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Abstract
This is Part II of a study on mixed-integer programming (MIP) relaxation techniques
for the solution of non-convex mixed-integer quadratically constrained quadratic
programs (MIQCQPs). We set the focus on MIP relaxation methods for non-
convex continuous variable products where both variables are bounded and extend
the well-known MIP relaxation normalized multiparametric disaggregation tech-
nique(NMDT), applying a sophisticated discretization to both variables. We refer
to this approach as doubly discretized normalized multiparametric disaggregation
technique (D-NMDT). In a comprehensive theoretical analysis, we underline the
theoretical advantages of the enhanced method D-NMDT compared to NMDT. Fur-
thermore, we perform a broad computational study to demonstrate its effectiveness in
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terms of producing tight dual bounds for MIQCQPs. Finally, we compare D-NMDT
to the separable MIP relaxations from Part I and a state-of-the-art MIQCQP solver.

Keywords Quadratic programming · MIP Relaxations · Discretization ·
Binarization · Piecewise linear approximation

1 Introduction

In this work, we study relaxations of general mixed-integer quadratically constrained
quadratic programs (MIQCQPs). More precisely, we consider discretization tech-
niques for non-convex MIQCQPs that allow for relaxations of the set of feasible
solutions based on mixed-integer programming (MIP) formulations.

We enhance the normalized multiparametric disaggregation technique (NMDT)
introduced in [7]. NMDT is aMcCormick relaxation based MIP relaxation approach,
which is applied to form relaxations of the quadratic equations z = x2 and z = xy. The
McCormick relaxation is a set of four inequalities that describe the convex hull of the
feasible points of the equation z = xy in the satisfyingfinite lower and upper bounds on
x and y, see [16]. We extend NMDT by applying a discretization to both variables. We
refer to the latter as doubly discretized NMDT (D-NMDT). Both MIP formulations,
NMDT and D-NMDT, can be applied to MIQCQPs to form an MIP relaxation by
introducing auxiliary variables and one such quadratic equation for each quadratic
term in the MIQCQP. Such an MIP relaxation can then be solved with a standard MIP
solver.We analyze theseMIP relaxation approaches theoretically and computationally
with respect to the quality of the dual bound they deliver for MIQCQPs.

For a thorough discussion of background on discretization and piecewise linear
techniques in MIQCQPs, please refer to Part I [3].
Contribution We extend NMDT by a discretization of both variables, called D-
NMDT. We analyze both MIP relaxations in terms of the dual bound they impose
for non-convex MIQCQPs. In a theoretical analysis, we show that D-NMDT requires
fewer binary variables and yields better linear programming (LP) relaxations at identi-
cal relaxation errors compared to NMDT. Finally, we perform an extensive numerical
study where we use NMDT and D-NMDT to generate MIP relaxations of non-convex
MIQCQPs.We show that D-NMDT has clear advantages, such as tighter dual bounds,
shorter runtimes, and it finds more feasible solutions to the original MIQCQPs when
combined with a callback function that uses the non-linear programming (NLP) solver
IPOPT [19]. These effects become even more apparent in dense instances with many
variable products. Moreover, we combine NMDT and D-NMDTwith the tighten saw-
tooth epigraph relaxation from Part I [3] to obtain even tighter relaxations for z = x2

terms in MIQCQPs. This tightening leads to improved results in the computational
study.
Outline In Sect. 2.1 and Sect. 2.2 we review several useful concepts, notations, and
core formulations from Part I [3]. In Sect. 3, we recall the NMDT MIP relaxation and
introduce the new MIP relaxation D-NMDT. In Sect. 4, we prove various properties
about the strengths of theMIP relaxations focusing on volume, sharpness, and optimal
choice of breakpoints. In Sect. 5, we present our computational study.
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Enhancements of discretization approaches for non-convex MIQCQPs 895

2 Preliminaries

2.1 MIP formulations

We follow Part I [3] for notation used in this work. We provide this section here
for the completeness of this article. We study relaxations of general mixed-integer
quadratically constrained quadratic programs (MIQCQPs), which are defined as

min x ′Q0x + c′
0x + d ′

0y,
s.t. x ′Q j x + c′

j x + d ′
j y + b j ≤ 0 j ∈ 1, . . . ,m,

xi ∈ [x
¯ i

, x̄i ] i ∈ 1, . . . , n,

y ∈ {0, 1}k,
(1)

for Q0, Q j ∈ Rn×n , c0, c j ∈ Rn , d0, d j ∈ Rk and b j ∈ R, j = 1, . . .m. Throughout
this article, we use the following convenient notation: for any two integers i ≤ j , we
define �i, j�:={i, i + 1, . . . , j}, and for an integer i ≥ 1 we define �i�:=�1, i�. We
will denote sets using capital letters, but also use capital letters for matrices, some
functions, and the number of layers L . We typically denote variables using lower
case letters and vectors of variables using bold face. For a vector u = (u1, . . . , un)
and some index set I ⊆ �n�, we write uI :=(ui )i∈I . Thus, e.g. u�i� = (u1, . . . , ui ).
Furthermore, we introduce the following notation: for a function F : X → R and a
subset B ⊆ X , let graB(F), epiB(F) and hypB(F) denote the graph, epigraph and
hypograph of the function F over the set B, respectively. That is,

graB(F):={(u, z) ∈ B × R : z = F(u)},
epiB(F):={(u, z) ∈ B × R : z ≥ F(u)},
hypB(F):={(u, z) ∈ B × R : z ≤ F(u)}.

In the following, we introduceMIP formulations as wewill use them to represent these
sets as well as the different notions of the strength of an MIP formulation explored in
this work.

We will study mixed-integer linear sets, so-called mixed-integer programming
(MIP) formulations, of the form

P IP:={(u, v, z) ∈ Rd+1 × [0, 1]p × {0, 1}q : A(u, v, z) ≤ b}

for some matrix A and vector b of suitable dimensions. The linear programming (LP)
relaxation or continuous relaxation PLP of P IP is given by

PLP:={(u, v, z) ∈ Rd+1 × [0, 1]p × [0, 1]q : A(u, v, z) ≤ b}.

We will often focus on the projections of these sets onto the variables u, i.e.

proju(P
IP):={u ∈ Rd+1 : ∃(v, z) ∈ [0, 1]p × {0, 1}q s.t. (u, v, z) ∈ P IP}. (2)
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896 B. Beach et al.

The corresponding projected linear relaxation proju(P
LP) onto the u-space is defined

accordingly.
In order to assess the quality of an MIP formulation, we will work with several

possible measures of formulation strength. First, we define notions of sharpness, as
in [5, 14]. These relate to the tightness of the LP relaxation of an MIP formulation.
Whereas properties such as total unimodularity guarantee an LP relaxation to be a
complete description for the mixed-integer points in the full space, we are interested
here in LP relaxations that are tight descriptions of the mixed-integer points in the
projected space. In the following conv(S) denotes the convex hull of a set S.

Definition 1 We say that the MIP formulation P IP is sharp if

proju(P
LP) = conv(proju(P

IP)).

holds.

Sharpness expresses a tightness at the root node of a branch-and-bound tree.
In this article, we study certain non-polyhedral sets U ⊆ Rd+1 and will develop

MIP formulations P IP to form relaxations of U in the projected space, as defined in
the following.

Definition 2 For a set U ⊆ Rd+1 we say that an MIP formulation P IP is an MIP
relaxation of U if

U ⊆ proju(P
IP).

Given a function F : [0, 1]d → R, we will mostly consider

U = gra[0,1]d (F) ⊆ Rd+1.

In particular, we will focus on either

U = {(x, z) ∈ [0, 1]2 : z = x2} or U = {(x, y, z) ∈ [0, 1]3 : z = xy}.

We now define several quantities to measure the error of an MIP relaxation.

Definition 3 For an MIP relaxation P IP of a set U ⊆ Rd+1, let ū ∈ proju(P
IP). We

then define the pointwise error of ū as

E(ū,U ):=min{|ud+1 − ūd+1| : u ∈ U , u�d� = ū�d�}.

This enables us to define the following two error measures for P IP w.r.t. U :

1. The maximum error of P IP w.r.t. U is defined as

Emax(P IP,U ):= max
ū∈proju(P IP)

E(ū,U ).
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Enhancements of discretization approaches for non-convex MIQCQPs 897

2. The average error of P IP w.r.t. U is defined as

Eavg(P IP,U ):= vol(proju(P
IP) \U ).

Via integral calculus, the second, volume-based error measure can be interpreted as
the average pointwise error width of all points u ∈ proju(P

IP). Note that whenever
the volume of U is zero (i.e. it is a lower-dimensional set), the average error width
just reduces to the volume of proju(P

IP). Both of the defined error quantities for an
MIP relaxation P IP can also be used to measure the tightness of the corresponding LP
relaxation PLP. The volume of LP relaxation as a measure of aMIP relaxation strength
was previously used in [2].

2.2 Core relaxations

In the definition of theMIP relaxations studied in thiswork,wewill frequently consider
equations of the form z = xy for continuous or integer variables x and y within certain
bounds Dx :=[x

¯
, x̄] and Dy :=[y

¯
, ȳ], respectively. To this end, we will often use the

function F : D → R, F(x, y) = xy, D:=Dx × Dy , and refer to the set of feasible
solutions to the equation z = xy via the graph of F , i.e. graD(F) = {(x, y, z) ∈
D × R : z = xy}. In order to simplify the exposition, we will, for example, often
write graD(xy) or refer to a relaxation of the equation z = xy instead of graD(F).
We will do this similarly for the univariate function f : Dx → R, f (x) = x2 and
equations of the form z = x2, for example. For inequalities, like z ≥ xy or z = x2,
we can use the epigraph.

Furthermore, we repeatedly make use of several “core” formulations for specific
sets of feasible points. They are introduced in the following.

2.2.1 McCormick envelopes

The convex hull of the equation z = xy for (x, y) ∈ D is given by a set of linear
equations known as the McCormick envelope, see [16]:

M(x, y):= {
(x, y, z) ∈ [x

¯
, x̄] × [y

¯
, ȳ] × R : (4)

}
. (3)

x
¯

· y + x · y
¯

− x
¯

· y
¯

≤ z ≤ x̄ · y + x · y
¯

− x̄ · y
¯
,

x̄ · y + x · ȳ − x̄ · ȳ ≤ z ≤ x
¯

· y + x · ȳ − x
¯

· ȳ. (4)

When one of the variables, here β, is binary, the McCormick envelope of z = xβ
simplifies to
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M(x, β) = {(x, β, z) ∈ [x
¯
, x̄] × [0, 1] × R : (6)} . (5)

x
¯

· β ≤ z ≤ x̄ · β,

x − x̄ · (1 − β) ≤ z ≤ x − x
¯

· (1 − β).
(6)

For univariate continuous quadratic equations z = x2, it simplifies to

M(x, x) = {(x, z) ∈ [x
¯
, x̄] × R : (8)} . (7)

z ≥ 2x
¯

· x − x
¯
2,

z ≥ 2x̄ · x − x̄2,

z ≤ x(x̄ + x
¯
) − x̄ · x

¯
.

