Constraints (2006) 11: 199-219
DOI 10.1007/s10601-006-7094-9

Constraint Models for the Covering Test Problem

Brahim Hnich - Steven D. Prestwich - Evgeny Selensky -
Barbara M. Smith

© Springer Science + Business Media, LLC 2006

Abstract Covering arrays can be applied to the testing of software, hardware and
advanced materials, and to the effects of hormone interaction on gene expression. In
this paper we develop constraint programming models of the problem of finding an
optimal covering array. Our models exploit global constraints, multiple viewpoints
and symmetry-breaking constraints. We show that compound variables, represent-
ing tuples of variables in our original model, allow the constraints of this problem to
be represented more easily and hence propagate better. With our best integrated
model, we are able to either prove the optimality of existing bounds or find new
optimal solutions, for arrays of moderate size. Local search on a SAT-encoding of
the model is able to find improved solutions and bounds for larger problems.

Keywords Modelling - Covering arrays - Symmetry - Local search - Testing -
Chanelling constraints - Global constraints

1. Introduction
Software and hardware testing play an important role in the process of product

development. For instance, software testing may consume up to half of the overall
software development cost [21]. Furthermore, even for simple software or hardware

B. Hnich (D<)

Faculty of Computer Science,
Izmir University of Economics,
Izmir, Turkey

e-mail: brahim.hnich@ieu.edu.tr

S. D. Prestwich - B. M. Smith

Cork Constraint Computation Centre,
University College, Cork, Ireland
e-mail: s.prestwich@4c.ucc.ie

B. M. Smith
e-mail: b.smith@4c.ucc.ie

E. Selensky
Vidus Limited, Ipswich, UK
e-mail: eselensky@vidus.com

@ Springer

200 Constraints (2006) 11: 199-219

Fig. 1 A CA(3,5,2) of mini- 00000
mum size. All 10 subsets of 00011
three columns contain all pos- 00101
sible combinations of 0 and 1 01001
01110
10001
10110
11010
11100
11111

products, exhaustive testing is infeasible because the number of possible test cases is
typically prohibitively large. For example, suppose we have a machine with 10
switches that have to be set, each with two positions. We wish to test the machine
before shipping. Since there are 2!° possible combinations, it becomes impractical to
test them all. We might instead be satisfied with a test suite in which every subset of,
say, three switches gets exercised in all 2° possible ways. In such a case, the question
becomes: what is the smallest number of test vectors that we need? This problem is
an instance of the t-covering array problem.

A covering array CA(t,k,g) of size b is an b x k array consisting of b vectors of
length k with entries from {0,1,...,g — 1} (g is the size of the alphabet) such that
every one of the g’ possible vectors of size ¢ occurs at least once in every possible
selection of ¢ elements from the vectors. The parameter ¢ is referred to as the
covering strength. The objective is to find the minimum b for which a CA(t, k, g) of
size k exists.

As an example, consider generating test vectors for all triples of 5 binary
parameters that test all combinations of 3 parameters (t=3, k=5,g=2), ie,,
finding a CA(3,5,2). The matrix in Fig. 1 shows an optimal solution to this covering
test problem, with 10 test vectors. We highlight the different combinations of 0 and 1
in the first three columns, to show that all possible combinations occur; this property
holds for any subset of three columns.

Covering arrays have been applied in many areas; the following are examples
given by Colbourn [10]:

Software interaction testing: Software components may produce system faults due to
unexpected interactions. Ideally, one should test all possible combinations of
components, but there may be prohibitively many combinations. Instead,
pairwise or t-wise testing can test a fixed level of interaction which finds a
large number of faults in practice.

Hardware testing: In a circuit, input signals interact through arithmetic and logical
operations to yield a desired output vector. However, errors may still occur. As
in software interaction testing, this hardware testing problem can be addressed
using covering arrays.

Testing of advanced materials: Materials are sometimes combined to yield improved
properties such as strength, flexibility and melting point. However, certain
combinations are toxic or explosive and must be avoided. Covering arrays can
aid in designing experiments.

Interactions regulating gene expressions: Hormones impact the expression of
particular genes, and may interact with each other. Although not all possible

@ Springer

Constraints (2006) 11: 199-219 201

combinations of hormones can be examined, it is the interactions between small
numbers of hormones that are of interest. Again, covering arrays are a very
suitable modelling tool for such a problem.

The problem of minimising the number of test cases in a ¢-wise covering test suite
for k parameters with domains of size n was, according to [29], first studied by Rényi
[25]. Constructions for optimal covering arrays CA(2, k,2) were given in the 1970s
by Rényi, Katona, and Kleitman and Spencer; see [29] for references. However,
when g > 2 the problem of finding an optimal CA(2, k, g) is NP-complete [28].

In this paper we develop constraint models of this problem, in its most general
form. We show that with a constraint programming approach we are able either to
prove optimality of existing bounds or to find new optimal values, for problems of
relatively moderate size. When the size of the problem increases—in terms of either
alphabet size g or covering strength r—our models’ performance degrades, but we
are able to find improved (though not provably optimal) bounds for larger problems
by applying a local search algorithm to a SAT-encoding of the constraint model.

The rest of the paper is organised as follows. In Section 2, we describe the covering
test problem and give an overview of related work. In Section 3 we detail the proposed
constraint models; Section 4 discusses the symmetry in the CP models and how it can
be dealt with. Section 5 presents experimental results. Sections 6 and 7 present a local
search approach based on a SAT-encoding of the problem, with experimental results.
We show how the models could be extended to handle more general cases in Section
8. Finally, we conclude in Section 9 and outline our future directions.

2. Related Work

The covering test problem is a direct application of the problem of covering arrays
arising in hardware and software testing: the following definitions are based on
Hartman and Raskin [16]."

Definition 1. A covering array CA(t, k,g) of size b and strength t, is a b x k array
A = (ay) over Z, ={0,1,2,...,g — 1} with the property that for any t distinct columns
1<c¢1 < <...<¢ <k, and any member (x1,x,,...,x;) of Zé’, there exists at least
one row r such that x; = a,, forall 1 <i <t.

Definition 2. The covering array number CAN(t, k, g) is the smallest b is the smallest
CA(t, k,g) of size b exists.

As mentioned in the last section, optimal covering arrays can be constructed
when t =g =2, but in general finding optimal covering arrays is NP-complete.
Except for some special cases and small values of the parameters, researchers have
aimed at finding small covering arrays rather than provably optimal arrays. Here, we
discuss some recent examples of the main approaches that have been used.

Chateauneuf and Kreher [4] survey known results for covering arrays with ¢ = 3
and introduce algebraic techniques for their construction. They claim good results

! We have reversed the roles of the rows and columns in Hartman and Raskin’s definition of a
covering array.

@ Springer

202 Constraints (2006) 11: 199-219

for their techniques in comparison with a commercially-available method, AETG,
described below. Williams [32] describes a method, TConfig, for constructing cover-
ing arrays (for t = 2) from smaller ‘building blocks,” which is fast and was found to
give better results than IPO (described below) except for heterogeneous alphabets,
i.e., when g is not uniform for all parameters. Hartman and Raskin [16] describe
their CTS (Combinatorial Test Services) package which aims to find small covering
arrays, using a variety of constructive methods and choosing the best result. They
also consider a number of related problems, such as maximising the number k of
parameters with domains of size g in a f-wise covering test suite with a fixed
number b of test cases, and finding a test suite giving maximum #wise coverage from
b tests. Meagher and Stevens [20] describe a constructive method using group theory
which improves on the previously best known solutions for several instances.

Another group of techniques use a greedy strategy to construct covering arrays.
Lei and Tai [19] describe a method for constructing pair-wise test suites based on
the IPO (In-Parameter-Order) strategy. Given a pair-wise test set for the first two
parameters, the remaining parameters are added one at a time and the test suite
extended by adding new tests if necessary. Polynomial algorithms for extending a
test suite are given; it is claimed that this is a practical approach to generating test
suites for large numbers of parameters. AETG [6,7] is another greedy approach
which adds test vectors one at a time, considering many possibilities and choosing
the one that covers the largest number of so-far-uncovered parameter combinations.
Tung and Aldiwan’s Test Case Generator [31] is a similar greedy approach, but
makes choices deterministically rather than randomly. The Deterministic Density
Algorithm [2,9] generates only one candidate test vector to add to the suite, but
aims to generate a vector that covers more of the uncovered pairs.

