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Abstract
We consider two-stage risk-averse mixed-integer recourse models with law invariant
coherent risk measures. As in the risk-neutral case, these models are generally non-
convex as a result of the integer restrictions on the second-stage decision variables
and hence, hard to solve. To overcome this issue, we propose a convex approximation
approach. We derive a performance guarantee for this approximation in the form of
an asymptotic error bound, which depends on the choice of risk measure. This error
bound, which extends an existing error bound for the conditional value at risk, shows
that our approximationmethodworks particularlywell if the distribution of the random
parameters in the model is highly dispersed. For special cases we derive tighter, non-
asymptotic error bounds. Whereas our error bounds are valid only for a continuously
distributed second-stage right-hand side vector, practical optimization methods often
require discrete distributions. In this context, we show that our error bounds provide
statistical error bounds for the corresponding (discretized) sample average approxi-
mation (SAA) model. In addition, we construct a Benders’ decomposition algorithm
that uses our convex approximations in an SAA-framework and we provide a perfor-
mance guarantee for the resulting algorithm solution. Finally, we perform numerical
experiments which show that for certain risk measures our approach works even better
than our theoretical performance guarantees suggest.
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1 Introduction

Recourse models are a class of models within the field of stochastic optimization that
deal with decision-making problems under uncertainty (see, e.g., [1]). The explicit
way in which these models incorporate uncertainty make them suitable for a wide
array of practical problems, ranging from energy optimization [2] to scheduling [3]
and vehicle routing problems [4]. In this paper, we focus on (two-stage) risk-averse
mixed-integer recourse (MIR) models. These are a class of recourse models with two
decision stages that combine two difficulties: integer restrictions on decision variables
and risk aversion. Integer restrictions are often necessary for accurate modeling of
practical problem aspects, such as on/off decisions, indivisibilities, or fixed batch
sizes. Furthermore, risk aversion is an important aspect of preferences of decision
makers and is reflected in the way uncertainty is captured in the model. Compared
with risk-neutral models (in which the expected total cost is minimized), risk-averse
models put more emphasis on avoiding extremely undesirable outcomes.

Unfortunately, risk-averse MIR models are notoriously hard to solve. In particular,
the inclusion of integer restrictions makes these models significantly harder to solve
than their continuous counterparts. Indeed, for a wide class of risk measures used
in practice, risk-averse continuous recourse models are convex, and efficient solution
methods have been developed in the literature. These methods exploit convexity of the
objective function and make use of solution methods based on convex optimization.
See, e.g., Ahmed [5], Miller and Ruszczyński [6] and Noyan [7] for decomposition
methods and Rockafellar [8] for a progressive hedging algorithm.

Risk-averse mixed-integer recourse models, however, are generally not convex.
As a result, efficient methods from convex optimization cannot be applied and hence,
alternativemethods are required. In the literature, some authors have proposed solution
methods based on large-scale mixed-integer linear programming (MILP) reformula-
tions [9, 10] or heuristic methods for specific problem settings [11]. However, these
methods only work for problems with a specific structure (e.g., disaster relief planning
[11] or location-allocation problems [10]) or a particular choice of risk measure (for
instance, CVaR MIR models can be reformulated as risk-neutral MIR models with an
additional auxiliary variable [9]) and of a limited size (since they are based on com-
putationally demanding non-convex optimization techniques [9]). To the best of our
knowledge, efficient solution methods for general large-scale risk-averse MIRmodels
are still lacking.

In this paper we take an alternative approach: rather than aiming for an exact
solution, we propose to solve a convex approximation instead. That is, we approximate
the objective function by a convex function. The resulting convex approximationmodel
is amenable to convex optimization techniques and thereforemuch easier to solve. This
idea has been developed over the past few decades for risk-neutral MIR models first
[12–21], and recently also for risk-averseMIRmodelswith amean-CVaR riskmeasure
[22]. In this paper we extend this literature to the more general class of risk-averse
MIR models with an arbitrary law invariant coherent risk measure.

Our first contribution is the derivation of a performance guarantee for convex
approximations of risk-averse MIR models. In particular, we derive an error bound:
an upper bound on the approximation error. We do so by extending the error bound
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from [22] for the case with CVaR to our more general setting by using the Kusuoka
representation [23] of law invariant coherent risk measures. Like the error bounds
from the literature on risk-neutral MIRmodels [14, 17], this error bound is asymptotic
in nature and depends on the distribution of the second-stage right-hand side vector.
If the distribution is highly dispersed, then the error bound is small and hence, our
convex approximation is good. In comparison with the error bounds from [14] and
[17], our error bound contains an additional factor associated with the risk measure
ρ: the error bound is higher if the maximum probability distortion factor associated
with ρ is higher. For the special case of risk-averse totally unimodular integer recourse
models, we derive a specialized, tighter error bound whose dependence on the risk
measure ρ is more favorable.

Our second contribution is the extension of our error bounds to a setting where the
distribution of the second-stage right-hand side vector is discrete. Our original error
bounds are only valid if this right-hand side vector has a continuous distribution. In
practice, however, distributions are often discretized to avoid the numerically demand-
ing task of computing multi-dimensional integrals. A particular popular method for
discretization is sample average approximation (SAA) [24]. We show that our error
bounds translate to statistical error bounds if the distribution is discretized using SAA.
This result not only holds for the error bounds in our paper, but carries over to many
error bounds for convex approximations of risk-neutral MIR models as well (e.g.,
those in [12, 14–17, 22]).

Our third contribution is the construction of an algorithm based on our convex
approximations that finds a near-optimal solution for risk-averse MIR models. Such
an algorithm is warranted, because solving the convex approximation model is not a
trivial task due to the complicatedway inwhich it is defined.We formulate an algorithm
for our risk-averse setting by adapting the loose benders decomposition algorithm
(LBDA)byvanderLaan andRomeijnders [17],whichwas originally defined for a risk-
neutral setting. This algorithm uses a Benders’ decomposition approach with so-called
“loose” optimality cuts in an SAA framework. In our extension to the risk-averse case
we pay particular attention to a linearization of the risk-averse objective function. To
guarantee performance of the resulting algorithmic solution, we provide an asymptotic
performance guarantee, based on the error bound for our convex approximation.

Our fourth contribution consists of a numerical analysis of the performance of our
convex approximation approach. In the experiments, we focus on the relation between
the choice of risk measure and the performance of our convex approximations and our
algorithm. We show that in some cases, both the approximations themselves and the
algorithm perform better than our performance guarantees suggest, in particular as a
function of the riskmeasureρ. This highlights the fact that our performance guarantees
are worst-case error bounds. Moreover, we find evidence that our approach performs
particularly well if the risk measure has an associated risk spectrum that is “smooth”.

The remainder of this paper is organized as follows. In Sect. 2, we mathematically
define risk-averse MIR models and their convex approximations. In Sect. 3, we derive
a corresponding error bound. In Sect. 4, we derive a specialized bound for risk-averse
totally unimodular integer models and we analyze an example with simple integer
recourse. In Sect. 5, we show that the error bounds from Sects. 3 and 4 constitute
statistical error bounds for the corresponding SAA models. In Sect. 6, we extend
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the LBDA to our risk-averse setting and we derive a performance guarantee on the
resulting solution. Section7 contains our numerical experiments. Finally, in Sect. 8,
we conclude and discuss directions for future research.

2 Problem definition

In this section we mathematically define risk-averse MIR models and we construct a
convex approximation.

2.1 Risk-averse MIRmodel

We consider risk-averse MIR models of the form

min
x∈X {cT x + ρ

(
v(ξ, x)

)

︸ ︷︷ ︸
Q(x)

}. (1)

Here, x is the first-stage decision vector with unit cost c,1 to be chosen from a feasible
set of the form X := {x ∈ R

n1+ | Ax = b} before learning the realization of the random
vector ξ , defined on a probability space (�,F ,P) with support �. The value function
v(ξ, x), which we define below, represents the second-stage cost as a function of the
first-stage decision x and the realization of the random vector ξ . Since the second-
stage cost v(ξ, x) is a random variable, a risk measure ρ is employed that maps this
random variable to a real number for every x ∈ X ; the resulting function Q is called
the recourse function.

Formally, we define a risk measure as a function ρ : Z → R, on the space Z :=
L1(�,F ,P) of random variables Z for which E[|Z |] < +∞. We make a number of
assumptions ensuring that ρ “reasonably” quantifies risk. Specifically, we assume that
the risk measure ρ is law invariant [23] and coherent [25]. Moreover, in some cases
we assume that ρ is also comonotone additive [23], in which case we refer to ρ as a
spectral risk measure [26].

Definition 1 A risk measure ρ : Z → R is said to be

(1) Law invariant if ρ(Z) = ρ(Z ′) whenever Z , Z ′ ∈ Z have the same cumulative
distribution function;

(2) Coherent if it satisfies the following axioms:

(i) Convexity: ρ(t Z + (1 − t)Z ′) ≤ tρ(Z) + (1 − t)ρ(Z ′), for all Z , Z ′ ∈ Z ,
(ii) Monotonicity: ρ(Z) ≥ ρ(Z ′), for all Z , Z ′ ∈ Z satisfying Z ≥ Z ′ a.s.,
(iii) Translation equivariance: ρ(Z +a) = ρ(Z)+a, for every Z ∈ Z and a ∈ R,
(iv) Positive homogeneity: ρ(t Z) = tρ(Z), for all Z ∈ Z and t > 0;

1 In fact, our main result in Theorem 1 also hold for the more general case with a random first-stage
cost vector c(ξ), as long as c(ξ) and h(ξ) are independent. However, for ease of presentation, we use a
deterministic cost vector in this paper.
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(3) Comonotone additive if ρ(Z + Z ′) = ρ(Z) + ρ(Z ′) whenever Z , Z ′ ∈ Z are
comonotone random variables, i.e., whenever (Z , Z ′) has the same distribution as
(F−1

Z (U ), F−1
Z ′ (U )), where FZ and FZ ′ are the cumulative distribution functions

of Z and Z ′, respectively, and U is a uniformly distributed random variable on
(0, 1);

(4) Spectral if it is law invariant, coherent, and comonotone additive.