(8)

2.2.2 Sawtooth-based MIP formulations

Next, we state an MIP relaxation for equations of the form z ≥ x2 that requires only
logarithmically-many auxiliary variables and constraints in the number of linear seg-
ments. It makes use of an elegant piecewise linear (pwl) formulation for gra[0,1](x2)
from [20] using the recursively defined sawtooth function presented in [18] to formu-
late the approximation of gra[0,1](x2), as described in [5].Wewill use this formulation
to further strengthen the relaxation of z = x2 by NMDT or D-NMDT. To this end,
we define a formulation parameterized by the depth L ∈ N:

SL :=
{
(x, g,α) ∈ [0, 1] × [0, 1]L+1 × {0, 1}L : (10)

}
(9)

g0 = x
2(g j−1 − α j ) ≤ g j ≤ 2g j−1 j = 1, . . . , L,

2(α j − g j−1) ≤ g j ≤ 2(1 − g j−1) j = 1, . . . , L.

(10)

Note that, by construction in [5, 20], SL is defined such that when α ∈ {0, 1}L , the
relationship between g j and g j−1 is g j = min{2g j−1, 2(1− g j−1)} for j = 1, . . . , L ,
which means that it is given by the “tooth” function G : [0, 1] → [0, 1], G(x) =
min{2x, 2(1− x)}. Therefore, each g j represents the output of a “sawtooth” function
of x , as described in [18, 20], i.e. when α ∈ {0, 1}L , we have

g j = G j (x) for G j :=G ◦ G ◦ · · · ◦ G︸ ︷︷ ︸
j

. (11)
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Enhancements of discretization approaches for non-convex MIQCQPs 899

Now, we define the function FL : [0, 1] → [0, 1],

FL(x):=x −
L∑

j=1

2−2 j G j (x), (12)

which is a close approximation to x2.
Using the relationships (11) and (12) between x and g, any constraint of the form
z = x2 can be approximated via the function

f L : [0, 1] × [0, 1]L+1 → [0, 1],

f L(x, g) = x −
L∑

j=1

2−2 j g j , for an integer L ≥ 0. (13)

Now, we consider the LP relaxation of SL , where each variable α j is relaxed to the
interval [0, 1]. Then, via the constraints (9), we see that the weakest lower bounds on
each g j w.r.t. g j−1 can be attained via setting α j = g j−1, yielding a lower bound of 0.
Thus, after projecting out α, the LP relaxation of SL in terms of just x and g can be
stated as

T L =
{
(x, g) ∈ [0, 1] × [0, 1]L+1 : (14)

}
,

g0 = x
g j ≤ 2(1 − g j−1) j = 1, . . . , L
g j ≤ 2g j−1 j = 1, . . . , L.

(14)

The LP relaxation T L is sharp by [3, Theorem 1]. Thus, T L yields the same lower
bound on z as the MIP formulation SL due to sharpness and the convexity of FL . This
allows us to define an LP outer approximation for inequalities of the form z ≥ x2:

Definition 4 (Sawtooth Epigraph Relaxation, SER) Given some L ∈ N, the depth-L
sawtooth epigraph relaxation for z ≥ x2 on the interval x ∈ [0, 1] is given by

QL :=
{
(x, z) ∈ [0, 1] × R : ∃g ∈ [0, 1]L+1 : (16)

}
, (15)

z ≥ f j (x, g) − 2−2 j−2 j = 0, . . . , L
z ≥ 0, z ≥ 2x − 1

(x, g) ∈ T L .

(16)

In [3] it is shown that that the maximum error for the sawtooth epigraph relaxation
is 2−2L−4 (Fig. 1).
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900 B. Beach et al.

Fig. 1 The sawtooth epigraph relaxations QL for L = 1 and L = 2. By increasing L , we tighten the lower
bound by creating more inequalities. This is done by only adding linearly many variables and inequalities
in the extended formulation to gain exponentially many equally spaced cuts in the projection

3 MIP relaxations for non-convexMIQCQPs

In this section, we present MIP relaxations for bivariate equations of the form z = xy
and univariate equations of the form z = x2. For convenience, we define a completely
dense MIQCQP as an MIQCQP for which all terms of the form x2i and xi x j appear
in either the objective or in some constraint.

We proceed as follows. First, we recall the well-known MIP relaxation technique
NMDT. Then, we introduce an enhanced version of it, called D-NMDT, which is
designed to reduce the number of binary variables required to reach the same level of
approximation accuracy compared toNMDT for completely denseMIQCQPs. Finally,
we define the two tightened variants of NMDT and D-NMDT, for which we also
incorporate the sawtooth epigraph relaxation (15) for all z = x2i terms. We call these
methods T-NMDT and T-D-NMDT, respectively. We will mention the corresponding
maximumerrors of the presentedMIP relaxations and derive them in detail in Sect. 4.1.
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Enhancements of discretization approaches for non-convex MIQCQPs 901

3.1 Base-2 NMDT

The NormalizedMultiparametric Disaggregation Technique (NMDT) was introduced
byCastro [7]. Later it was used in [4, 5] alongwith its univariate form (see [5,Appendix
A]). While in [7] a base of 10 was chosen for the discretization, in [4, 5] NMDT is
described with a base of 2. We use the latter here and provide both the bivariate and
univariate definition of base-2 NMDT according to [5] here.

In NMDT, the key idea for relaxing z = xy is to discretize one variable, e.g.
x , using binary variables β ∈ {0, 1}L and a residual term �L

x and then relaxing the
resulting productsβi y and�L

x y usingMcCormick envelopes. The followingderivation
of NMDT can be transferred one-to-one to bases different to 2.We start with the base-2
discretization of the variable x :

x =
L∑

j=1

2− jβ j + �L
x .

Then we multiply by y to obtain the exact representation

x =
L∑

j=1

2− jβ j + �L
x , z =

L∑

j=1

2− jβ j y + �L
x y

�L
x ∈ [0, 2−L ], β ∈ {0, 1}L .

(17)

Next, we use McCormick envelopes to model all remaining product terms, βi y and
�L

x · y, to obtain the final formulation.

Definition 5 (NMDT, [7]) The MIP relaxation NMDT of z = xy with x ∈ [0, 1],
y ∈ [0, 1] and a depth of L ∈ N is defined as follows:

x =
L∑

j=1

2− jβ j + �L
x

z =
L∑

j=1

2− j u j + �L
z

(y, β j , u j ) ∈ M(y, β j ) j = 1, . . . , L
(�L

x , y,�L
z ) ∈ M(�L

x , y)
�L

x ∈ [0, 2−L ], y ∈ [0, 1], β ∈ {0, 1}L .

(18)

Since McCormick envelopes are exact reformulations of the variable products if at
least one of the variables is required to be binary, the maximum error of NMDT with
respect to z = xy is purely due to the McCormick relaxation of �L

z = �L
x · y, with a

value of 2−L−2.
An advantage of the NMDT approach compared to the separable formulations

from Part I is that it requires fewer binary variables to reach the desired level of
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902 B. Beach et al.

accuracy for bipartiteMIQCQPs, for which the quadratic part in each constraint is of
the form xT Q y. This is due to the fact that one has only to discretize either x ∈ Rn

or y ∈ Rm . Thus, to reach a maximum error of 2−2L−2 for each bilinear term, NMDT
requires only 2L min{m, n} binary variables instead of the L(m+n) variables required
by the approaches D-NMDT (see Sect. 3.2) or HybS (from Part I). In contrast, NMDT
requires twice the number of binary variables to reach the same level of accuracy if all
quadratic terms xi xk and x2l with k = 1, . . . , n and l = 1, . . . ,m must be modelled,
for example if Q is dense, see Table 1.

Next, we show how tomodel univariate quadratic equations z = x2 with the NMDT
technique:

Definition 6 (Univariate NMDT ([7])) The MIP relaxation NMDT of z = x2 with
x ∈ [0, 1] and a depth of L ∈ N is defined as follows:

x =
L∑

j=1

2− jβ j + �L
x

z =
L∑

j=1

2− j u j + �L
z

(x, β j , u j ) ∈ M(x, β j ) j = 1, . . . , L
(�L

x , x,�L
z ) ∈ M(�L

x , x)
�L

x ∈ [0, 2−L ], x ∈ [0, 1], β ∈ {0, 1}L .

(19)

Note that for any depth L , the univariate formulation NMDT yields a maximum error
of slightly less than 2−L−2 instead of the 2−2L−2 in the sawtooth relaxation from [3].
Further, the formulation NMDT is not sharp. For example at x = 1

2 , its LP relaxation
admits the solution β j = 1

2 for all j ∈ �L�, �L
x = 2−L−1, u j = 0 for all j ∈ �L�,

�L
z = 0 and z = 0, which is not in the convex hull of the MIP formulation Univariate

NMDT stated in (19).
However, we can tighten the lower bound on z in (19) by adding the sawtooth epi-

graph relaxation (15) of depth L1 (with L1 ≥ L), i.e. (x, z) ∈ QL1 .We refer to NMDT
with this lower-bound tightening for univariate quadratic terms as T-NMDT. Note that
univariate T-NMDT is a sharp MIP formulation, which we discuss in Sect. 4.3.

Definition 7 (Univariate T-NMDT) The MIP relaxation T-NMDT of z = x2 with
x ∈ [0, 1] and a depth of L, L1 ∈ N with L1 ≥ L is defined as follows:

(x,�L
x , z,�L

z , u,β) satisfy (19)
(x, z) ∈ QL1 .

(20)
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3.2 Doubly discretized NMDT

The key idea behind the novel MIP relaxation Doubly Discretized NMDT (D-NMDT)
for z = xy is to further increase the accuracy ofNMDTby discretizing the second vari-
able y as well, which leads to a double NMDT substitution, namely in the �L

x y-term.
In this way, for problemswhereNMDTwould require discretizing all xi -variables, e.g.
if we have some dense constraint, we can double the accuracy of the relaxation for the
equations zi j = xi x j without adding additional binary variables by taking advantage
of the fact that both variables are discretized anyway. In NMDT, we could choose to
discretize either x or y for each equation of the form z = xy. For D-NMDT, we con-
sider both options of discretization, and then, by introducing a parameter λ ∈ [0, 1],
we canmodel a hybrid version of the two resultingMIP relaxations. Namely, we write

xy = λxy + (1 − λ)xy,

then discretize y first in the relaxation of λxy and x first in the relaxation of (1−λ)xy.
Finally, the complete MIP relaxation D-NMDT is obtained by relaxing the resulting
products via McCormick envelopes (see Appendix A for the detailed derivation).

Definition 8 (D-NMDT) The MIP relaxation D-NMDT of z = xy with x, y ∈ [0, 1],
a depth of L ∈ N and the parameter λ ∈ [0, 1] is defined as follows:

x =
L∑

j=1

2− jβx
j + �L

x , y =
L∑

j=1

2− jβ
y
j + �L

y

z =
L∑

j=1

2− j (u j + v j ) + �L
z

(
λ�L

y + (1 − λ)y, βx
j , u j

)
∈ M

(
λ�L

y + (1 − λ)y, βx
j

)
j = 1, . . . , L

(
(1 − λ)�L

x + λx, β y
j , v j

)
∈ M

(
(1 − λ)�L

x + λx, β y
j

)
j = 1, . . . , L

(
�L

x ,�L
y ,�L

z

)
∈ M

(
�L

x ,�L
y

)

�L
x ,�L

y ∈ [0, 2−L ], x, y ∈ [0, 1], βx ,β y ∈ {0, 1}L .

(21)

As McCormick envelopes are exact reformulations of bilinear products if one of the
variables is binary, we only make an error in the relaxation of the continuous variable
product �L

x �L
y . This yields a maximum error of 2−2L−2 for D-NMDT. For bounds

on the terms (1 − λ)�L
x + λx and λ�L

y + (1 − λ)y, see Appendix B.

Remark 1 For our implementation of the D-NMDT technique used in Sect. 5, we set
λ = 1

2 for the sake of formulation symmetry in x and y.