Many of the best known results for covering arrays have been found using local
search methods; for instance, Nurmela [22] uses tabu search to find small covering
arrays and gives some new upper bounds, e.g., for CAN(3,12,2). Cohen et al. [§]
apply hill-climbing and simulated annealing to finding covering arrays with fixed and
heterogeneous alphabets, and also consider a variant in which the strength ¢ can be
increased for specified subsets of the parameters. However, finding good bounds
using such methods can be very time-consuming, especially in comparison to the
greedy methods.

To the best of our knowledge, this area has not previously been studied from a
constraint perspective. Our first attempt to fill this gap is reported in [17a]. In this
paper, we present the further development of the CP models and show that
constraint-based approaches can compete with existing methods.

3. Constraint-Based Approaches

In this section we explore Constraint Programming models of the covering test
problem that exploit features such as global constraints and multiple viewpoints.
Many scheduling, assignment, routing and other decision problems can be solved
efficiently by CP models consisting of matrices of decision variables (matrix models
[13]). We can model the problem of generating test vectors using matrices, in
different ways. In what follows, we usually assume that we have a binary alphabet
Z, ={0,1}, for clarity, i.e., that g = 2. We use the covering array CA(3,5,2) of Fig. 1
as a running example.

@ Springer

Constraints (2006) 11: 199-219 203

3.1. A Naive Matrix Model

An obvious CP model of the covering test problem has a b x k matrix of integer
variables, x,;, for 1 <r < b and 1 <i <k, such that x,; = m if the value of param-
eter i in test vector r is m. However, it is hard to express the coverage constraints,
i.e., that every subset of t parameters must be combined in all possible g’ ways. For
every subset of ¢ parameters in each row, we introduce a Boolean variable for each
combination that is set to true whenever these ¢ parameters cover that particular
combination, by means of reification constraints. For example, when ¢t =3, the
constraints on these Boolean variables are:

Xeijtmnp = X =m & Xy =n & Xy =p) Y r,i,j,l,mn,p;
1<r<hb;
1<i<j<I<k
0<mnp<g

We then impose the constraint that each combination of parameter values should
occur in at least one test vector for each combination of (in the example) 3
parameters, using a sum constraint over the auxiliary Boolean variables:

D X 21 Vi lmonp; 1<i<j<I<k 0<mnp<g

Unfortunately, imposing the coverage constraints in this way introduces a huge
number of auxiliary variables and reification constraints. Furthermore, propagation
of these constraints is inefficient and ineffective. We therefore need a different
model where the coverage constraints can be easily expressed and propagated
efficiently.

3.2. An Alternative Matrix Model

5

In our CA(3,5,2) example, there are (3

) =10 triples of the parameters:
T= {(1727 3)v (1’254)a (1a2a S)a (17374)7 (17375)7 (1a4a5)a
(2’ 3’4)’ (273’ 5)7 (27 47 5)7 (3’47 5)}

We can exploit an alternative viewpoint of the problem to concisely express the
covering constraints. We again use a matrix of integer variables. Each of the b rows in
this matrix represents a possible setting of the parameters, as before. However, there
are now (’t‘) columns, each representing one of the possible ~combinations (i.e., one
of the triples in 7, in our example). Hence, in the new model, each variable
represents a tuple of ¢ variables in the naive model. We shall refer to the variables of
the new model as compound variables. For instance, the compound variable y,(; ;)
represents the tuple of variables (x,;,xj,x,) in the original model. The domain of
each variable is {0,...,2'—1}, or {0,...,7} in this example, each value rep-
resenting a tuple of three values in the original matrix, e.g., y,;;)= 7 represents
x; = 1,x; =1,x% = 1. Figure 2 shows the covering array of Fig. 1 represented as a
solution to the alternative model.

@ Springer

204 Constraints (2006) 11: 199-219

(1,2,3) (1,2,4) (1,2,5) (1,3,4) (1,3,5) (1,4,5) (2,3,4) (2,3,5) (2,4,5) (3,4,5)

0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 3 1 1 3 3
1 0 1 2 3 1 2 3 1 5
2 2 3 0 1 1 4 5 5 1
3 3 2 3 2 2 7 6 6 6
4 4 5 4 5 5 0 1 1 1
5 5 4 7 6 6 3 2 2 6
6 7 6 5 4 6 5 4 6 2
7 6 6 6 6 4 6 6 4 4
7 7 7 7 7 7 7 7 7 7

Fig. 2 The same solution as in Fig. 1 presented as a matrix of values of the compound variables in
the alternative model. Each column represents a triple of parameters, listed at the head of the
column

Coverage constraints In the alternative matrix model, we can easily express the
coverage constraints with the help of global cardinality constraints [24]. Each such
constraint specifies that every number in the range 0 to 2' — 1 should be present at
least once and at most b —2' + 1 times in the b test vectors in the column cor-
responding to the t-tuple.

For every t-tuple, i.e., every column of the alternative matrix, we post one such
constraint globally over the b test vectors, giving rise to () constraints. This ensures
that we cover all possible values of any ¢ parameters.

Intersection constraints The variables of the alternative model represent tuples of
values in the covering array and we have to ensure that the values assigned to two
compound variables are consistent, in terms of the values they imply for the cov-
ering array. For instance, because the variables in the first and the second column
of the alternative matrix model both represent positions 1 and 2 in the test vectors,
the parameter values (0 or 1) in these positions should be the same. With the
alternative model, we introduce the burden of expressing such intersection
constraints. So for every row r and every two columns ¢; and c;, if the two col-
umns share some positions then we state a binary constraint between the variables
(r,c;) and (r,c,) in the alternative matrix. For instance, for each row r the binary
constraint between the compound variables y, ;,3 and y, ;4 in columns 1 and 2
can be expressed extensionally by listing the pairs of values that are allowed for
these variables, as follows:

{(0’ 0)7 (07 1)7 (170)7 (17 1)’(27 2)7 (2’3)’ (372)7 (37 3)7 (474)’ (47 5)7 (574)7 (575)7
(6,6),(6,7),(7,6),(7,7)}

For instance, y, ,3) = 4 represents x,1 = 1, x,, = 0, x,3 = 0 while y, 4,4 = 5
represents x,; = 1, x,, =0, x,4 = 1, so that the pair of values (4,5) should be allowed
by the intersection constraint.

For each compound variable, there are t({) other compound variables in the
same row that have one of the original varlables in common with it; for instance,
Yr,(1.2,3) has one variable in common with each of y, 45, ¥, 245),Vr 345 There

@ Springer

Constraints (2006) 11: 199-219 205

are (4) () other compound variables in the same row that have two original
variables in common with it; for instance,y, ,3 has two original variables in
common with six other compound variables.

It appears at first sight that we need to define an intersection constraint in
each case, giving 9 such constraints for each compound variable, in the example,
and 45 constraints for each row (since each has been counted twice). However,
many of these constraints are redundant. The compound variables of the
alternative model are similar to the dual variables used in the dual graph trans-
lation of a non-binary constraint satisfaction problem to one with only binary
constraints [1,11] in that case, intersection constraints between dual variables are
similarly needed to ensure that the values of the original variables implied by values
assigned to the dual variables are the same for all dual variables. An intersection
constraint between two dual variables is redundant if there is a chain of intersection
constraints linking the two such that the original variables that they share are
also shared by every dual variable in the chain. Smith [30] shows that if arc
consistency is maintained on the intersection constraints after assignments are
made, redundant intersection constraints can be removed without affecting the
search for solutions.

In the present case, the constraints between pairs of compound variables that
have only one original variable in common, or in general, fewer than ¢t — 1 original
variables in common, can be deleted. Further, if a set of compound variables share
t — 1 original variables, the clique of intersection constraints linking them can be
reduced to just a path: Fig. 3 illustrates this.

When t = 3, there are (’2‘) pairs of parameters. For each pair, k — 3 intersection
constraints are needed (for each row of the matrix). For instance, when k = 5, only
20 constraints are needed, out of the 45 possible constraints. For larger values of k,
the difference is more marked: in general, when ¢ = 3, the total number of possible
intersection constraints in each row is (§)3(k —2)(k —3)/4.

