achieve superlinear convergence rates, albeit limited to scenarios
involving a single smooth function within the composite cost. In the finite sum setting, approaches
proposed by [47] and [60] have utilized quasi-Newton updates with global convergence guarantees and
linear convergence rates. Furthermore, [74] has extended the utilization of quasi-Newton directions to
decentralized learning scenarios.

To attain a superlinear convergence rate, the IQN method [45] has integrated quasi-Newton direc-
tions with incremental updates, albeit with only local convergence guarantees. Conversely, the approach
introduced in [59] also exhibits a superlinear convergence rate but necessitates Hessian evaluation. It is
noteworthy that the aforementioned algorithms are applicable in (strongly) convex cases. However, within
the nonconvex nonsmooth setting, the algorithm proposed by [71] stands out with global convergence
guarantees when the nonsmooth term is convex.

One of the restrictive aspects of the aforementioned works is that the cost functions are Lipschitz differ-

2

entiable. However, in numerous practical applications, although the cost functions are differentiable, they
fail to satisfy Lipschitz continuity assumptions on their gradients. This issue is exemplified in Section 5.2.
To tackle such cost functions, the proposed algorithm goes beyond the classical notion of smoothness and
employs the concept of relative smoothness, as introduced in [3, 42]. In connection with the proposed
method, stochastic mirror descent (SMD) methods incorporate relative smoothness. Notable references in
this area include [4, 48, 33, 19]. Within the convex setting, PLIAG [73] has been introduced as the Breg-
man variant of IAG [7, 8, 69]. Furthermore, [25] explores Bregman stochastic gradient descent (BSGD).
In the nonconvex regime, [39] investigates a Bregman variant of Finito/MISO.

While the literature often assumes convexity for the nonsmooth term g, our proposed method, as
indicated in Assumption 1, allows the nonconvex nature of this term. This enables the algorithm to
effectively handle a wide range of nonconvex constraints, including rank constraints and ℓ0-norm ball
constraints, as well as nonconvex regularizers such as ℓp with p ∈ [0, 1).

Motivated by the aforementioned advancements and recognizing the existing limitations in the litera-
ture, the proposed method addresses the optimization of regularized nonsmooth nonconvex cost functions,
allowing the gradients of differentiable functions in the finite sum to be non-Lipschitz. To the best of our
knowledge, none of the currently available methods in the literature that exhibit superlinear convergence
rates have explicitly addressed the challenge of handling non-Lipschitz differentiable functions within
nonsmooth nonconvex finite sum settings.

Contributions
The main contributions of the paper are as follows:

1. We propose SPIRAL with convergence guarantees for a wide class of finite sum problems. Not only are
both the nonsmooth regularizer g and the finite sum terms fi all allowed to be nonconvex, but also fi

functions do not need to have Lipschitz-continuous gradients. Moreover, unlike Finito/MISO/DIAG,
SPIRAL requires only O(n) memory allocation.

2. When the nonsmooth term is convex, we show that SPIRAL converges superlinearly when the employed
quasi-Newton directions are superlinear (cf. Definition 4.11) and the linesearch will eventually never be
invoked (cf. Theorem 4.12) under mild assumptions. This is also supported by our simulation results.
Moreover, global (as opposed to local) convergence is guaranteed regardless of any assumptions placed
on the quasi-Newton directions or the convexity of the nonsmooth term (cf. Theorem 4.7).

3. Finally, an adaptive variant employing appropriate backtracking linesearch is introduced that adapts
to the local relative smoothness moduli of fi while maintaining convergence guarantees and the O(n)
memory requirement.

2 Preliminaries
2.1 Notation
In this section, we provide basic notations. The interested reader may refer to [58, 57] for details. The
set of natural numbers is denoted by N = {0, 1, 2, . . .}. The set of real and extended-real numbers are
R := (−∞,∞) and R := R ∪ {∞}, and the set of positive reals is denoted by R+ := [0,∞). We also
use the notation [N] := {1, 2, · · · , N}. We denote by ⟨ · , · ⟩ and ∥ · ∥ the standard Euclidean inner
product and the induced norm. The distance of a point x ∈ Rn to a nonempty set S ⊆ Rn is given by
dist(x, S) = infz∈S ∥z − x∥. For a vector w = (w1, . . . , wr) ∈ R

∑
i

ni , wi ∈ Rni is used to denote its i-th
block coordinate. The identity operator is denoted by id.

For a sequence (xk)k∈N we write (xk)k∈N ⊆ E to indicate that xk ∈ E for all k ∈ N. We use the
following notions of convergence rate: a sequence (xk)k∈N is said to converge to a point x⋆:

3

• (at least) Q-linearly (with quotient rate) with Q-factor given by σ ∈ (0, 1), if there exists k0 ∈ N
such that for all k ≥ k0,

∥xk+1 − x⋆∥ ≤ σ∥xk − x⋆∥.

• (at least) R-linearly (with root rate) if there exists a sequence of nonnegative scalars (vk)k∈N such
that ∥xk − x⋆∥ ≤ vk and (vk)k∈N converges Q-linearly to zero.

• superlinearly if either xk = x⋆ for some k ∈ N or

lim
k→∞

∥xk+1 − x⋆∥
∥xk − x⋆∥

= 0.

We use the notation Q : Rn ⇒ Rm to indicate a mapping from each point x ∈ Rn to a subset Q(x) of
Rm. The graph of Q is the set gphQ := {(x, y) ∈ Rn × Rm : y ∈ Q(x)}, and the set of its fixed points is
defined as fixQ := {x ∈ Rn : x ∈ Q(x)}. We say that Q is outer semicontinuous (osc) if gphQ is a closed
subset of Rn × Rm, and locally bounded if for every bounded U ⊂ Rn the set

⋃
x∈U Q(x) is bounded.

The domain of an extended-real-valued function ϕ : Rn → R is the set domϕ := {x ∈ Rn : ϕ(x) <∞}
and epiϕ := {(x, α) ∈ Rn×R : ϕ(x) ≤ α} is its epigraph set. Function ϕ is said to be proper if domϕ ̸= ∅,
and lower semicontinuous (lsc) if epiϕ is a closed subset of Rn+1. We say that ϕ is level bounded if its
α-sublevel set lev≤α ϕ := {x ∈ Rn : ϕ(x) ≤ α} is bounded for all α ∈ R. The indicator function δX of a
nonempty set X ⊆ Rn is defined by

δX(x) :=
{

0 if x ∈ X
+∞ if x /∈ X.

(2.1)

The indicator function δX is closed if and only if X is a closed set.
We denote by ∂̂ϕ : Rn ⇒ Rn the regular sub-differential of ϕ, where

v ∈ ∂̂ϕ(x̄) ⇐⇒ lim inf
x̄ ̸=x→x̄

ϕ(x)− ϕ(x̄)− ⟨v, x− x̄⟩
∥x− x̄∥

≥ 0.

The regular sub-differential is closed- and convex-valued. The (limiting) sub-differential of ϕ is ∂ϕ :
Rn ⇒ Rn, where v ∈ ∂ϕ(x) iff x ∈ domϕ and there exists a sequence (xk, vk)k∈N ⊆ gph ∂̂ϕ such that
(xk, ϕ(xk), vk)→ (x, ϕ(x), v) as k →∞.

A necessary condition for local minimality of x for ϕ is 0 ∈ ∂̂ϕ(x), see [57, Thm. 10.1]. Finally, the
set of r times continuously differentiable functions over Rn is denoted by Cr = Cr(Rn).

2.2 Relative smoothness
We start by formally defining the notion of distance generating function, Bregman distance, and relative
smoothness [3, 42, 65].

Definition 2.1 (Distance-generating function (dgf)). A strictly convex function h : Rn → R that is
continuously differentiable everywhere will be referred to as a distance-generating function (dgf).

While some results here can be presented with dom h ⊂ Rn, for the sake of simplicity and global
convergence analysis, we continue with dom h = Rn. The Bregman distance associated with a dgf is
defined as:

Definition 2.2 (Bregman distance). Given a dgf h : Rn → R, the Bregman distance Dh : Rn×Rn → R+
is defined as,

Dh(y, x) := h(y)− h(x)− ⟨∇h(x), y − x⟩ for all x, y ∈ Rn. (2.2)

4

Definition 2.3 (Relative smoothness [12, Def. 2.2]). A function f : Rn → R is smooth relative to a dgf
h : Rn → R if there exists L ≥ 0 such that Lh± f are convex functions on Rn. In this case, we say that
f is L-smooth (relative to h) to make the modulus L explict.

Fact 2.4 (Descent lemma [12, Lem. 2.1]). If f : Rn → R is L-smooth relative to a dgf h : Rn → R, then
for all x, y ∈ Rn

|f(y)− f(x)− ⟨∇f(x), y − x⟩| ≤ LDh(y, x).

Note that in the Euclidean case, the dgf and the corresponding Bregman distance reduce to h = 1
2∥·∥

2

and Dh(y, x) = 1
2∥y − x∥

2, respectively, and Fact 2.4 reduces to the ordinary descent lemma [6, Prop.
A.24] for smooth functions.

Relative to a dgf h : Rn → R, the (left) Bregman proximal mapping of a proper lsc function ϕ : Rn → R
is the set-valued mapping proxh

ϕ : Rn ⇒ Rn defined as [37, Def. 2.2]

proxh
ϕ(x) := argminw∈Rn

{
ϕ(w) + Dh(w, x)

}
, (2.3)

and its value function is the Bregman Moreau envelope ϕh : Rn → R
ϕh(x) := min

w∈Rn

{
ϕ(w) + Dh(w, x)

}
. (2.4)

Moreover it is evident from (2.3) and Definition 2.2 that if v ∈ proxh
ϕ(x), then

∇h(x)−∇h(v) ∈ ∂̂ϕ(v), (2.5)

and the converse also holds when ϕ is convex. Whenever the superscript h is omitted from proxh
ϕ, it refers

to the Euclidean proximal mapping with h = 1
2∥ · ∥

2.

3 Proposed algorithm
The proposed method, SPIRAL, is outlined in Algorithm 1 to address the optimization problem (1.1).
SPIRAL employs the set-valued mapping t : Rn ⇒ Rn as its major oracle, defined as

t(s) := argminw∈Rn

{
g(w) +

∑N
i=1

1
γi
hi(w)− ⟨s, w⟩

}
, (3.1)

where hi is the dgf corresponding to function fi as in Assumption 1.A1. Within both the outer and inner
loops, the mapping t, utilized in steps 1.1, 1.3, 1.5.c, and 1.9, represents the proximal steps. It is important
to note that in the case of Euclidean space, where the functions fi are Li-smooth relative to hi = 1

2∥ · ∥
2,

the oracle t reduces to the Euclidean proximal mapping with updates of the form zk ∈ proxγ̂g(γ̂sk), where
γ̂−1 =

∑N
i=1 γ

−1
i . Similarly, the iterates vk, yk, and z̃k

i are updated using the same proxγ̂g function. A
detailed description of the Euclidean version of the algorithm can be found in Appendix E.2.

SPIRAL employs the function L : Rn × Rn → R defined by

L(y, x) := φ(y) + Dĥ(y, x) with y ∈ t(∇ĥ(x)) (3.2)

in its linesearch, where ĥi : Rn → R and ĥ : Rn → R are

ĥi := 1
γi
hi − 1

N fi, ĥ :=
∑N

i=1 ĥi. (3.3)

The function L is considered as a suitable Lyapunov function in our convergence analysis. The linesearch
in step 1.5 interpolates the iterate uk between the candidate fast update zk +dk, corresponding to τk = 1,
and the safeguard step vk which is approached as τk ↘ 0. The iterate uk is selected whenever it is a
descent direction for the Lyapunov function L (cf. Remark 4.5 regarding the well definedness of the
linesearch).