To model the univariate quadratic terms with this method, we set y = x in z = xy
and get an MIP relaxation for z = x2, The resulting MIP relaxation is stronger than
the univariate NMDT approach from Definition 6, which we will prove later.
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Definition 9 (Univariate D-NMDT) The MIP relaxation D-NMDT of z = x2 with
x ∈ [0, 1] and a depth of L ∈ N is defined as follows:

x =
L∑

j=1

2− jβ j + �L
x

z =
L∑

j=1

2− j u j + �L
z

(�L
x + x, β j , u j ) ∈ M(�L

x + x, β j ) j = 1, . . . , L
(�L

x ,�L
z ) ∈ M(�L

x ,�L
x )

�L
x ∈ [0, 2−L ], x ∈ [0, 1], β ∈ {0, 1}L .

(22)

Again, as McCormick envelopes are exact reformulations of bilinear products if one
of the variables is required to be binary, we only make an error in the relaxation
of the continuous variable product �L

x �L
x . This yields a maximum error of 2−2L−2

for univariate D-NMDT. Note that the upper bound of this formulation is formed
by exactly the same pwl approximation for z = x2 as the sawtooth formulations.
Unfortunately, the univariate D-NMDT is not sharp; for example, at x = 1

2 , its LP
relaxation admits the solution β j = 1

2 for all j ∈ �L�,�L
x = 2−L−1,�L

z = 0, u j = 0
for all j ∈ �L� and z = 0, which is not in the convex hull of gra[0,1](x2).

To formulate a tightened version of D-NMDT, we tighten the lower bound on z
in (22), by removing all McCormick lower bounds and adding the sawtooth epigraph
relaxation (15) of depth L1 (with L1 ≥ L). Note that univariate T-D-NMDT is a sharp
MIP formulation, which we will prove in Sect. 4.3.

Definition 10 Univariate T-D-NMDT) The MIP relaxation T-D-NMDT of z = x2

with x ∈ [0, 1] and depths L, L1 ∈ N with L1 ≥ L is defined as follows:

(x,�L
x , z,�L

z , u,β) satisfy (22)
(x, z) ∈ QL1 .

(23)

In Table 1 in Sect. 4, we give a summary of the number of binary variables and
constraints as well as the accuracy of each MIP relaxation when applied to a dense
MIQCQP of the form (1).

Remark 2 (Binary Variables and Dense MIQCQPs) When modelling Problem (1)
using the MIP relaxations NMDT and D-NMDT, for each variable xi , we will need a
discretization of the form xi = ∑L

j=1 2
− jβ j + �L

xi with β ∈ {0, 1}L . Thus, both of
these formulations use nL binary variables in the case of a dense MIQCQP. However,
the improved binarizations in D-NMDT reduces the errors exponentially compared to
NMDT.
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Table 1 A summary of characteristics of the different MIP relaxations for z = xy

MIP relax. # Bin. var. # Constraints Max. err. Avg. err. width

NMDT nL n( 12 (5n + 7) + 2(n + 1)L) 2−L−2 1
6 2

−L

D-NMDT nL n( 12 (5n + 5) + 4nL) 2−2L−2 1
6 2

−2L

HybS nL n( 12 (5n − 3) + 2n(L + L1)) 2−2L−2 1
3 2

−2L

Bin2 1
2 (n2 + 1)L n( 12 (3n − 1) + (n + 1)(L + L1)) 2−2L−1 1

2 2
−2L

Bin3 1
2 (n2 + 1)L n( 12 (3n − 1) + (n + 1)(L + L1)) 2−2L−1 1

2 2
−2L

Binary variables and constraints are given in the worst-case, in which every possible quadratic term is
modelled, for example if some matrix Qi is dense. The average errors for HybS, Bin2 and Bin3 with
respect to gra[0,1]2 (xy) are calculated for L1 → ∞ and without the McCormick envelopes added. Finally,

the average errors for Bin2 and Bin3 apply only to L ≥ 1; the corresponding volumes are 7
12 for L = 0.

Finite L1 leads to slightly increased error bounds for the methods Bin2, Bin3 and HybS

Note that it is possible that some preprocessing or reformulation, such as via a
convex quadratic reformulation may improve the number of binary variables needed.
We do not use such reformulations in this work, but just focus on applying our MIP
relaxations as is.

4 Theoretical analysis

In this section, we give a theoretical analysis of the presented MIP relaxations for the
equation z = xy over x, y ∈ [0, 1] as well as the equation z = x2 over x ∈ [0, 1],
respectively, in order to allow for a comparison of structural properties between them.
In particular, we analyze their maximum error, average errors, formulation strengths,
i.e. sharpness, as well as the optimal placement of breakpoints to minimize average
errors. Our results are summarized in Table 1, which also includes the results for the
separable methods HybS, Bin2, and Bin3 from Part I [3].

4.1 Maximum error

We start by discussing the maximum errors. We will derive the maximum errors of the
NMDT-based formulations by reducing the error calculations to the error of a single
McCormick relaxation per grid piece. In general, for the equation z = xy over a grid
piece [x

¯
, x̄] × [y

¯
, ȳ], the maximum under- and overestimation is 1

4 (x̄ − x
¯
)(ȳ − y

¯
),

attained at (x, y) = ( 12 (x¯
+ x̄), 1

2 (y
¯

+ ȳ)), see e.g. [15, page23].
For NMDT, to show that the maximum error can be computed from a single

McCormick relaxation, we fix β ∈ {0, 1}L in (18) and observe two facts: (1)
we get x = k2−L + �L

x for some integer k and therefore x varies only with
�L

x ∈ [0, 2−L ], and (2) the McCormick relaxation (y, βi , ui ) ∈ M(y, βi ) is exact for
each i = 1, . . . , L , i.e. , the relaxation equals ui = yβi . These two facts imply that
the only error incurred on this small interval stems from the single McCormick relax-
ation (�L

x , y,�L
z ) ∈ M(�L

x , y) over regions of the form (�L
x , y) ∈ [0, 2−L ]×[0, 1].
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This yields a maximum error of 1
4 (2

−L · 1) = 2−L−2. Similarly, for D-NMDT and
univariate NMDT and D-NMDT, one can also show that all errors come from the
McCormick relaxations of the continuous error terms. The maximum errors of the
different MIP relaxations are listed in the following propositions.

Proposition 1 The maximum error in the NMDT MIP relaxation for z = xy with
x, y ∈ [0, 1] is 1

4 (2
−L · 1) = 2−L−2.

Likewise, for D-NMDT, the maximum error in z = xy is purely in the McCormick

relaxation of the term
(
�L

x ,�L
y ,�L

z

)
∈ M

(
�L

x ,�L
y

)
over the region (�L

x ,�L
y ) ∈

[0, 2−L ] × [0, 2−L ], yielding a maximum error of 1
4 (2

−L · 2−L) = 2−2L−2.

Proposition 2 The maximum error in the D-NMDT MIP relaxation for z = xy with
x, y ∈ [0, 1] is 1

4 (2
−L · 2−L) = 2−2L−2.

For univariate D-NMDT, the maximum error in z = x2 arises from theMcCormick
relaxation (�L

x ,�L
z ) ∈ M(�L

x ,�L
x ) over the interval �L

x ∈ [0, 2−L ], yielding a
maximum error of 2−2L−2.

Proposition 3 The maximum error in the univariate D-NMDT MIP relaxation for
z = x2 with x, y ∈ [0, 1] is 2−2L−2.

Finally, for univariate NMDT, the error is incurred by the McCormick relax-
ation (�L

x , x,�L
z ) ∈ M(�L

x , x) over the box (�L
x , x) ∈ [0, 2−L ] × [0, 1] with

x = k2−L + �L
x for some k ∈ {0, . . . , 2−L − 1}. Over this box, the error-maximizing

point (x,�L
x ) = ( 12 , 2

−L−1) derived in [15] is not feasible, as x = 1
2 implies �L

x = 0.
In fact, we can show that the maximum error is slightly less than the expected 2−L−2.

To prove this, we focus on the maximum error of the underestimating part of
the McCormick envelope with respect to x�L

x and skip the overestimating part as it
works analogously. By (4), the McCormick relaxation underestimator over the box
(�L

x , x) ∈ [0, 2−L ] × [0, 1] is given as

max
�L

x ∈[0,2−L ],
k∈{0,...,2L−1}

{0,�L
x − 2−L(1 − x)|x = k2−L + �L

x }.

The underestimator is zero at points in the domain where

�L
x ≤ −2−L x + 2−L = 2−L(1 − 2−Lk − �L

x ) (24)

holds and �L
x − 2−L(1− 2−Lk − �L

x ) at the rest of the domain. The maximum error
of the McCormick underestimation is

max
�L

x ∈[0,2−L ],
k∈{0,...,2L−1}

{x�L
x − max{0,�L

x − 2−L(1 − x)}|x = k2−L + �L
x }

= max
�L

x ∈[0,2−L ],
k∈{0,...,2L−1}

{2−Lk�L
x + (�L

x )2 − max{0,�L
x − 2−L(1 − �L

x − k2−L)}}.
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First, we determine themaximumerror on the piecewhere theMcCormick underes-
timator is the zero function. In the (�L

x , k) space the region described by the inequality

(24) equals �L
x ≤ 2L−k

2L+4L
. Now suppose we are at some point in this region, then we

can increase the error function 2−Lk�L
x + (�L

x )2 − 0 by increasing either k or �L
x .

Consequently, the maximum error is attained if�L
x = 2L−k

2L+4L
. The error at these points

can be purely expressed as a quadratic function in k:

x�L
x − 0 = (2−Lk + �L

x )�L
x =

(
2−Lk + 2L − k

2L + 4L

) (
2L − k

2L + 4L

)
.

It is maximized and symmetric at k∗ = 1
2 (2

L − 1) = 2L−1 − 1
2 . Since k

∗ /∈ N for
any L ≥ 1, the maximum error is attained at k1 = 2L−1 − 1 and k2 = 2L−1. It
has a value of 2−L−2 − 2−3L−2(1 + 2−L)−2. We can use the same reasoning for the

region �L
x ≥ 2L−k

2L+4L
and the increase in the error function by decreasing either k or

�L
x and obtaining the same maximum error at the same points. The values k1 and k2

correspond to

(�L
x , x) =

(
1

2(2L+1)
, 1
2 ± 1

2(2L+1)

)
.

The maximum overestimation error with the McCormick envelope, where the proof
works very similarly, is obtained at (�L

x , x) = ( 14 ,
1
4 ) and (�L

x , x) = ( 14 ,
3
4 ) with a

value of 2−4 if L = 1. However, for L ≥ 2 the value is somewhat lower, namely
2−L−2 − 2−3 L−2(1 − 2−L)−2 attained at

(�L
x , x) =

(
1

2(2L−1)
, 1
2 ± 1

2(2L−1)

)
if L ≥ 2.

The maximum error is therefore set by the underestimation. We summarize these
findings in the following proposition.

Proposition 4 The maximum error in the univariate NMDT relaxation for z = x2

with x, y ∈ [0, 1] is 2−L−2 − 2−3 L−2(1 + 2−L)−2.

A summary of the maximum error analysis results can be found in Table 1. It should
be noted that for a fixed depth L , HybS and D-NMDT provide the smallest maximum
errors among the considered MIP relaxations in our study.

4.2 Average error andminimizing the average error

In this section, we will study the average error of the considered MIP relaxation. In
Definition 3 the average error is defined as the volume enclosed by the projected MIP
relaxation.We consider it to be an additionalmeasure of the quality of aMIP relaxation
besides the maximum error.