3.3. An Integrated Model

In the naive matrix model, it is difficult to express the coverage constraints in such a
way that we can reason efficiently and effectively about them. In the alternative
matrix model, on the other hand, we can use global cardinality constraints for which
efficient propagation algorithms exist [24]. However, we still have a large number of
intersection constraints, even after redundant constraints are removed.

We propose to integrate the two models by using the variables of both, linked by
channelling constraints, in the manner proposed by Cheng et al. [5]. The dis-

Fig. 3 A clique of triples of ori- (1,2,3)

ginal variables, with variables 1 and 2

in common, from the problem with

k =7, t= 3. Each row of the alter-

native matrix has a compound vari- (1,2,7) (1,2,4)
able corresponding to each node,

with a binary intersection constraint

for each edge. Only four constraints

are needed (thick lines mark a

possible set); all the others can safely
be deleted (1,2,6) (1,2,5)

@ Springer

206 Constraints (2006) 11: 199-219

advantages of integration are the increased number of variables and the additional
channelling constraints to be processed; however, the channelling constraints make
all the intersection constraints between the compound variables redundant.

The channelling constraints associate each compound variable in the alternative
matrix with the ¢ corresponding variables in the original matrix. The association
between the values of the compound variables and those of the component original
variables is defined in Section 3.2. For instance, if # = 3 and the alphabet is binary
then the constraint between the compound variable y, ;;) from the alternative ma-
trix and its ¢ corresponding variables in the naive model x,;, x,;, x,x can be expressed
extensionally as follows:

(yr,(i‘j,k):xrivxrjaxrk) € {(07 0> 0, 0)7 (1707 07 1)7 (2’0a 170)a (3a0a 1a 1)
(47 1707 0)7 (57 1707 1)7 (67 17 170)7 (7’ 1’ 17 1)}

or intensionally as:
VrGijk) = 4% + 2Xp + Xk

For any t-covering we have (’I‘) x b channelling constraints and the arity of each
constraint is ¢+ 1. If generalized arc consistency is maintained on the channelling
constraints, then assigning a value to a compound variable will assign the correct
value to each of its constituent variables, and conversely assigning a value to any of
the original variables will reduce the domain of any compound variable that the
original variable is a component of. Consequently, the role of the intersection
constraints in the alternative model is superseded by the channelling constraints in
the integrated model. Since there is only one channelling constraint for each
compound variable, using channelling constraints rather than intersection con-
straints reduces the number of constraints, even after redundant intersection con-
straints have been removed. On the other hand, the channelling constraints have arity
t + 1, whereas the intersection constraints are binary. We shall show in Section 5
whether the channelling constraints are more efficient than the intersection
constraints, in practice. We discuss the integrated model, and further modifications
to it, in the context of our experimental results.

4. Symmetry

Given a covering array CA(t, k,g) of size b, permuting the rows and/or columns
gives an equivalent covering array. The rows represent a set of test vectors, and their
order is immaterial. Permuting the columns does not affect whether or not every
subset of ¢ columns contains every possible vector of length ¢. Since the variables of
the naive model correspond directly to the elements of the array, the rows and
columns of the matrix can also be permuted. Symmetry in a CP model is likely to
slow down the search for solutions, since symmetrically-equivalent assignments are
needlessly explored.

In matrix models, it is common that permuting both rows and columns transforms
a solution into another solution and a non-solution into another non-solution [12].
Row and column symmetry in a matrix model can be reduced by ordering the rows
and the columns lexicographically using lexicographic ordering constraints [14]. By

@ Springer

Constraints (2006) 11: 199-219 207

posing such an ordering constraint between consecutive rows (columns), we break
all row (column) symmetry [12]. Whilst it is easy to break all symmetry in one
dimension of the matrix, breaking symmetry in both dimensions is harder, as the rows
and columns intersect. After constraining the rows to be lexicographically ordered we
cannot freely permute the columns, thus the columns are no longer symmetric.
Nevertheless, given a matrix with row and column symmetry, each symmetry
equivalence class has at least one element where both the rows and columns are
lexicographically ordered. Unfortunately, more than one element where both the
rows and columns are lexicographically ordered may exist [12], so lexicographic
ordering does not eliminate all row and column symmetry. The implementation of
the lexicographic ordering constraint is linear in the size of the vector and maintains
generalized arc consistency.

In the alternative model, permuting the columns of the matrix of variables in a
solution does not in general give another solution. However, the effect of
lexicographically ordering the columns of the naive matrix can be at least partially
achieved by lexicographically ordering the columns corresponding to the tuples
(1,2,3), (1,2,4), ..., (1,2,k). Again, this can be safely combined with lexicographically
ordering the rows.

A final, less obvious, source of symmetry is that the values assigned to any
parameter in a set of test vectors can be permuted, without affecting whether or not
the set of test vectors is a covering array.” In terms of the naive model, the values
within any column of the matrix can be permuted; for instance, with a binary
alphabet, the 0s and 1s can be swapped in any column without affecting whether or
not the constraints are satisfied. Given the symmetry-breaking constraints already
introduced, to deal with this symmetry we need to introduce further constraints that
do not conflict with them, since otherwise we would risk losing solutions. There are
several possibilities; for instance, we could impose constraints on the number of
occurrences of each value in each column. If n; is the number of occurrences of the
value s in column i (1 <i<k, 0 <s<g-—1), then we could add the constraints
njp <njy < ... <njg g, for1 <i < k. Clearly, these constraints would not be affected
by permuting the rows and columns of the matrix, and hence are compatible with
the lexicographic ordering constraints. Alternatively, given a binary alphabet, we
can force the first row of the matrix to be all Os (or equivalently the last row to be all
1s). This constraint gives better propagation than constraining the number of
occurrences of each value. It clearly does not interfere with permuting the columns
of the matrix, and it is compatible with lexicographic ordering of the rows because it
forces the first row of the matrix to be lexicographically smallest (or the last row to
be lexicographically largest), whatever the values assigned to the other rows. For
g > 2, we can combine these ideas; for instance, we can set the first row of the matrix
to be all Os and order the number of occurrences of the values 1 to g — 1 in each
column.

In the alternative model, we can similarly set the first or last row of the matrix
(constraining every value in the first row to be 0 or, in the binary case, constraining
every value in the last row to be 2’ — 1). However, we cannot easily impose an
equivalent to the constraints on the number of occurrences of each value in the
assignments to an individual parameter.

2 Note that this symmetry was not identified in the earlier paper on this work [17].

@ Springer

208 Constraints (2006) 11: 199-219

Because the integrated model has both sets of variables, we can break the
symmetry of the models in the most convenient and effective way. (We cannot
break the same symmetry twice, by constraints on both sets of variables, since this
would risk losing solutions.) Hence, we can break the column symmetry by ordering
the columns of the original matrix; the row symmetry by ordering the rows of either
the original or the alternative matrix; and the value symmetry in each column by
constraining the original matrix.

Since the different forms of symmetry can be combined with each other, the size
of the symmetry group is k! x b! x (g!)k. For a symmetry group of this size, adding
symmetry-breaking constraints to reduce the symmetry was the only practical
method available. Many of these transformations may have the same effect on any
given assignment; even so, the number of possible symmetric equivalents must
clearly be very large and it is essential to consider as few of them as possible; as we
show later, the symmetry-breaking constraints are vital to solving the CP models.

5. Experiments

We used the different models to solve the covering array problem for different
values of the alphabet size, g, the coverage strength ¢, and the number of pa-
rameters, k. As well as, in some cases, finding new solutions to the problem, this
allowed us to evaluate the models. First we report on experiments using a Pentium
M 1.7 GHz PC running ILOG Solver 6.0.

In our experiments we used instances of the covering test problem with coverage
strengths ¢ of 3 and 4 over a binary alphabet Z, = {0, 1}. In each experiment we vary
the number k of parameters. Initial experiments with the naive model showed that it
was very inefficient and always outperformed by the other models. For this reason,
we excluded it from further analysis and do not present results for this model.