The second-stage value function v in (1) is defined by

v(ξ, x) := min
y∈Y

{
q(ξ)T y | T (ξ)x + Wy = h(ξ)

}
, ξ ∈ �, x ∈ X . (2)

Here, y is a decision vector representing the second-stage recourse actions, to be
decided after deciding on the first-stage decision vector x and observing the realization
of the randomvector ξ with range�. The setY := Z

n2+ ×R
n̄2+ models integer restrictions

on some of the elements of y, hence the term mixed-integer recourse. The recourse
actions come at a unit cost of q(ξ) and need to satisfy the constraint T (ξ)x + Wy =
h(ξ). Note that q, T , and h are allowed to depend on ξ . In the remainder of the paper,
we write ξ = (q, T , h) with range � = �q × �T × �h , and we drop the explicit
dependence of q(ξ), T (ξ), and h(ξ) on ξ , i.e., we simply write q, T , and h.

Throughout this paper we make the following assumptions.

Assumption 1 We assume that

(a) the recourse is relatively complete and sufficiently expensive, i.e., −∞ <

v(ξ, x) < ∞, for all ξ ∈ � and x ∈ R
n1 ,

(b) the expectations of the �1 norm of h, q, and T are finite, i.e., EP
[‖h‖1

]
< ∞,

E
P
[‖q‖1

]
< ∞, and E

P
[‖T ‖1

]
< ∞,

(c) the recourse matrix W is integer,
(d) h is continuously distributed with joint pdf f ,
(e) (q, T ) and h are pairwise independent.

Assumptions 1(a)–(b) ensure that the recourse function Q(x) is finite for every
x ∈ R

n1 . Assumption 1(c) is required for the derivation of our error bounds in Sect. 3
and 4. However, this assumption is not very restrictive, since any rational matrix
can be transformed into an integer matrix by appropriate scaling. Assumption 1(d)
restricts the right-hand side vector h to be continuously distributed. This is essential
for the derivation of error bounds, which depend on the total variations of the pdf f
of h (although recent numerical and theoretical results in [17, 27] suggest that the
interpretation of total variation error bounds extends to settings where h is discrete,
too). Finally, Assumption 1(e) is for ease of presentation; similar results can be derived
under a less restrictive assumption, resulting inmore elaborate expressions for he error
bounds in terms of conditional density functions of h, given q and T .

2.2 Convex approximation

In this subsection we define our convex approximation of the risk-averse MIR model
from Sect. 2.1. In particular, we construct a so-called α-approximation Q̃α of the
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recourse function Q. This approximation is based on a correspondingα-approximation
ṽα of the value function v from van der Laan and Romeijnders [17].

As a starting point, let q ∈ �q be fixed and consider the dual representation of the
LP-relaxation vLP of the value function v:

vLP(ξ, x) = max
λ∈Rm

{λT (h − T x) | λT W ≤ q} = max
k∈Kq

(λk)T (h − T x),

where λk := qBk (Bk)−1, is the vertex of the dual feasible region corresponding to the
dual feasible basis matrix Bk , k ∈ Kq . Identifying the optimal vertex for each value
of h − T x yields the following result from the literature.

Lemma 1 Consider the LP-relaxation vLP of the value function v and let q ∈ �q

be fixed. Then, there exist dual feasible basis matrices Bk, with associated cones
	k := {s ∈ R

m | (Bk)−1s ≥ 0}, k ∈ Kq, with ∪k∈Kq	k = R
m, and whose interiors

are pairwise disjoint, such that vLP(ξ, x) = (λk)T (h − T x) if h − T x ∈ 	k .

Proof See Theorem 2.9 in [14]. 
�
Hence, for every fixed q ∈ �q , we can partition R

m into the cones 	k , k ∈ Kq ,
each associated with a single dual optimal basis matrix Bk and vertex λk . Romeijnders
et al. [14] prove that a similar partition also exists for mixed-integer linear programs.
In particular, they show that there exists σ k ∈ 	k such that for all h − T x ∈ σ k +	k ,

v(ξ, x) = vLP (ξ, x) + ψk(ξ, x)

where ψk, k ∈ Kq , represents the “penalty” incurred as a result of the integer restric-
tions on y. Specifically, ψk is defined as

ψk(ξ, x) = min
yBk
yNk

{qTBk yBk + qTNk yNk : Bk yBk + Nk yNk = h − T x, (yBk , yNk ) ∈ Ŷ }

− qTBk (B
k)−1(h − T x),

where Ŷ imposes the same integrality and non-negativity restrictions on the variables
but with the non-negativity constraints of the basic variables yBk relaxed. Romeijnders
et al. [14] prove that for q fixed, ψk is a “Bk-periodic” function (see Definition 2.2 in
[14]).

Lemma 2 Consider the setting of Lemma 1 and let q ∈ �q be fixed. Then, there exist
vectors σ k ∈ 	k , k ∈ Kq, such that

v(ξ, x) = (λk)T (h − T x) + ψk(h − T x), if h − T x ∈ σ k + 	k,

where ψk is a Bk-periodic function.

Proof See Theorem 2.9 in [14]. 
�
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From this lemma it is clear that for h−T x ∈ σ k +	k , the non-convexity of v(ξ, x)
as a function of x is a result of the periodicity of ψk . To eliminate this non-convexity,
van der Laan and Romeijnders [17] propose to replace ψk(h − T x) by ψk(h − α),
for some constant vector α ∈ R

m . Taking the maximum over k ∈ Kq , and performing
this procedure for every q ∈ �q then yields the α-approximation of v.

Definition 2 Consider the value function v and let λk , and ψk , k ∈ Kq , denote the
dual vertices and Bk-periodic functions from Lemma 2. Then, for any α ∈ R

m , we
define the α-approximation of v as

ṽα(ξ, x) := max
k∈Kq

{(λk)T (h − T x) + ψk(h − α)}, ξ ∈ �, x ∈ R
n1 .

It is not hard to see that ṽα(ξ, x) is indeed convex in x , as it is the pointwisemaximum
of a finite number of affine functions. Applying the risk measure ρ to ṽα(ξ, x) yields
the α-approximation of the recourse function Q.

Definition 3 Consider the recourse function Q from (1). Then, its α-approximation is
defined by

Q̃α(x) := ρ
(
ṽα(ξ, x)

)
, x ∈ R

n1 .

Since ρ is a coherent risk measure, it is convexity-preserving (in particular, this
is a consequence of the axioms monotonicity and convexity; see [25]). Hence, the
approximating recourse function Q̃α is indeed a convex function.

3 Asymptotic error bound

In this section we derive a performance guarantee for our α-approximation model.
We do this by deriving an asymptotic error bound for the α-approximation Q̃α from
Definition 3. That is, we derive an upper bound on the maximum approximation error

‖Q − Q̃α‖∞ := sup
x∈Rn1

|Q(x) − Q̃α(x)|.

Similar as in the literature on risk-neutral models, we aim for an asymptotic error
bound, in the sense that the bound converges to zero as the total variations of the
conditional density functions fi (·|h−i ), i = 1, . . . ,m, of the right-hand-side vector h
go to zero.

Definition 4 Let f : D → R be a real-valued function on an interval D ⊆ R and
let I ⊆ D be a given subinterval. Let �(I ) denote the set of all finite ordered sets
P = {z1, . . . , zN+1} with z1 < · · · < zN+1 in I . Then, the total variation, total
increase, and total decrease of f on I , denoted by |
| f (I ), 
+ f (I ), and 
− f (I ),
respectively, are defined by

|
| f (I ) := sup
P∈�(I )

V f (P), 
+ f (I ) := sup
P∈�(I )

V+
f (P), 
− f (I ) := sup

P∈�(I )
V−
f (P),
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where V f (P) := ∑N
i=1 | f (zi+1)− f (zi )|, V+

f (P) := ∑N
i=1( f (zi+1)− f (zi ))+, and

V−
f (P) := ∑N

i=1( f (zi+1) − f (zi ))−. We use short-hand notation |
| f := |
| f (D)

and |
| f (∪i=1,...,n Ii ) := ∑n
i=1 |
| f (Ii ), if I1, . . . , In are disjoint intervals in D,

with straightforward analogues for 
+ and 
−. Finally, we say that f is of bounded
variation if |
| f < +∞.

Observe that for one-dimensional unimodal density functions f , the total variation
|
| f is equal to two times the value at themode. For example, for a normal distribution
with arbitrary mean μ and standard deviation σ , we have |
| f = σ−1√2/π . We
restrict ourselves to joint density functions f for which the corresponding conditional
density functions are of bounded variation.

Definition 5 We denote by Hm the set of all m-dimensional joint pdfs f whose con-
ditional density functions fi (·|t−i ) are of bounded variation for all t−i ∈ R

m−1,
i = 1, . . . ,m.

To derive an asymptotic error bound, we take the error bound from [22] for the
special case ρ = CVaRβ as a starting point. We generalize this bound to our risk-
averse MIR setting, where ρ can be any law invariant, coherent risk measure. For this
purpose, we use the so-called Kusuoka representation [28] of law invariant coherent
risk measures.

Lemma 3 (Kusuoka representation) Let ρ be a law invariant coherent risk measure.
Then, there exists a set M of probability measures on [0, 1] such that

ρ(Z) = sup
μ∈M

∫ 1

0
CVaRβ(Z)dμ(β), Z ∈ Z,

where CVaRβ represents the conditional value-at-risk with parameter β ∈ [0, 1),
defined as

CVaRβ(Z) = min
ζ∈R

{
ζ + 1

1 − β
E

[
(Z − ζ )+

]}
, Z ∈ Z.

If, in addition, ρ is comonotone additive (i.e., if ρ is a spectral risk measure), thenM
reduces to a singleton.

Proof See, e.g., Shapiro [23]. (The original result by Kusuoka [28] holds in a more
restrictive setting.) 
�

Lemma 3 shows that every law invariant coherent risk measure can be represented
as a supremum over convex combinations of CVaRs. Combining this fact with the
error bound for CVaR from [22], we can derive our error bound.

Theorem 1 Consider the recourse Q from (1) and its α-approximation Q̃α from Def-
inition 3 in a setting with an underlying law invariant, coherent risk measure ρ. Let

123



Convex approximations of two-stage... 321

M be the set of probability measures on [0, 1) from the Kusuoka representation of ρ.
For every μ ∈ M, define the function φμ : [0, 1] → R as

φμ(p) :=
∫

[0,p]
(1 − β)−1dμ(β), p ∈ [0, 1]. (3)

Then, there exists a constant C > 0 such that for every f ∈ Hm, we have

‖Q − Q̃α‖∞ ≤ sup
μ∈M

φμ(1) · C ·
m∑

i=1

Eh−i

[|
| fi (·|h−i )
]
.