5

Algorithm 1 SPIRAL

Initialize zinit ∈ Rn, γi ∈ (0,N/Li), ∀i ∈ [N], s0 =
∑N

i=1
1
γi
∇hi(zinit)− 1

N∇fi(zinit),
maximum number of backtracks qmax ∈ N ∪ {∞} (e.g. qmax = 2), β ∈ (0, 1)

Repeat for k = 0, 1, . . . ,K
1.1: zk ∈ t(sk)
1.2: s̄k =

∑N
i=1

1
γi
∇hi(zk)− 1

N∇fi(zk) (full update)

1.3: vk ∈ t(s̄k)
1.4: choose dk ∈ Rn at zk (e.g. based on a quasi-Newton method for solving rĥ(z) = 0)
1.5: set τk = 1, qk = 0 (linesearch)

a: uk = τkz
k + (1− τk)vk + τkd

k

b: s̃k =
∑N

i=1
1
γi
∇hi(uk)− 1

N∇fi(uk) (full update)

c: yk ∈ t(s̃k)
d: if L(yk, uk) ≤ L(vk, zk)

go to step 1.6
e: else if qk = qmax then

uk = vk, s̃k =
∑N

i=1
1
γi
∇hi(uk)− 1

N∇fi(uk), and go to step 1.6
f: else

τk ← βτk, qk ← qk + 1, and go to step 1.5.a
1.6: sk ← s̃k

1.7: for ℓ = 1, . . . , N do (incremental loop)
1.8: randomly choose iℓ ∈ [N] without replacement
1.9: z̃k

iℓ ∈ t(sk)
1.10: sk ← sk +

[
1

γ
iℓ
∇hiℓ(z̃k

iℓ)− 1
N∇fiℓ(z̃k

iℓ)− 1
γ

iℓ
∇hiℓ(uk) + 1

N∇fiℓ(uk)
]

1.11: sk+1 ← sk

Return zK

One distinguishing characteristic of SPIRAL, which sets it apart from stochastic algorithms such as
SVRG and SARAH, is its utilization of directions dk in step 1.4 based on second-order-like information
of the set-valued residual mapping rĥ : Rn ⇒ Rn defined as

rĥ := id− t ◦∇ĥ. (3.4)

This feature allows SPIRAL to achieve a superlinear convergence rate, given certain mild conditions
(cf. Theorem 4.12). Given that the inclusion 0 ∈ rĥ(z⋆) holds at a stationary point z⋆ (as discussed
in Section 4.1 and expressed in (4.7)), the direction dk is determined based on solving this inclusion.
Semismooth Newton directions [66] can be utilized to compute dk; however, this approach relies on
access to second-order oracle information. As an alternative to circumvent this requirement, quasi-Newton
methods can be employed to compute the directions dk. Specifically, we employ the update rule

dk = −Hk rĥ(zk) (3.5)

where Hk represents a linear operator that approximates the second-order information of the residual
mapping rĥ. It is worth noting that although rĥ is a set-valued mapping, it typically exhibits single-
valuedness and other desirable properties in the vicinity of stationary points of the objective function
φ (see e.g. [1, Thm. 3.10 and 3.11]). Consequently, the updates for Hk can be implemented using pop-
ular quasi-Newton methods such as Broyden’s method, BFGS, and L-BFGS (cf. Section 4.4 for further
discussion).

6

SPIRAL can accommodate various sweeping rules depending on the memory requirements. The fol-
lowing remark comments on two different settings.

Remark 3.1 (sweeping rule in the incremental loop).

(i) low-memory setting: in this setting, SPIRAL employs a (shuffled) cyclic (randomized without re-
placement) sweeping rule within the incremental loop, and unlike Finito/MISO/DIAG methods, it
does not require storing individual function gradients ∇fi. Instead, SPIRAL only requires storing
the finite sum of gradients as ∇ĥ, using the vectors sk, s̃k, and s̄k. Additionally, in the incremental
loop, updating this sum in the vector sk is carried out in a memory-efficient manner since the
vector uk is known and fixed due to choosing iℓ without replacement. This advantageous charac-
teristic allows SPIRAL to require only O(n) memory allocation, making it suitable for large-scale
optimization problems.

(ii) high-memory setting: in this setting, by utilizing a memory of O(nN) and saving z̃k
j for all j ∈ [N],

like Finito/MISO/DIAG, the incremental loop can be replaced by a randomized loop of an arbitrary
depth.

Computational complexity. The overall computational complexity, measured in terms of gradient
evaluations per iteration, is O

(
(4 +κ)N

)
. This includes 2 +κ full gradient evaluations performed outside

of the inner loop, where κ represents the number of backtracks in the linesearch, and two gradient
evaluations performed in each iteration of the inner loop. It is worth noting that in certain problems
like least squares, nonnegative principal component analysis, and logistic regression, the gradients can be
obtained by storing the inner product between data points and the evaluated points. Consequently, the
gradient evaluations ∇ĥi(uk) in step 1.10 can be derived from the computations in step 1.5.b, thereby
reducing the computational complexity to O

(
(3 + κ)N

)
. In addition, based on numerical experiments, it

is beneficial to limit the number of backtracks using a maximum value qmax. It is important to note that,
as demonstrated in Theorem 4.12, under mild conditions, the unit stepsize τk = 1 is eventually always
accepted (κ = 0), allowing for pure quasi-Newton type updates in step 1.5.a and avoiding any further
backtracks and computation.

4 Convergence Analysis
In the subsequent subsections, we study the convergence of SPIRAL by reformulating the problem (1.1)
in the lifted space. We will thus recast the Lyapunov function L in (3.2) into this new space and study it
along the iterates generated by SPIRAL. In the lifted space, we can show that block coordinate updates
in the incremental loop result in sufficient descent for the Lyapunov function, while this is not necessarily
the case for the objective function. Utilizing newly reformulated operators, we then outline Algorithm 1
in the lifted space. Having new insight into the mechanism of SPIRAL, in Sections 4.3 to 4.5 we establish
its convergence in various regimes.

4.1 Problem Reformulation
We recast (1.1) as the following lifted consensus optimization problem:

minimizez=(z1,...,zN)∈RNn Φ(z) := 1
N

N∑
i=1

fi(zi)

:=F (z)

+ 1
N

N∑
i=1

g(zi) + δ∆(z)

:=G(z)

(4.1)

where ∆ :=
{
z = (z1, . . . , zN) ∈ RNn|z1 = · · · = zN

}

7

is the consensus set. Note that Φ(z) = φ(z) whenever z = (z, . . . , z) ∈ ∆. Define

MĤ(w, z) := Φ(w) + DĤ(w, z), with Ĥ(x) :=
N∑

i=1
ĥi(xi), (4.2)

for any (w, z) ∈ RNn × RNn, where ĥi is defined in (3.3). The model MĤ is in particular a majorizing
model of Φ, in that from (3.3), and Definitions 2.1 and 2.3, it is evident that whenever γi ∈ (0,N/Li), ĥi

and consequently Ĥ are dgfs, hence DĤ(w, z) ≥ 0 for all w, z ∈ RNn and

(i) MĤ(w, z) ≥ Φ(w) for all w, z ∈ RNn;

(ii) MĤ(z, z) = Φ(z) for all z ∈ RNn.

The Bregman proximal mapping proxĤ
Φ : RNn ⇒ RNn and its value function the Bregman Moreau

envelope ΦĤ : RnN → R (recall the definitions in (2.3)) are then defined as

proxĤ
Φ (z) := argminw∈RNnMĤ(w, z), ΦĤ(z) := min

w∈RNn
MĤ(w, z). (4.3)

The corresponding forward-backward residual is defined as RĤ = id−proxĤ
Φ . The envelope ΦĤ is consid-

ered as the Lyapunov function in our convergence studies.
We proceed with the following fact that is the key to our convergence analysis. First, to facilitate our

subsequent analysis, we introduce the matrix Ui ∈ RNn×n whose i-th block rows form an identity matrix.
For a given vector y ∈ Rn, the action of Ui can be expressed as:

Uiy = (0, . . . , 0,
i-th block

y, 0, . . . , 0). (4.4)

The following fact demonstrates that block-coordinate updates result in descent on the Bregman Moreau
envelope ΦĤ in (4.3). As remarked above this is not necessarily the case for the cost function.

Fact 4.1 (Descent lemma [39, Lem. 4.2]). Suppose that Assumption 1 holds, and let x = (x1, . . . , xN).
Fix y ∈ proxĤ

Φ (x), and let I ⊆ [N] be a subset of indices. Consider the block-coordinate update

v = x +
∑

i∈I UiU
⊤
i (y − x), (4.5)

where Ui is as defined in (4.4). Then,

ΦĤ(v) ≤ ΦĤ(x)−DĤ(v,x). (4.6)

This observation is then utilized to establish that the limit points of the sequence (zk)k∈N correspond
to stationary points of the function φ, which, in the nonconvex setting, represents the necessary condition
0 ∈ ∂̂φ(z⋆).

In the following fact we present some of useful properties of the Bregman proximal mapping proxĤ
Φ

and the Bregman distance DĤ , and expand on their relation to those defined in Section 3.

Fact 4.2 (Bregman proximal mapping [39, Lem. 3.1]). Suppose that Assumption 1 holds and let γi ∈
(0, N

Li
). Then, the following hold:

(i) DĤ(v, z) ≥
∑N

i=1(1
γi
− Lfi

N) Dhi
(vi, zi), for (v, z) ∈ RNn × RNn.

(ii) proxĤ
Φ (z) = {(v, · · · , v) : v ∈ t(

∑N
i=1∇ĥi(zi))}, where t is as in (3.1), is a nonempty and compact

subset of ∆.

8

When z ∈ ∆, one has a lower-dimensional representation of the Bregman Moreau envelope ΦĤ ,
provided in the following corollary of Fact 4.2.
Corollary 4.3 (lower-dimensional representations). Let Assumption 1 hold and let γi ∈ (0, N

Li
). Then,

with the Bregman Moreau operator and the envelope associated with φ in (1.1) given by

tĥ(z) = argminw∈Rn

{
φ(w) + Dĥ(w, z)

}
,

φĥ(z) = min
w∈Rn

{
φ(w) + Dĥ(w, z)

}
= L(v, z), with v ∈ tĥ(z),

it holds that tĥ = t ◦∇ĥ = proxĥ
φ, and ΦĤ(z) = φĥ(z) for z = (z, . . . , z) ∈ ∆. Moreover,

(i) Dĥ(v, z) ≥
∑N

i=1(1
γi
− Lfi

N) Dhi
(v, z), for (v, z) ∈ Rn × Rn.

(ii) If v ∈ proxĥ
φ(z), then ∇ĥ(z)−∇ĥ(v) ∈ ∂̂φ(v); the converse also holds when φ is convex.

An important consequence of Fact 4.2 and its Corollary 4.3 is that the range of proxĤ
Φ is a subset

of the consensus set ∆ (cf. Fact 4.2(ii)). Moreover, by Corollary 4.3(ii), to any fixed point of proxĤ
Φ (or

proxĥ
φ) there corresponds a stationary point for the original problem. That is to say

z⋆ ∈ fix proxĥ
φ ⇔ 0 ∈ rĥ(z⋆)⇔ z⋆ ∈ proxĥ

φ(z⋆) (4.7)

⇔ (z⋆, . . . , z⋆) = z⋆ ∈ proxĤ
Φ (z⋆)

⇔ 0 ∈ RĤ(z⋆)⇔ 0 ∈ ∂̂Φ(z⋆)
⇔ 0 ∈ ∂̂φ(z⋆),

where rĥ is defined in (3.4).

4.2 Lifted Representation of the Algorithm
For the sake of clarity in presentation and without loss of generality, we consider the cyclic sweeping rule
in the incremental loop where iℓ = ℓ in step 1.8 (cf. Remark 4.6 for shuffled cyclic sweeping rule). In this
case, we adopt the following notation:

z̄k
ℓ := (z̃k

1 , z̃
k
2 , . . . , z̃

k
ℓ−1, u

k, . . . , uk︸ ︷︷ ︸
N−ℓ+1

), ℓ ∈ [N]. (4.8)

Using the defined operators in the previous subsection, the proposed Algorithm 1 is outlined in the lifted
space in Algorithm 2.

In Algorithm 2, zk,vk belong to the consensus set ∆ owing to Fact 4.2(ii). This along with the choice
of dk implies the same for uk, ensuring that the linesearch can be performed in the lower dimensional
space (see Remark 4.5). In the following proposition, we highlight the equivalence of Algorithm 1 and its
lifted variant Algorithm 2. The proof is omitted as it follows directly from the above observations along
with Fact 4.2 and Corollary 4.3.
Proposition 4.4. As long as the two algorithms are initialized with the same parameters, to any se-
quence (zk, vk, dk, uk, yk, z̃k

ℓ , ℓ ∈ [N])k∈N generated by Algorithm 1, there correspond sequences (zk =
(zk, · · · , zk))k∈N, (vk = (vk, · · · , vk))k∈N, (dk = (dk, · · · , dk))k∈N, (uk = (uk, · · · , uk))k∈N, (yk =
(yk, · · · , yk))k∈N, (z̃k

ℓ = (z̃k
ℓ , · · · , z̃k

ℓ))k∈N, ℓ ∈ [N], generated by Algorithm 2 (and vice versa).
Considering the updates at steps 2.1 and 2.8, the descent property established in Fact 4.1 already hints

as to why ΦĤ is employed in the backtracking linesearch procedure. In the next remark, we expand on
the well-definedness of this linesearch and discuss its relation to the one prescribed in Algorithm 1. These
observations in the lifted space will help us in establishing convergence of the algorithm in Sections 4.3
to 4.5.