In the integrated model, we can use either the original variables or the compound
variables as search variables. We found that assigning values to the compound
variables was far better; this is understandable, since the coverage constraints are
expressed on the compound variables, and no propagation can take place until
sufficient compound variables have been assigned. Using the original variables as
the search variables delays this propagation. Hence, in the experiments reported
below that use the integrated model, the search variables are the compound variables.

In the experiments with the alternative and integrated models, we tried a variety
of labelling strategies. In every case, the values of each compound variable were
assigned in ascending order. Given a two-dimensional matrix model, two obvious
overall strategies to consider are labelling by rows and labelling by columns. In this
case, labelling by rows, i.e., labelling all the compound variables corresponding to
one row of the matrix before labelling the variables corresponding to the next row,
proved to be much worse than labelling by columns. This is not surprising since the
main constraints in the problem are the coverage constraints on the columns, which
will only propagate when most of the compound variables in any column have been
assigned. Hence, the labelling strategy chose a column and assigned the variables
corresponding to that column (in some order) before going on to the next column.
The columns corresponding to the tuples (1,2,3), (1,2,4), (1,2,5),...,(1,2,k) were

3 http://www.ilog.com/products/optimization

@ Springer

http://www.ilog.com/products/optimization

Constraints (2006) 11: 199-219 209

labelled, in that order; clearly, the matrix is then completely specified. We tried
labelling sets of non-overlapping columns (as far as possible given the value of k),
for instance, those corresponding to the tuples (1,2,3) and (4,5,6) when {k = 6: this
was inspired by the labelling of non-overlapping ‘supercell’ variables in [30], which
in that case was a successful labelling strategy. In this case, however, it performed
very poorly.

We found that lexicographic ordering (lex) within each column gave the same
results as smallest-domain ordering (sdf). Given the order in which the columns are
labelled, after the first column of compound variables has been assigned, the search
strategy in effect reduces to assigning the original variables, column by column.
With binary domains, sdf will behave no differently from /ex, since a variable either
has two values, or is assigned; hence, we use lexicographic ordering within the
columns.

With the alternative model, we can add symmetry-breaking ordering constraints
on the rows and columns of compound variables, as described in Section 4. With the
integrated model, we can break row symmetry either on the original or on the
alternative matrix (not both). Our experiments showed that both choices led to the
same number of backtracks (given the other choices made) but that ordering the rows
of the original matrix rather than the alternative matrix reduced the runtime slightly.

With the integrated model, the channelling constraints can be expressed either
extensionally, by listing the allowed tuples, or intensionally as a linear constraint,
such as y,;x = 4% +2x,; + X%, as described in Section 3.3. Solver, by default,
enforces generalized arc consistency on extensionally-defined constraints and
bounds consistency on linear constraints. With a binary alphabet, achieving bounds
consistency on linear channelling constraints is the same as achieving generalized
arc consistency, because each value in the domain of the variables is a bound. Since
enforcing bounds consistency is much faster than enforcing generalized arc
consistency, the runtime is significantly reduced by using the linear constraints
rather than the extensional constraints. However, if the alphabet were non-binary,
bounds consistency could miss some propagation, and faster constraint processing
might then have to be balanced against possibly increased search effort. We have
given the results for both extensional and linear channelling constraints to indicate
the difference in run-time. From these results, it seems likely that linear channelling
constraints would be the better choice overall for non-binary alphabets, even at the
expense of increased search; limited experiments with g = 3 have confirmed this.

We found in our experiments that ILOG Solver reported the same number of
backtracks for both the alternative and integrated models, indicating that they are
exploring the same search tree. However, the runtime differs considerably between
models. Table 1 displays the results of the experiments in more detail. In all the
tables we use bold face to show the best known value and a * to highlight the values
that we have proved to be optimal, by showing that there is no solution with a
smaller value of b. Our results also show that the integration of the different models
is beneficial despite the increase in the number of variables. Even with extensional
channelling constraints, the integrated model is much faster than the alternative
model. When k =12, for instance, the integrated model has 220 channelling
constraints for each row of the matrix: it is evidently much faster to enforce
generalized arc consistency on these than on the 594 non-redundant intersection
constraints of the alternative model, even though the channelling constraints are in
this case 4-ary whereas the intersection constraints are binary.

@ Springer

Constraints (2006) 11: 199-219

210

I9A10S HOTI Sutuuni ‘Qd ZzHOL'T N WNHUdJ B UO ‘SPUODIS UT UAAIF ST dwi}-uni oy [, "(pourejurew st AOU9)SISUOD SPUNOQ pue) Ieaul| 10 (paurejurew si Aou9)sIsuod
JIe POZI[eIoUd3 pue) pauyop A[[RUOISUIXD IOYIIO 9Tk SO[qELIBA JUIN)IISUOD SJI PUk d[qeLIeA punoduwiod Yoo uoom)oq sjurensuod Jul[ouueyd oy} ‘[opow pajeIdour
) U "9SBD YOI UI UMOYS SI XLI)BW JY) JO MOI OB IO SJUTRIISUOD JO IoqUINU Y} $J9S [BWIUIW € IO SJUIBIISUOD UOIOSIOUL AY) [[8 YIS SBY [OPOU dATJBUI}E O],

86°69¢ 00€ < 00€< ¥6S 00€< 0SS'Y1 16L°91€ - 81 13 A
9L'S 96'6¢ (45814 ¥6S 00€< 0SSYv1 9LY'8 - 81 (4l
1L°0 L1 LLE ory TI'CIL 0168 1394 + 8T Tl 11
SE0 w1 0S¢ SIe 80279 0r0°S 6LY + 8T %I 01
SC0 860 ¥S'1 9l ¥0'1¢ 9¥9°C L9Y + 81 LI 6
90°0 11°0 €20 orL L9¢ 09¢°1 vl + [B4 § 8
SO0 90°0 €10 78 €'l Y49 144! + [B4 § L
00 €00 ¥0°0 84 910 08T €S + (4 SR | 9
600 61°0 1€°0 Sy (4! 081 08 - cl 11 9
200 00 900 Sy €0 081 €6 - cl ()8 9
10°0 10°0 100 0¢ 100 Sy S + [4] § S
100 100 100 0¢ 100 94 6 - cl 6 S
10°0 10°0 100 0¢ 10°0 84 I - 4 8 S

0 0 0 9 0 9 0 + 8 «8 %

SuILL ouILy, Quwll, ON QUILL, ON
SJUTBIISUOD IBQUI] SJUIRIISUOD [BUOISUIIXE JOS [RWIUTA SIUTRIISUOD
UOIO3SIANUI [[V
[opow pajeI3ouf [opoW 9ANRUINY syoe1oeq Jo 'ON 9[qn[oS [91] ur punoq 1oddny q y

S[opoW PajeIZIUI PUB dANBUIdIE JY) Juisn y siojowrered JUSIdJJIp 10§

(TA €)NVD = "*“q Supur] | dJqe],

pringer

AN

Constraints (2006) 11: 199-219 211

Note also that our results use the symmetry-breaking constraints in all tested
models. In fact, the symmetry-breaking constraints play a vital part. For example, to
prove that there is no covering array CA(3,6,2) of size 10 can be done with 93
backtracks and 0.02 sec., with the integrated model, as shown in Table 1; without the
symmetry breaking the same problem takes 975,024 backtracks and 63 sec. with the
same search strategy.

Finally, our approach improved on several of the results given in [16] for = 3 and
k <11 and proved optimality. We ran a further set of experiments to find covering
arrays CA(4,k,2) for varying k. We observe in Table 2 that the best integrated
model could find CAN(4,k,2) for k <6 in 1 hour, and the improvements of the
bounds that we obtained are significantly larger than the improvements we got on
CAN(3,k,2). Overall, with the presented approach we can find provably optimal
covering test suites for those instances which induce a moderate number of variables
in our models. This translates to getting CAN(3,k,2) for up to k = 11 parameters
(around 2000 variables) within a CPU time limit of 5 minutes. However, as problem
size becomes larger the required amount of search proves computationally
prohibitive, and for larger problems we turn to local search methods.