Proof Let x ∈ R
n1 be given. Then, applying Lemma 3 to both Q(x) and Q̃α(x), we

have

|Q(x) − Q̃α(x)| =
∣∣∣ sup
μ∈M

{ ∫ 1

0
CVaRβ(v(ξ, x))dμ(β)

}

− sup
μ∈M

{ ∫ 1

0
CVaRβ(ṽα(ξ, x))dμ(β)

}∣∣
∣

≤ sup
μ∈M

{ ∫ 1

0

∣∣CVaRβ(v(ξ, x)) − CVaRβ(ṽα(ξ, x))
∣∣dμ(β)

}
. (4)

By Theorem 1 in [22], there exists a constant C > 0, not depending on x , such that

∣
∣CVaRβ(v(ξ, x)) − CVaRβ(ṽα(ξ, x))

∣
∣ ≤ (1 − β)−1C

m∑

i=1

Eh−i

[|
| fi (·|h−i )
]
.

Here, C is finite by Theorem 2.1 in [29]. Substituting this inequality into the integral
in (4), we obtain

|Q(x) − Q̃α(x)| ≤ sup
μ∈M

{ ∫ 1

0

(
(1 − β)−1C

m∑

i=1

Eh−i

[|
| fi (·|h−i )
])
dμ(β)

}

= sup
μ∈M

{ ∫ 1

0
(1 − β)−1dμ(β)

}
· C

m∑

i=1

Eh−i

[|
| fi (·|h−i )
]

= sup
μ∈M

φμ(1) · C
m∑

i=1

Eh−i

[|
| fi (·|h−i )
]
,

where the last step follows from the definition of the risk spectrum φμ in (3). The
result now follows from the observation that the upper bound above does not depend
on the value of x . 
�

Similar to the error bounds from the literature, the error bound from Theorem 1
depends on the total variations of the one-dimensional conditional density functions
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of the right-hand side vector h.2 As these total variations go to zero, the error bound
converges to zero. Intuitively, this can be interpreted as follows. Note that a density
function with a small total variation is relatively “flat”. As the total variation decreases
further, the distribution becomes ever flatter. This means that the distribution of h
becomes more highly dispersed. So on an intuitive level, the error bound above shows
that, if the distribution of h is unimodal, then our convex approximations are good if
the distribution of h is relatively highly dispersed. A final interesting interpretation
of Theorem 1 is that Q is “almost convex” (i.e., close to a convex function) if the
distribution of h is highly dispersed (and unimodal).

Comparing the error bound fromTheorem1with the error bound for the risk-neutral
case in [22], we see that we have an additional factor supμ∈M φμ(1). This expression
depends on the specific risk measure ρ. To interpret this expression, consider the
spectral case, where M is a singleton {μ}. Then, the function φμ from Theorem 1 is
called the risk spectrum [26] associated with ρ and ρ(Z), Z ∈ Z , can be represented
as an expected value under a distorted distribution, where the risk spectrum φμ(p)
represents the distortion (i.e., the factor by which probabilities are multiplied) at the
p-quantile of the distribution of Z . Since φμ is non-decreasing, φμ(1) represents the
maximum distortion of probabilities associated with the risk measure ρμ. It follows
that for general law invariant coherent risk measures ρ, the value supμ∈M φμ(1) is
the maximum possible distortion associated with the risk measure ρ.

Since for every μ ∈ M, φμ is a non-negative non-decreasing function on [0, 1]
that integrates to one, it follows that supμ∈M φμ(1) ≥ 1. Hence, our error bound is
at least as large as its risk-neutral analogue, with the minimum value attained for the
expected value: ρ = E. As long as supμ∈M φμ(1) is finite, our error bound has the
asymptotic interpretation described above: the approximation error goes to zero as the
distribution of h becomes more dispersed. For instance, this will hold if M consists
of a single element μ, (i.e., if ρ is a spectral risk measure), and φμ(1) is finite. Note
that supμ∈M φμ(1) can be finite even if M contains uncountably many elements, as
we illustrate in the following example.

Example 1 Consider the law invariant risk measuremean-upper semideviation (mean-
USD) with parameter c ≥ 0, defined as

ρ(Z) := E[Z ] + c · E
[(
Z − E[Z ])+]

, Z ∈ Z.

By Example 2.46 in [30], this is a coherent risk measure for 0 ≤ c ≤ 1, and the
set M of probability measures on [0, 1) from its Kusuoka representation is given by
M = {μ ∈ P([0, 1)) | φμ(1) ≤ 1 + c}. It follows that supμ∈M φμ(1) = 1 + c.

Finally, we provide an example showing that the error bound from Theorem 1 can
be tight.

2 Note that, as in [22], the error bound does not depend on the distribution of T , as the error bound is
uniform over all x , and T and x always appear together as T x . Moreover, the dependence of the error
bound on q is captured in the constant C ; see van Beesten and Romeijnders [21] for a recent publication
investigating the dependence of C on q in detail.
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Example 2 Consider a so-called simple integer recourse setting. That is, consider the
model from (1), with the assumptions that n1 = m = 1, q = (1, 0) and T = [1] are
fixed, Y = Z+ × R+, and W = [1 − 1]. In other words, we assume that the value
function can be written as

v(h, x) = min
y1∈Z+

{
y1 | y1 ≥ h − x

} = �h − x�+, h ∈ R
m, x ∈ R,

where �s�+ := max{�s�, 0}, s ∈ R.Moreover, assume thatρ = CVaRβ withβ = 3/4,
and let the density function f of h be given by f (t) = 1/4 if 0 ≤ t < 3, f (t) = 1/2 if
3 ≤ t < 3.5, and f (t) = 0 otherwise. We show that the error bound from Theorem 1
is tight.
Leveraging a result in Romeijnders et al. [16], the relevant constant is C = 1/8.
Moreover, it is not hard to show that supμ∈M φμ(1) = (1 − β)−1 = 4 and that

|
| f = 1. Thus, the error bound reduces to ‖Q − Q̃α‖∞ ≤ 4 · 1
8 · 1 = 1/2. Next,

we show that there exist x ∈ R and α ∈ [0, 1) such that |Q(x) − Q̃α(x)| attains
the error bound. Since v and ṽα are monotonely non-decreasing in h, we have that
Q(x) = ∫ ∞

−∞ v(t, x)g(t)dt and Q̃α(x) = ṽα(t, x)g(t)dt , where the pdf g represents
the distribution of h, restricted to the fraction 1 − β = 1/4 of its highest outcomes.
That is, g(t) = 2 if 3 ≤ t < 3.5, and g(t) = 0 otherwise. For x = 0 and α = 0.5 we

have |Q(x)− Q̃α(x)| = ∣∣∫ ∞
−∞ (v(t, x) − ṽα(t, x)) g(t)

∣∣ =
∣∣
∣
∫ 3.5
3 (4 − 3.5) · 2

∣∣
∣ = 1/2.

This proves that the error bound is tight.

We conclude this section with an analogue of Theorem 1 for the law invariant, non-
coherent risk measure expected excess (EE). This risk measure represents the expected
amount by which a random variable exceeds a predefined threshold τ . Even though EE
is not coherent, it has relevant practical applications in settings where we are interested
in the expected amount by which a budget τ is exceeded. The result below illustrates
that our approach is not necessarily limited to coherent risk measures. Moreover, we
will use it in our proof of Theorem 3 in Sect. 5.

Definition 6 Let Z ∈ Z be a random variable. Then, its expected excess (EE) with
parameter τ ∈ R is given by

EEτ (Z) := E
[
(Z − τ)+

]
.

Proposition 1 Consider the recourse function Q from (1) and its α-approximation Q̃α

fromDefinition 3. Assume that the underlying risk measure satisfies ρ = EEτ for some
τ ∈ R. Then, there exists a constant C > 0 such that for every f ∈ Hm, we have

‖Q − Q̃α‖∞ ≤ C ·
m∑

i=1

Eh−i

[|
| fi (·|h−i )
]
.

Proof Let x ∈ R
n1 be given. Then,

∣∣Q(x) − Q̃α(x)
∣∣ = ∣∣E

[
(v(ξ, x) − τ)+

] − E
[
(ṽα(ξ, x) − τ)+

]∣∣,
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which equals
∣∣E

[
vτ (ξ, x)

]−E
[
ṽτ
α(ξ, x)

]∣∣ = |R∗(x, τ )− Q̃∗
α(x, τ )| in the notation of

[22]. By the second part of the proof of Theorem 1 in that paper, it follows that there
exists a constant C > 0, not depending on τ , such that for every f ∈ Hm ,

∣∣Q(x) − Q̃α(x)
∣∣ ≤ C ·

m∑

i=1

Eh−i

[|
| fi (·|h−i )
]
.

The result follows from the observation that the right-hand side here does not depend
on the value of x or τ . 
�

4 Non-asymptotic error bounds for special cases

Theorem 1 provides a worst-case error bound that holds for the general risk-averse
MIR model from (1). A downside of the generality of this result is that it may be very
conservative in specific settings: in particular, the constant C in Theorem 1 might be
larger than necessary. In Sect. 4.1 we tackle this issue for the special case of totally
unimodular integer recourse by deriving a specialized, tighter error bound. This bound
also turns out to behave more favorably as a function of supμ∈M φμ(1) than the bound
from Theorem 1. Inspired by this observation, in Sect. 4.2 we provide a simple integer
recourse example forwhichwederive an error bound that does not dependon the choice
of risk measure ρ at all. Both results show that our convex approximation approach
might perform better in practice than the asymptotic error bound from Theorem 1
suggests.

4.1 Totally unimodular integer recourse

We consider a risk-averse totally unimodular (TU) integer recourse model. That is, we
consider the model (1) and we assume that the second-stage problem can be written
as

v(ξ, x) = min
y∈Y {qT y | Wy + T x ≥ h}, (5)

where W is a totally unimodular matrix and where all second-stage variables are
restricted to integers, i.e., Y = Z

n2+ . We derive a non-asymptotic error bound for this
setting that behaves more favorably as a function of supμ∈M φμ(1) than the error
bound from Theorem 1.