9

Algorithm 2 Representation of Algorithm 1 in the lifted space
Initialize z̄−1

N ∈ RNn, β ∈ (0, 1), γi ∈ (0,N/Li), i ∈ [N]
maximum number of backtracks qmax ∈ N ∪ {∞}(e.g. qmax = 2), K ∈ N

Repeat for k = 0, 1, . . . ,K
2.1: zk ∈ proxĤ

Φ (z̄k−1
N)

2.2: vk ∈ proxĤ
Φ (zk) (full update)

2.3: choose dk ∈ ∆
2.4: set τk = 1, qk = 0 (linesearch)

a: uk = τkz
k + (1− τk)vk + τkd

k

b: yk ∈ proxĤ
Φ (uk) (full update)

c: if ΦĤ(uk) ≤ ΦĤ(zk)
go to step 2.5

d: else if qk = qmax then
uk = vk, and go to step 2.5

e: else
τk ← βτk, qk ← qk + 1, and go to step 2.4.a

2.5: z̄k
1 = uk

2.6: for ℓ = 1, . . . , N do (incremental loop)
2.7: z̃k

ℓ := (z̃k
ℓ , · · · , z̃k

ℓ) ∈ proxĤ
Φ (z̄k

ℓ)
2.8: z̄k

ℓ+1 = z̄k
ℓ + UℓU

⊤
ℓ (z̃k

ℓ − z̄k
ℓ)

Remark 4.5 (Well definedness of linesearch). The linesearch in step 2.4 is well defined, as it always
terminates in a finite number of backtracks. In this process, the iterate uk is interpolated between the
candidate fast update zk + dk, corresponding to τk = 1, and the safeguard step vk which is approached
as τk ↘ 0. Observe that L(vk, zk) = φĥ(zk) = ΦĤ(zk), as it follows from Corollary 4.3, and that
similarly L(yk, uk) = φĥ(uk) = ΦĤ(uk). Due to Fact 4.1 and the continuity of the function ΦĤ , as long
as zk ̸= vk, the inequality ΦĤ(vk) < ΦĤ(zk) holds, hence the inequality is satisfied for τk small enough.
In practice, it is beneficial to limit the number of backtracks using a maximum value qmax, especially at
initial iterations. Regardless, as it will be shown in Theorem 4.12, under mild assumptions at the limit
point eventually the iterate enters a region where backtracks will never be invoked.

The updates in the incremental loop are referred to as block-coordinate updates, since at step 2.8
only one block of z̄k

ℓ is updated at each incremental loop iteration (equivalently as in step 1.10 of Al-
gorithm 1 due to Fact 4.2(ii)). Note that at each block update, due to choosing ℓ without replacement,
the previous block value is known and equal to uk, as depicted in (4.8). Consequently, the update in
step 2.8 (equivalently in step 1.10 of Algorithm 1) can be accomplished by replacing uk with z̃k

ℓ , thereby
requiring a memory of O(n) instead of O(nN). However, opting for a memory of O(nN) and saving z̃k

j

for all j ∈ [N] allows the algorithm to adopt the randomized sweeping rule with replacement as well
(cf. Remark 3.1). Additionally, the block updates in step 2.7 are computationally inexpensive, since if
implemented by steps 1.9 and 1.10 of Algorithm 1 (using Fact 4.2(ii)), the gradient of only one function
fℓ is computed in each incremental iteration.
Remark 4.6 (shuffled cyclic (randomized without replacement) sweeping rule). It is evident from step
2.8 that the incremental loop can be easily modified to accommodate the shuffled cyclic (randomized
without replacement) sweeping rule, as was commented for Algorithm 1. To achieve this, we can consider
the following update in place of step 2.8:

z̄k
ℓ+1 = z̄k

ℓ + UiℓU⊤
iℓ (z̃k

ℓ − z̄k
ℓ),

10

where iℓ ∈ [N] is randomly chosen without replacement.

4.3 Global and Subsequential Convergence
SPIRAL is globally (as opposed to locally) convergent whenever Assumption 1 holds, without any ad-
ditional assumption on the convexity of nonsmooth term g. Thanks to the proposed linesearch in step
1.5, global convergence is also guaranteed with any direction dk derived in step 1.4, although ultimately
a fast convergence rate is only achieved by employing an educated direction and under assumptions at
the limit point. Motivated by Fact 4.1 and Corollary 4.3 and consistent with previous studies such as
[65, 39], the Bregman Moreau envelope ΦĤ in (4.3) is employed as the Lyapunov function which reduces
to L(vk, zk) in the original space. This function has nice properties which enables us to study the global
and subsequential convergence of SPIRAL, in the next theorem:

Theorem 4.7. (Global and subsequential convergence) Suppose that Assumption 1 holds. The following
holds for the sequence (zk)k∈N generated by Algorithm 1:

(i) L(vk+1, zk+1) ≤ L(vk, zk)−
∑N

i=1 Dĥi
(zk+1, z̃k

i) for k ∈ N, with ĥi = 1
γi
hi − 1

N fi;

(ii) (Dĥi
(zk+1, z̃k

i))k∈N → 0, i ∈ [N];

(iii) (L(vk, zk))k∈N and (φ(zk))k∈N converge to a value φ⋆ where φ(z0) ≥ φ⋆ ≥ inf φ;

(iv) φ equals φ⋆ on all the cluster points;

(v) all the cluster points are fixed points for proxĥ
φ, and are in particular stationary for φ;

(vi) if φ is level bounded, then (zk)k∈N, (z̃k
i)k∈N, for i ∈ [N] are bounded.

Proof. 4.7(i): The block-coordinate interpretation of vectors z̄k
ℓ as shown in step 2.8 of Algorithm 2 along

with Fact 4.1 yields

ΦĤ(z̄k
ℓ+1) ≤ ΦĤ(z̄k

ℓ)−DĤ(z̄k
ℓ+1, z̄

k
ℓ) ≤ ΦĤ(z̄k

ℓ) for ℓ = 1, . . . , N − 1. (4.9)

By unrolling the inequality above we have

ΦĤ(z̄k
N) ≤ ΦĤ(z̄k

1) ≤ ΦĤ(uk) ≤ ΦĤ(zk), (4.10)

where the second inequality uses Fact 4.1 and the last one is ensured by the linesearch condition in
step 1.5. Moreover, in step 1.1, zk+1 = t(

∑N
i=1∇ĥi(z̃k

i)), or equivalently stated by Fact 4.2(ii) zk+1 =
(zk+1, . . . , zk+1) ∈ proxĤ

Φ (z̄k
N). Therefore, using Fact 4.1 yields

ΦĤ(zk+1) ≤ ΦĤ(z̄k
N)−DĤ(zk+1, z̄k

N). (4.11)

Summing up the two inequalities in (4.10) and (4.11) yields

ΦĤ(zk+1) ≤ ΦĤ(zk)−DĤ(zk+1, z̄k
N). (4.12)

Noting that zk = (zk, . . . , zk), the above inequality may be written as (cf. Corollary 4.3)

L(vk+1, zk+1) ≤ L(vk, zk)−
∑N

i=1 Dĥi
(zk+1, z̃k

i).

4.7(ii): By reordering the inequality in (4.12) and telescoping we have∑T
k=0 DĤ(zk+1, z̄k

N) ≤ ΦĤ(z0)− ΦĤ(zT) ≤ ΦĤ(z0)− inf ΦĤ <∞.

11

The last two inequalities follow from the boundedness of ΦĤ from below, in light of Assumption 1 and
Fact A.2(iv). The inequality above shows that the sum is finite and hence (DĤ(zk+1, z̄k

N))k∈N → 0.
4.7(iii): The sequence (ΦĤ(zk))k∈N = (L(vk, zk))k∈N is decreasing by (4.12) and since it is lower

bounded, it should converge to a finite value φ⋆ with φ(z0) ≥ φ⋆ ≥ inf ΦĤ = inf Φ = inf φ. Moreover,
from (4.11) and (4.10):

ΦĤ(zk+1) + DĤ(zk+1, z̄k
N) ≤ ΦĤ(z̄k

N) ≤ ΦĤ(zk).

Since DĤ(zk+1, z̄k
N) vanishes, see Theorem 4.7(ii), ΦĤ(z̄k

N) → φ⋆, which in turn implies through the
identity ΦĤ(z̄k

N) = Φ(zk+1) + DĤ(zk+1, z̄k
N), that (Φ(zk)) = (φ(zk))k∈N → φ⋆.

4.7(iv): Take a subsequence (zk
k∈K → z⋆ with K ⊆ N. We have:

φ⋆
4.7(iii)←−−−−
k∈K

ΦĤ(zk)−DĤ(z⋆, zk)
A.2(iii)
≤ Φ(z⋆)

lsc
≤ lim

k∈K
inf Φ(zk) 4.7(iii)= φ⋆. (4.13)

4.7(v): Let K ⊆ N denote an infinite subsequence such that (zk
k∈K → z⋆. It follows from Theo-

rem 4.7(ii) along with [63, Thm. 2.4] that (z̄k
N)k∈K → z⋆. With zk+1 ∈ proxĤ

Φ (z̄k
N) and the osc property

of proxĤ
Φ (see Fact A.2(i)), it follows that z⋆ ∈ proxĤ

Φ (z⋆) implying stationarity of the limit points as
shown in (4.7).

4.7(vi): Level boundedness of φ implies that of ΦĤ . It then follows from (4.11) and (4.10) that (z̄k
N)k∈N

is contained in {w : ΦĤ(w) ≤ ΦĤ(z̄0
N)}, which is a bounded set. Boundedness of (zk = (zk, . . . , zk))k∈N

follows from that of (z̄k
N)k∈N, local boundedness of the proximal mapping (see Fact A.2(i)), and zk+1 ∈

proxĤ
Φ (z̄k

N).

4.4 Superlinear Convergence
In this section, we aim to demonstrate that the proposed linesearch is smart, particularly in identifying
mature directions. When a direction dk is deemed mature, the candidate update zk + dk will eventually
be accepted without any backtracks, thereby enabling SPIRAL to exhibit superlinear convergence.

We first introduce necessary additional assumptions and lemmas. Subsequently, we delve into the
identification of mature directions by SPIRAL and explore their relationship with quasi-Newton methods.
Take the following assumptions:

Assumption 2 (superlinear convergence requirements). The following hold in problem (1.1):

A1 g is convex;

A2 for i ∈ [N], fi, hi ∈ C2 with ∇2hi ≻ 0.

To achieve superlinear convergence, SPIRAL requires that the sequence (zk)k∈N converges to a strong
local minimum z⋆ of the cost function, and that the envelope is twice (strictly) differentiable at z⋆. It
is noteworthy that the strong local minimality (isolated local minima) is a standard requirement for
asymptotic properties of quasi-Newton methods. However, works such as [2, 66] relax this requirement
to address nonisolated local minima as well. As future work, their techniques can be investigated for our
setting.

To establish the aforementioned properties of the envelope, the following fact and lemma are presented,
taking into account the additional Assumption 2 in conjunction with Assumption 1. First, let us formally
define the concept of strong local minimality:

Definition 4.8 (Strong local minimum). A point z⋆ is said to be the strong local minimum of ϕ if there
exist a neighborhood Nz⋆ of z⋆ and c > 0 such that for all z ∈ Nz⋆ , ϕ(z) ≥ ϕ(z⋆) + c

2∥z − z
⋆∥2.

12

The following fact establishes an equivalence between strong local minima of function φ and of its
envelope φĥ.

Fact 4.9 (equivalence of strong local minima [1, Thm. 3.7]). Suppose that Assumptions 1 and 2 hold.
Then, z⋆ ∈ fix proxĥ

φ is a strong local minimum of φ if and only if it is a strong local minimum of φĥ.

We remark that proxĥ
φ is single-valued whenever g is convex, hence all the fixed points are guaranteed

to be nondegenerate in the sense of [1, Def. 3.5]. In order to achieve superlinear convergence, we assume
z⋆ to be a strong local minimum of the cost φ, and that the envelope is twice (strictly) differentiable at
this point. The subsequent lemma examines the second-order properties of the envelope to ensure the
fulfillment of this requirement.