For equations of the form z = x2, univariate D-NMDT gives piecewiseMcCormick
relaxations. In [5, Proposition5], it is shown that uniform discretization is optimal for
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fixed numbers of breakpoints. However, for univariate NMDT the calculation of the
volume is much more complicated, so we omit it here.

Next, we compute the average errors of NMDT and D-NMDT for the equation
z = xy. Thenweprove that the uniformdiscretizations,which are used in the definition
of NMDT and D-NMDT, are indeed optimal in terms of the minimizing the volume
of the projected MIP relaxation if the number of discretization points is fixed (i.e. if L
and L1 are fixed).

Proposition 5 Let P IP
NMDT and P IP

D-NMDT be the MIP relaxations of NMDT and D-
NMDT for z = xy for some L ≥ 0 as defined in (18) and (21), respectively. Their
respective average errors are

Eavg(P IP
NMDT, gra[0,1]2(xy)) = 1

62
−L−2

and

Eavg(P IP
D-NMDT, gra[0,1]2(xy)) = 1

62
−2L−2.

Proof Note that the discretization in NMDT and D-NMDT yields piecewise
McCormick relaxations over a uniformly spaced grid, where each grid piece cor-
responds to some fixed integer solution βx ,β y ∈ {0, 1}L , �L

x ,�L
y ∈ [0, 2−L ]. The

volume of of the McCormick envelope over a single grid piece is 1
6w

2
xw

2
y , wherewx is

its x-width and wy is its y-width (see e.g. [15, page 22]). The average error is then the
sum over all grid piece volumes. Now, for NMDTwe have 2L grid pieces withwy = 1
and wx = 2−L , yielding a volume per grid piece of 1

62
−2 L and thus a total volume of

1
62

−L . Similarly, for D-NMDT we have 22L grid pieces with wx = wy = 2−L , which
yields a volume per grid piece of 1

62
−4L and thus a total volume of 1

62
−2L . �


When applied to gra[0,1]2(xy), NMDT and D-NMDT are both piecewise McCormick
relaxations, defined as

⋃

i∈�n�, j∈�m�

M([xi−1, xi ], [y j−1, y j ]),

wherewe use the notationM([xi−1, xi ], [y j−1, y j ]) tomean theMcCormick envelope
M(x, y) with x ∈ [xi−1, xi ] and y ∈ [y j−1, y j ], for 0 = x0 < x1 < · · · < xn = 1
and 0 = y0 < y1 < · · · < ym = 1.

We now prove that a uniform placement of breakpoints minimizes the average error
in a piecewise McCormick relaxation. For n = 2L and m = 1, this yields precisely
the NMDT relaxation of depth L , and if n = m = 2L , then this yields precisely the
D-NMDT relaxation of depth L . Hence, they are optimal discretizations. The average
error in NMDT is 1

6n = 1
62

−L , and 1
6n2

= 1
62

−2 L in D-NMDT. This follows from the
proof below.

Theorem 1 Let 0 = x0 < x1 < · · · < xn = 1 and 0 = y0 < y1 < · · · < ym = 1
be sets of breakpoints. Then a uniform spacing of these breakpoints minimizes the
average error over all piecewise McCormick relaxations of gra[0,1]2(xy).
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Proof Letwxi :=xi −xi−1 andwy j :=y j − y j−1 with i ∈ �n� and j ∈ �m� be the widths
of the grid pieces [xi−1, xi ] × [y j−1, y j ]. The volume of the McCormick envelope
M([xi−1, xi ], [y j−1, y j ]) over a single grid piece is 1

6w
2
xiw

2
y j , see [15, page 22].

Therefore, the problem of minimizing the average error of a piecewise McCormick
relaxation can be formulated as

1
6 min

∑n
i=1

∑m
j=1 w2

xi w
2
y j

s.t.
∑n

i=1 wxi = 1∑m
j=1 wy j = 1

wxi ≥ 0 i = 1, . . . , n
wy j ≥ 0 j = 1, . . . ,m.

(25)

The objective function in (25) sums the average errors over the single grid pieces while
the constraints ensure that all single grid widths sum up to 1 and are greater than or
equal to 0. Rewriting it to

1
6 min (

∑n
i=1 w2

xi ) · (
∑m

j=1 w2
y j )

s.t.
∑n

i=1 wxi = 1∑m
j=1 wy j = 1

wxi ≥ 0 i = 1, . . . , n
wy j ≥ 0 j = 1, . . . ,m.

(26)

lets (26) decompose into the two independent convex subproblems

1
6 min

∑n
i=1 w2

xi
s.t.

∑n
i=1 wxi = 1

wxi ≥ 0 i = 1, . . . , n,

(27)

1
6 min

∑m
j=1 w2

y j
s.t.

∑m
j=1 wy j = 1

wy j ≥ 0 j = 1, . . . ,m.

(28)

Applying the KKT conditions to (27) and (28), which are sufficient for global opti-
mality here, directly shows that a uniform placement of the breakpoints with wxi = 1

n
and wy j = 1

m is optimal for (25). The total average error is then 1
6nm . �


Corollary 1 Let 0 = x0 < x1 < · · · < xn = 1 and 0 = y0 < y1 = 1 be sets of
breakpoints with n = 2L and P IP

L a depth-L NMDT MIP relaxation of gra[0,1]2(xy)
from (18). Then P IP

L is an optimal piecewise McCormick relaxation with an average
error of Eavg(P IP

L , gra[0,1]2(xy)) = 1
62

−L .

Corollary 2 Let 0 = x0 < x1 < · · · < xn = 1 and 0 = y0 < y1 < · · · < ym = 1 be
sets of breakpoints with n = m = 2L and P IP

L a depth-L D-NMDTMIP relaxation of
gra[0,1]2(xy) from (21). Then P IP

L is an optimal piecewise McCormick relaxation with

an average error of Eavg(P IP
L , gra[0,1]2(xy)) = 1

62
−2L .

We summarize the key results of Sect. 4.2 in the remark below and in Table 1.
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Remark 3 (Tightness of MIP Relaxations) For an equation z = x2 and a fixed depth
L , the tightened sawtooth relaxation [3, Definition 7], and the separable formulations
from Part I that employ it, have the smallest volume in the projected MIP relaxation
among all studied formulations: they are equivalent in upper bound, with a tightened
lower bound, compared to univariate NMDT and D-NMDT. For z = xy, D-NMDT
is the tightest formulation, as it yields the convex hull of graD(xy) on each grid piece
D = [kx2−L , (kx +1)2−L ]×[ky2−L , (ky +1)2−L ], kx , ky ∈ �0, 2L −1�. Combining
these facts, T-D-NMDT is the tightest relaxation presented for the full MIQCQP. �

4.3 Formulation strength: sharpness and LP relaxations

In the previous section, we discussed maximum error and average errors incurred
from using certain discretizations. We will now consider the strength of the resulting
MIP relaxations by analyzing their LP relaxation, i.e. we will check for sharpness.
Sharpness means that the projected LP relaxation equals the convex hull of the MIP
relaxation.

We start with the core formulations from Sect. 2.2. It is well known that the
McCormick relaxation yields the convex hull of the feasible set of z = xy over
box domains D = [x

¯
, x̄] × [y

¯
, ȳ]. Therefore, it is obviously sharp. The volume is

1/6(x̄ − x
¯
)(ȳ − y

¯
). In [3] it is further shown that the sawtooth epigraph relaxation is

also sharp. Since the epigraph of f is an unbounded set, we do not discuss volume
here.

Next, we look at the formulations from Sect. 3. The LP relaxations of NMDT
and D-NMDT for z = xy yield the McCormick envelope over D, and thus they
are sharp. The LP relaxation volumes of NMDT and D-NMDT for z = xy is thus
1/6(x̄ − x

¯
)(ȳ − y

¯
) and independent of the choice of L . In Sect. 3 we proved that

univariate NMDT as well as univariate D-NMDT are not sharp by giving points that
are feasible for the LP relaxation but are not in the convex hull of the MIP relaxations.
Finally, we consider the two tightened formulations univariate T-NMDT and univariate
T-D-NMDT for z = x2. We show that both formulations are sharp for any L1 with
L1 ≥ L . A graphical illustration of how tightening leads to sharp MIP formulations
in the univariate cases can be seen in Fig. 2 for D-NMDT and Fig. 3 for NMDT. We
begin with a lemma about the structure of (non-tightened) univariate D-NMDT MIP
relaxations.

Lemma 1 Let P IP
L be the univariate D-NMDT MIP relaxation with depth L ≥ 1 for

z = x2 as defined in (22). Then the projection of P IP
L in the (x, z)-space gives a series

of McCormick envelopes, i.e.

proj(x,z)(P
IP
L ) =

⋃

i∈�0,2L−1�

Mi (29)

where Mi is the McCormick relaxation M(x, x) with x ∈ [i2−L , (i + 1)2−L ] and
i = 0, . . . , 2L − 1.
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Fig. 2 Feasible set of the univariate MIP relaxation D-NMDT and its LP relaxation with L = 2. In three of
the plots, we display the lower bounds obtained from tightening to show how this affects the MIP relaxation

Fig. 3 Feasible set of the univariate MIP relaxation NMDT and its LP relaxation with L = 2. In three of
the plots we display the lower bounds obtained from tightening to show how this affects the MIP relaxation

The proof of Lemma 1 is stated in Appendix “Piecewise McCormick relaxations of
univariate DNMDT”. We use Lemma 1 to prove sharpness of the tightened version
univariate T-D-NMDT.
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Theorem 2 The univariate T-D-NMDT MIP relaxation for z = x2 is sharp.

Proof Let P IP
L,L1

be a univariate T-D-NMDT MIP relaxation with L1 ≥ L and let
PLP
L,L1

be the corresponding LP relaxation. To prove sharpness, we have to show that

proj(x,z)(P
LP
L,L1

) = conv(proj(x,z)(P
IP
L,L1

)).

As, proj(x,z)(P
LP
L,L1

) ⊇ conv(proj(x,z)(P
IP
L,L1

)) is obvious for any LP relaxation, we
have to show

proj(x,z)(P
LP
L,L1

) ⊆ conv(proj(x,z)(P
IP
L,L1

)).

To do that we analyze the minimum and maximum values of z in proj(x,z)(P
LP
L,L1

) and
conv(proj(x,z)(P

IP
L,L1

)).
In Lemma 1, we showed that the projected MIP relaxation of univariate D-NMDT

is a series of small McCormick relaxations. As the MIP relaxation contains the points
(0, 0) and (1, 1) it follows that its convex hull contains the line connecting these points
and thus

max
z∈[0,1] conv(proj(x,z)(P

IP
L,L1

|x=x̃ )) = x̃, ∀ x̃ ∈ [0, 1]

holds.
Next, we show that the same inequality bounds the maximum value of z in the LP

relaxation, i.e. we prove that

max
z∈[0,1] proj(x,z)(P

LP
L,L1

|x=x̃ ) ≤ x̃, ∀ x̃ ∈ [0, 1].

The McCormick relaxations in (22) give the following inequalities

�L
z

(∗)≤ 2−L�L
x , u j

(∗∗)≤ x + �L
x , and u j

(∗∗∗)≤ (1 + 2−L)β j ∀ j = 1, . . . , 2L − 1.