6. A Model for Local Search

Constraint solvers typically alternate variable assignment with constraint propaga-
tion; when propagation leads to an empty variable domain, backtracking occurs. An
alternative way of finding solutions to constraint problems is local search. Usually
starting from a randomly-chosen assignment of all variables, single variables (or
sometimes more than one) are selected and reassigned to a different value, each
reassignment being a local move. The choice of variable and value is made
heuristically, with no attempt to maintain completeness of search. This is in contrast
to backtrack search, which is complete and can therefore find all solutions, or prove
that no solutions exist. The advantage of local search is that it can sometimes solve
much larger problems than backtrack search. We decided to evaluate local search
on our problem, and chose SAT as a framework in which to experiment. SAT

Table 2 Finding covering arrays CA(4,k,2) of size b, or proving that there is none, for different
parameters k using the integrated model

k b Upper bound Soluble No. of backtracks Time
in [16]
5 16%* 24 + 0 0.01
6 16 28 - 1 0.01
6 17 28 - 12 0.02
6 18 28 - 146 0.06
6 19 28 - 1,863 0.40
6 20 28 - 20,381 2.99
6 21%* 28 + 160 0.11
7 21 38 - 184,661 3547
7 22 38 - 1,419,407 247.08
7 23 38 - 9,518,449 1504.86

The runtime limit is 1 hour.

@ Springer

212 Constraints (2006) 11: 199-219

problems may be viewed as CSPs with binary domains and non-binary constraints,
and many effective local search algorithms have been designed for SAT. After
experiments with different algorithms we chose a new variant of the Walksat
algorithm [26], described below.

We could simply SAT-encode our best CP model using one of the well-known
standard approaches, but the best model for local search is not necessarily the best
model for backtrack search [23]. In fact our SAT model is not identical to any of the
previous matrix models, for reasons given below. As before we suppose a b x k
matrix M of integers in Z,. For each row i, column j and value x define a Boolean
variable m;; which is true if and only if x occurs in position (i,). We also suppose
an alternative b x ('[‘) matrix A of integers in Z,. For each row i, column j’and value
y define a Boolean variable a;,. The following constraints are defined for all
1<i<b,1<j<k,1<j< ('[‘), x,x' € Zyand y, y € Zy. Each M and A position
must take exactly one symbol:

\/ Mijx (1)

Mijx V My (2)

\ iy (3)
y

ipy V iy 4)

where x < x’ in (2) and y <y’ in (4). The coverage constraints are:
\/ dij'y (5)
i

To channel between the two matrices we infer the values of the ¢ entries in M for the
corresponding A entries:

ijy N Mijx (6)

for all i,j,7,x,y such that M;; = x and A;y = y are consistent. We refer to our SAT
model as the weakened matrix model because it omits several constraints, as follows.
Firstly the upper bound on the coverage constraints is hard to express in SAT. This
is an implied constraint, and though implied clauses sometimes aid local search
[3,18] they are not a necessary part of the model. Secondly, symmetry breaking
constraints can have a negative effect on local search performance [23]. Omitting
them aids local search by increasing the number of SAT solutions, and also by
reducing the size of the model and thus improving the flip rate (number of local
moves per second). We therefore omitted upper bound and symmetry breaking
constraints from our encoding.

The third difference is perhaps less obvious. When applying local search to a
SAT-encoded constraint satisfaction problem (CSP) it is common to omit clauses
ensuring that each CSP variable is assigned no more than one domain value [27],
again improving performance. A CSP solution can still be extracted from a SAT
solution by taking any one of the assigned domain values for each CSP variable.

@ Springer

Constraints (2006) 11: 199-219 213

Table 3 Results for CA(2,k,g) X 2 aw HR CK NU
3 3 9 9 9 -
3 4 16 16 16 -
3 5 25 25 25 -
3 6 36 36 36 -
3 7 49 49 49 -
4 3 9 9 9 -
4 4 16 16 16 -
4 5 25 25 25 -
4 6 37 48 37 37
4 7 49 49 49 -
5 2 6 6 6 -
5 3 11 15 11 -
5 4 16 16 16 -
5 5 25 25 25 =
5 6 39 48 39 -
5 7 52 49 49 -
6 3 12 15 12 -
6 4 19 24 19 19
6 5 25 25 25 -
6 6 42 48 41 -
6 7 58 49 49 -
7 3 12 15 12 -
7 4 21 28 21 21
7 5 29 45 29 29
7 6 45 48 42 -
7 7 61 49 49 -
8 3 14 15 13 -
8 4 23 28 23 23
8 5 34 45 33 -
8 6 48 48 42 -
8 7 63 49 49 -
k g HW HR CK MS NU
9 3 13 15 13 - -
9 4 24 28 24 - -
9 5 35 45 35 - 35
9 6 51 62 48 46 48
9 7 66 63 63 - -
10 3 14 15 14 - 14
10 4 25 28 24 - -
10 5 38 45 37 - 37
10 6 53 78 52 51 -
10 7 71 79 63 61 63
11 3 15 15 15 - -
11 4 25 28 25 - -
11 5 39 45 38 - 38
11 6 55 78 55 - -
11 7 73 91 73 67 -

@ Springer

214 Constraints (2006) 11: 199-219

Table 4 Results for CA(3,k,g)

and CA(4,k,g) k g HW HR cK
9 2 12 18 12
10 2 12 18 12
11 2 12 18 12
12 2 15 18 15
13 2 16 19 16
14 2 17 19 16
15 2 18 19 17
16 2 18 19 17
17 2 18 24 18
18 2 20 24 18
5 3 33 45 33
6 3 33 45 33
7 3 40 45 45
8 3 46 45 45
9 3 51 75 51
k g HW HR
7 2 24 38
8 2 24)
9 2 24 50
10 2 24 50
5 3 81 135

Here we may omit clauses (1, 3, 4). Note that we can still extract a CSP solution
from any SAT solution: by clauses (5) in any SAT solution each combination of
symbols occurs in at least one row of A for each combination of ¢ columns; by
clauses (6) each such occurrence induces the corresponding entries in M; and by
clauses (2) no more than one value is possible in each M position. In fact the omitted
clauses (1, 3, 4) are implied by clauses (2, 5, 6), and experiments suggest that
omitting them makes little difference to the search effort. It reduces the size of the
encoding but not its space complexity, which is dominated by the channelling
constraints and is O((¥)brg") literals.

7. Local Search Experiments

We use a new SAT local search algorithm, which works as follows. Starting from
a random initial truth assignment to all Boolean variables, it repeatedly selects
a violated clause (one in which all literals are false) and flips the truth value
of a heuristically-selected variable (if it is true then set it to false, and vice-versa). Such
a flip is guaranteed to satisfy the selected clause, but may cause others to become
unsatisfied. The key ingredient in such algorithms is the variable selection heuristic. In
our algorithm, with a given probability p we randomly select a variable, where p is a
noise parameter for the algorithm (this is called a random walk move in the
literature). Otherwise, with probability 1 — p, we select the variable with smallest
score. The score for a variable v is defined as the change in the total number of
unsatisfied clauses that would result from flipping v, divided by the total number of

@ Springer

Constraints (2006) 11: 199-219 215

Fig. 4 An optimal covering array 011010001110011010100011
CA(4,10,2) of size 24 (rows and 101001101000011110111000
columns transposed) 011100100110101001111000
100101000100011001101111
011001011101010001011001
101100110111010010001010
101011101101100001100010
011101000001100110101011
010111100101010010110100
010000101011010101101110

flips on all variables other than v. Ties are broken by selecting the variable that was
least-recently flipped. However, if the clause contains several variables such that
flipping them would not create new unsatisfied clauses, then instead we randomly
select one of these variables; in the literature this is sometimes called a freebie move.
The aim of this scoring function is to minimise the number of unsatisfied clauses,
while preferring variables that have been flipped fewest times in the search so far.
This new variant of Walksat is a simple hybrid of two well-known variants that has
not, to the best of our knowledge, been described in the literature: it is HWSAT
[15] augmented with the freebie moves of SKC [26]. We shall call it HWFSAT, and
in experiments on covering arrays it gave better results than other variants tested.

Our results were found using HWFSAT with the noise parameter p set to 0.2, 0.3
or 0.4. In each case we chose the most promising value, after monitoring the
progress of the algorithm under each value. We ran it on a 733 MHz Pentium III,
using decreasing values of b until no solution was found after an hour. The results
for various values of ¢, k, g are shown in Tables 3 and 4 with the best result for each
instance shown in bold, and unavailable results denoted by “-.” We compare
HWEFSAT results with those from several recent papers: HW denotes HWFSAT;
HR, Hartmann and Raskin [16]; CK, Chateaunef and Kreher [4] using a math-
ematical construction; MS, Meagher and Stevens [20] using group theory; and NU,
Nurmela [22] using Tabu search.