Lemma 4.10 (second order characterization). Suppose that Assumptions 1 and 2 hold. Then, given
z⋆ ∈ fix proxĥ

φ, there exists a neighborhood of z⋆ where rĥ is Lipschitz continuous, and φĥ is continuously
differentiable. If, in addition, t is (strictly) differentiable at ∇ĥ(z⋆), then

(i) rĥ is (strictly) differentiable at z⋆ with J rĥ(z⋆) = I− J t(∇ĥ(z⋆))∇2ĥ(z⋆);

(ii) φĥ is twice (strictly) differentiable at z⋆ with symmetric Hessian

∇2φĥ(z⋆) = ∇2ĥ(z⋆) J rĥ(z⋆).

In particular, if z⋆ is a strong local minimum of φ, then ∇2φĥ(z⋆) is symmetric positive definite
and J rĥ(z⋆) is invertible.

Proof. Observe that tĥ = t ◦∇ĥ = proxĥ
φ as shown in Corollary 4.3. Given this characterization, the first

claim follows directly from [1, Thm. 3.10].
4.10(i) Since ∇ĥ ∈ C1 (cf. Assumption 2.A2) and t is (strictly) differentiable at ∇ĥ(z⋆), so is the

composition t ◦∇ĥ, thus implying (strict) differentiability of rĥ = id− tĥ. The Jacobian of the residual is
obtained by the chain rule.

4.10(ii): The claim follows from (strict) differentiability of t at ∇ĥ(z⋆). Moreover, ∇2ĥ ≻ 0 owing
to Assumptions 1.A1 and 2.A2 and γi ∈ (0,N/Li). Thus, J rĥz

⋆ is nonsingular when z⋆ is a strong local
minimum of φĥ, or, equivalently, of φ (cf. Fact 4.9).

After establishing the desirable properties of the envelope in the vicinity of fixed point z⋆ ∈ fix proxĥ
φ,

we now proceed to characterize the quality of directions dk in step 1.4 of Algorithm 1 through introducing
the notion of superlinear directions which was introduced in the seminal work [27]. We also refer the reader
to the works such as [66, 1] for further discussion and extensions.

Definition 4.11 (superlinear directions). Relative to a sequence (zk)k∈N that converges to a point z⋆ ∈
Rn, we say that (dk)k∈N ⊆ Rn is a sequence of superlinear directions, if

lim
k→∞

∥zk + dk − z⋆∥
∥zk − z⋆∥

= 0.

The following theorem provides asymptotic guarantees for the superlinear convergence of SPIRAL. As
remarked before, when the directions satisfy Definition 4.11, the backtracking linesearch will eventually
never be triggered, thus substantially improving the performance of the algorithm. The theorem requires
local assumptions such as strict differentiability of t in (3.1) at ∇ĥ(z⋆), where z⋆ is the limit point of
(zk)k∈N. Auxiliary results for controlling the terms ∥z̃k

ℓ −uk∥ for ℓ ∈ [N] that appear due to the (shuffled)
cyclic updates are postponed to Lemma B.1 in Appendix B.

Theorem 4.12 (superlinear convergence). Consider the sequence (zk)k∈N generated by Algorithm 1, and
additionally to Assumptions 1 and 2, suppose the following are satisfied:

13

A1 (zk)k∈N converges to a strong local minimum z⋆ of φ;

A2 the directions dk are superlinear relative to (zk)k∈N (cf. Definition 4.11);

A3 t (defined in (3.1)) is strictly differentiable at ∇ĥ(z⋆).

Then, asymptotically the linesearch in step 1.5 will be accepted with τ = 1, and (zk)k∈N converges to z⋆

at superlinear rate.

Proof. Let uk
0 := zk + dk. Due to the superlinearity of the directions dk,

lim
k→∞

∥uk
0 −z⋆∥

∥zk−z⋆∥ = 0. (4.14)

We start by showing that close enough to the limit point the linesearch condition would always be satisfied
with τ = 1. It follows from Theorem 4.7(v) that z⋆ ∈ fix proxĥ

φ and from Fact 4.9 that z⋆ is also a strong
local minimum of φĥ. Hence, G⋆ = ∇2φĥ(z⋆) is symmetric positive definite by Lemma 4.10(ii). Let

εk := φĥ(uk
0)−φ⋆

φĥ(zk)−φ⋆
.

Since G⋆ := ∇2φĥ(z⋆) ≻ 0, a second-order expansion of φĥ at z⋆ yields

lim
k→∞

εk = lim
k→∞

1
2 ⟨G

⋆(uk
0 − z⋆), uk

0 − z⋆⟩+O
(
∥uk

0 − z⋆∥2)
1
2 ⟨G⋆(zk − z⋆), zk − z⋆⟩+O

(
∥zk − z⋆∥2

)
≤ lim

k→∞

∥G⋆∥∥uk
0 − z⋆∥2 +O

(
∥uk

0 − z⋆∥2)
λmin(G⋆)∥zk − z⋆∥2 +O

(
∥zk − z⋆∥2

)
= lim

k→∞

∥G⋆∥∥uk
0 −z⋆∥2

∥zk−z⋆∥2 + O
(

∥uk
0 −z⋆∥2

)
∥zk−z⋆∥2

λmin(G⋆) + O
(

∥zk−z⋆∥2
)

∥zk−z⋆∥2

(4.14)
≤ 0.

In particular, there exists k0 ∈ N such that εk ≤ 1 ∀k ≥ k0. Moreover, since zk converges to z⋆, it follows
from Theorem 4.7(i) and Corollary 4.3 that φĥ(zk) ≥ φĥ(z⋆). Consequently, using the definition of εk

above with φ⋆ = φĥ(z⋆) due to Fact A.2(iv),

φĥ(uk
0)− φĥ(zk) = −(1− εk)

(
φĥ(zk)− φĥ(z⋆)

)
≤ 0 ∀k ≥ k0.

Therefore, the unit stepsize would always be accepted in step 1.5. Now, with unit stepsize uk
0 = uk, as in

step 1.5.a, and this implies through (4.14) that

lim
k→∞

∥uk − z⋆∥
∥zk − z⋆∥

= 0. (4.15)

On the other hand

∥z̄k
N − uk∥

(4.8)
≤

∑N
i=1 ∥z̃k

i − uk∥
(B.1)
≤ η∥z̃k

1 − uk∥
triangular inequality ≤ η∥z̃k

1 − z⋆∥+ η∥uk − z⋆∥
step 2.7 of Algorithm 2 = η√

N
∥z̃k

1 − z⋆∥+ η∥uk − z⋆∥

≤ η(L̄+ 1)∥uk − z⋆∥, (4.16)

14

where η =
∑N

i=1 ci and the last inequality follows from local Lipschitz continuity of proxĤ
Φ and step 2.5

of Algorithm 2. Further exploiting local Lipschitz continuity of the proximal mapping

∥zk+1 − z⋆∥ = 1√
N
∥zk+1 − z⋆∥

Lip. cont. of proxĤ
Φ and step 2.1 of Algorithm 2 ≤ L̄√

N
∥z̄k

N − z⋆∥

triangular inequality ≤ L̄√
N
∥z̄k

N − uk∥+ L̄√
N
∥uk − z⋆∥

(4.16) ≤ α∥uk − z⋆∥

where α = η√
N
L̄(L̄+ 1) + L̄. Hence, combined with (4.15)

∥zk+1 − z⋆∥
∥zk − z⋆∥

≤ α∥u
k − z⋆∥

∥zk − z⋆∥
→ 0,

establishing the claimed superlinear convergence.

A well-known condition for analyzing quasi-Newton methods is the celebrated Dennis-Moré condition
[23, 24], which characterizes the quality of the directions as follows:

lim
k→∞

∥ rĥ(zk) + J rĥ(z⋆)dk∥
∥dk∥

= 0. (4.17)

This classical condition, in conjunction with Assumptions 1 and 2 and Theorems 4.12.A1 and 4.12.A3,
leads to the emergence of superlinear directions [1, Thm. 5.13].

Note that the directions computed by Broyden updates, as one of the quasi-Newton methods, provably
satisfy the Dennis-Moré condition stated in (4.17) (refer to [68, Thm. 5.11] and [66, Thm. VI.8]). In order
to achieve this, Broyden updates require the aforementioned regularity conditions on rĥ at z⋆, as well
as the boundedness of low-rank updates Hk in (3.5). It is important to mention that, although it is not
formally established that L-BFGS satisfies the Dennis-Moré condition, L-BFGS performs better than
Broyden updates in practical scenarios. The theoretical examination of the Dennis-Moré condition using
L-BFGS updates is considered as a future research direction.

It is noteworthy that the boundedness of low-rank updates Hk—similarly existence of the bound
∥dk∥ ≤ D∥zk−vk∥ with some finiteD ≥ supk∈N ∥Hk∥ due to (3.5), as it will be required in Theorem 4.16—
is a common assumption in the analysis of quasi-Newton methods (see, e.g., [66, Ass. 2] and [1, Thm.
5.7-A3 and Thm. 5.8-A3]), and is guaranteed by employing safeguards in practice.

Remark 4.13 (practical considerations). The condition ∥dk∥ ≤ D∥zk − vk∥ is mild in practice since,
as a safeguard here, in the case of failure in meeting the inequality, the directions may be scaled by
dk ← D ∥zk−vk∥

∥dk∥ dk using a sufficiently large predefined scalarD. Moreover, failure in meeting the inequality
does not deteriorate the global and subsequential convergence of SPIRAL, as long as ∥dk∥ is scaled
whenever necessary, as demonstrated in Theorem 4.7. As a final remark, although failure is possible
(especially in the initial iterations when dk is not mature), it has not occurred in any of our simulations
in Section 5.

Remark 4.14. We remark that global convergence results in Theorem 4.7 is established for any choice
of direction. Even though in Algorithm 1 quasi-Newton directions based on the residual mapping were
suggested (cf. (3.5)), any superlinear direction can be employed in the algorithm. As a result, our theory
provides a direct globalization strategy for works that employ quasi-Newton direction with only local
convergence guarantees. For instance, it globalizes the recent work [45] which studies smooth and strongly
convex finite sum problems, and proposes an incremental quasi-Newton method with local convergence
guarantees.

15

4.5 Sequential and Linear Convergence
In accordance with Theorem 4.12 presented in the previous subsection, in order to achieve superlinear
convergence, SPIRAL requires to have a sequence (zk)k∈N that converges to a strong local minimum
of the cost function φ. The subsequent theorem establishes conditions under which the entire sequence
(zk)k∈N converges to a stationary point with a linear convergence rate. To accomplish this, an additional
assumption is required, namely, the Kurdyka-Łojasiewicz (KL) property of the full cost function [38]. It
is worth noting that φ possesses the KL property for a wide range of problems, including situations where
fi and g are semialgebraic functions, which are commonly encountered in various applications (refer to
[9, 10] for further elaboration). The formal statement of the KL property is as follows:

Definition 4.15. (KL property with exponent θ) A proper lsc function ϕ : Rn → R has the Kurdyka-
Lojasiewicz (KL) property with exponent θ ∈ (0, 1) if for every z⋆ ∈ dom ∂ϕ there exist constants η, ϵ, ρ > 0
such that

ψ′(ϕ(z)− ϕ(z⋆)) dist(0, ∂ϕ(z)) ≥ 1, ψ(s) := ρs1−θ, (4.18)

for all z such that ∥z − z⋆∥ ≤ ϵ and ϕ(z⋆) < ϕ(z) < ϕ(z⋆) + η.

In the following result, we present convergence guarantees for sequential convergence under the KL
assumption on the cost function. The proof follows standard techniques found in the literature, drawing
inspiration from works such as [67, 1, 39]. For the sake of completeness, we provide the proof in Appendix
C. The primary challenge in establishing the sequential convergence of Algorithm 1 lies in demonstrating
the bound ∥zk+1 − zk∥ ≤ C∥zk − z̄k−1

N ∥ for a positive constant C, as required by Theorem 4.16. This
bound is established by Lemma B.2 presented in Appendix B.

Theorem 4.16 (Sequential and linear convergence). Additionally to Assumptions 1 and 2, suppose the
following is satisfied:

A1 φ is level bounded;

A2 φ has the KL property (cf. Definition 4.15) with exponent θ ∈ (0, 1);

A3 the directions dk in step 1.4 satisfy ∥dk∥ ≤ D∥zk − vk∥ for some D ≥ 0.