Our analysis consists of three steps. First, we use the Kusuoka representation of ρ

and the distortion interpretation of spectral riskmeasures towriteρ as a supremumover
expected values under distorted probability distributions. Second, we apply an error
bound from [22] for risk-neutral TU integer recourse models on this expected value
expression. The resulting error bound is written in terms of the distorted probability
distribution. Finally, we rewrite the result in terms of the original distribution. For this
purpose, we use the following steps. First, we observe that in this TU integer setting,
the value function v(ξ, x) is non-decreasing as a function of hi . Second, we show
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that as a result, the distortion factor in the pdf of hi must be non-decreasing as well.
Finally, we use the lemma below to find an upper bound on the total variation of the
distorted pdf in terms of the total variation of the original pdf f .

Lemma 4 Let f : R → R be a pdf of bounded variation and let ζ : R → R be a
non-negative non-decreasing bounded function satisfying ζ(t) ≤ ζ ∗, for all t ∈ R.
Define g : R → R by g(t) = λ(t) f (t), t ∈ R. Then,

|
|g ≤ ζ ∗|
| f .

Proof Follows directly from the proof of Proposition 3 in [16]. 
�
Theorem 2 Consider the risk-averse TU integer recourse function Q and its convex
approximation Q̃α . Assume that the underlying risk measure ρ is law invariant and
coherent and let M be the set of probability measures on [0, 1) from its Kusuoka
representation. Then, for every f ∈ Hm, we have

‖Q − Q̃α‖∞ ≤
m∑

i=1

λ̄∗
i H

(
sup

μ∈M
{
φμ(1)

}
E

[|
| fi (·|h−i )
])

,

where for every i = 1, . . . ,m, we have λ̄∗
i := E

q
[
maxk∈Kq {λki }

]
, where λk , k ∈ Kq,

q ∈ �q , are the dual vertices from Lemma 1; and where the function H : R+ → R is
defined by

H(t) =
{
t/8, if 0 ≤ t ≤ 4,

1 − t/2, if t > 4.
(6)

Proof Let x ∈ R
n1 be given. By the Kusuoka representation of ρ we have Q(x) =

supμ∈M ρμ(v(ξ, x)), where ρμ denotes the spectral risk measure corresponding to
μ ∈ M. Let μx ∈ M be optimal in the supremum above (if the maximum is not
attained, we can instead consider a sequence {μn}∞n=1 converging to the optimum).
We know that ρμx (v(ξ, x)) can be represented as an expected value under a distorted
probability distribution Px , where φμx (p) reflects the distortion of the probabilities at
the p-quantile of the distribution of v(ξ, x). Recall that φμ is non-decreasing. Let f x

denote the joint pdf of h under Px . Let i = 1, . . . ,m, be given and let f xi (·; t−i ) denote
f x (t) as a function of ti . Due to the TU structure of the recourse matrix W , we know
that v(ξ, x) is non-decreasing as a function of hi . Hence, we can assume without loss
of generality that there exists a non-negative, non-decreasing function ζ x

i : R → R,
satisfying ζ x

i (ti ) ≤ φμx (1) for all ti ∈ R, such that f xi (ti ; t−i ) = ζ x
i (ti ) fi (ti ; t−i ),

ti ∈ R.
Now, we can write Q(x) = ρμx (v(ξ, x)) = E

P
x [

v(ξ, x)
]
and by feasibility of μx

and P
x , Q̃α(x) ≤ ρμx (ṽα(ξ, x)) ≤ E

P
x [

ṽα(ξ, x)
]
. It follows that

Q(x) − Q̃α(x) ≤ E
P
x [

v(ξ, x)
] − E

P
x [

ṽα(ξ, x)
]
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≤
m∑

i=1

λ̄∗
i H

(
E
P
x [|
| f xi (·|h−i )

])
, (7)

where the second inequality follows from applying the error bound for risk-neutral
TU integer recourse models from Proposition 4 in [22].

It remains to write the expected value in the error bound above in terms of the
original distribution P and pdf f . Define T−i := {t−i ∈ R

m−1 | f−i (t−i ) > 0} as the
set on which f−i is positive. Similarly, define T x

−i := {t−i ∈ R
m−1 | f x−i (t−i ) >

0} and observe that T x
−i ⊆ T−i . Using the definition of the conditional density

function fi (·|h−i ) we have E
P
[|
| fi (·|h−i )

] = ∫
T−i

|
|
(

fi (·;t−i )
f−i (t−i )

)
f−i (t−i )dt−i =

∫
T−i

|
| fi (·; t−i )dt−i . Similarly,wefindEP
x [|
| f xi (·|h−i )

] = ∫
T x−i

|
| f xi (·; t−i )dt−i .

Using these equalities and the fact that |
| f xi (·; t−i ) ≤ φμx (1)|
| fi (·; t−i ) by
Lemma 4, we obtain

E
P
x [|
| f xi (·|h−i )

] =
∫

T x−i

|
| f xi (·; t−i )dt−i ≤
∫

T−i

|
| f xi (·; t−i )dt−i

≤
∫

T−i

φμx (1)|
| fi (·; t−i )dt−i ≤ sup
μ∈M

φμ(1)EP
[|
| fi (·|h−i )

]
.

Substituting this inequality into (7) and using an analogous analysis for an upper bound
on the reverse difference Q̃α(x) − Q(x) yields the result. 
�

Comparing the TU integer error bound from Theorem 2 with the general error
bound from Theorem 1, we see two differences. First, instead of merely proving the
existence of a constant C , we derive the constants λ̄∗, i = 1, . . . ,m. Hence, the error
bound from Theorem 2 is not merely asymptotic in nature, but can be used to derive an
actual performance guarantee in finite cases. Second, the error bound from Theorem 2
depends on the risk measure ρ in a more generous way, as the factor supμ∈M φμ(1)
enters inside the function H , which is bounded from above by one. Hence, even if
supμ∈M φμ(1) is very large, the error bound remains relatively small. This provides
evidence for our conjecture that the dependence of the error bound from Theorem 1
on the risk measure ρ might be (much) too conservative in some cases.

4.2 Simple integer recourse with an exponential distribution

We now consider the special case of risk-averse one-dimensional simple integer
recourse (SIR) models [31] with an exponentially distributed right-hand side vari-
able h. We use this very special case as an example for which we can derive an error
bound that does not depend on the risk measure ρ at all. This provides further evidence
that in some settings the approximation error ‖Q − Q̃α‖∞ may depend on the risk
measure ρ more favorably than the error bound from Theorem 1 suggests.

Specifically, we consider the model from (1), with the assumptions that n1 = m =
1; q = (1, 0) and T = [1] are fixed; Y = Z+ ×R+; andW = [1 −1]. In other words,
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we assume that the value function can be written as

v(h, x) = min
y1∈Z+

{
y1 | y1 ≥ h − x

} = �h − x�+, h ∈ R
m, x ∈ R,

where �s�+ := max{�s�, 0}, s ∈ R. Moreover, we assume that h follows an expo-
nential distribution with a rate parameter of γ . We show that we can derive a uniform
error bound that holds for all spectral risk measures ρ that satisfy some regularity
conditions.

Consider the recourse function Q(x) = ρ
(
v(ξ, x)

)
. Let φμ be the risk spectrum

associated with ρ by its Kusuoka represenatation. Recall that φμ(β) represents the
distortion factor of the β-quantile of the distribution of v(h, x).Wemake the important
observation that the value function v(h, x) = �h− x�+ is non-decreasing in h. Hence,
the β-quantile of the distribution of h corresponds to the β-quantile of the distribution
of v(h, x). As a result, we can write Q(x) as an expected value under a distorted
distribution that can be expressed explicitly. We have Q(x) = E

fμ
[
v(h, x)

]
, x ∈ R,

where fμ denotes the distorted pdf defined by

fμ(t) = φμ(F(t)) f (t), t ∈ R, (8)

where F and f are the cdf and pdf, respectively, of h. Note that fμ does not depend on
the value of x . Similarly, for the α-approximation we obtain Q̃α(x) = E

fμ
[
Q̃α(ξ, x)

]
.

Using these representations, we can write Q and Q̃α as a recourse function and
its α-approximation, respectively, of a risk-neutral SIR model under the distorted
distribution represented by fμ. Hence, we can apply an error bound from the literature
on convex approximations of risk-neutralMIRmodels (Theorem5 in [16]). This yields

‖Q − Q̃α‖∞ ≤ H
(|
| fμ

)
, (9)

where H is the function from (6). Interestingly, under the assumption that h is expo-
nentially distributed, we can derive a uniform upper bound on the total variation |
| fμ,
and hence, on ‖Q − Q̃α‖∞ that holds for all spectral risk measures that satisfy some
regularity conditions.

Proposition 2 Consider the recourse function Q and its α-approximation in the SIR
setting described in Sect.4.2, where h follows an exponential distribution with rate
parameter λ. Suppose that ρ is a spectral risk measure with associated probability
measureμ on [0, 1) and risk spectrum φμ, and that it satisfies the following regularity
conditions:

(i) φμ(1) < +∞;
(ii) The set M of points on which μ has positive probability mass is finite. Moreover,

μ has a density g on [0, 1) \ M;
(iii) The set D := {β ∈ (0, 1] | (1 − β)φμ(β) has a negative derivative at β} can be

written as the union of a finite number of intervals.
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Then, we have

‖Q − Q̃α‖∞ ≤ H(2λ), (10)

where H is the function from (6).

Proof By (9), it suffices to prove that |
| fμ ≤ 2λ. Consider the function fμ as defined
in (8). Using the change of variables β = F(t), we can express fμ as a function of β.
We obtain the function f̄μ : [0, 1] → R, defined by

f̄μ(β) := fμ(F−1(β)) = λ(1 − β)φμ(β), β ∈ [0, 1],

where we use that the inverse cdf F−1 of h is given by F−1(β) = − 1
λ
log(1−β), β ∈

[0, 1]. Since F is a continuous, invertible cdf, and F−1(0) = 0 and F−1(1) = +∞,
it follows that |
| fμ = |
| fμ((−∞, 0]) + |
| fμ

([0,+∞)
) = f̄μ(0) + |
| f̄μ =

f̄μ(0) + 
+ f̄μ + 
− f̄μ, where we use the fact that |
| f̄μ = 
+ f̄μ + 
− f̄μ. By
definition of f̄μ and condition (i), we have f̄μ(0) ≥ 0 = f̄μ(1) and hence, 
− f̄μ =

+ f̄μ + f̄μ(0). It follows that |
| fμ = 2
− f̄μ. Hence, it suffices to find an upper
bound on the total decrease 
− f̄μ only.