Thus in the LP relaxation, z is bounded as follows

z =
L∑

j=1

2− j u j + �L
z

(∗),(∗∗)≤ (x + �L
x )(

L∑

j=1

2− jβ j ) + 2−L�L
x

≤ (x + �L
x )(1 − 2−L) + 2−L�L

x = x + �L
x − 2−L x .

and

z =
L∑

j=1

2− j u j + �L
z

(∗),(∗∗∗)≤ (1 + 2−L)(

L∑

j=1

2− jβ j ) + 2−L�L
x

= (1 + 2−L)(x − �L
x ) + 2−L�L

x = x + 2−L x − �L
x .
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Combining both inequalities we have

z ≤
{
x + (�L

x − 2−L x),

x + (2−L x − �L
x ),

which implies z ≤ x and therefore

max
z∈[0,1] proj(x,z)(P

LP
L,L1

|x=x̃ ) ≤ x̃, ∀ x̃ ∈ [0, 1].

It remains to show that

min
z∈[0,1] proj(x,z)(P

LP
L,L1

|x=x̃ ) ≥ min
z∈[0,1] conv(proj(x,z)(P

IP
L,L1

|x=x̃ )), ∀ x̄ ∈ [0, 1].
(30)

We start with the linear cuts given by the tightened sawtooth relaxation. The sawtooth
relaxation is bounded from below by the recursively defined function FL . From [3,
Proposition1] in Part I it follows that for each L and every breakpoint xi := i

2L
with i =

1, . . . , 2L −1, there is a function F j −2−2 j−2 with j < L such that F j lies tangent to
x2 at xi . These cuts are exactly the McCormick underestimators of the MIP relaxation
derived in Lemma 1, z ≥ 2x(i2−L) − (i2−L)2 at xi := i

2L
for i = 1, . . . , 2L − 1. As

the additional sawtooth cuts for L1 ≥ L tighten both the MIP and LP relaxations, we
have

min
z∈[0,1] proj(x,z)(P

LP
L,L1

|x=x̃ ) ≥ min
z∈[0,1] conv(proj(x,z)(P

IP
L,L1

|x=x̃ )),

∀ x̄ ∈ [2−L−1, 1 − 2−L−1].

Finally, consider the boundary regions [0, 2−L−1] and [1 − 2−L−1, 1]. We show that
both the MIP and LP relaxations yield the same minimum value. As established in
Lemma 1, D-NMDT provides a piecewise McCormick relaxation. Consequently, for
x ∈ [0, 2−L−1], the minimum value is z = 0. Meanwhile, for x ∈ [1− 2−L−1, 1], the
minimum value is z = 2x − 1. We further assert that z ≥ 0 and z ≥ 2x − 1 are valid
cuts for the LP relaxation. Based on (22), we can deduce the following McCormick
cuts for the LP relaxation:

u j
(∗)≥ x + �L

x − (1 + 2−L)(1 − β j ), u j
(∗∗)≥ 0 ∀ j = 1, . . . , L

�L
z

(′)≥ 2 · 2−L�L
x − 2−2L , �L

z

(′′)≥ 0.
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From the above, we can estimate z =
L∑

j=1

2− j u j + �L
z

(∗∗),(′′)≥ 0 and

z =
L∑

j=1

2− j u j
(∗)≥ (1 − 2−L)(x + �L

x − (1 + 2−L)) + (1 + 2−L)

⎛

⎝
L∑

j=1

2− jβ j

⎞

⎠ + �L
z

(′)≥ 2x − 2 · 2−L�L
x − 1 + 2−2L + 2 · 2−L�L

x − 2−2L = 2x − 1.

This concludes our proof. �

Lastly, we state that the univariate T-NMDT is also sharp.

Theorem 3 The univariate T-NMDT MIP relaxation is sharp.

The proof of Theorem 3 works by showing that the projection of D-NMDT is a
subset of the projection of NMDT and is stated in Appendix “Sharpness of univariate
NMDT”.

5 Computational results

In order to test theMIP relaxations fromSect. 3with respect to their ability to determine
dual bounds, we now perform an indicative computational study. More precisely, we
will derive MIP relaxations of non-convex MIQCQP instances. The MIP relaxations
are then solved using Gurobi [13] as an MIP solver to determine dual bounds and a
callback function that uses the non-linear programming (NLP) solver IPOPT [19] to
find a feasible solution for the MIQCQP. The MIP relaxation methods are tested for
several discretization depths. To compare the considered methods to state-of-the-art
spatial branching based solvers, we also run Gurobi as an MIQCQP solver.

All instances were solved in Python 3.8.3, via Gurobi 9.5.1 and IPOPT 3.12.13 on
the ‘Woody’ cluster, using the “Kaby Lake” nodes with two Xeon E3-1240 v6 chips
(4 cores,HTdisabled), running at 3.7GHZwith 32GBofRAM.Formore information,
see the Woody Cluster Website of Friedrich-Alexander-Universität Erlangen-Nürn-
berg. The global relative optimality tolerance in Gurobi was set to the default value of
0.01%, for all MIPs and MIQCQPs.

5.1 Study design

In the following, we explain the design of our study and go into detail regarding the
instance set as well as the various parameter configurations.
Instances We consider a three-part benchmark set of 60 instances: 20 non-convex
boxQP instances from [5, 8, 11] and earlierworks, 20ACoptimal power flow (ACOPF)
instances from theNESTAbenchmark set (v0.7.0) (see [9]), previously used in [1], and
20 MIQCQP instances from the QPLIB [12]. In Appendix D you will find links that
contain download options and detailed descriptions of the instances. For an overview
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Table 2 In the study, we consider the parameters cuts, depth, and formulation to create MIP relaxations for
60 MIQCQP instances

Depth Formulation Instances

L = 1, 2, 4, 6 HybS boxQP (20 instances)

L1 = L NMDT ACOPF (20 instances)

Tightened: D-NMDT QPLIB (20 instances)

L = 1, 2, 4, 6

L1 = max{2, 1.5L}

of the IDs of all instances, see Table 9. The benchmark set is equally divided into
30 sparse and 30 dense instances. We refer to dense instances if either the objective
function and/or at least one quadratic function in the constraint set is of the form
x�Qx , where x ∈ R

n are all variables of the problem and Q ∈ R
n,n is a matrix with

at least 25% of its entries being nonzero.
Parameters For each instance, we solve the resulting MIP relaxation of each method
from Sect. 3 using various approximation depths of L ∈ {1, 2, 4, 6} and a time limit of
8h. All MIP relaxations are solved twice. Once in the standard versions from Sect. 3
and once with a tightened underestimator version for univariate quadratic terms where
L1 = max{2, 1.5L}. Note that the tightened MIP relaxations T-NMDT and T-D-
NMDT are equivalent to the non-tightened MIP relaxations NMDT and D-NMDT
when applied to bilinear terms of the form z = xy. However, they differ from them in
that all lower boundingMcCormick constraints in the univariate quadratic terms of the
form z = x2 are replaced by a tighter sawtooth epigraph relaxation (15) as described
in Sects. 3.1 and 3.2. Furthermore, we include HybS, the most performant separable
MIP relaxation from Part I, in the study. However, we do not apply tightening to HybS,
as it was shown in Part I that this does not result in computational improvements.

In Table 2, one can see an overview of the different parameters in our study. In total,
we have 24 parameter configurations for 60 original problems. However, as we do not
apply tightening to HybS we end up with 1200 MIP instances. For the comparison
with Gurobi as a state-of-the-art MIQCQP solver, we solve an additional 480 MIP
instances and 120 MIQCQP instances. These additional MIP instances arise from
disabling the cuts in Gurobi for the winner of the NMDT-based methods and HybS.
The 120MIQCQP instances are built by solving all 60 benchmark problems once with
cuts enabled and once with cuts disabled.

See Sect. 5.2.2 for more details on the latter.
Callback function Solving all MIP relaxations, we use a callback function with the
local NLP solver IPOPT that works as follows: given any MIP-feasible solution, the
callback functionfixes any integer variables from theoriginal problem (before applying
any of the discretization techniques from this work) according to this solution and then
solves the resulting NLP locally via IPOPT in an attempt to find a feasible solution
for the original MIQCQP problem.

123



916 B. Beach et al.

5.2 Results

In the following, we present the results of our study. In particular, we aim to answer
the following questions regarding dual bounds:

– Is our enhanced method D-NMDT computationally superior to its predecessors
NMDT?

– Is it beneficial to use tightened versions of the NMDT andD-NMDT, i.e., to choose
L1 > L?

– How do the studied methods compare to the state-of-the-art MIQCQP solver
Gurobi?

We provide performance profile plots as proposed by Dolan and More [10] to
illustrate the results of the computational study regarding the dual bounds, see Fig. 4,
5, 6, 7, 8 and 9. The performance profiles work as follows: Let dp,s be the best dual
bound obtained by MIP relaxation or MIQCQP solver s for instance p after a certain
time limit. With the performance ratio rp,s :=dp,s/mins dp,s , the performance profile
function value P(τ ) is the percentage of problems solved by approach s such that the
ratios rp,s arewithin a factor τ ∈ R of the best possible ratios. All performance profiles
are generated with the help of Perprof-py by Siqueira et al. [17]. The plots are divided
into two blocks, one for NMDT-based methods and one for the comparison against
HybS andGurobi as anMIQCQP solver. In addition to the performance profiles across
all instances, we also show performance profiles for the dense and sparse subsets of
the instance set. Please note that in minimization problems, the higher the value of a
dual bound, the better it is. Since lower values are considered better in performance
profiles, we simply take the inverse of the dual bound as the value to be compared.

Although the main criterion of the study is the dual bound, we also discuss run
times. Here, we use the shifted geometric mean, which is a common measure for
comparing two different MIP-based solution approaches. The shifted geometric mean
of n numbers t1, . . . , tn with shift s is defined as

( ∏n
i=1(ti + s)

)1/n − s. It has the
advantage that it is neither affected by very large outliers (in contrast to the arithmetic
mean) nor by very small outliers (in contrast to the geometric mean). We use a typical
shift s = 10. Moreover, we only include those instances in the computation of the
shifted geometric mean, where at least one solution method delivered an optimal
solution within the run time limit of 8 hours.

Finally, we will highlight some important results regarding primal bounds in the
comparison of our methods with Gurobi [13] as an MIQCQP solver.

5.2.1 NMDT-based MIP relaxations

We start our analysis of the results by looking at the dual bounds, run times and feasible
solution of the NMDT-based MIP relaxations.
Dual bounds As mentioned before, MIP relaxations are primarily used to deliver
(tight) dual bounds for MIQCQPs. Thus, we now compare the tightness of the dual
bounds provided by the various methods. To this end, we compute relative optimality
gaps gp,s :=|dp,s − bp|/|bp| for all methods s (with a certain L value) and instances
p of the benchmark set, where dp,s is the corresponding best dual bound found by
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Table 3 Arithmetic (left) and geometric (right) mean of relative optimality gaps (in %) on all instances for
NMDT-based methods

NMDT T-NMDT DNMDT T-DNMDT
all

L = 1 31.33/3.60 29.85/3.37 36.41/3.14 35.39/3.00

L = 2 24.57/3.41 23.89/3.05 25.58/2.30 24.72/2.20

L = 4 32.76/1.69 33.12/1.26 28.45/1.32 30.18/1.03

L = 6 32.34/1.08 37.45/0.90 38.55/0.85 37.92/0.70

sparse

L = 1 19.18/11.48 17.91/10.84 18.66/10.71 18.57/10.66

L = 2 15.79/7.16 14.02/5.81 15.70/5.65 15.50/5.51

L = 4 11.47/1.49 11.23/0.85 11.03/1.21 11.00/0.78

L = 6 11.17/0.56 10.93/0.40 10.72/0.44 10.56/0.35

dense

L = 1 43.47/1.13 41.80/1.05 54.16/0.92 52.22/0.85

L = 2 33.36/1.63 33.77/1.60 35.45/0.94 33.94/0.88

L = 4 54.06/1.92 55.00/1.86 45.87/1.44 49.37/1.37

L = 6 53.51/2.10 63.97/2.04 66.38/1.66 65.28/1.42

method s and bp is the best known primal bound for instance p. Looking at Table
3, which displays the arithmetic (left) and geometric (right) means of the relative
optimality gaps for all 60 instances of the benchmark set based on NMDT methods,
several observations can be made. Across all instances, the gap generally decreases
with increasing L values, although there are exceptions. While the outcomes for the
arithmetic mean, in which outliers play a greater role, the outcomes for the geometric
mean are clear. Here, T-D-NMDT is the winner exhibiting the best geometric means
for all L values.