Then, (zk)k∈N converges to a stationary point z⋆ for φ. Moreover, if the KL function has the exponent
parameter in the range θ ∈ (0, 1/2], then (zk)k∈N and (φ(zk))k∈N converge at R-linear rate.

Proof. Refer to Appendix C.

5 Numerical Experiments
In this section, we evaluate the proposed algorithm, SPIRAL, for both convex and nonconvex problems,
considering cost functions with and without Lipschitz continuous gradients. We examine two versions of
SPIRAL: 1) SPIRAL, which follows Algorithm 1, and 2) adaSPIRAL, an adaptive version with additional
steps as outlined in Table 1. We compare SPIRAL against proxSARAH [53], proxSVRG [56], proxSGD
[31], proxSAGA [56], Finito/MISO [22, 43], and low-memory Finito/MISO [39, Alg. 2]. For the convex ℓ1
regularized least squares problem, we compare against Finito/MISO [22]. For the nonconvex nonnegative
principal component analysis problem, we compare against [40], which addresses Finito/MISO in the
general nonsmooth nonconvex case. Additionally, we compare SPIRAL against SMD and the Bregman
Finito/MISO method [39] for the phase retrieval problem, where the cost function lacks a Lipschitz con-
tinuous gradient. The databases used in the evaluations are from LIBSVM [17]. To assess the performance
of the algorithms, we employ the suboptimality criterion

D(zk) := ∥zk − vk∥ (5.1)

16

with vk ∈ tĥ(zk), since

dist(0, ∂̂φ(vk)) ≤ inf
vk∈tĥ(zk)

∥
N∑

i=1
∇ĥi(zk)−∇ĥi(vk)∥

≤
N∑

i=1
∥∇ĥi(zk)−∇ĥi(vk)∥ ≤ c∥zk − vk∥,

where the first inequality holds by Corollary 4.3(ii) in Section 4.1, and c > 0 is some constant due to
local Lipschitz continuity of ĥi, and the fact that zk and vk remain bounded.

For all the algorithms in the comparisons, the stepsizes are set according to their theoretical con-
vergence studies. Refer to [53, Thm. 8] for proxSARAH, [56, Thm. 1] for proxSVRG, [56, Thm. 3] for
nonconvex proxSAGA, and [21] for convex proxSAGA. For proxSGD the diminishing stepsize γt = γ0

1+γ̃t

is considered according to [30] with t as the epoch counter, γ0 = 0.1, and γ̃ = 0.5. For (Bregman)
Finito/MISO and also all the SPIRAL versions the stepsizes are set γi = αN

Li
, i ∈ [N] with α = 0.999. For

adaSPIRAL, the stepsizes are all initialized by κ×maxi∈[N]{ N
Li
}, with a grid search for κ ∈ {5, 10, 50, 100}

for each plot. Furthermore, the quasi-Newton directions in step 1.4 are computed using (3.5), where Hk

is updated using the L-BFGS method with a memory size of 5. The maximum number of backtracks qmax
is also set equal to 5. It should be mentioned that while directions in step 1.4 can be computed using any
quasi-Newton method (e.g. Broyden updates as discussed in Section 4.4), L-BFGS yields superior numer-
ical results. Finally, we refer to epochs by counting the total number of individual gradient evaluations
divided by N , including those involved in the linesearches.

5.1 Adaptive variant
Using the global smoothness constants may lead to conservative stepsizes. Table 1 expands steps 1.1,
1.3, 1.5, and 1.9 of Algorithm 1 in order to clarify the order of operations with the added backtracking
linesearches that ensure the fundamental descent property in Fact 2.4. This adaptation allows SPIRAL to
estimate (relative) smoothness moduli locally—as opposed to using global estimates—resulting in larger
stepsizes. The reader is referred to Appendix E.1 for further explanations about the memory-efficient
implementation of the adaptive variant.

5.2 Sparse Phase Retrieval with Squared Loss
In the initial set of simulations, we evaluate the performance of SPIRAL on the sparse phase retrieval
problem, which involves signal recovery based on intensity measurements. This problem finds applications
in various fields, such as electron microscopy, speech recognition, optical imaging, and X-ray crystallog-
raphy [64, 15]. The sparse phase retrieval problem is formulated as follows:

minimizez∈Rn
1
N

∑N
i=1 Loss(bi, ⟨ai, z⟩2) + g(z), (5.2)

where ai ∈ Rn and bi ∈ R+ are data vectors. The objective of this optimization problem is to find a sparse
vector z ∈ Rn that best approximates bi as ⟨ai, z⟩2 for all i ∈ [N]. Sparsity is introduced to account for
noise and outliers, and this can be achieved by selecting nonsmooth functions such as the ℓ0 or ℓ1 norms.
In this simulation, we consider the squared loss function Loss(x, y) = 1

4 (x− y)2 and g = λ∥ · ∥1. To cast
(5.2) into the original optimization problem form (1.1), we define the functions as follows:

fi(z) = 1
4 (⟨ai, z⟩2 − bi)2, with hi(z) = h(z) = 1

4∥z∥
4 + 1

2∥z∥
2.

Although the cost functions fi do not possess Lipschitz continuous gradients, they exhibit smoothness
relative to the reference function h [12, Lem. 5.1, Prop. 5.1 and 5.2].

17

0 20 40 60 80 100 120 140
10−7

10−6

10−5

10−4

10−3

of epochs

D
(z

k
)

SMD
SPIRAL

adaSPIRAL
low-mem. Fin./MISO
Breg. Finito/MISO
adaSPIRAL-eucl

(a) Performance of different algorithms. (b) Image recovery of adaSPIRAL.

Figure 1: Performance for the phase retrieval problem (5.2) on a digit 6 image with N = 1280, n = 256.
Image recovery is after 100 epochs, including the original image (left), initialization (center), and output
(right).

In this simulation, we consider 16× 16 gray-scale images of digits from the dataset [35]. The images
are vectorized, so n = 256. The matrix A ∈ RN×n with ai being its ith row, with N = d× n and d = 5
is generated according to the procedure described in [26]. We form this matrix as A = [MS1, . . . ,MSN]
with M ∈ Rn×n a normalized Hadamard matrix and Si diagonal sign matrices with the diagonal elements
in {−1, 1}. For noiseless data, d = 3 is sufficient for a complete recovery. The measurements are corrupted
by setting bi = 0 with probability pc = 0.02. Also, we set λ = 1

N by the hyperparameter search to have a
visually good solution. Furthermore, the algorithms are initialized with the initialization scheme suggested
in [26], and they converge to the same local optimal point. The performance of different algorithms is
shown in Figure 1a for a digit 6 image.

As depicted in the figure, SPIRAL demonstrates significantly faster performance compared to the
other algorithms. Even though the cost function in this scenario does not possess a Lipschitz continu-
ous gradient, we evaluate the performance of adaSPIRAL, both in Bregman and Euclidean versions, in
Figure 1a. It is important to note that adaSPIRAL-eucl, implemented according to Algorithm 3 with
the additional steps outlined in Table 1 using dgfs hi = 1

2∥ · ∥
2, does not require any prior knowledge

of Lipschitz constants Li. Remarkably, adaSPIRAL-eucl performs well on cost functions without Lips-
chitz continuous gradients, as verified by this simulation. Consequently, adaSPIRAL-eucl demonstrates
potential applicability to a wider range of cost functions in various applications. Additionally, adaSPI-
RAL outperforms SPIRAL due to its ability to employ larger stepsizes that are dynamically updated as
needed, thereby speeding up convergence. Furthermore, as shown in Figure 1b, adaSPIRAL-eucl exhibits
good image recovery capabilities even in highly corrupted initial conditions.

5.3 ℓ1 Regularized Least Squares Problem
In this section, we evaluate the performance of SPIRAL for the Lasso problem, which is a convex opti-
mization problem commonly used for regression tasks. The Lasso formulation is given by

minimizez∈Rn
1
2∥Az − b∥

2
2 + λ∥z∥1 (5.3)

where A is a matrix with data vectors ai ∈ Rn as its rows, and b is a vector with corresponding labels
bi ∈ R. The datasets used for regression tasks include the mg, cadata, housing, and triazines datasets
obtained from LIBSVM. Additionally, synthetic datasets are generated using the procedure described in
[49, §6] for two different dimensions. The parameter λ is appropriately set for each dataset.

18

0 100 200 300 400
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

D
(z

k
)

low-memory Finito/MISO SPIRAL adaSPIRAL Finito/MISO proxSGD proxSVRG proxSARAH proxSAGA

0 100 200 300 400
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

0 100 200 300 400

10−7

10−5

10−3

10−1

101

0 100 200 300 400

10−6

10−5

10−4

10−3

10−2

10−1

100

of epochs

D
(z

k
)

0 100 200 300 400 500
10−9

10−6

10−3

100

of epochs
0 200 400 600 800 1,000 1,200 1,400

10−6

10−3

100

103

106

of epochs

Figure 2: Performance of different algorithms for the Lasso problem (5.3). Synthetic dataset (top left)
with N = 10000, n = 400, synthetic dataset (top center) with N = 300, n = 600, mg (top right) with
N = 1385, n = 6, triazines (bottom left) with N = 186, n = 60, housing (bottom center) with N = 506,
n = 13, and cadata (bottom right) with N = 20640, n = 8.

Figure 2 provides a comparison of different algorithms on six datasets. It is evident from the results that
both SPIRAL and adaSPIRAL exhibit superior convergence performance compared to other algorithms,
regardless of whether the datasets are synthetic or practical. Also the same speed up by adaSPIRAL is
evident for most of the datasets. Note that adaSPIRAL does not require a priori knowledge of Lipschitz
constants Li, and still its performance is comparable with that of SPIRAL. Compared to Finito/MISO,
low-memory Finito/MISO is worse, however, it does not need a large memory to store the gradient
vectors. It is also observed that SPIRAL is particularly fast on dense datasets.

5.4 Nonnegative Principal Component Analysis
In this section, we investigate the problem of nonnegative principal component analysis (NN-PCA), which
has also been studied in previous works [56, 53]. The problem is formulated as follows:

minimizez∈Rn f(z) := − 1
2N

∑N
i=1 z

T (aia
T
i)z subject to ∥z∥ ≤ 1, z ≥ 0, (5.4)

where N denotes the number of data points represented by ai ∈ Rn. To cast the problem with the form of
(1.1), we define fi(z) = − 1

2z
T (aia

T
i)z and g(z) = δB(z), where B := {w ∈ Rn | ∥w∥ ≤ 1, w ≥ 0} represents

the constraints of the NN-PCA problem (5.4). It is worth mentioning that SPIRAL allows for different
smoothness constants and individualized stepsizes γi for each of the functions fi. In this case, the data
points ai are not normalized to improve the output of NN-PCA analysis, providing a better representation
of the dataset. All the algorithms employed for this nonconvex optimization problem are initialized with
running proxSGD for 10 epochs, starting from the same initial point, ensuring convergence to a similar
local optimum. The optimality criterion (5.1) is reported as a function of the number of epochs.

As depicted in Figure 3, the quasi-Newton updates in SPIRAL significantly enhance the convergence
rate compared to (low-memory) Finito/MISO, which lacks such updates. Although proxSARAH exhibits

19

0 10 20 30 40 50

10−9

10−7

10−5

10−3

10−1

of epochs

D
(z

k
)

low-memory Finito/MISO SPIRAL adaSPIRAL Finito/MISO proxSGD proxSVRG proxSARAH proxSAGA

0 10 20 30 40 50

10−9

10−7

10−5

10−3

10−1

of epochs
0 10 20 30 40 50

10−9

10−7

10−5

10−3

10−1

of epochs
0 10 20 30 40 50

10−9

10−7

10−5

10−3

10−1

of epochs

Figure 3: Performance of different algorithms for the NN-PCA problem of (5.4). MNIST (left) with
N = 60000, n = 784, covtype (left center) with N = 581012, n = 54, a9a (right center) with N = 32561,
n = 123, and aloi (right) with N = 108000, n = 128.

faster convergence for this problem, it performs slower in the Lasso problem and is unable to handle
non-Lipschitz differentiable cost functions, as demonstrated in the problem discussed in Section 5.2.

In order to demonstrate how competitive different versions of SPIRAL are with state-of-the-art meth-
ods used in ML, also in terms of CPU time, performance comparisons are conducted in Appendix D. It
is worth noting that despite SPIRAL’s approximation of second-order information, the adopted quasi-
Newton method, namely L-BFGS, demonstrates efficiency by relying solely on inexpensive level 1 BLAS
operations, such as inner products, scalar multiplications, and additions.