We will show that f̄μ is decreasing only on the set D defined in condition (iii), so
that we can write 
− f̄μ = 
− f̄μ(D). To prove this, first note that f̄μ is continuous
for all β ∈ (0, 1]\M , has an upward discontinuity at all β ∈ M , and since f̄μ is non-
negative and f̄μ(0) = 0, it is non-decreasing at 0, in the sense that f̄μ(0) ≤ lims↓0 f̄μ.
It follows that 
− f̄μ := 
− f̄μ

([0, 1]) = 
− f̄μ
(
(0, 1]\M)

. Next, we show that the
derivative f̄ ′

μ(β) exists at all β ∈ (0, 1]\M . Let β ∈ (0, 1]\M be given. From the
definition of f̄μ it is clear that the derivative f̄ ′

μ(β) exists if and only the derivative
φ′

μ(β) exists, which is the case for all β ∈ (0, 1]\M by condition (ii). For such β, it is
given by φ′

μ(β) = (1 − β)−1g(β). It follows that f̄ ′
μ(β) exists for all β ∈ (0, 1]\M

and is given by

f̄ ′
μ(β) = λ(1 − β)φ′

μ(β) − λφμ(β) = λ(1 − β)g(β) − λφμ(β), β ∈ (0, 1] \ M .

(11)

Consider the set D from condition (iii) and observe that D ∩ M = ∅ since φ′
μ(β)

does not exist for β ∈ M . Hence, the set D ⊆ (0, 1]\M , consisting of finitely many
intervals by condition (iii), represents the subset of [0, 1] on which f̄μ is decreasing.
We conclude that 
− f̄μ = 
− f̄μ(D), where the right-hand side is well-defined by
condition (iii).

Now, to obtain our upper bound, we express 
− f̄μ(D) in terms of an integral over
the derivative of f̄μ. It is not hard to prove that f̄μ is absolutely continuous on D.
Hence, by, e.g., Theorem 14 in [32] it follows that 
− f̄μ(D) = ∫

D | f̄ ′
μ(β)|dβ. Using

(11), we obtain


− f̄μ(D) =
∫

D
| f̄ ′

μ(β)|dβ =
∫

D

(
λφμ(β) − λ(1 − β)g(β)

)
dβ
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≤ λ

∫

D
φμ(β)dβ ≤ λ

∫ 1

0
φμ(β)dβ = λ,

where the Riemann integrals are well-defined by condition (iii) and where we use the
fact that the risk spectrum φμ integrates to one by definition. It follows that |
| fμ =
|
| f̄μ = 2
− f̄μ ≤ 2λ, which proves the result. 
�

5 Statistical error bound for SAA

The error bounds from Sects. 3 and 4 depend on the joint density function f of the
right-hand side vector h. Hence, they are only valid under the assumption that h is
continuously distributed. However, solving recourse models under continuous distri-
butions is generally a very hard task, even if the model is convex. The reason for
this is that evaluating the objective function involves computing (multi-dimensional)
integrals, which can be numerically challenging.

To overcome this difficulty one often resorts to discretizing the distribution of h.
In particular, a common approach is sample average approximation (SAA) [24], in
which we draw a sample from the distribution of ξ (and hence, of h) and then solve
the model under the empirical distribution corresponding to the sample.

Definition 7 Consider the recourse function Q from (1) and its α-approximation Q̃α

fromDefinition 3, and let�N := (ξ1, . . . , ξ N ) be an i.i.d. sample from the distribution
of ξ . Then, we define the sample average approximation (SAA) of Q and Q̃α by

QN (x) := ρN (
v(ξ, x)

)
, and Q̃N

α (x) := ρN (
ṽα(ξ, x)

)
, x ∈ R

n1 ,

respectively, where ρN (·) denotes the value of the risk measure ρ(·) evaluated under
the empirical distribution corresponding to �N .

Clearly, the total variation-based error bounds from Sect. 3 and 4 do not apply to
the model with the (discrete) SAA distribution. Nevertheless, we show that the error
bound based on the original continuous distribution persists in expectation under the
SAA distribution. Only the standard bias of the empirical risk measure ρN (·) needs
to be added to obtain a statistical performance guarantee on the quality of the convex
approximation under the SAA distribution.

Theorem 3 Consider the setting of Theorem 1, with and let QN and Q̃N
α denote the

sample average approximations from Definition 7. If ρ is a spectral risk measure, then
there exists a constant C > 0 such that for every f ∈ Hm and x ∈ R

n1 ,

∣∣
∣E

[
QN (x) − Q̃N

α (x)
]∣∣
∣ ≤ sup

μ∈M
φμ(1) · C ·

m∑

i=1

Eh−i

[|
| fi (·|h−i )
] + BN (x), (12)

where BN (x) := max
{
Q(x) − E[QN (x)], Q̃α(x) − E[Q̃N

α (x)]
}
.
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Proof We know from [33] that CVaRN
β is negatively biased, i.e., that

E

[
CVaRN

β (v(ξ, x))
]

≤ CVaRβ (v(ξ, x)). Combining this with the Kusuoka rep-

resentation of the spectral risk measure ρ it immediatly follows that ρN is nega-
tively biased, too. Hence, E[ρN (ṽα(ξ, x))] ≤ ρ(ṽα(ξ, x)) and E[ρN (v(ξ, x))] ≤
ρ(v(ξ, x)), and thus BN (x) ≥ 0 for every x ∈ R

n1 . Using this it follows that for every
x ∈ R

n1 ,

E

[
QN (x) − Q̃N

α (x)
]

= E

[
ρN (v(ξ, x))

]
− E

[
ρN (ṽα(ξ, x))

]

≤ ρ (v(ξ, x)) − E

[
ρN (ṽα(ξ, x))

]

= ρ (v(ξ, x)) − ρ (ṽα(ξ, x))

+
(
ρ (ṽα(ξ, x)) − E

[
ρN (ṽα(ξ, x))

] )

≤
∣
∣∣ρ (v(ξ, x)) − ρ (ṽα(ξ, x))

∣
∣∣ + BN (x),

and analogously,

E

[
Q̃N

α (x) − QN (x)
]

≤
∣∣
∣ρ (v(ξ, x)) − ρ (ṽα(ξ, x))

∣∣
∣ + BN (x).

The desired result follows from applying Theorem 1 to |ρ (v(ξ, x))−ρ (ṽα(ξ, x))|. 
�

Theorem 3 provides a theoretical justification for using convex approximations in
an SAA framework. This extends our error bound from the more theoretical setting
with continuous distributions to the more practical setting of SAA. Compared with
Theorem 1, Theorem 3 contains an additional term BN (x), which represents the bias
of the empirical risk measure ρN , which typically decreases in the sample size N .
Moreover, the bias BN (x) equals zero in the risk-neutral case, i.e., when ρ = E.

Interestingly, the proof of Theorem 3 carries over to settings far beyond the setting
considered in this paper. In particular, many error bounds from the literature on convex
approximations of MIR models can be extended to statistical error bounds for the
correspondingSAAmodel in a similarway. Even though the setting inTheorem3 is the
most general setting considered in the literature, this is still an important observation.
The reason is that many of the error bounds from the literature have been tailored to
special cases, leading to (much) tighter error bounds than the more general bounds in
this paper. For instance, the line of proof of Theorem 3 may be applied to the error
bounds from [18] to obtain tight statistical error bounds based on information about
higher-order derivatives of the density function f . In short, Theorem 3 can be seen
as an extension of the entire literature on error bounds for convex approximations of
MIR models to the setting of SAA.
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6 Loose Benders decomposition algorithm

In this section we construct an algorithm based on the α-approximation from Def-
inition 3. Such an algorithm is necessary since solving the α-approximation model
directly is typically computationally intractable. The reason for this is the fact that
the α-approximation Q̃α is defined through an enumeration of all periodic functions
ψk corresponding to the dual feasible basis matrices Bk of the LP-relaxation vLP, of
which there are exponentially many.

We propose an extension of the Loose Benders’ decomposition algorithm (LBDA)
from [17] to the risk-averse case, which is based on Benders’ decomposition in an
SAA-framework. The algorithm overcomes the computational issue regarding the
exponential number of periodic functions ψk by iteratively computing only a few
function values for a single function ψk corresponding to an index k that is close
to optimal at the current value of x . The potential suboptimality of k yields so-called
“loose cuts”, which is reflected in the name of the algorithm. Thus, the algorithm itera-
tively approximates the α-approximation, while avoiding computation of all functions
ψk . Nevertheless, we will derive an error bound that guarantees that the quality of the
approximation remains good.

6.1 Algorithm construction

The LBDA finds an approximate solution to the original risk-averse MIR model (1)
by considering the α-approximation of the SAA model, defined by

η̃α := min
x∈X {cT x + Q̃S

α(x)}. (13)

The LBDAuses a Benders’ decomposition framework to find a solution to this approx-
imationmodel. In fact, it finds an approximate solution to thismodel by using so-called
loose optimality cuts rather than exact cuts.We extend this framework by incorporating
risk aversion in the LBDA.

6.1.1 Linearizing the risk-averse objective

The main difficulty in extending the LBDA to the risk-averse case is the non-linearity
of the objective function in (13) as a result of the riskmeasure ρ. To solve this issue, we
develop a method to construct a piecewise linear outer approximation of the objective,
using a single sorting procedure. The main building block is the result below, which
shows that we can compute the (spectral) risk associated with a discrete uniform
random variable by sorting its support.

Lemma 5 Let ρ be a spectral risk measure and let Z be a discrete uniform random
variable on {z1, . . . , zS}. Define

ws :=
∫ s

S

s−1
S

φμ(p)dp, s = 1, . . . , S.
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where μ is the probability measure on [0, 1) from the Kusuoka representation of ρ.
Moreover, let � be the collection of all permutation functions of the set {1, . . . , S},
i.e.,� is the collection of all one-to-one functions π : {1, . . . , S} → {1, . . . , S}. Then,

ρ(Z) = max
π∈�

S∑

s=1

ws zπ(s),

Moreover, any π∗ ∈ � for which zπ∗(1) ≤ zπ∗(2) . . . ≤ zπ∗(S) holds (i.e., that sorts
the set {z1, . . . , zS}) is optimal.
Proof By [23], we can represent ρ in terms of its associated risk spectrum φμ:

ρ(Z) =
∫ 1

0
φμ(p)F−1

Z (p)dp,

where F−1
Z (p) := inf{z ∈ R | FZ (z) ≥ p}. Using the fact that Z is uniformly

distributed on {z1, . . . , zS}, we have

F−1
Z (p) =

{
−∞ if p = 0,

zπ
∗(s) if s−1

S < p ≤ s
S , s = 1, . . . , S,

where π∗ ∈ � is such that zπ
∗(1) ≤ zπ

∗(2) ≤ · · · ≤ zπ
∗(S), i.e., π∗ sorts the set

{z1, . . . , zS}. It follows that

ρ(Z) =
S∑

s=1

∫ s
S

s−1
S

φμ(p)zπ
∗(s)dp =

S∑

s=1

ws zπ
∗(s).