Additionally, in Fig. 4 we show performance profiles for the dual bounds that are
obtained by the different NMDT-based MIP relaxations. Starting from L = 2, we can
see that both D-NMDT and T-D-NMDT deliver notably tighter bounds within the run
time limit of 8h. The largest difference is at L = 4, where D-NMDT and T-D-NMDT
are able to find dual bounds that are within a factor 1.05 of the overall best bounds for
nearly all instances. In contrast, NMDT and T-NMDT require a corresponding factor
of more than 1.1. In addition, the tightened versions perform somewhat better than the
corresponding counterparts, especially for L = 4.

To gain a deeper insight into the benefits of D-NMDT and the tightening of NMDT-
based relaxations, we divide the benchmark set into sparse and dense instances.
For sparse instances, the advantage of the new methods in the performance profiles
is rather small; see the performance profiles in Fig. 6. Here, T-D-NMDT provides
marginally better bounds than the other methods in case of L = 4 and L = 6. For
L = 1 and L = 2, however, T-NMDT dominates all other approaches. Moreover,
the tightened versions outperform their counterparts for all depths L . Regarding the
arithmetic and geometric means, the gaps consistently decrease with increasing L
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Fig. 4 Performance profiles to dual bounds of NMDT-based methods on all instances

values for all methods, indicating improved performance. T-NMDT and T-D-NMDT
are generally competitive, with T-D-NMDT having the best geometric mean in all
cases.

For dense instances, D-NMDT and T-D-NMDT are clearly superior to NMDT
and T-NMDT; see Fig. 6. Regardless of the relaxation depth, the new methods yield
the tightest dual bounds, with T-D-NMDT being superior to D-NMDT only in case
of L = 2, where the tightened version T-D-NMDT is able to find the best dual
bound for roughly 10%more instances than D-NMDT. Tightening the NMDTmethod
does not deliver better bounds, in fact, T-NMDT is surpassed by NMDT for L = 1.
Regarding the arithmetic and geometric means, there’s no clear trend of improvement
with increasing L values. NMDT overall has the best arithmetic means for L = 1,
L = 2 and L = 4, while other methods shine at different L values. In summary,
the performance of the NMDT-based methods varies depending on the L value and
dataset density. For sparse instances, the performance seems to consistently improve
with increasing L values, while for dense instances, no clear trend is discernible.
Overall, T-D-NMDT showcases the performance in most scenarios. Tightening leads
to an improvement in dual bounds across all instances, but this is mainly due to the
sparse instances. In dense instances, we assume that the large number of additional
cuts in the tightened variants leads to slower computations and thus worse bounds
(Fig. 5).
Run times Table 4 showcases the shifted geometric mean for run times. Throughout
all instances, T-D-NMDT consistently outperforms the other methods, indicating its
efficiency, especially at L = 1 and L = 2. As L increases, the run times generally rise
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Fig. 5 Performance profiles to dual bounds of NMDT-based methods on sparse instances

Fig. 6 Performance profiles to dual bounds of NMDT-based methods on dense instances
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Table 4 Shifted geometric mean
for run times on all 60 instances
in NMDT-based MIP relaxations

NMDT T-NMDT D-NMDT T-D-NMDT
all

L=1 68.88 69.81 57.71 42.13

L=2 155.40 152.57 52.85 47.18

L=4 347.69 294.51 138.44 135.16

L=6 630.35 489.71 288.87 272.09

sparse

L=1 70.78 70.11 75.97 47.28

L=2 141.66 131.06 44.86 41.27

L=4 531.43 351.58 151.42 132.42

L=6 1364.11 695.06 409.26 291.78

dense

L=1 65.98 69.35 36.44 34.92

L=2 178.87 191.98 67.39 57.55

L=4 187.84 228.25 121.69 139.17

L=6 199.78 292.14 172.23 245.60

Table 5 Number of instances
with feasible solutions found
with different relative optimality
gaps.

NMDT T-NMDT D-NMDT T-D-NMDT

L=1 32/34/40 31/35/41 29/33/42 29/33/40

L=2 32/37/45 34/37/43 34/38/42 34/37/42

L=4 42/44/48 39/44/48 37/42/49 45/47/51

L=6 43/45/48 42/43/47 44/47/50 46/47/50

The first number corresponds to a gap of less than 0.01%, the second to
a gap of less than 1% and the third number indicates finding a feasible
solution

for all methods, but T-D-NMDT remains the fastest. In sparse instances, T-D-NMDT
retains its edge in efficiency, especially evident at L = 6. However, the run times
of other methods, particularly NMDT, escalate significantly. For dense instances, T-
D-NMDT is the fastest for small values while D-NMDT takes the lead at L = 4
and L = 6. This observation is in line with increasing gaps for tightened variants.
Despite these fluctuations, T-D-NMDT remains the most efficient methods across
most scenarios.
Feasible solutions In Table 5, we can see that the QP heuristic (IPOPT) we mentioned
at the beginning of this section delivers high-quality feasible solutions for the original
(MIQC-)QP instances. With increasing L values, IPOPT is able to find more feasible
solutions with all NMDT-based methods quite similarly. For L = 6, T-D-NMDT
combined with IPOPT yields feasible solutions for 50 out of 60 benchmark instances,
47 of which have a relative optimality gap below 1% and 46 of which are even globally
optimal, i.e., which have a gap below 0.01%.

In summary, both T-D-NMDT and D-NMDT are clearly superior to the previously
known NMDT approach. The double discretization and the associated reduction in the
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number of binary variables while maintaining the same relaxation error are most likely
the reason for this. Surprisingly, the tightening of the lower bounds in the univariate
quadratic terms and the resulting introduction of new constraints does not lead to
higher run times. Thus, the latter is recommended. Moreover, T-D-NMDT is slightly
ahead of the other methods in computing good solutions for the MIP relaxations that
are used by the NLP solver IPOPT to find feasible solutions for the original MIQCQP
instances. Altogether, we consider T-D-NMDT to be the winner among the NMDT-
based methods.

5.2.2 Comparison with state-of-the-art MIQCQP Solver Gurobi

Finally, we compare the two winners T-D-NMDT and HybS of the NMDT-based and
separable Methods (Part I) with the state-of-the-art MIQCQP solver Gurobi 9.5.1.
We perform the comparison in two ways. Firstly, with Gurobi’s default settings, and
secondly, with cuts disabled, i.e., we set the parameter "Cuts = 0". The reason for
running Gurobi again with cuts turned off is that cuts are one of the most important
components of MIQCQP/MIP solvers that rely on the structure of the problem. While
constructing the MIP relaxations with T-D-NMDT and HybS, the original problem is
transformed in such a way that Gurobi can no longer recognize the original quadratic
structure of the problem. However, many cuts would still be valid and applicable in
the MIP relaxations, for instance, RLT and PSD cuts.
Dual boundsWe start our comparison with showing performance profiles for Gurobi,
T-D-NMDT, HybS, and their variants without cuts ("-NC") on all instances in Fig. 7.
As expected, Gurobi performs best for all L values, followed by its variant without
cuts in second place. However, as the depth L increases, the MIP relaxations provide
gradually tighter dual bounds. For L = 6, T-D-NMDT and HybS are able to find the
best dual bounds formore than 50%of the cases, while Gurobi delivers the best bounds
for roughly 90% and its variant without cuts for about 70% of the cases. Surprisingly,
in contrast to T-D-NMDT, disabling cuts in case of HybS has little effect on the quality
of the dual bounds. In Table 6 we displays the arithmetic and geometric means of the
relative optimality gaps for various methods and their "no cuts" (NC) versions. Here,
the findings are in line with those from the performance plots.
As before, we divide the benchmark set into sparse and dense instances. For sparse
instances, the dual bounds computed by T-D-NMDT and HybS become progressively
tighter with increasing L; see Fig. 8. For L = 4 and L = 6, T-D-NMDT and HybS are
able to find the best dual bounds in about 60% of the instances, while Gurobi delivers
the best bounds for roughly 80%. Compared to Gurobi-NC, our new methods T-D-
NMDT, HybS, and most notably HybS-NC perform almost equally well. Regarding
the means in Table 6, the cuts contribute minimally to improved gaps. The differences
between the versions with and without cuts are marginal. For HybS, the results even
indicate that the cuts can be counterproductive.

In the case of dense instances, a different picture emerges, see Fig. 9. Again, Gurobi
and also Gurobi-NC are dominant for all approximation depths and thanks to the cuts,
Gurobi can solve all instances to a gap of 0%, see Table 6 However, for L = 1, T-D-
NMDT delivers dual bounds that are within a factor 1.1 of the dual bounds provided
by the variant of Gurobi without cuts. With higher L values, T-D-NMDT, HybS, and
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Fig. 7 Performance profiles on dual bounds of best MIP relaxation compared to Gurobi as MIQCQP solver,
with and without cuts, on all 60 instances

Table 6 Arithmetic (left) and geometric (right) mean of relative optimality gaps (in %) on all instances

HybS HybS-NC T-D-NMDT T-D-NMDT-NC Gurobi Gurobi-NC
all

L1 46.13/7.94 51.36/8.78 29.85/3.37 44.64/5.21 4.79/0.04 21.11/0.17

L2 33.07/4.96 38.76/5.49 23.89/3.05 33.32/3.36 4.79/0.04 21.11/0.17

L4 24.84/1.81 30.29/1.98 33.12/1.26 30.59/1.20 4.79/0.04 21.11/0.17

L6 32.97/1.05 35.93/0.99 37.45/0.90 35.95/0.91 4.79/0.04 21.11/0.17

sparse

L1 23.85/14.01 23.85/14.01 17.91/10.84 18.61/10.69 9.58/0.20 9.67/0.16

L2 21.21/11.52 21.24/11.54 14.02/5.81 15.58/5.54 9.58/0.20 9.67/0.16

L4 14.93/2.19 14.87/2.17 11.23/0.85 11.67/0.90 9.58/0.20 9.67/0.16

L6 10.91/0.72 11.73/0.58 10.93/0.40 11.52/0.38 9.58/0.20 9.67/0.16

dense

L1 68.40/4.50 78.87/5.50 52.22/0.85 70.67/2.54 0.00/0.01 32.56/0.17

L2 44.94/2.14 56.27/2.62 33.94/0.88 51.06/2.04 0.00/0.01 32.56/0.17

L4 34.76/1.49 45.72/1.80 49.37/1.37 49.51/1.60 0.00/0.01 32.56/0.17

L6 55.04/1.52 60.13/1.71 65.28/1.42 60.39/2.18 0.00/0.01 32.56/0.17

HybS-NC compute in about 40% of the cases the best bounds, while Gurobi yields
the best bounds in all cases and Gurobi-NC for roughly 70% of the instances. When
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Table 7 Shifted geometric mean for run times on all instances for best MIP relaxation compared to Gurobi
as MIQCQP solver with cuts and without cuts (-NC)

HybS HybS-NC T-D-NMDT T-D-NMDT-NC Gurobi Gurobi-NC

L1 188.23 225.0 163.52 244.73 77.32 388.74

L2 342.32 279.0 266.37 340.8 54.0 307.03

L4 1008.09 964.63 950.73 1012.11 25.16 193.75

L6 2548.31 2315.29 1665.28 1618.91 20.75 174.54

Fig. 8 Performance profiles on dual bounds of best MIP relaxation compared to Gurobi as MIQCQP solver,
with and without cuts, on sparse instances

comparing D-NMDT and HybS, D-NMDT demonstrates advantages for smaller L
values. In contrast, HybS delivers better gaps for larger L values.
Run times In Table 7 we show the shifted geometric mean values of the run times for
solving all instances with Gurobi and the corresponding MIP relaxations constructed
with T-D-NMDT and HybS. The variants of Gurobi, T-D-NMDT, and HybS with-
out cuts are also contained. Gurobi has significantly shorter run times than all other
approaches. However, with L = 1 and L = 2, T-D-NMDT, HybS, T-D-NMDT-NC
and HybS-NC are somewhat faster than Gurobi-NC.