6 Conclusion
This paper introduced SPIRAL, an optimization algorithm designed for solving regularized finite sum
minimization problems. SPIRAL operates in a nonconvex setting and does not rely on the typical as-
sumption of Lipschitz differentiability. Many existing methods that utilize quasi-Newton directions in
finite sum settings either impose restrictive conditions or only achieve local convergence. In contrast, we
demonstrated that SPIRAL achieves a superlinear convergence rate while ensuring global convergence,
all without the need for diminishing step sizes, and under standard mild assumptions. This is achieved by
the introduction of a straightforward yet effective linesearch which is smart, in the sense that it will never
be triggered close enough to (sufficiently regular) solutions—an aspect validated also in our simulations.
Moreover, it is observed that while addressing nonsmooth nonconvex problems, SPIRAL is still compet-
itive with the state-of-the-art on classical convex problems, such as regularized least squares problems.
Promising future research directions include the adaptation of SPIRAL to domains like distributed and
federated learning.

A Preliminaries
Fact A.1 (basic properties [18, 50]). The following hold for a dgf H : Rn → R, x, y, z ∈ Rn:

(i) (three-point inequality) DH(x, z) = DH(x, y) + DH(y, z) + ⟨x− y,∇H(y)−∇H(z)⟩. [18, Lem. 3.1].

For any convex set U ⊆ Rn and u, v ∈ U the following hold [50, Thm. 2.1.5, 2.1.10]:

(ii) If H is µH,U -strongly convex on U , then µH,U
2 ∥v − u∥

2 ≤ DH(v, u) ≤ 1
2µH,U

∥∇H(v)−∇H(u)∥2.

(iii) If ∇H is ℓH,U -Lipschitz on U , then 1
2ℓH,U

∥∇H(v)−∇H(u)∥2 ≤ DH(v, u) ≤ ℓH,U
2 ∥v − u∥

2.

In the following, some properties of the Bregman Moreau envelope are highlighted. The interested
reader is referred to [1] and [37] for proofs and further properties.

20

Fact A.2 (Basic properties of ϕH and proxH
ϕ , [1, 37]). Let H : Rn → R denote a dgf (cf. Definition 2.1),

and ϕ : Rn → R be a proper lsc, and lower bounded function. Then, the following hold:

(i) proxH
ϕ is locally bounded, compact-valued, and outer semicontinuous;

(ii) ϕH is finite-valued and continuous; it is locally Lipschitz if so is ∇H;

(iii) ϕH(z) = ϕ(v)+DH(v, z) ≤ ϕ(y)+DH(y, z) with any y, z ∈ Rn, v ∈ proxH
ϕ (z). Hence, ϕH(z) ≤ ϕ(z);

(iv) inf ϕ = inf ϕH and argminϕH = argminϕ;

(v) ϕH is level-bounded iff so is ϕ.

The following fact studies sufficient conditions for Lipschitz continuity of the Bregman proximal
mapping and continuity of the Moreau envelope, both of which are crucial to the theory developed in
Theorems 4.7 and 4.12.

Fact A.3 ([39, Lem. A.2]). Let Vi ⊆ Rn be nonempty and convex, i ∈ [N], and let V := V1 × · · · × VN .
Additionally to Assumption 1, suppose that g is convex, and hi, i ∈ [N], is ℓhi

-smooth and µhi
-strongly

convex on Vi. Then, the following hold for function Ĥ as in (4.2) with γi ∈ (0,N/Lfi
), i ∈ [N]:

(i) proxĤ
Φ is L̄-Lipschitz continuous on V for some constant L̄ ≥ 0.

If in addition fi and hi are twice continuously differentiable on Vi, i ∈ [N], then

(ii) ΦĤ is continuously differentiable on V with ∇ΦĤ = ∇2Ĥ ◦ (id−proxĤ
Φ).

The following fact establishes the equivalence between problems (1.1) and (4.1).

Fact A.4 ([39, Lem. A.1]). Let the functions φ and Φ be as in (1.1) and (4.1), respectively. Then,

(i) ∂Φ(x) = {v = (v, . . . , v) |
∑

i vi ∈ ∂φ(x)} if x = (x, . . . , x) ∈ ∆, and is empty otherwise.

(ii) Φ has the KL property at x = (x, . . . , x) iff so does φ at x. In this case, the desingularizing functions
are the same up to a positive scaling.

B Omitted lemmas
Lemma B.1. Suppose that Assumptions 1 and 2 hold and that φ is level bounded. Consider the sequence
generated by Algorithm 1. Then, for every ℓ ∈ [N] there exists cℓ > 0 such that

∥z̃k
ℓ − uk∥ ≤ cℓ∥z̃k

1 − uk∥. (B.1)

Proof. By level boundedness of φ and Theorem 4.7, (uk)k∈N, (zk)k∈N, (z̃k
i)k∈N, i ∈ [N] are contained in a

nonempty bounded set U . By Assumption 2.A2, hi is locally strongly convex and locally Lipschitz, which
along with Assumption 2.A1 and Fact A.3 implies that proxĤ

Φ is L̄-Lipschitz on a convex subset of U
for some L̄ > 0. Without loss of generality and for the sake of simplicity, we assume the cyclic sweeping
rule in the incremental loop, i.e., iℓ = ℓ. Note that the following proof can be easily cast into the case
of cyclic sweeping without replacement. Arguing by induction, for ℓ = 1, (B.1) holds trivially. Suppose
that the claim holds for some ℓ ≥ 1. Then, by triangular inequality and the definition of z̃k

ℓ in step 2.7 of

21

Algorithm 2

∥z̃k
ℓ+1 − uk∥ = 1√

N
∥z̃k

ℓ+1 − uk∥

≤ 1√
N
∥z̃k

1 − uk∥+ 1√
N
∥z̃k

ℓ+1 − z̃k
1∥

Lip. continuity of proxĤ
Φ and Algorithm 2 ≤ 1√

N
∥z̃k

1 − uk∥+ L̄√
N
∥z̄k

ℓ+1 − uk∥

(4.8) ≤ ∥z̃k
1 − uk∥+ L̄√

N

∑
j≤ℓ ∥z̃k

j − uk∥

(induction) ≤
(

1 + L̄√
N

∑
j≤ℓ cj

)
:=cℓ+1

∥z̃k
1 − uk∥,

establishing (B.1).

Lemma B.2. In addition to the assumptions in Lemma B.1, suppose that the directions dk in step 1.4
satisfy ∥dk∥ ≤ D∥zk − vk∥ for some D ≥ 0. Then, ∥zk+1 − zk∥ ≤ C∥zk − z̄k−1

N ∥ holds for some positive
C.

Proof. By the same reasoning as in Lemma B.1, proxĤ
Φ is L̄-Lipschitz continuous on a bounded convex

set containing the iterates (uk)k∈N, (zk)k∈N, (z̃k
i)k∈N, i ∈ [N]. It follows from the assumption on ∥dk∥

and step 2.4.a of Algorithm 2 that

∥zk − uk∥ ≤ (1− τk)∥zk − vk∥+ τk∥dk∥ ≤ (1− τk + τkD)∥zk − vk∥ ≤ η1∥z̄k−1
N − zk∥, (B.2)

where η1 = L̄(1 − τk + τkD) and Lipschitz continuity of the proximal mapping was used in the last
inequality. Further using triangular inequality yields

∥uk − z̄k−1
N ∥ ≤ ∥uk − zk∥+ ∥zk − z̄k−1

N ∥ (B.3)
(B.2) ≤ (η1 + 1) ∥zk − z̄k−1

N ∥, and
∥z̃k

1 − uk∥ = 1√
N
∥z̃k

1 − uk∥

≤ 1√
N
∥z̃k

1 − zk∥+ 1√
N
∥zk − uk∥

Lip. continuity of proxĤ
Φ and Algorithm 2 ≤ L̄√

N
∥uk − z̄k−1

N ∥+ 1√
N
∥zk − uk∥

(B.3), (B.2) ≤ 1√
N

(
(L̄+ 1)η1 + L̄

)
∥zk − z̄k−1

N ∥.

Using this along with triangular inequality yields

∥z̄k
N − uk∥ =

∑N
ℓ=1 ∥z̃k

ℓ − uk∥
(B.1)
≤

∑N
ℓ=1 cℓ∥z̃k

1 − uk∥ ≤ η2∥zk − z̄k−1
N ∥,

where η2 =
∑N

ℓ=1
cℓ√
N

(
(L̄+ 1)η1 + L̄

)
. This inequality combined with (B.3) yields

∥zk+1 − zk∥ = 1√
N
∥proxĤ

Φ (z̄k
N)− proxĤ

Φ (z̄k−1
N)∥ ≤ L̄√

N
∥z̄k

N − z̄k−1
N ∥

≤ L̄√
N
∥z̄k

N − uk∥+ L̄√
N
∥uk − z̄k−1

N ∥ ≤ L̄√
N

(η1 + η2 + 1)∥zk − z̄k−1
N ∥.

The claimed inequality follows from Lipschitz continuity of proxĤ
Φ and the inclusion in step 2.1 of Algo-

rithm 2.

22

C Omitted proofs
Proof of Theorem 4.16
By level boundedness of φ and Theorem 4.7, (uk)k∈N, (zk)k∈N, (z̃k

i)k∈N are contained in a nonempty
convex bounded set U , where owing to Assumption 2.A2, hi and consequently Ĥ are strongly convex.
It then follows from Fact A.1(ii), Theorem 4.7(ii), and Lemma B.2 that ∥zk+1 − zk∥ → 0. Therefore,
the set of limit points of (zk)k∈N is nonempty compact and connected [11, Rem. 5]. By Theorems 4.7(iv)
and 4.7(v) the limit points are stationary for φ, and ΦĤ(zk) = L(vk, zk) → φ⋆. In the trivial case
ΦĤ(zk) = L(vk, zk) = φ⋆ for some k, the claims follow from Theorem 4.7. Assume that ΦĤ(zk) > φ⋆ for
k ∈ N. The KL property for Φ is implied by that of φ due to Fact A.4, with desingularizing function ψ(s) =
ρs1−θ with exponent θ ∈ (0, 1). Let Ω denote the set of limit points of (zk = (zk, . . . , zk))k∈N. Since Ĥ is
strongly convex, [72, Lem. 5.1] can be invoked to infer that the functionMĤ(w,x) = Φ(w) + DĤ(w,x)
also has the KL property with exponent ν ∈ max{θ, 1

2} at every point (z⋆, z⋆) in the compact set
Ω × Ω. Moreover, by (4.2) MĤ(z⋆, z⋆) = Φ(z⋆) = φ⋆ where Theorem 4.7(iv) was used in the last
equality. Recall that zk ∈ proxĤ

Φ (z̄k−1
N) as in step 2.1 of Algorithm 2. Therefore, ∂MĤ(zk, z̄k−1

N) =
(∂Φ(zk) +∇Ĥ(zk)−∇Ĥ(z̄k−1

N)︸ ︷︷ ︸
∋0, by (2.5) in the lifted space

,∇2Ĥ(z̄k−1
N)(z̄k−1

N − zk)), resulting in

dist(0, ∂MĤ(zk, z̄k−1
N)) ≤ ∥∇2Ĥ(z̄k−1

N)∥∥z̄k−1
N − zk∥ ≤ c∥z̄k−1

N − zk∥ (C.1)

where c = supk ∥∇2Ĥ(z̄k−1
N)∥ > 0 is finite due to z̃k

N being bounded (cf. Theorem 4.7(vi)) and continuity
of ∇2Ĥ. Considering (4.18) with (C.1), since MĤ(zk, z̄k−1

N) = ΦĤ(z̄k−1
N) → φ from above, and that

(zk, z̄k−1
N)k∈N is bounded and accumulates on Ω× Ω, up to discarding iterates the following holds

ψ′(ΦĤ(z̄k−1
N)− φ⋆

)
= ψ′(MĤ(zk, z̄k−1

N)−MĤ(z⋆, z⋆)
)
≥ 1

c∥z̄k−1
N

−zk∥
, (C.2)

where ψ = ρs1−ν is a desingularizing function for MĤ on Ω× Ω. Let us define

∆k := ψ(ΦĤ(z̄k−1
N)− φ⋆) = ρ[ΦĤ(z̄k−1

N)− φ⋆]1−ν ≤ ρ[ρ(1− ν)c∥z̄k−1
N − zk∥]

1−ν
ν . (C.3)

Then, ∆
ν

1−ν

k ≤ cρ
1

1−ν (1− ν)∥z̄k−1
N − zk∥. Concavity of ψ also implies

∆k −∆k+1 ≥ ψ′(ΦĤ(z̄k−1
N)− φ⋆)(ΦĤ(z̄k−1

N)− ΦĤ(z̄k
N))

C.2
≥

ΦĤ(z̄k−1
N)− ΦĤ(z̄k

N)
c∥z̄k−1

N − zk∥
. (C.4)

On the other hand by (4.11) and (4.10)

ΦĤ(z̄k+1
N)− ΦĤ(z̄k

N) ≤ −DĤ(zk+1, z̄k
N) ≤ −µĤ

2 ∥z
k+1 − z̄k

N∥2, (C.5)

where Fact A.1(ii) was used and µĤ denotes its strong convexity modulus. Combining (C.4) and (C.5),

∆k −∆k+1 ≥ η∥z̄k−1
N − zk∥ ≥ η

C ∥z
k+1 − zk∥, (C.6)

with some constant η > 0 where the last inequality follows from Lemma B.2. Hence, (∥zk+1 − zk∥)k∈N
has finite length and is thus convergent. It then follows from Theorem 4.7(v) that (zk)k∈N converges to
a stationary point of φ. Combining (C.3) and (C.6) we have,

∆k+1 ≤ ∆k − α∆
ν

1−ν

k (C.7)
with some appropriate α ≥ 0. Hence, if ν = 1

2 , i.e. θ ∈ (0, 1
2] for Φ, in (C.7) we have ∆k+1 ≤ (1− α)∆k.