HWFSAT was able to reproduce the improved bounds found by ILOG Solver, and
to further improve some bounds. On some instances we could not match the best
results of the other approaches, and constructive methods are able to provide bounds
for much larger instances than we can handle. But SAT-based local search can find
solutions that are competitive with the best known results on many instances, and in
two cases we improve on the best known results, as far as we can ascertain: upper
bounds of 40 for CAN(3,7,3) and 24 for CAN(4,10,2). Because of the earlier
finding that there is no CA(4,7,2) with value 23, shown in Table 2, the solution

0212010002010112222211212002212000011211
2211000222102000102020212000111211112122
2010112012220102112210122010220211001120
2210100212110122101200200021122002112001
1201101100000202221111122200210212212002
2022210112112022120120021100201012011002
1210002020011220011221012210201012121220

Fig. 5 A solution showing that CAN(3,7,3) < 40 (rows and columns transposed)

@ Springer

216 Constraints (2006) 11: 199-219

with value 24 found by HWFSAT for CA(4,10,2) is optimal, and 24 is also the
optimal value for k = 7,8 and 9. Examples of these results are shown in Figs. 4 and
5, with rows and columns transposed for space reasons. Our CAN(4,k,g) results
also beat those of Hartman & Raskin. Though we do not expect the SAT approach
to scale to much larger problems because of increasing SAT model sizes, a local
search algorithm using a higher-level constraint model could avoid this problem.

8. Extensions

For reasons of clarity, we presented our models assuming a fixed binary alphabet and
uniform coverage. However, our models can easily be extended to model different
practical extensions:

— Larger alphabet. Although the results presented in Section 5 are only for
problems with a binary alphabet, our models do already handle non-binary
alphabets. The results in Tables 3 and 4 show that the local search model can
also handle this extension.

— Heterogeneous alphabets. The model can easily be extended to allow heteroge-
neous alphabets. The domains of the variables as well as the channelling
constraints need to be slightly changed to reflect this extension, but the essence
of the models remains the same.

— Partial coverage. To allow for partial coverage, we simply exclude from the
global cardinality constraints those values that represent the combinations that
need not appear in a solution.

— Side constraints. Covering array problems can come with side constraints such as
fixed columns or forbidden configurations [16]. CP is convenient for solving
problems with such constraints, which can simply be added to the model.

The last three extensions (heterogeneous alphabets, partial coverage and side
constraints) would reduce the symmetry inherent in the problem, and the symmetry-
breaking constraints would need to be adjusted accordingly.

9. Conclusion

We have presented constraint models of a core problem in combinatorial software
testing: the covering test problem. We consider four matrix models for the problem:

— The naive matrix model. This model compactly represents the problem.
However, it is difficult to express the coverage constraints in such a way that
we can efficiently reason about them.

— The alternative matrix model. This model uses compound variables, each
representing a tuple of variables in the naive model. We can thereby overcome
the disadvantages of the previous model by the use of powerful global cardinality
constraints. However, this comes at the cost of expressing binary intersection
constraints between the compound variables.

— The integrated matrix model. This model combines the complementary strengths
of both models. The coverage constraints are stated using the global cardinality
constraints while the intersection constraints become redundant with the

@ Springer

Constraints (2006) 11: 199-219 217

channelling constraints linking the original variables and the compound
variables. The overhead of this integrated model is the increased number of
variables and the non-binary channelling constraints.

— The weakened matrix model. This is a modification of the integrated matrix
model, and designed for use with a SAT local search algorithm. It omits several
constraints with the aim of increasing the number of SAT solutions and reducing
runtime overheads.

The problems are highly symmetric, and it is important when using complete
backtracking search to deal with the symmetry effectively; we have shown that this
can be done.

We show that for moderate problem sizes with a CP approach one can find
provably optimal solutions, which improve on the published results. We further
showed that a local search algorithm on a SAT-encoding of the problem can find
improved solutions for somewhat larger instances. We proved optimality for one
instance (CA(4,10,2)) by a combination of local search to find the optimal solution
and complete search using the CP approach to prove that there is no smaller
CA(4,7,2) , and therefore no smaller CA(4,10,2) either. These results show the
applicability of constraint-based techniques to the problem, at least for instances up
to a certain size. This approach may find application to less pure versions of the
problem with side constraints, such as those found in some industrial applications.
The easy handling of side constraints (simply by adding them to the model) is one of
the advantages of CP.

In future work we will aim to further improve the presented results. One possible
direction for improvement could be exploring the effects of different value ordering
heuristics on backtrack search. Another direction is to design a dedicated local
search algorithm for the problem; this would greatly reduce model sizes, which
currently forms a bottleneck on the size of problems that we are able to solve.

The alternative and integrated models show the usefulness of compound
variables in expressing complex constraints so that they can propagate effectively.
Although similar variables have been used in the well-known dual graph translation
of a CSP with non-binary constraints into one with only binary constraints, this work
shows that they have wider application in making non-binary constraints easier to
express, without necessarily eliminating them. Further work will explore other
applications of this modelling pattern.

Acknowledgments This work has received support from Science Foundation Ireland under Grant
00/P1.1/C075 and from Bausch & Lomb Ireland and Enterprise Ireland. The first author is also
supported by an ILOG Software license grant. We wish to thank Radoslaw Szymanek for useful
comments on an earlier draft of the paper.

References

1. Bacchus, F., & van Beek, P. (1998). On the conversion between non-binary and binary
constraint satisfaction problems. Proceedings of the 15th National Conference on Artificial
Intelligence, AAAI 98 (pp. 311-318).

2. Bryce, R., Colbourn, C., & Cohen, M. (2005). A framework of greedy methods for constructing
interaction tests. The 27th International Conference on Software Engineering (ICSE 2005) (pp.
146-155).

@ Springer

218 Constraints (2006) 11: 199-219

3. Cha, B., & Iwama, K. (1996). Adding new clauses for faster local search. In Proceedings of the
13th National Conference on Artificial Intelligence, AAAI 96, Vol. 1 (pp. 332-337).

4. Chateauneuf, M., & Kreher, D. (2002). On the state of strength-three covering arrays. J. Comb.
Des. 10(4), 217-238.

5. Cheng, B. M. W., Choi, K. M. F., Lee, J. H. M., & Wu, J. C. K. (1999). Increasing constraint
propagation by redundant modeling: An experience report. Constraints 4, 167-192.

6. Cohen, D. M., Dalal, S. R., Fredman, M. L., & Patton, G. C. (1997). The AETG system: an
approach to testing based on combinatorial design. IEEE Trans. Softw. Eng. 23(7), 437-444.

7. Cohen, D. M., Dalal, S. R., Parelius, J., Patton, G. C. (1996). The combinatorial design approach
to automatic test generation. IEEE Software 13(5), 83-88.

8. Cohen, M. B., Gibbons, P. B., Mugridge, W. B. & Colbourn, C. J. (2003). Constructing test suites
for interaction testing. ICSE ’03: Proceedings of the 25th International Conference on Software
Engineering (pp. 38-48). IEEE Computer Society.

9. Colbourn, C.J., Cohen, M., & Turban, R. (2004). A deterministic density algorithm for pair wise
interaction coverage. The [ASTED International Conference on Software Engineering (pp.
242-252).

10. Colbourn, C.]J.(2005). Combinatorial aspects of covering arrays. Le Matematiche (Catania), to appear.

11. Dechter, R., & Pearl, J. (1989). Tree clustering for constraint networks. Artif. Intell. 38, 353-366.

12. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, 1., Pearson, J., & Walsh, T. (2002).
Breaking row and column symmetry in matrix models. In P. van Hentenryck, (Ed.), Principles
and Practice of Constraint Programming - CP-2002), LNCS 2470 (pp. 462—-476). Springer.

13. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., & Walsh, T. (2002). Matrix modelling:
exploiting common patterns in constraint programming. In A. Frisch, (Ed.), Proceedings of the
International Workshop on Reformulating Constraint Satisfaction Problems (pp. 27-41).