Since φμ is non-negative and non-decreasing, we have 0 ≤ w1 ≤ w2 ≤ · · · ≤ wS .
This implies that ρ(Z) = ∑S

s=1 ws zπ
∗(s) ≥ ∑S

s=1 ws zπ(s) for all π ∈ �. It follows
that

ρ(Z) = max
π∈�

{ S∑

s=1

ws zπ(s)
}
,

with an optimal solution π∗. 
�
Applying Lemma 5 to our approximating recourse function Q̃S

α(x̄) for some fixed
x̄ , we can write

Q̃S
α(x̄) = max

π∈�

S∑

s=1

ws ṽα(ξπ(s), x̄),
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and an optimal solution is found by any π∗ ∈ � that sorts the values ṽα(ξ s, x̄),
s = 1, . . . , S. Writing π̃ for the inverse of π∗, we obtain a piecewise linear outer
approximation of Q̃S

α:

Q̃S
α(x) ≥

S∑

s=1

wπ̃(s)ṽα(ξ s, x), (14)

where the inequality follows since π∗ is feasible but not necessarily optimal for any x .
So Lemma 5 provides a procedure to derive a piecewise linear outer approximation of
the the approximating recourse function Q̃S

α(x).Weuse this sorting-based linearization
to extend the LBDA to the risk-averse case.

6.1.2 Algorithm description

We now present our LBDA in the risk-averse setting. In Algorithm 1 we provide
pseudo-code for the algorithm. We explain each step below; for more elaborate expla-
nations of some steps we refer to [17].

Algorithm 1 Risk-averse loose Benders’ decomposition algorithm (LBDA)
1: Input Parameters: A, b, c,W ; distribution of ξ ; spectral risk measure ρ; shift parameter α; lower bound

L on Q̃S
α ; sample size S; tolerance ε

2: Output Near-optimal solution x̃α for (13)
3: Initialization
4: Initialize τ = 0 and Q̃τ

OUT ≡ L

5: Draw a sample {ξ1, . . . , ξ S} of size S from the distribution of ξ

6: Compute w1, . . . , wS corresponding to the risk measure ρ

7: Iteration step
8: Solve minx {cT x + Q̃τ

OUT(x) | Ax = b, x ∈ R
n1+ }

9: Denote optimal solution by xτ

10: for s = 1, . . . , S do
11: Solve vLP(ξ s , xτ )

12: Denote optimal basis matrix index by k̃τ
s

13: Compute ψ k̃τ
s (hs − α)

14: Define uτ
s := λk̃

τ
s (hs − T s xτ ) + ψ k̃τ

s (hs − α)

15: end for
16: Find πτ ∈ � such that uτ

πτ (1) ≤ · · · ≤ uτ
πτ (S)

; define π̃τ := (πτ )−1

17: βτ+1 ← −∑S
s=1 wπ̃τ (s)λk̃

τ
s T s

18: δτ+1 ← ∑S
s=1 wπ̃τ (s)(λk̃

τ
s hs + ψ k̃τ

s (hs − α)
)

19: Q̃τ+1
OUT(x) := max{Q̃τ

OUT(x), βτ+1x + δτ+1}
20: Stopping criterion
21: if Q̃τ

OUT(xτ ) ≥ Q̃τ+1
OUT(xτ ) − ε then

22: return x̃α := xτ

23: stop
24: else
25: τ ← τ + 1. Go to line 8
26: end if
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Besides a description of the underlying risk-averse MIR model, the risk-averse
LBDA needs a few other inputs. First, it needs a shift parameter α for the α-
approximation used in the algorithm. Next, it needs a uniform lower bound L on
Q̃S

α (which always exists since we assume X is bounded). Finally, it needs a sample
size S for the SAA and a tolerance level ε for the stopping criterion. The algorithm
will output a near-optimal solution x̃α for (13).

In the initialization phase, we set the iteration counter τ to zero and initialize an
outer approximation function Q̃τ

OUT to the uniform lower bound L . Moreover, we
draw a sample from the distribution of h and we compute the values w1, . . . , wS

corresponding to ρ. Note that these values only need to be computed once.
Every iteration of the algorithm consists of two parts. In the first part, we solve a

master problem of the form minx {cT x + Q̃τ
OUT(x) | Ax = b, x ∈ R

n1+ }, yielding
a candidate solution xτ . In the second part, we generate a so-called loose optimality
cut at xτ . This cut generation procedure consists of two steps, which we will discuss
subsequently.

In the first step we derive a loose optimality cut for every scenario s = 1, . . . , S.
Note that a tight optimality cut is given by ṽα(ξ s, x) ≥ λk

τ
s (ξ s −T sxτ )+ψkτ

s (hs −α),
where kτ

s is an optimal index in the maximization problem defining ṽα(ξ s, xτ ). It turns
out, however, that finding kτ

s exactly is computationally challenging. Therefore, van
der Laan and Romeijnders [17] propose to approximate kτ

s by k̃τ
s , the optimal index

in the dual representation of the LP-relaxation. We follow this procedure. See [17]
for more details. Moreover, note that computing ψkτ

s (hs − α) involves solving the
Gomory relaxation vBk (hs − α), as explained in Lemma 2, which is a mixed-integer
program.

In the second stepwe combine the scenario cuts into a single loose optimality cut for
the master problem. We use the procedure from Sect. 6.1.1 to combine the scenarios
in a linear way, despite the inherent nonlinearity of our risk measure ρ. In particular,
we find πτ ∈ � that sorts the values uτ

1, . . . , u
τ
S . Defining U

τ as the random variable
with a uniform distribution on uτ

1, . . . , u
τ
S and writing π̃ τ as the inverse of πτ , this

means that ρ(U τ ) = ∑S
s=1 wπ̃τ (s)

(
λk̃

τ
s hs − T sxτ + ψ k̃τ

s (hs − α)
)
. Now, we define

the optimality cut Q̃τ
OUT(x) ≥ ∑S

s=1 wπ̃τ (s)
(
λk̃

τ
s hs − T sx + ψ k̃τ

s (hs − α)
)
and add

it to our outer approximation Q̃τ+1
OUT. Our optimality cut is indeed feasible for all x ,

since πτ is optimal at xτ and feasible in the corresponding maximization problem for
all other x .

The algorithm stops whenever the improvement in the outer approximation as a
result of the most recently added optimality cut is less than the predefined tolerance
level ε. The algorithm outputs the most recent solution xτ as the LBDA solution x̃α .

6.2 Performance guarantee

We now present a performance guarantee for our risk-averse LBDA. That is, we derive
an upper bound on the optimality gap

cx̃α + Q(x̃α) − η∗,
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where x̃α is the algorithm solution. Our performance guarantee is based on the per-
formance guarantee in [17] for the risk-neutral LBDA. The proof for our risk-averse
setting is similar, with a few necessary adjustments to account for risk aversion.

Theorem 4 Let x̃α be the solution from the LBDA with tolerance level ε > 0. Then,
there exists a constant C > 0 such that for every f ∈ Hm,

cT x̃α + Q(x̃α) − η∗ ≤ ε + φμ(1) · C ·
m∑

i=1

Eh−i

[|
| fi (·|h−i )
]

with probability one as S → +∞.

Proof See the appendix. 
�
The performance guarantee from Theorem 4 is equal to the error bound from The-

orem 1, up to the tolerance level ε. This shows that, as the sample size goes to ∞,
the risk-averse LBDA produces a solution that is equally good as the solution to the
α-approximation model, in terms of the corresponding performance guarantee. In par-
ticular, this shows that the loose cuts used in the algorithm do not come at a cost in
terms of (provable) solution quality. This is in line with the results for the risk-neutral
case in [17].

7 Numerical experiments

In this section we perform a series of numerical experiments to gain more insight into
the performance of our convex approximation approach in risk-averse MIR models.
Since the main difference between our paper and the existing results in the literature
on convex approximations of risk-neutral MIR models is the introduction of a risk
measure ρ, we will focus primarily on the effect of the risk measure ρ on different
performance measures. For a numerical analysis of convex approximations and the
LBDA in a risk-neutral setting, we refer to [13] and [17], respectively.

We will explore our convex approximations approach in a risk-averse one-
dimensional SIR setting. We consider this setting for two reasons. First, it allows for
exact computation of approximation errors, optimal solutions, and optimality gaps.
Hence, we avoid having to resort to estimation of performance guarantees, which
would make our results more noisy and which would hinder interpretation. Second,
the one-dimensional setting makes it easier to plot certain results, again aiding inter-
pretation of the results.

7.1 Asymptotic behavior

Before zooming in on the risk measure ρ we first test whether the asymptotic behavior
of the error bounds from Theorem 1 and 2 is similar to the behavior of the actual
approximation error ‖Q − Q̃α‖∞. We consider a one-dimensional SIR model with
q− = 0 and q+ = 1, where the right-hand side variable h follows a normal distri-
bution with mean zero and standard deviation σ > 0. We consider three different
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Fig. 1 Maximum approximation error for a one-dimensional SIR model with q− = 0 and q+ = 1, for
three different risk measures, where the underlying distribution is a normal distribution truncated at its mean
μ = 0 with varying values of the standard deviation σ . Also plotted is the error bound from Theorem 5 in
[16] corresponding to the risk-neutral case ρ = E

risk measures: the expected value ρ = E (denoted “mean”), ρ = CVaR0.8 (denoted
“CVaR”), and the spectral risk measure defined by the risk spectrum φμ(p) = 2p,
p ∈ [0, 1] (denoted “spectral”).