As α > 0 and ∆k+1
∆k

> 0, then (1 − α) ∈ (0, 1) concluding ∆k is Q-linearly convergent to zero. By
(C.3) we then conclude (ΦĤ(z̄k−1

N))k∈N is convergent Q-linearly and by Fact A.2(iii), where we have
φ(zk) = Φ(zk) ≤ ΦĤ(z̄k−1

N), we conclude (φ(zk))k∈N is convergent R-linearly. Moreover, the inequality
(C.6) implies that (∥zk+1 − zk∥)k∈N is R-linearly convergent, thus so is (zk)k∈N.

23

0 0.5 1 1.5 2
10−7

10−6

10−5

10−4

10−3

cpu time (sec)
D
(z

k
)

SMD
SPIRAL

adaSPIRAL
low-mem. Fin./MISO
Breg. Finito/MISO
adaSPIRAL-eucl

Figure 4: Performance of different algorithms versus cpu time on the phase retrieval problem (5.2) for 550 epochs on a digit
6 image with N = 1280, n = 256.

D CPU time
The performance results presented in Section 5 are also reported versus CPU time. According to the
numerical comparisons in Figures 4 to 6, the proposed algorithm features relatively cheap iterations and
has comparable computational complexity per epoch compared to the other algorithms.

E Algorithm variants
E.1 Adaptive variant
In this section, the implementation of Table 1 is further discussed. In Table 1, for the first iterate, i.e.
k = 0, the vectors z̃−1

i are initially considered equal to zinit for all i ∈ [N]. Also, note that the linesearch
in step 2.5.d of Table 1 backtracks to step 2.3.a, rather than step 2.5.c. Performing the linesearches in
this intertwined fashion is observed to result in acceptance of good directions and reduction in the overall
computational complexity [20, 52]. We refer the reader to [20] for the theoretical justification for the
effectiveness of this procedure. Note that in Algorithm 3, in the Euclidean case, the same backtrackings
can be used with dgfs hi = 1

2∥·∥
2. The backtracking linesearches in the first block of Table 1 do not require

storing z̃k
i and can be performed efficiently. In step 2.1.b

∑N
i=1 pi(·, z̃k

i) may be evaluated by storing the
scalars

∑N
i=1 fi(z̃k

i) and
∑N

i=1⟨∇fi(z̃k
i), z̃k

i ⟩ and one vector
∑N

i=1∇fi(z̃k
i) ∈ Rn while performing step

1.10 of the algorithm. Similar tricks apply to the computation of the Bregman distances, functions pi in
other backtracking linesearches of Table 1, and updating the vectors sk, s̄k, and s̃k.

E.2 Euclidean variant
In this section, the proposed algorithm in the Euclidean version is outlined in Algorithm 3, when the
functions fi have Lipschitz continuous gradients with constants Li. In this case, the distance generating
functions are hi = 1

2∥·∥
2 and consequently the Bregman distances are simplified to Dhi

(y, x) = 1
2∥y−x∥

2.

24

0 5 10 15 20 25
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

D
(z

k
)

low-memory Finito/MISO SPIRAL adaSPIRAL Finito/MISO proxSGD proxSVRG proxSARAH proxSAGA

0 0.5 1 1.5 2
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

10−7

10−5

10−3

10−1

101

0 0.1 0.2 0.3 0.4 0.5 0.6
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

cpu time (sec)

D
(z

k
)

0 0.1 0.2 0.3 0.4

10−7

10−5

10−3

10−1

101

cpu time (sec)
0 5 10 15 20 25 3010−6

10−3

100

103

106

cpu time (sec)

Figure 5: Performance of different algorithms versus cpu time on the lasso problem of (5.3) for 50 epochs. Synthetic dataset
(top left) with N = 10000, n = 400, synthetic dataset (top center) with N = 300, n = 600, mg (top right) with N = 1385,
n = 6, triazines (bottom left) with N = 186, n = 60, housing (bottom center) with N = 506, n = 13, and cadata (bottom
right) with N = 20640, n = 8.

0 2 4 6 8 10 12 14

10−9

10−7

10−5

10−3

10−1

cpu time (sec)

D
(z

k
)

low-memory Finito/MISO SPIRAL adaSPIRAL Finito/MISO proxSGD proxSVRG proxSARAH proxSAGA

0 5 10 15 20 25 30

10−9

10−7

10−5

10−3

10−1

cpu time (sec)
0 0.5 1 1.5 2 2.5

10−9

10−7

10−5

10−3

10−1

cpu time (sec)
0 1 2 3 4 5 6 7

10−9

10−7

10−5

10−3

10−1

cpu time (sec)

Figure 6: Performance of different algorithms versus cpu time on the NN-PCA problem of (5.4) for 500 epochs. MNIST
(left) with N = 60000, n = 784, covtype (left center) with N = 581012, n = 54, a9a (right center) with N = 32561, n = 123,
and aloi (right) with N = 108000, n = 128.

25

Algorithm 3 SPIRAL - Euclidean version
Require zinit ∈ Rn, Γ = {γ1, . . . , γN} with γi ∈ (0,N/Li), i ∈ [N], β ∈ (0, 1),

γ̂ :=
(∑N

i=1 γ
−1
i

)−1, s0 = zinit − γ̂
N

∑N
i=1∇fi(zinit),

maximum number of backtracks qmax ∈ N ∪ {∞} (e.g. qmax = 2), K ∈ N
Repeat for k = 0, 1, . . . ,K
3.1: zk ∈ proxγ̂g(sk)
3.2: s̄k = zk − γ̂

N

∑N
i=1∇fi(zk) (full update)

3.3: vk ∈ proxγ̂g(s̄k)
3.4: choose dk ∈ Rn at zk (e.g. based on a quasi-Newton method for solving rĥ(z) = 0)
3.5: set τk = 1, qk = 0 (linesearch)

a: uk = τkz
k + (1− τk)vk + τkd

k

b: s̃k = uk − γ̂
N

∑N
i=1∇fi(uk) (full update)

c: yk ∈ proxγ̂g(s̃k)
d: if L(yk, uk) ≤ L(vk, zk)

go to step 3.6
e: else if qk = qmax then

uk = vk, s̃k = uk − γ̂
N

∑N
i=1∇fi(uk), and go to step 3.6

f: else
τk ← βτk, qk ← qk + 1, and go to step 3.5.a

3.6: sk ← s̃k

3.7: for ℓ = 1, . . . , N do (incremental loop)
3.8: randomly choose iℓ ∈ [N] without replacement
3.9: z̃k

iℓ ∈ proxγ̂g(sk)
3.10: sk ← sk + γ̂

N

(
∇fiℓ(uk)−∇fiℓ(z̃k

iℓ)
)

+ γ̂
γ

iℓ

(
z̃k

iℓ − uk
)

3.11: sk+1 ← sk

Return zK

26

Table 1: Adaptive stepsize selection for SPIRAL. Let α ∈ (0, 1), σ ∈ (0, 1), and β as in Algorithm 1.
Initialize the stepsizes γi for i ∈ [N]. For the sake of readability, define pi(y, x) := fi(y) − fi(x) −
⟨∇fi(x), y − x⟩.

2.1:

a: zk ∈ t(sk)
b: if

∑N
i=1 pi(zk, z̃k−1

i) >
∑N

i=1
αN
γi

Dhi(zk, z̃k−1
i) then

γi ← σγi for all i ∈ [N], update sk, and go to step 2.1.a
2.3:

a: vk ∈ t(s̄k)
b: if

∑N
i=1 pi(vk, zk) >

∑N
i=1

N
γi

Dhi(vk, zk) then
γi ← σγi for all i ∈ [N], update s̄k, and go to step 2.3.a

2.4: choose dk ∈ Rn at zk (e.g. based on a quasi-Newton method for solving rĥ(z) = 0)
2.5: set τk = 1, qk = 0

a: uk = zk + (1− τk)(vk − zk) + τkd
k

b: s̃k =
∑N

i=1
1
γi
∇hi(uk)− 1

N∇fi(uk)

c: yk ∈ t(s̃k)
d: if

∑N
i=1 pi(yk, uk) >

∑N
i=1

N
γi

Dhi
(yk, uk) then

γi ← σγi for all i ∈ [N], update s̄k, and go to step 2.3.a
e: if L(yk, uk) ≤ L(vk, zk)

go to step 2.6
f: else if qk = qmax then

uk = vk and go to step 2.5.b
g: else

τk ← βτk, qk ← qk + 1, and go to step 2.5.a
2.6: sk ← s̃k

2.9:

a: z̃k
iℓ ∈ t(sk)

b: if piℓ(z̃k
iℓ , u

k) > N
γ

iℓ
Dh

iℓ
(z̃k

iℓ , u
k) then

γiℓ ← σγiℓ , update sk, and go to step 2.9.a

27

References
[1] Masoud Ahookhosh, Andreas Themelis, and Panagiotis Patrinos. A Bregman forward-backward

linesearch algorithm for nonconvex composite optimization: Superlinear convergence to nonisolated
local minima. SIAM Journal on Optimization, 31(1):653–685, 2021.

[2] Francisco Javier Aragón Artacho, Anton Belyakov, Asen L Dontchev, and Marco López. Local
convergence of quasi-newton methods under metric regularity. Computational Optimization and
Applications, 58(1):225–247, 2014.

[3] Heinz H Bauschke, Jérôme Bolte, and Marc Teboulle. A descent lemma beyond Lipschitz gradient
continuity: first-order methods revisited and applications. Mathematics of Operations Research,
42(2):330–348, 2017.

[4] Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Operations Research Letters, 31(3):167–175, 2003.

[5] Yoshua Bengio. Practical recommendations for gradient-based training of deep architectures. Neural
Networks: Tricks of the Trade: Second Edition, pages 437–478, 2012.

[6] Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, 2016.

[7] Dimitri P Bertsekas and John N Tsitsiklis. Gradient convergence in gradient methods with errors.
SIAM Journal on Optimization, 10(3):627–642, 2000.

[8] Doron Blatt, Alfred O Hero, and Hillel Gauchman. A convergent incremental gradient method with
a constant step size. SIAM Journal on Optimization, 18(1):29–51, 2007.

[9] Jérôme Bolte, Aris Daniilidis, and Adrian Lewis. The Łojasiewicz inequality for nonsmooth subana-
lytic functions with applications to subgradient dynamical systems. SIAM Journal on Optimization,
17(4):1205–1223, 2007.

[10] Jérôme Bolte, Aris Daniilidis, Adrian Lewis, and Masahiro Shiota. Clarke subgradients of stratifiable
functions. SIAM Journal on Optimization, 18(2):556–572, 2007.

[11] Jérôme Bolte, Shoham Sabach, and Marc Teboulle. Proximal alternating linearized minimization for
nonconvex and nonsmooth problems. Mathematical Programming, 146(1-2):459–494, 2014.