14. Frisch, A., Hnich, B., Kiziltan, Z., Miguel, 1., & Walsh, T. (2002). Global constraints for
lexicographic orderings. In P. van Hentenryck, (Ed.), Principles and Practice of Constraint
Programming—CP-2002, LNCS 2470 (pp. 93-108). Springer.

15. Gent, I. P., & Walsh, T. (1995). Unsatisfied variables in local search. In J. Hallam, (Ed.), Hybrid
Problems, Hybrid Solutions (pp. 73-85). IOS Press.

16. Hartman, A., & Raskin, L. (2004). Problems and algorithms for covering arrays. Discrete Math.
284(1-3), 149-156.

17. Hnich, B., Prestwich, S. D., & Selensky, E. (2005). Constraint-based approaches to the covering
test problem. In B. Faltings, A. Petcu, F. Fages, & F. Rossi, (Eds.), Recent Advances in
Constraints, Joint ERCIM/CoLogNet International Workshop on Constraint Solving and
Constraint Logic Programming, CSCLP 2004, LNCS 3419 (pp. 172-186). Springer.

18. Kask, K., & Dechter, R. (1995). GSAT and local consistency. In C. Mellish, (Ed.), Proceedings
of the 14th International Joint Conference on Artificial Intelligence, IICAI 95 (pp. 616-622).

19. Lei, Y., & Tai, K. C. (1998). In-parameter-order: a test generation strategy for pairwise testing.
In Third IEEE International High-Assurance Systems Engineering Symposium (pp. 161-254).

20. Meagher, K., & Stevens, B. (2005). Group construction of covering arrays. J. Comb. Des. 13(1),
70-77.

21. Kobayashi, N. (2002). Design and Evaluation of Automatic Test Generation Strategies for
Functional Testing of Software. PhD thesis, Osaka University.

22. Nurmela, K. (2004). Upper bounds for covering arrays by Tabu search. Discrete Appl. Math. 138,
143-152.

23. Prestwich, S. (2003). Negative effects of modeling techniques on search performance. Ann.
Oper. Res. 118, 137-150.

24. Régin, J. (1996). Generalized arc consistency for global cardinality constraints. Proceedings of
the 13th National Conference on Artificial Intelligence, AAAI 96, (pp. 209-215). AAAI Press/The
MIT Press.

25. Rényi, A. (1971). Foundations of Probability. Wiley.

26. Selman, B., Kautz, H. A., & Cohen, B. (1994). Noise strategies for improving local search. Proceedings
of the 12th National Conference on Artificial Intelligence, AAAI 94, Vol. 1 (pp. 337-343).

27. Selman, B., Levesque, H., & Mitchell, D. (1992). A new method for solving hard satisfiability
problems. Proceedings of the 10th National Conference on Artificial Intelligence, AAAI 92 (pp.
440-446).

28. Seroussi, G., & Bshouty, N. (1988). Vector sets for exhaustive testing of logic circuits. JEEE
Trans. Info. Theory 1T-34, 513-522.

29. Sloane, N. J. A. (1993). Covering arrays and intersecting codes. J. Comb. Des. Vol. 1, 51-63.

@ Springer

Constraints (2006) 11: 199-219 219

30. Smith, B. M. (2002). A dual graph representation of a problem in ‘Life.” In P. van Hentenryck
(Ed.), Principles and Practice of Constraint Programming—CP-2002, LNCS 2470 (pp. 402-414).
Springer.

31. Tung, Y.-W., & Aldiwan, W. (2000). Automating test case generation for the new generation
missionsoftware system. Proceedings IEEE Aerospace Conference, Vol. 1 (pp. 431-437).

32. Williams, A. W. (2000). Determination of test configurations for pair-wise interaction coverage.
Proceedings of the 13th International Conference on the Testing of Communicating Systems
(TestCom 2000) (pp. 59-74).