For each riskmeasure, we compute themaximum approximation error ‖Q− Q̃α‖∞
for σ ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 5}. The results are presented in Fig. 1.
For comparison, we also plot the error bound fromTheorem 2 corresponding to ρ = E.
Note that the error bounds for the other risk measures can be obtained by multiplying
this bound by the factor φμ(1) corresponding to the respective risk measure. This
factor equals 5 for CVaR and 2 for spectral.

From Fig. 1 we observe that for all riskmeasures themaximum approximation error
‖Q− Q̃α‖∞ converges to zero as σ increases. The rate of convergence is comparable to
that of the error bound. This confirms that in this setting our asymptotic interpretation
of the error bound translates to the actual approximation error.

Interestingly, in contrast with the approximation error in the risk-neutral case, the
approximation error for CVaR exhibits an erratic pattern; compare the solid and dashed
graph in Fig. 1. To understand this behavior, recall that we can represent CVaR0.8 as an
expected value under an adjusted pdf, which has a sharp peak at the 80th percentile of
the original distribution. This peak may be located at a point where the approximation
error v(h, x)− ṽα(h, x) is particularly large. Depending on the shape of the rest of the
adjusted pdf (which depends on σ ), the effect of this peak may be mitigated by errors
in the other direction or not. If so, the corresponding value of ‖Q − Q̃α‖∞ will be
relatively small; if not, it will be large. This unpredictable behavior can be seen as the
reason why the error bound for CVaR needs to be much higher than the one for mean,
even though in most cases the corresponding approximation errors are comparable, as
we can see from the graph.

In case of the risk measure “spectral”, we have a similar effect as for CVaR, but
now there infinitely many peaks, one for each value of β for which the risk spectrum
φμ(β) is increasing. It is possible that these peaks line up in a way that they magnify
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each other’s effect on ‖Q − Q̃α‖∞, which is reflected in the corresponding error
bound. However, in many situations some of the peaks will cancel out the effect of
other peaks, resulting in a low value for ‖Q − Q̃α‖∞. This is indeed what we observe
in Fig. 1: the graph for spectral is even below that of mean, while its corresponding
error bound is more than twice as large. This result suggests that combining multiple
CVaRs into a spectral risk measure can lead to small approximation errors. We will
analyze this topic in more detail in Sect. 7.2.

7.2 Smoothness of the risk spectrum

Recall that the error bounds from Theorem 1 and Theorem 2 depends on the risk
measure ρ only through the associated value supμ∈M φμ(1). Since we only use a
very limited amount of information about the risk measure ρ, we conjecture that the
resulting bound may be overly conservative for some risk measures. In particular, we
are interested how, for a given μ ∈ M, the shape of φμ (so not only its maximum
value) affects the approximation error.

To investigate this matter, we consider two spectral risk measures with the same
associated value φμ(1) = 2. These risk measures differ in the “smoothness” of the
associated risk spectrum φμ. On the one hand we have CVaR0.5, whose risk spectrum
φμ is a step function with one jump at 0.5 (see Fig. 2). In this subsection we will refer
to this risk measure simply as “CVaR”. On the other end we have the spectral risk
measure associated with the risk spectrum

φ(p) =

⎧
⎪⎨

⎪⎩

0 if p < 0.25,

4(p − 0.25) if 0.25 ≤ p ≤ 0.75,

1 if p > 0.75.

This risk spectrum can be seen as a “smoothed” transformation of the risk spectrum
for CVaR. Hence, we refer to the corresponding risk measure as “smoothed CVaR”.

Observe that smoothed CVaR is a convex combination of an infinite amount of
CVaRs. For numerical reasons, we will not work with smooth itself, but approximate
it with convex combinations of a finite number of CVaRs. For a given n ∈ N, we
can approximate smooth CVaR by the risk measure ρ = ∑n

k=1 μk CVaR βk , where
βk = k−1/2

n and μk = 2(1−βk )
n , k = 1, . . . , n. See Fig. 2 for an illustration of the

corresponding risk spectrum. In our experiments we will use n = 5.
For each of the two risk measures, we compute the maximum approximation error

‖Q − Q̃α‖∞ in a one-dimensional SIR setting with q− = 0 and q+ = 1, where
h follows a Weibull distribution with shape parameter k and scale parameter λ. The
reason for choosing the Weibull family is that it exhibits a wide variety of different
shapes of the pdf, depending on the parameters, thereby increasing our confidence
that the results are representative for more general cases. In Table 1 we present the
difference between the maximum approximation errors for these two risk measures.

FromTable 1we see thatCVaRhas a larger correspondingmaximumapproximation
error than smoothed CVaR in all settings, except for k = 0.6, λ = 1.25. These results
suggest that generally speaking, spectral riskmeasures with a smoother associated risk
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Fig. 2 A plot of the risk spectra corresponding to CVaR, smoothed CVaR, and the approximation of the
latter (with n = 4), as discussed in Sect. 7.2

Table 1 Difference between ‖Q − Q̃α‖∞ for CVaR and for smoothed CVaR, for a one-dim. SIR model
with q+ = 1, q− = 0, and a Weibull distribution with various settings for the shape parameter k and scale
parameter λ. Also presented are the average for each row and column

λ

k 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 avg

0.5 0.054 0.037 0.028 0.036 0.010 0.000 0.014 0.018 0.025

0.6 0.042 0.045 0.038 0.028 −0.002 0.017 0.027 0.020 0.027

0.7 0.069 0.036 0.047 0.017 0.011 0.026 0.024 0.016 0.031

0.8 0.075 0.016 0.055 0.010 0.019 0.033 0.025 0.018 0.031

0.9 0.065 0.015 0.063 0.006 0.020 0.035 0.021 0.021 0.031

1 0.057 0.016 0.055 0.010 0.026 0.032 0.021 0.024 0.030

1.1 0.053 0.016 0.048 0.015 0.033 0.027 0.024 0.028 0.030

1.2 0.051 0.016 0.041 0.022 0.030 0.031 0.027 0.032 0.031

1.3 0.046 0.017 0.035 0.037 0.037 0.022 0.031 0.034 0.032

1.4 0.050 0.017 0.030 0.037 0.038 0.025 0.034 0.029 0.032

1.5 0.057 0.017 0.026 0.045 0.034 0.014 0.036 0.023 0.032

avg 0.056 0.023 0.042 0.024 0.023 0.024 0.026 0.024 0.030

spectrum lead to lower approximation errors. To understand these results, we provide
plots of the maximum approximation errors and the corresponding adjusted pdfs for
k = 1 and varying values for λ in Fig. 3.

In Fig. 3a we see that the graphs of the maximum approximation error for both
CVaR and smoothed CVaR decrease as λ increases, similar to the associated error
bound. This is in line with the error bounds from Sect. 3 and 4, as the distribution of h
becomes more dispersed with λ. Also, we see a more erratic behavior for CVaR than
for smoothed CVaR, which is also in line with our results in Sect. 7.1.
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Fig. 3 Plots related to a
one-dimensional SIR model
with q+ = 1, q− = 0, under a
Weibull distribution with k = 1
and varying values for λ, for two
different underlying risk
measures: CVaR and smoothed
CVaR. Top: the maximum
approximation error as a
function of λ. The
corresponding error bound from
Theorem 2 is also plotted.
Bottom: the adjusted pdf for
each of the two risk measures,
for k = 1 and λ = 1

(a) Approximation error

(b) Distorted pdf

More importantly, the graph of CVaR is uniformly above that of smoothed CVaR,
as we already learned from Table 1. Figure3b provides an explanation for this finding.
The adjusted pdf corresponding to CVaR has a sharp peak at the 50th percentile of
the original distribution. For smoothed CVaR, which is a convex combination of a
multitude of CVaRs, many such peaks are aggregated, resulting in a lower, less sharp
peak. As a result, the total variation of the adjusted pdf of CVaR is significantly higher
than for smoothed CVaR. Hence, based on risk-neutral error bounds, we expect the
maximum approximation error for CVaR to be larger, which is indeed what we find.

These results suggest that spectral risk measures with relatively smooth risk spectra
lead to relatively low approximation errors. So interestingly, this finding suggests
that finding good solutions for models with a more complicated mixed CVaR risk
measure might in fact be easier than for models with a simple CVaR risk measure.
This is especially interesting from a modeling point of view, given the fact that risk
preferences might be more accurately reflected by these more complicated mixed
CVaR risk measures than by a single CVaR.
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Table 2 Solution times for the numerical experiments in Sect. 7.3 in seconds, rounded to the nearest integer

Expectation CVaR Mean-CVaR Spectral

Instance DEF LBDA DEF LBDA DEF LBDA DEF LBDA

sslp_10_50_50 3600 68 8 45 3600 61 551 65

sslp_10_50_100 3600 140 338 109 3600 109 3600 119

sslp_10_50_500 3600 552 3600 586 3600 481 NA 545

sslp_10_50_1000 3600 1125 3600 1186 3600 1135 NA 1100

sslp_10_50_2000 3600 2283 3600 2285 3600 2216 NA 2198

7.3 Risk-averse LBDA performance

Finally, we investigate the performance of our risk-averse LBDA. A comparison of the
performance of the risk-neutral LBDA with alternative solution methods has already
been performed in [17], showing that the LBDA is indeed competitive in the risk-
neutral case. Here, we focus on investigating the effect of the choice of risk measure
ρ on the performance of the algorithm.

For this purpose, we consider the stochastic server location problem (SSLP) from
the stochastic integer programming library SIPLIB [34]. The first- and second-stage
problems of the SSLP are pure binary and mixed-binary, respectively, and the largest
instance has over 1,000,000 binary decision variables and 120,000 constraints. A full
description can be found in [34]. We solve instances with 10 server locations and 50
potential clients, which are denoted by sslp_10_50_xxxx, where xxxx represents
the number of scenarios, which is taken from the set {50, 100, 500, 1000, 2000}. This
allows us to test the effect of an increase in the number of scenarios on the performance
of the algorithm. We use four different risk measures: (1) the expectation, (2) a CVaR
risk measure with parameter β = 0.8, (3) a mean-CVaR risk measure which is an
equally weighted average between the former two risk measures, and (4) a spectral
risk measure defined by the risk spectrum φμ(p) = 2p, p ∈ [0, 1]. For every com-
bination of problem instance and risk measure, we run our LBDA algorithm, as well
as a deterministic equivalent formulation with a computation time limit of 1h. The
instances are run using Gurobi 10.0.0 on an 11th Gen Intel(R) Core(TM) i5-1145G7
processor running at 1.50 GHz.