[12] Jérôme Bolte, Shoham Sabach, Marc Teboulle, and Yakov Vaisbourd. First order methods beyond
convexity and lipschitz gradient continuity with applications to quadratic inverse problems. SIAM
Journal on Optimization, 28(3):2131–2151, 2018.

[13] Xufeng Cai, Cheuk Yin Lin, and Jelena Diakonikolas. Empirical risk minimization with shuffled sgd:
A primal-dual perspective and improved bounds. arXiv preprint arXiv:2306.12498, 2023.

[14] Xufeng Cai, Chaobing Song, Stephen Wright, and Jelena Diakonikolas. Cyclic block coordinate
descent with variance reduction for composite nonconvex optimization. In International Conference
on Machine Learning, pages 3469–3494. PMLR, 2023.

[15] Emmanuel J Candes, Xiaodong Li, and Mahdi Soltanolkotabi. Phase retrieval via Wirtinger flow:
Theory and algorithms. IEEE Transactions on Information Theory, 61(4):1985–2007, 2015.

[16] Jaeyoung Cha, Jaewook Lee, and Chulhee Yun. Tighter lower bounds for shuffling SGD: Random
permutations and beyond. In International Conference on Machine Learning, pages 3855–3912.
PMLR, 23–29 Jul 2023.

28

[17] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2:1–27, 2011.

[18] Gong Chen and Marc Teboulle. Convergence analysis of a proximal-like minimization algorithm
using Bregman functions. SIAM Journal on Optimization, 3(3):538–543, 1993.

[19] Damek Davis, Dmitriy Drusvyatskiy, and Kellie J MacPhee. Stochastic model-based minimization
under high-order growth. arXiv preprint arXiv:1807.00255, 2018.

[20] Alberto De Marchi and Andreas Themelis. Proximal gradient algorithms under local lipschitz gra-
dient continuity: A convergence and robustness analysis of panoc. Journal of Optimization Theory
and Applications, 194(3):771–794, 2022.

[21] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient method
with support for non-strongly convex composite objectives. In Advances in neural information
processing systems, pages 1646–1654, 2014.

[22] Aaron Defazio and Justin Domke. Finito: A faster, permutable incremental gradient method for big
data problems. In International Conference on Machine Learning, pages 1125–1133, 2014.

[23] John E Dennis and Jorge J Moré. A characterization of superlinear convergence and its application
to quasi-newton methods. Mathematics of computation, 28(126):549–560, 1974.

[24] John E Dennis, Jr and Jorge J Moré. Quasi-newton methods, motivation and theory. SIAM review,
19(1):46–89, 1977.

[25] Radu Alexandru Dragomir, Mathieu Even, and Hadrien Hendrikx. Fast stochastic bregman gradient
methods: Sharp analysis and variance reduction. In International Conference on Machine Learning,
pages 2815–2825. PMLR, 2021.

[26] John C Duchi and Feng Ruan. Solving (most) of a set of quadratic equalities: Composite optimization
for robust phase retrieval. Information and Inference: A Journal of the IMA, 8(3):471–529, 2019.

[27] Francisco Facchinei and Jong-Shi Pang. Finite-dimensional variational inequalities and complemen-
tarity problems, volume II. Springer, 2003.

[28] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-convex
optimization via stochastic path-integrated differential estimator. Advances in neural information
processing systems, 31, 2018.

[29] Rong Ge, Zhize Li, Weiyao Wang, and Xiang Wang. Stabilized svrg: Simple variance reduction for
nonconvex optimization. In Conference on learning theory, pages 1394–1448. PMLR, 2019.

[30] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochas-
tic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[31] Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic approximation methods
for nonconvex stochastic composite optimization. Mathematical Programming, 155(1-2):267–305,
2016.

[32] Mert Gürbüzbalaban, Asu Ozdaglar, and Pablo A Parrilo. Why random reshuffling beats stochastic
gradient descent. Mathematical Programming, 186:49–84, 2021.

[33] Filip Hanzely and Peter Richtárik. Fastest rates for stochastic mirror descent methods. Computa-
tional Optimization and Applications, pages 1–50, 2021.

29

[34] Jeff Haochen and Suvrit Sra. Random shuffling beats sgd after finite epochs. In International
Conference on Machine Learning, pages 2624–2633. PMLR, 2019.

[35] Trevor Hastie, Jerome Friedman, and Robert Tibshirani. The Elements of Statistical Learning.
Springer New York, 2001.

[36] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26:315–323, 2013.

[37] Chao Kan and Wen Song. The Moreau envelope function and proximal mapping in the sense of the
Bregman distance. Nonlinear Analysis: Theory, Methods & Applications, 75(3):1385 – 1399, 2012.

[38] Krzysztof Kurdyka. On gradients of functions definable in o-minimal structures. Annales de l’institut
Fourier, 48(3):769–783, 1998.

[39] Puya Latafat, Andreas Themelis, Masoud Ahookhosh, and Panagiotis Patrinos. Bregman finito/miso
for nonconvex regularized finite sum minimization without lipschitz gradient continuity. SIAM Jour-
nal on Optimization, 32(3):2230–2262, 2022.

[40] Puya Latafat, Andreas Themelis, and Panagiotis Patrinos. Block-coordinate and incremental aggre-
gated proximal gradient methods for nonsmooth nonconvex problems. Mathematical Programming,
pages 1–30, 2021.

[41] Zhize Li and Peter Richtárik. ZeroSARAH: Efficient nonconvex finite-sum optimization with zero
full gradient computation. arXiv preprint arXiv:2103.01447, 2021.

[42] Haihao Lu, Robert M. Freund, and Yurii Nesterov. Relatively smooth convex optimization by first-
order methods, and applications. SIAM Journal on Optimization, 28(1):333–354, 2018.

[43] Julien Mairal. Incremental majorization-minimization optimization with application to large-scale
machine learning. SIAM Journal on Optimization, 25(2):829–855, 2015.

[44] Konstantin Mishchenko, Ahmed Khaled, and Peter Richtárik. Random reshuffling: Simple analysis
with vast improvements. Advances in Neural Information Processing Systems, 33:17309–17320, 2020.

[45] Aryan Mokhtari, Mark Eisen, and Alejandro Ribeiro. IQN: An incremental quasi-Newton method
with local superlinear convergence rate. SIAM Journal on Optimization, 28(2):1670–1698, 2018.

[46] Aryan Mokhtari, Mert Gürbüzbalaban, and Alejandro Ribeiro. Surpassing gradient descent prov-
ably: A cyclic incremental method with linear convergence rate. SIAM Journal on Optimization,
28(2):1420–1447, 2018.

[47] Philipp Moritz, Robert Nishihara, and Michael Jordan. A linearly-convergent stochastic L-BFGS
algorithm. In Artificial Intelligence and Statistics, pages 249–258. PMLR, 2016.

[48] Angelia Nedic and Soomin Lee. On stochastic subgradient mirror-descent algorithm with weighted
averaging. SIAM Journal on Optimization, 24(1):84–107, 2014.

[49] Yu. Nesterov. Gradient methods for minimizing composite functions. Mathematical Programming,
140(1):125–161, aug 2013.

[50] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 137. Springer
Science & Business Media, 2018.

[51] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. SARAH: A novel method for ma-
chine learning problems using stochastic recursive gradient. In International Conference on Machine
Learning, pages 2613–2621. PMLR, 2017.

30

[52] Pieter Pas, Mathijs Schuurmans, and Panagiotis Patrinos. Alpaqa: A matrix-free solver for nonlinear
mpc and large-scale nonconvex optimization. In 2022 European Control Conference (ECC), pages
417–422. IEEE, 2022.

[53] Nhan H Pham, Lam M Nguyen, Dzung T Phan, and Quoc Tran-Dinh. ProxSARAH: An efficient
algorithmic framework for stochastic composite nonconvex optimization. J. Mach. Learn. Res.,
21:110–1, 2020.

[54] Benjamin Recht and Christopher Ré. Parallel stochastic gradient algorithms for large-scale matrix
completion. Mathematical Programming Computation, 5(2):201–226, 2013.

[55] Sashank J. Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alexander J. Smola. Stochastic
variance reduction for nonconvex optimization. In International conference on machine learning,
pages 314–323, 2016.

[56] Sashank J. Reddi, Suvrit Sra, Barnabas Poczos, and Alexander J. Smola. Proximal stochastic
methods for nonsmooth nonconvex finite-sum optimization. In Advances in Neural Information
Processing Systems, pages 1145–1153, 2016.

[57] R. T. Rockafellar and R. J.-B. Wets. Variational analysis, volume 317. Springer Science & Business
Media, 2009.

[58] Ralph Tyrell Rockafellar. Convex analysis. Princeton University Press, 1970.

[59] Anton Rodomanov and Dmitry Kropotov. A superlinearly-convergent proximal Newton-type method
for the optimization of finite sums. In International Conference on Machine Learning, pages 2597–
2605. PMLR, 2016.

[60] Hamed Sadeghi and Pontus Giselsson. Hybrid acceleration scheme for variance reduced stochastic
optimization algorithms. arXiv preprint arXiv:2111.06791, 2021.

[61] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1):83–112, mar 2017.

[62] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized
loss minimization. Journal of Machine Learning Research, 14(Feb):567–599, 2013.

[63] Mikhail V. Solodov and Benar F. Svaiter. An inexact hybrid generalized proximal point algorithm
and some new results on the theory of Bregman functions. Math. Oper. Res., 25(2):214–230, 2000.

[64] Ju Sun, Qing Qu, and John Wright. A geometric analysis of phase retrieval. Foundations of Com-
putational Mathematics, 18(5):1131–1198, 2018.

[65] Marc Teboulle. A simplified view of first order methods for optimization. Mathematical Programming,
170(1):67–96, 2018.

[66] A. Themelis and P. Patrinos. Supermann: A superlinearly convergent algorithm for finding fixed
points of nonexpansive operators. IEEE Transactions on Automatic Control, 64(12):4875–4890, dec
2019.

[67] Andreas Themelis, Masoud Ahookhosh, and Panagiotis Patrinos. On the acceleration of forward-
backward splitting via an inexact Newton method. In Heinz H. Bauschke, Regina S. Burachik, and
D. Russell Luke, editors, Splitting Algorithms, Modern Operator Theory, and Applications, pages
363–412. Springer International Publishing, Cham, 2019.

31

[68] Andreas Themelis, Lorenzo Stella, and Panagiotis Patrinos. Forward-backward envelope for the
sum of two nonconvex functions: Further properties and nonmonotone linesearch algorithms. SIAM
Journal on Optimization, 28(3):2274–2303, 2018.

[69] N Denizcan Vanli, Mert Gurbuzbalaban, and Asuman Ozdaglar. Global convergence rate of proximal
incremental aggregated gradient methods. SIAM Journal on Optimization, 28(2):1282–1300, 2018.

[70] Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, and Vahid Tarokh. Spiderboost and momentum: Faster
variance reduction algorithms. Advances in Neural Information Processing Systems, 32, 2019.

[71] Minghan Yang, Andre Milzarek, Zaiwen Wen, and Tong Zhang. A stochastic extra-step quasi-Newton
method for nonsmooth nonconvex optimization. Mathematical Programming, pages 1–47, 2021.

[72] Peiran Yu, Guoyin Li, and Ting Kei Pong. Kurdyka-Łojasiewicz exponent via inf-projection. Foun-
dations of Computational Mathematics, pages 1–47, 2021.

[73] Hui Zhang, Yu-Hong Dai, Lei Guo, and Wei Peng. Proximal-like incremental aggregated gradi-
ent method with linear convergence under Bregman distance growth conditions. Mathematics of
Operations Research, 46(1):61–81, 2021.

[74] Jiaojiao Zhang, Huikang Liu, Anthony Man-Cho So, and Qing Ling. Variance-reduced stochastic
quasi-Newton methods for decentralized learning: Part I, 2022.

32

	Introduction
	Preliminaries
	Notation
	Relative smoothness

	Proposed algorithm
	Convergence Analysis
	Problem Reformulation
	Lifted Representation of the Algorithm
	Global and Subsequential Convergence
	Superlinear Convergence
	Sequential and Linear Convergence

	Numerical Experiments
	Adaptive variant
	Sparse Phase Retrieval with Squared Loss
	l1 Regularized Least Squares Problem
	Nonnegative Principal Component Analysis

	Conclusion
	Preliminaries
	Omitted lemmas
	Omitted proofs
	Proof of Theorem 4.16

	CPU time
	Algorithm variants
	Adaptive variant
	Euclidean variant

	References