Remark 4 Note, that for calculating the shifted geometricmeanonly those instances are
used for which at least one method computed the optimal solution within the run time
limit of 8h. Sincewith higher L values the complexity of theMIP relaxations increases,
fewer instances are solved to optimality by T-D-NMDT and HybS. Therefore, the
shifted geometric mean decreases for Gurobi and Gurobi-NC with higher L values.
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Fig. 9 Performance profiles on dual bounds of best MIP relaxation compared to Gurobi as MIQCQP solver,
with and without cuts, on sparse instances. See Fig. 8 for the legend

This inherent nature of the shifted geometric mean is also the reason why we see
different values in Tables 7 and 4 for the same methods. �

Feasible Solutions. In combinationwith IPOPT as aQP heuristic, T-D-NMDT,HybS,
and their variants without cuts are competitive with Gurobi for high L values when it
comes to finding feasible solutions, as Table 8 shows. HybS-NC with IPOPT is able
to find feasible with a relative optimality gap below 1% for 48 out of 60 benchmark
instances, while Gurobi finds 50 feasible solutions with a gap below 1%. T-D-NMDT
computes 46 solutions that are globally optimal, whereas Gurobi achieves this for
50 instances. Surprisingly, the variant without cuts of HybS delivers more feasible
solutions than its variant with cuts enabled. Finally, we note that some MIQCQP
instances have been solved to global optimality by the MIP relaxation methods, while
Gurobi reached the run time limit of 8h. For instance, T-D-NMDT with IPOPT is able
to solve the QPLIB instance “QPLIB_0698" to global optimality for L ∈ {2, 4, 6}
with a run time below 5min, while Gurobi has a relative optimality gap of more than
5% after a run time of 8h.

Overall, the comparison with Gurobi as a state-of-the-art MIQCQP solver has
shown that the newmethods T-D-NMDT and HybS can be relevant for practical appli-
cations. For sparse instances, the dual bounds provided by T-D-NMDT and HybS are
of similar quality to those provided by Gurobi. In terms of MIQCQP-feasible solu-
tions, for most instances the two methods are able to find very high quality solutions
in combination with IPOPT as NLP solver.
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Table 8 Number of feasible solutions found with different relative optimality gaps

HybS HybS-NC T-D-NMDT T-D-NMDT-NC Gurobi Gurobi-NC

L1 31/33/40 28/31/40 29/33/40 31/34/42 50/50/57 46/49/56

L2 32/37/44 31/36/41 34/37/42 35/41/44 50/50/57 46/49/56

L4 41/44/50 40/45/53 45/47/51 40/45/50 50/50/57 46/49/56

L6 40/43/51 43/48/50 46/47/50 40/46/49 50/50/57 46/49/56

The first number corresponds to a gap of less than 0.01%, the second to a gap of less than 1% and the third
number indicates the number of feasible solutions

Moreover, there is still plenty of room for improvement. First, numerical studies
have shown before that an adaptive refinement of nonlinearities drastically decreases
run times for solvingMINLPsbypiecewise linearMIP relaxations; see [6] for example.
Hence, an approach with an adaptive refinement of the approximation depth L is even
more promising. Second, HybS and its variant without cuts HybS-NC have performed
very similarly in our computational study. In addition, HybS-NC was relatively close
to Gurobi-NC in both solution quality and dual bounds for the MIQCQPs. Since most
MIQCQP-specific cuts can still be integrated into the HybS approach, we believe
that HybS can be further improved by embedding it in a branch-and-cut solution
framework that is able to add MIQCQP-specific cuts, such as BQP and PSD cuts,
to the MIP relaxations. In this way, we obtain both tighter dual bounds and MIP
relaxation solutions that are more likely to yield feasible solutions for the MIQCQP
in combination with IPOPT.

6 Conclusion

We introduced an enhanced mixed-integer programming (MIP) relaxation tech-
nique for non-convex mixed-integer quadratically constrained quadratic programs
(MIQCQP), called doubly discretized normalized multiparametric disaggregation
technique (D-NMDT). We showed that it has clear theoretical advantages over its
predecessor NMDT, i.e. it requires a significantly lower number of binary variables to
achieve the same accuracy. In addition,we combined both,D-NMDT andNMDT,with
the sawtooth epigraph relaxation from Part I [3] to further strengthen the relaxations
for univariate quadratic terms.

In a two-part computational study, we first compared D-NMDT to NMDT. We
showed that D-NMDT determines far better dual bounds than NMDT and also has
shorter run times. Furthermore, we were able to show that our tightening in both
methods led to better dual bounds while simultaneously shortening the computation
time. In the second part of the computational study, we compared the tightened D-
NMDT (T-D-NMDT) against Hybrid Separable (HybS), the best-performing MIP
relaxation from Part I. We showed that HybS does perform slightly better in terms
of dual bounds. However, both new methods were able to find high-quality solutions
to the original quadratic problems when used in conjunction with a primal solution
callback function and a local non-linear programming solver. Furthermore, we showed
that they both method can partially compete with the state-of-the-art MIQCQP solver
Gurobi.
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Finally, we gave some indications on how to further improve the new approaches. Two
of the most promising directions in this context are employing adaptivity and adding
MIQCQP-specific cuts that are valid but not recognized by the MIP solvers. This is
the subject of future work.
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Appendix A: Detailed derivation of theMIP relaxation D-NMDT

For the derivation of the MIP relaxation D-NMDT for gra[0,1]2(xy), we first define

x =
L∑

j=1

2− jβx
j + �L

x , y =
L∑

j=1

2− jβ
y
j + �L

y ,

�L
x ∈ [0, 2−L ], �L

y ∈ [0, 2−L ], βx ∈ {0, 1}L , β y ∈ {0, 1}L .

(31)

Then we use the NMDT representation (17), expand the �L
x y-term and obtain

z = xy = y

⎛

⎝
L∑

j=1

2− jβx
j + �L

x

⎞

⎠

=
L∑

j=1

2− jβx
j y + y�L

x

=
L∑

j=1

2− jβx
j y + �L

x

⎛

⎝
L∑

j=1

2− jβ
y
j + �L

y

⎞

⎠

=
L∑

j=1

2− j (βx
j y + β

y
j �

L
x ) + �L

x �L
y .
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Alternatively, if we discretize y first, then expand the term �L
y x , we obtain

z =
L∑

j=1

2− j (β
y
j x + βx

j �
L
y ) + �L

x �L
y .

Finally, to balance between the two formulations, we observe for any λ ∈ [0, 1] that

z = xy = λxy + (1 − λ)xy

= λ

⎛

⎝
L∑

j=1

2− j (β
y
j x + βx

j �
L
y ) + �L

x �L
y

⎞

⎠

+(1 − λ)

⎛

⎝
L∑

j=1

2− j (βx
j y + β

y
j �

L
x ) + �L

x �L
y

⎞

⎠

=
L∑

j=1

2− j [β y
j ((1 − λ)�L

x + λx) + βx
j (λ�L

y + (1 − λ)y)] + �L
x �L

y

holds. This yields

x =
L∑

j=1

2− jβx
j + �L

x , y =
L∑

j=1

2− jβ
y
j + �L

y

z =
L∑

j=1

2− j [β y
j ((1 − λ)�L

x + λx) + βx
j (λ�L

y + (1 − λ)y)] + �L
x �L

y

�L
x ,�L

y ∈ [0, 2−L ], x, y ∈ [0, 1], βx ,β y ∈ {0, 1}L .

(32)

Finally, we obtain the complete MIP relaxation D-NMDT stated in (21) by applying
McCormick envelopes to the product terms β

y
j ((1−λ)�L

x +λx), βx
j (λ�L

y +(1−λ)y)

and �L
x �L

y . For bounds on the terms ((1 − λ)�L
x + λx) and (λ�L

y + (1 − λ)y), see
Appendix 1.

Appendix B: MIP relaxations on general intervals

In this section, we generalize the MIP relaxations for gra[0,1]2(xy) and gra2[0,1](x2)
discussed in this article to general box domains (x, y) ∈ [x

¯
, x̄]× ∈ [y

¯
, ȳ] and x ∈

[x
¯
, x̄], where x

¯
< x̄, y

¯
< ȳ and x

¯
, x̄, y

¯
, ȳ ∈ R. by giving explicit formulations for

general bounds on x and y.

B.1 MIP relaxations for bivariate quadratic equations

First, we consider MIP relaxations for z = xy and give explicit models of NMDT and
D-NMDT for general box domains.
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Next, we consider the MIP relaxation NMDT. To derive the general formulation,
we first introduce x̂ ∈ [0, 1] and define ẑ = x̂ y, then use the definitions x = lx x̂ + x

¯and

z = xy = (lx x̂ + x
¯
)y = lx ẑ + x

¯
· y

to obtain

x = lx

L∑

j=1

2− jβ j + �L
x + x

¯

z = lx

L∑

j=1

2− jβ j y + �L
x · y + x

¯
· y

�L
x ∈ [0, 2−L(x̄ − x

¯
)], y ∈ [y

¯
, ȳ], β ∈ {0, 1}L .

(33)

In this way, we are able to formulate the MIP relaxation NMDT on a general box
domain as follows:

x = lx

L∑

j=1

2−iβ j + �L
x + x

¯

z = lx

L∑

j=1

2− j u j + �L
z + x

¯
· y

(x, α j , u j ) ∈ M(x, β j ) j ∈ 1, . . . , L
(�L

x , y,�L
z ) ∈ M(�L

x , y)
�L

x ∈ [0, 2−Llx ], y ∈ [y
¯
, ȳ], β ∈ {0, 1}L

(34)

Finally, we present the modelling of D-NMDT on general box domains. Analo-
gously as for NMDT, we apply McCormick envelopes to model all remaining product
terms α j y and �L

x · y. Further, we introduce the variables x̂ ∈ [0, 1] and ẑ ∈ [0, 1]
to map the domain to [0, 1] intervals by using the transformations x :=lx x̂ + x

¯
and

y:=ly ẑ + y
¯
as well as

z = xy = (lx x̂ + x
¯
)(ly ẑ + y

¯
)

= lx ly x̂ ẑ + lx x̂ y
¯

+ ly ẑx
¯

+ x
¯
y
¯= lx ly ẑ + lx x̂ y

¯
+ ly ẑx

¯
+ x

¯
y
¯
.