The results of the experiments are given in Tables 2 and 3. First, Table 2 shows
the computation times of the LBDA and the deterministic equivalent formulation. We
observe that the LBDA is able to find a solution within less than the 1-h time limit
in all instances. The computation time grows more or less linearly in the number
of scenarios. The deterministic equivalent, on the other hand, reaches the 1-h cutoff
mark in almost all instances.Moreover, the deterministic equivalent formulation of the
instances with 500–2000 scenarios and the spectral risk measure break down due to a
memory overflow, as this naive implementation requires various additional variables
for every scenario in order to deal with the spectral risk measure. The LBDA, on the
other hand, does not have this problem. It finds a solution within a computation time
comparable to other risk measures. This illustrates one advantage of our risk-averse
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LBDA over methods based on risk-neutral reformulations: it can easily deal with
arbitrary spectral risk measures.

Next, Table 3 shows the objective function values of the solutions obtained by
the LBDA and the deterministic equivalent formulation. We observe that for smaller
instances, the LBDA finds the optimal solution for the risk measures expectation and
spectral, whereas there is a positive optimality gap for the risk measures mean-CVaR
and especially CVaR, due to the fact that LBDA only finds an approximate solution.
Observe that the latter two have higher values for supμ∈M φμ(1) than the former
two. Hence, this result is in line with our performance guarantee from Theorem 4.
For larger instances, we observe that the performance of the deterministic equivalent
formulation deteriorates as the number of scenarios increases, while that of the LBDA
remains consistent. This illustrates that the LBDA iswell-equipped to solve large-scale
problems.

We conclude that the numerical performance of the LBDA is in line with what
can be expected from the performance guarantee in Theorem 4 and is particularly
prominent in larger problem instances.

8 Conclusion

In this paperwe develop convex approximations of risk-averseMIRmodels.We extend
existing performance guarantees for these convex approximations to a general setting
with an arbitrary law invariant coherent risk measure. The performance guarantee
turns out to depend on the maximum distortion factor supμ∈M φμ(1) corresponding
to the risk measure ρ. We also show how our performance guarantee extends to an
SAA setting and we extend an SAA-based Benders’ decomposition algorithm from
the literature to our risk-averse setting. Finally, we show in numerical experiments
that the performance of the LBDA is in line with our theoretical performance guar-
antees. Moreover, it is capable of dealing with arbitrary spectral risk measures and is
particularly suitable for solving large problem instances.

Future research may be aimed at deriving tighter error bounds than the ones in this
paper.We present worst-case error bounds that hold under very general conditions, but
our numerical experiments suggest that, at least in some cases, there might be room for
improvement. For example, it would be interesting to see whether tighter error bounds
can be derived by using more information about the risk measure ρ than our error
bounds use. Another interesting avenue for future research is to investigate whether
our convex approximation approach extends to risk-averse settings beyond the law
invariant coherent case considered in this paper. Our error bound for the non-coherent
risk measure expected excess can be seen as a first step in this direction.
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Appendix: proof of Theorem 4

In this subsection we prove the performance guarantee on the solution from the risk-
averse LBDA from Theorem 4. The proof is analogous to the proof of the performance
guarantee for the risk-neutral LBDA in [17]. First, we show that Q̃S

α converges to Q̃α

as S → +∞. To do so, we need to prove a strong law of large numbers (SLLN) for
coherent risk measures.

Lemma 6 Consider the function Q̃α from Definition 3 and its sample average approx-
imation Q̃S

α . Then,

sup
x∈X

|Q̃S
α(x) − Q̃α(x)| → 0,

with probability one as S → +∞.

Proof Using the strong law of large numbers for law invariant coherent risk measures
from [36], the proof follows analogously to the proof of Lemma 2 in [17], if we can
show that Q̃α and Q̃S

α are Lipschitz continuous.
It is not hard to see that ṽα(ξ, ·) is Lipschitz continuous (with respect to the

�1 norm) with Lipschitz constant L := maxi=1,...,m{max(q,T )∈�q×�T {maxk∈Kq

{|(qBk (Bk)−1T )i |}}}, for every ξ ∈ �. To prove Lipschitz continuity of Q̃α =
ρ(ṽα(ξ, ·)), we use the following duality representation of the coherent risk mea-
sure ρ: there exists a collection Q of probability measures on (�,F) such that
ρ(Z) = supQ∈Q E

Q[Z ], for every Z ∈ Z (see, e.g., [23]). Let x, x ′ ∈ R
n1 be given.

Then, using Lipschitz continuity of ṽα(ξ, ·), we obtain
∣∣Q̃α(x) − Q̃α(x ′)

∣∣ =
∣∣∣ sup
Q∈Q

E
Q[ṽα(ξ, x)] − sup

Q∈Q
E
Q[ṽα(ξ, x ′)]

∣∣∣

≤ sup
Q∈Q

E
Q

[∣∣ṽα(ξ, x) − ṽα(ξ, x ′)
∣∣
]
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≤ sup
Q∈Q

E
Q

[
L · ‖x − x ′‖1

]
= L · ‖x − x ′‖1,

which proves that Q̃α is Lipschitz continuous with Lipschitz constant L . Similarly,
Q̃S

α is Lipschitz continuous as well. This completes the proof. 
�

Next, in Lemma 7 we consider the loose optimality cuts. To show that these are
nearly tight at the current solution (xτ , πτ ), we define the loose optimality cut-based
function Q̂S

α(x) := ρ(v̂α(ξ̂S, x)), x ∈ R
n1 , where the value function v̂α is defined by

v̂α(ξ, x) := qBk(ξ,x) (Bk(ξ,x))−1(h − T x) + ψk(ξ,x)(h − α), ξ ∈ �, x ∈ R
n1 ,

with k(ξ, x) ∈ argmaxk∈Kq {qBk (Bk)−1(h − T x)}, ξ ∈ �, x ∈ R
n1 . We provide an

upper bound on the approximation error resulting from the loose optimality cuts.

Lemma 7 There exists a constant C > 0 such that for every f ∈ Hm,

sup
x∈X

|Q̃S
α(x) − Q̂S

α(x)| ≤ φμ(1) · C
m∑

i=1

E
P
[|
| fi (·|h−i )

]

with probability one as S → +∞.

Proof The proof is along the same lines of the proof of Proposition 1 in [17], but
several changes are necessary since we consider a risk-averse setting and since we
allow for q and T to be random as well.

First, define 
(ξ, x) := ṽα(ξ, x) − v̂α(ξ, x), ξ ∈ �, x ∈ R
n1 , and note that


(ξ, x) ≥ 0 for all ξ ∈ � and x ∈ R
n1 , since v̂α is a lower bound for ṽα . This implies

that Q̃S
α(x) ≥ Q̂S

α(x) for all x ∈ R
n1 . Using this fact and applying Lemma 5 to both

Q̃S
α(x) and Q̂S

α(x), we obtain

∣
∣Q̃S

α(x) − Q̂S
α(x)

∣
∣ = Q̃S

α(x) − Q̂S
α(x)

= max
π∈�

{ S∑

s=1

wπ(s)ṽα(ξ s, x)

}
− max

π∈�

{ S∑

s=1

wπ(s)v̂α(ξ s, x)

}

≤ max
π∈�

{ S∑

s=1

wπ(s)ṽα(ξ s, x) −
S∑

s=1

wπ(s)v̂α(ξ s, x)

}

= max
π∈�

{ S∑

s=1

wπ(s)
(ξ s, x)

}
. (15)

Similar as in the proof of Proposition 1 in [17], we can derive an upper bound η̄(ξ) on

(ξ, x) that does not depend on x . For this purpose, defineMq := ∪k∈Kq (σk + 	k)

and M′
q := {

s ∈ Mq | B(s; D) ⊆ Mq
}
, where B(s; D) denotes the closed ball
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around s with radius D := supT∈�T

{
supx,x ′∈X

{‖T x − T x ′‖2
}}

. Then, it follows

from the proof of Proposition 1 in [17] that there exists a constant Z > 0 such that


(ξ, x) ≤ η̄(ξ) :=
{
0 if h − T x∗ ∈ M′

q ,

Z if h − T x∗ /∈ M′
q .

Denoting the optimal argument in (15) by π̃ , we obtain

∣∣Q̃S
α(x) − Q̂S

α(x)
∣∣ ≤

S∑

s=1

wπ̃(s)
(ξ s, x) ≤ (
S · wS) ·

( 1

S
·

S∑

s=1

η̄(ξ s)
)
.

Here, we have the limits limS→+∞ S · wS = limS→+∞ S · ∫ S
S−1
S

φμ(p)dp = φμ(1),

and (using the SLLN for law invariant coherent riskmeasures from [36]), limS→+∞ 1
S ·

∑S
s=1 η̄(ξ s) = EP[η̄(ξ)] = Z · P{h − T x∗ ∈ M′

q}. It follows that
∣∣Q̃S

α(x) − Q̂S
α(x)

∣∣ ≤ φμ(1) · Z · P{h − T x∗ ∈ M′
q}. (16)

By the proof of Theorem 2 in [17], it follows that for any fixed q̄ ∈ �q , there exists a
constant β q̄ > 0 such that P{h − T x ∈ M′̄

q} ≤ β q̄ ∑m
i=1 EP

[|
| fi (· | h−i )
]
. Hence,

P{h − T x∗ /∈ M′
q} =

∑

q̄∈�q

P{q = q̄} · P{h − T x∗ /∈ M′̄
q}

≤
∑

q̄∈�q

P{q = q̄} · β q̄ ·
m∑

i=1

EP

[|
| fi (· | h−i )
]

= β ·
m∑

i=1

EP

[|
| fi (· | h−i )
]
,

where β := ∑
q̄∈�q P{q = q̄} ·β q̄ . Now, defining C := β · Z and combining this with

(16), we obtain

∣∣Q̃S
α(x) − Q̂S

α(x)
∣∣ ≤ φμ(1) · C ·

m∑

i=1

EP

[|
| fi (·|h−i )
]
.

The result now follows from the fact that the bound above does not depend on x . 
�
We are now ready to prove our main result, providing a performance guarantee for

the LBDA solution x̃α .

Proof of Theorem 4 Using the Lemmas above, the proof is completely analogous to
the proof of Theorem 2 in [17]. 
�
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