As in the derivation of (21), we then obtain the formulation D-NMDT by applying
McCormick envelopes to the product terms βi ((1−λ)�L

x̂ +λx̂), αi (λ�L
ẑ + (1−λ)ẑ)

and �L
x̂ �L

ẑ . As in (21), we incorporate the following bounds to construct McCormick
envelopes:

(1 − λ)�L
x̂ + λx̂ ∈ [0, (1 − λ)2−L + λ]

λ�L
ẑ + (1 − λ)ẑ ∈ [0, λ2−L + (1 − λ)].

123



Enhancements of discretization approaches for non-convex MIQCQPs 929

Altogether, we are now ready to state the MIP relaxation D-NMDT on general box
domains:

x = lx x̂ + x
¯
, y = ly ẑ + y

¯z = lx ly ẑ + lx x̂ y
¯

+ ly ẑx
¯

+ x
¯
y
¯

x̂ =
L∑

j=1

2− jβx
j + �L

x̂ , ẑ =
L∑

j=1

2− jβ
y
j + �L

ẑ

ẑ =
L∑

j=1

2− j (u j + v j ) + �L
ẑ

(λ�L
ẑ + (1 − λ)ẑ, βx

j , u j ) ∈ M(λ�L
ẑ + (1 − λ)ẑ, α j ) j ∈ 1, . . . , L

((1 − λ)�L
x̂ + λx̂, β y

j , v j ) ∈ M((1 − λ)�L
x̂ + λx̂, β j ) j ∈ 1, . . . , L

(�L
x̂ ,�L

ẑ ,�L
ẑ ) ∈ M(�L

x̂ , �L
ẑ )

�L
x̂ ,�L

ẑ ∈ [0, 2−L ], x̂, ẑ ∈ [0, 1], βx ,β y ∈ {0, 1}L
(35)

B.2 MIP relaxations for univariate quadratic equations

For NMDT and D-NMDT,we derive the general formulations by using the derivations
in Sect. 1 with x = y. In the case of NMDT, where the original model is (19), this
leads to

x = lx

L∑

i=1

2−iβi + �L
x + x

¯

z = lx

L∑

i=1

2−i ui + �L
z + x

¯
· x

(x, βi , ui ) ∈ M(x, αi ) i ∈ 1, . . . , L
(�L

x , x,�L
z ) ∈ M(�L

x , x)
�L

x ∈ [0, 2−Llx ], x ∈ [x
¯
, x̄], β ∈ {0, 1}L .

(36)

For D-NMDT, we obtain (22) for general domains as follows:

x = lx

L∑

i=1

2−iβi + lx�
L
x + x

¯

z = lx

L∑

i=1

2−i ui + l2x�
L
z + x

¯
(x + lx�

L
x )

(lx�L
x + x, βi , ui ) ∈ M(lx�L

x + x, βi ) i ∈ 1, . . . , L
(�L

x ,�L
z ) ∈ M(�L

x )

�L
x ∈ [0, 2−L ], x ∈ [x

¯
, x̄], β ∈ {0, 1}L ,

(37)

with lx�L
x + x ∈ [x

¯
, lx2−L + x̄].
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Appendix C: Auxiliary proofs

In this section of the appendix, we give the proofs of Lemma 1 and Theorem 3 which
we have moved here for better readability.

C.1 Piecewise McCormick relaxations of univariate DNMDT

We start with the proof of Lemma 1 which says that univariate D-NMDT gives a
piecewise McCormick relaxation of gra(x2).

Proof Let P IP
L be a univariateMIP relaxations as defined in (22). Consider a component

of the MIP relaxation defined by fixing the variables β ∈ {0, 1}L . In doing so, the
condition (�L

x + x, β j , u j ) ∈ M(�L
x + x, β j ) becomes tight in the sense that we

recover exactly (�L
x + x)β j = u j . This means that the model can reduce to this

x =
L∑

j=1

2− jβ j + �L
x , z =

L∑

j=1

2− j (�L
x + x)β j + �L

z

(�L
x ,�L

z ) ∈ M(�L
x ,�L

x ), �L
x ∈ [0, 2−L ], x ∈ [0, 1].

The remaining McCormick containment (�L
x ,�L

z ) ∈ M(�L
x ,�L

x ), gives the bounds

�L
z

(∗)≥ 0, �L
z

(∗∗)≥ 2 · 2−L�L
x −

(
2−L

)2
, and �L

z

(∗∗∗)≤ 2−L�L
x .

We define x := ∑L
j=1 β j and x :=x + 2−L . With that �L

x = x − x and x = x − 2−L

or equivalently �L
x = x − x + 2−L and x2 = x2 − 2x · 2−L + (

2−L
)2

holds. The
inequalities (∗∗) and (∗ ∗ ∗) can be rewritten as

�L
z

(∗∗)≥ 2 · 2−L(x − x + 2−L) −
(
2−L

)2 = 2 · 2−L(x − x) +
(
2−L

)2
,

�L
z

(∗∗∗)≤ 2−L(x − x + 2−L).

We project out the variables �L
x

z =
L∑

j=1

2− j (�L
x + x)β j + �L

z = (�L
x + x)

L∑

j=1

2− jβ j + �L
z

= (�L
x + x)(x) + �L

z = (2x − x)(x) + �L
z = 2xx − x2 + �L

z ,

and apply the inequalities (∗), (∗∗) and (∗ ∗ ∗) to replace �L
z and get bounds on z in

terms of x ,
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z ≥ 2xx − x2,

z ≥ 2xx − x2 + 2 · 2−L(x − x) +
(
2−L

)2
,

z ≤ 2xx − x2 + 2−L(x − x).

Finally, we simplify the second and third inequality

z ≥ 2x(x − 2−L) − (x2 − 2x · 2−L +
(
2−L

)2
) + 2 · 2−L(x − x) +

(
2−L

)2

= 2xx − x2

z ≤ 2xx − x2 + 2−L(x − x) = x(2−L + 2x) − x(2−L − x) = x(x + x) − xx

and have

z ≥ 2xx − x2, z ≥ 2xx − x2, and z ≤ x(x + x) − xx . (38)

Thus, on each interval the univariate D-NMDT MIP relaxation exactly recovers the
McCormick envelope, i.e. M(x, x) where x ∈ [ i

2L
, i+1

2L
] with i = 0, . . . 2L − 1. �


C.2 Sharpness of univariate NMDT

Next, we proof the sharpness of univariate NMDT proposed in Theorem 3.

Proof Let P IP
L,L1

be the univariate T-D-NMDT with L1 ≥ L and PLP
L,L1

the corre-
sponding LP relaxation. We will proceed analogously to the proof of Theorem 2 and
show

proj(x,z)(P
LP
L,L1

) = conv(proj(x,z)(P
IP
L,L1

))

by analyzing the minimum and maximum values of z in proj(x,z)(P
LP
L,L1

) and
conv(proj(x,z)(P

IP
L,L1

)). Similarly as for D-NMDT, also for NMDT

max
z∈[0,1] conv(proj(x,z)(P

IP
L,L1

|x=x̃ )) = x̃, ∀ x̃ ∈ [0, 1]

applies. Next, we prove that

max
z∈[0,1] proj(x,z)(P

LP
L,L1

|x=x̃ ) ≤ x̃, ∀ x̃ ∈ [0, 1].

The McCormick cuts in (19) give the following upper bounds,

�L
z ≤ �L

x , �L
z ≤ 2−L x and u j ≤ x, u j ≤ β j , ∀ j = 1, . . . , L.
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This allows the following estimation for z in PLP
L,L1

,

z =
L∑

j=1

2− j u j + �L
z ≤ x

L∑

j=1

2− j + �L
z ≤ 1(1 − 2−L) + 2−L x = x, ∀x ∈ [0, 1].

Next,we analyze theminimumof z in P IP
L,L1

.Wewill show that for anyfixed x ∈ [x, x],
with x :=i2−L and x :=(i +1)2−L for i = 0, 1, . . . , 2L , the lower bound on z in P IP

L,L1
satisfies

z ≥ max{xx, (1 + x)x − x}. (39)

We recall the lower bound for univariate D-NMDT in (38)

z ≥ max{2xx − x2, 2xx − x2},

and can easily show that the lower bound in univariate NMDT is weaker,

2xx − x2 ≥ 2xx ≥ xx, 2xx − x2 ≥ 2xx ≥ xx ≥ xx − (x − x) = (1 + x)x − x .

Hence, it follows from the same proof logic of Theorem 2 that the tightening inequal-
ities from the sawtooth relaxation are stronger than the MIP relaxation lower bound
of univariate NMDT, and hence tightening, in this case, recovers sharpness of the
formulation as well.
Proof of (39): Fix some x ∈ [0, 1]. If x = i2−L for some i , then the formulation is
tight to z = x2 and there is nothing to show.
Otherwise, there is a unique choice of β ∈ {0, 1}n and �L

x ∈ [0, 2−L ] such that

x =
L∑

j=1

2− jβ j + �L
x .

So consider the MIP relaxation and assume that β and �L
x are fixed.

Hence, theMcCormick envelope (x, β j , u j ) ∈ M(x, β j ) is tight, meaning that xβ j =
u j .
We will decompose z and observe that

z =
L∑

j=1

2− j u j + �L
z = x

L∑

j=1

2− jβ j + �L
z =xx + �L

z = x(x − 2−L) + �L
z .

(40)

Next, we reformulate the lower McCormick inequalities on �L
z in (19),

�L
z ≥ max{0, 2−L x + �L

x − 2−L} = max{0, (1 + 2−L)x − x}. (41)
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The final inequality above is reached by the substitution �L
x = x − x + 2−L . If we

incorporate (41) into (40) we get exactly the bounds proposed in (39). Since these are
the only lower bounds on �L

z , the bounds in (39) are attained when minimizing over
z, which finishes the proof. �


Appendix D: Instance set

In Table 9 we show a listing of all instances of the computational study from
Sect. 5. The boxQP instances are publicly available at https://github.com /joe-
huchette/quadratic-relaxation-experiments. The ACOPF instances are also publicly
available at https://github.com/robburlacu/acopflib. The QPLIB instances are avail-
able at https://qplib.zib.de/. In total, we have 60 instances, of which 30 are dense and
30 are sparse.

Table 9 IDs of all 60 instances used in the computational study.

boxQP instances: spar

020-100-1 020-100-2 030-060-1 030-060-3 040-030-1

040-030-2 050-030-1 050-030-2 060-020-1 060-020-2

070-025-2 070-050-1 080-025-1 080-050-2 090-025-1

090-050-2 100-025-1 100-050-2 125-025-1 125-050-1

ACOPF instances: miqcqp_ac_opf_nesta_case

3_lmbd_api 4_gs_api 4_gs_sad 5_pjm_api 5_pjm_sad

6_c_api 6_c_sad 6_ww_sad 6_ww 9_wscc_api

9_wscc_sad 14_ieee_api 14_ieee_sad 24_ieee_rts_api 24_ieee_rts_sad

29_edin_api 29_edin_sad 30_fsr_api 30_ieee_sad 9_epri_api

QPLIB instances: QPLIB_

0031 0032 0343 0681 0682

0684 0698 0911 0975 1055

1143 1157 1423 1922 2882

2894 2935 2958 3358 3814

In bold are the IDs of the instances that are dense
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