@ Springer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AardvarkPSMT
 /AceBinghamSH
 /AddisonLibbySH
 /AGaramond-Italic
 /AGaramond-Regular
 /AkbarPlain
 /Albertus-Bold
 /AlbertusExtraBold-Regular
 /AlbertusMedium-Italic
 /AlbertusMedium-Regular
 /AlfonsoWhiteheadSH
 /Algerian
 /AllegroBT-Regular
 /AmarilloUSAF
 /AmazoneBT-Regular
 /AmeliaBT-Regular
 /AmerigoBT-BoldA
 /AmerTypewriterITCbyBT-Medium
 /AndaleMono
 /AndyMacarthurSH
 /Animals
 /AnneBoleynSH
 /Annifont
 /AntiqueOlive-Bold
 /AntiqueOliveCompact-Regular
 /AntiqueOlive-Italic
 /AntiqueOlive-Regular
 /AntonioMountbattenSH
 /ArabiaPSMT
 /AradLevelVI
 /ArchitecturePlain
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMTBlack-Regular
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeLight
 /ArialUnicodeLight-Bold
 /ArialUnicodeLight-BoldItalic
 /ArialUnicodeLight-Italic
 /ArrowsAPlentySH
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /Asiana
 /AssadSadatSH
 /AvalonPSMT
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BankGothicBT-Light
 /BankGothicBT-Medium
 /Baskerville-Bold
 /Baskerville-Normal
 /Baskerville-Normal-Italic
 /BaskOldFace
 /Bauhaus93
 /Bavand
 /BazookaRegular
 /BeauTerrySH
 /BECROSS
 /BedrockPlain
 /BeeskneesITC
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /BennieGoetheSH
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /Bethel
 /BibiGodivaSH
 /BibiNehruSH
 /BKenwood-Regular
 /BlackadderITC-Regular
 /BlondieBurtonSH
 /BodoniBlack-Regular
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /BodoniBT-Bold
 /BodoniBT-BoldItalic
 /BodoniBT-Italic
 /BodoniBT-Roman
 /Bodoni-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Regular
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolFive
 /BookshelfSymbolFour
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BookwomanDemiItalicSH
 /BookwomanDemiSH
 /BookwomanExptLightSH
 /BookwomanLightItalicSH
 /BookwomanLightSH
 /BookwomanMonoLightSH
 /BookwomanSwashDemiSH
 /BookwomanSwashLightSH
 /BoulderRegular
 /BradleyHandITC
 /Braggadocio
 /BrailleSH
 /BRectangular
 /BremenBT-Bold
 /BritannicBold
 /Broadview
 /Broadway
 /BroadwayBT-Regular
 /BRubber
 /Brush445BT-Regular
 /BrushScriptMT
 /BSorbonna
 /BStranger
 /BTriumph
 /BuckyMerlinSH
 /BusoramaITCbyBT-Medium
 /Caesar
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-Italic
 /CalligrapherRegular
 /CameronStendahlSH
 /Candy
 /CandyCaneUnregistered
 /CankerSore
 /CarlTellerSH
 /CarrieCattSH
 /CaslonOpenfaceBT-Regular
 /CassTaylorSH
 /CDOT
 /Centaur
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturyOldStyle-BoldItalic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Cezanne
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGOmega-Regular
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /Charting
 /ChartreuseParsonsSH
 /ChaseCallasSH
 /ChasThirdSH
 /ChaucerRegular
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /ChildBonaparteSH
 /Chiller-Regular
 /ChuckWarrenChiselSH
 /ChuckWarrenDesignSH
 /CityBlueprint
 /Clarendon-Bold
 /Clarendon-Book
 /ClarendonCondensedBold
 /ClarendonCondensed-Bold
 /ClarendonExtended-Bold
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /ClaudeCaesarSH
 /CLI
 /Clocks
 /ClosetoMe
 /CluKennedySH
 /CMBX10
 /CMBX5
 /CMBX7
 /CMEX10
 /CMMI10
 /CMMI5
 /CMMI7
 /CMMIB10
 /CMR10
 /CMR5
 /CMR7
 /CMSL10
 /CMSY10
 /CMSY5
 /CMSY7
 /CMTI10
 /CMTT10
 /CoffeeCamusInitialsSH
 /ColetteColeridgeSH
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialPiBT-Regular
 /CommercialScriptBT-Regular
 /Complex
 /CooperBlack
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CooperPlanck2LightSH
 /CooperPlanck4SH
 /CooperPlanck6BoldSH
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /CopticLS
 /Cornerstone
 /Coronet
 /CoronetItalic
 /Cotillion
 /CountryBlueprint
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CSSubscript
 /CSSubscriptBold
 /CSSubscriptItalic
 /CSSuperscript
 /CSSuperscriptBold
 /Cuckoo
 /CurlzMT
 /CybilListzSH
 /CzarBold
 /CzarBoldItalic
 /CzarItalic
 /CzarNormal
 /DauphinPlain
 /DawnCastleBold
 /DawnCastlePlain
 /Dekker
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Denmark
 /Desdemona
 /Diploma
 /DizzyDomingoSH
 /DizzyFeiningerSH
 /DocTermanBoldSH
 /DodgenburnA
 /DodoCasalsSH
 /DodoDiogenesSH
 /DomCasualBT-Regular
 /Durian-Republik
 /Dutch801BT-Bold
 /Dutch801BT-BoldItalic
 /Dutch801BT-ExtraBold
 /Dutch801BT-Italic
 /Dutch801BT-Roman
 /EBT's-cmbx10
 /EBT's-cmex10
 /EBT's-cmmi10
 /EBT's-cmmi5
 /EBT's-cmmi7
 /EBT's-cmr10
 /EBT's-cmr5
 /EBT's-cmr7
 /EBT's-cmsy10
 /EBT's-cmsy5
 /EBT's-cmsy7
 /EdithDaySH
 /Elephant-Italic
 /Elephant-Regular
 /EmGravesSH
 /EngelEinsteinSH
 /English111VivaceBT-Regular
 /English157BT-Regular
 /EngraversGothicBT-Regular
 /EngraversOldEnglishBT-Bold
 /EngraversOldEnglishBT-Regular
 /EngraversRomanBT-Bold
 /EngraversRomanBT-Regular
 /EnviroD
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErasITC-Ultra
 /ErnestBlochSH
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EuroRoman
 /EuroRomanOblique
 /ExxPresleySH
 /FencesPlain
 /Fences-Regular
 /FifthAvenue
 /FigurineCrrCB
 /FigurineCrrCBBold
 /FigurineCrrCBBoldItalic
 /FigurineCrrCBItalic
 /FigurineTmsCB
 /FigurineTmsCBBold
 /FigurineTmsCBBoldItalic
 /FigurineTmsCBItalic
 /FillmoreRegular
 /Fitzgerald
 /Flareserif821BT-Roman
 /FleurFordSH
 /Fontdinerdotcom
 /FontdinerdotcomSparkly
 /FootlightMTLight
 /ForefrontBookObliqueSH
 /ForefrontBookSH
 /ForefrontDemiObliqueSH
 /ForefrontDemiSH
 /Fortress
 /FractionsAPlentySH
 /FrakturPlain
 /Franciscan
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FranklinUnic
 /FredFlahertySH
 /Freehand575BT-RegularB
 /Freehand591BT-RegularA
 /FreestyleScript-Regular
 /Frutiger-Roman
 /FTPMultinational
 /FTPMultinational-Bold
 /FujiyamaPSMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /GabbyGauguinSH
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garcia
 /GarryMondrian3LightItalicSH
 /GarryMondrian3LightSH
 /GarryMondrian4BookItalicSH
 /GarryMondrian4BookSH
 /GarryMondrian5SBldItalicSH
 /GarryMondrian5SBldSH
 /GarryMondrian6BoldItalicSH
 /GarryMondrian6BoldSH
 /GarryMondrian7ExtraBoldSH
 /GarryMondrian8UltraSH
 /GarryMondrianCond3LightSH
 /GarryMondrianCond4BookSH
 /GarryMondrianCond5SBldSH
 /GarryMondrianCond6BoldSH
 /GarryMondrianCond7ExtraBoldSH
 /GarryMondrianCond8UltraSH
 /GarryMondrianExpt3LightSH
 /GarryMondrianExpt4BookSH
 /GarryMondrianExpt5SBldSH
 /GarryMondrianExpt6BoldSH
 /GarryMondrianSwashSH
 /Gaslight
 /GatineauPSMT
 /Gautami
 /GDT
 /Geometric231BT-BoldC
 /Geometric231BT-LightC
 /Geometric231BT-RomanC
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeorgeMelvilleSH
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansBC
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSansCondensed-Bold
 /GillSansCondensed-Regular
 /GillSansExtraBold-Regular
 /GillSans-Italic
 /GillSansLight-Italic
 /GillSansLight-Regular
 /GillSans-Regular
 /GoldMinePlain
 /Gonzo
 /GothicE
 /GothicG
 /GothicI
 /GoudyHandtooledBT-Regular
 /GoudyOldStyle-Bold
 /GoudyOldStyle-BoldItalic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleExtrabold-Regular
 /GoudyOldStyle-Italic
 /GoudyOldStyle-Regular
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GraceAdonisSH
 /Graeca
 /Graeca-Bold
 /Graeca-BoldItalic
 /Graeca-Italic
 /Graphos-Bold
 /Graphos-BoldItalic
 /Graphos-Italic
 /Graphos-Regular
 /GreekC
 /GreekS
 /GreekSans
 /GreekSans-Bold
 /GreekSans-BoldOblique
 /GreekSans-Oblique
 /Griffin
 /GrungeUpdate
 /Haettenschweiler
 /HankKhrushchevSH
 /HarlowSolid
 /HarpoonPlain
 /Harrington
 /HeatherRegular
 /Hebraica
 /HeleneHissBlackSH
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HenryPatrickSH
 /Herald
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HogBold-HMK
 /HogBook-HMK
 /HomePlanning
 /HomePlanning2
 /HomewardBoundPSMT
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /IBMPCDOS
 /IceAgeD
 /Impact
 /Incised901BT-Bold
 /Incised901BT-Light
 /Incised901BT-Roman
 /Industrial736BT-Italic
 /Informal011BT-Roman
 /InformalRoman-Regular
 /Intrepid
 /IntrepidBold
 /IntrepidOblique
 /Invitation
 /IPAExtras
 /IPAExtras-Bold
 /IPAHighLow
 /IPAHighLow-Bold
 /IPAKiel
 /IPAKiel-Bold
 /IPAKielSeven
 /IPAKielSeven-Bold
 /IPAsans
 /ISOCP
 /ISOCP2
 /ISOCP3
 /ISOCT
 /ISOCT2
 /ISOCT3
 /Italic
 /ItalicC
 /ItalicT
 /JesterRegular
 /Jokerman-Regular
 /JotMedium-HMK
 /JuiceITC-Regular
 /JupiterPSMT
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KarlaJohnson5CursiveSH
 /KarlaJohnson5RegularSH
 /KarlaJohnson6BoldCursiveSH
 /KarlaJohnson6BoldSH
 /KarlaJohnson7ExtraBoldCursiveSH
 /KarlaJohnson7ExtraBoldSH
 /KarlKhayyamSH
 /Karnack
 /Kartika
 /Kashmir
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KeplerStd-Black
 /KeplerStd-BlackIt
 /KeplerStd-Bold
 /KeplerStd-BoldIt
 /KeplerStd-Italic
 /KeplerStd-Light
 /KeplerStd-LightIt
 /KeplerStd-Medium
 /KeplerStd-MediumIt
 /KeplerStd-Regular
 /KeplerStd-Semibold
 /KeplerStd-SemiboldIt
 /KeystrokeNormal
 /Kidnap
 /KidsPlain
 /Kindergarten
 /KinoMT
 /KissMeKissMeKissMe
 /KoalaPSMT
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /Kristin
 /KunstlerScript
 /KyotoSong
 /LainieDaySH
 /LandscapePlanning
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /Latha
 /LatinoPal3LightItalicSH
 /LatinoPal3LightSH
 /LatinoPal4ItalicSH
 /LatinoPal4RomanSH
 /LatinoPal5DemiItalicSH
 /LatinoPal5DemiSH
 /LatinoPal6BoldItalicSH
 /LatinoPal6BoldSH
 /LatinoPal7ExtraBoldSH
 /LatinoPal8BlackSH
 /LatinoPalCond4RomanSH
 /LatinoPalCond5DemiSH
 /LatinoPalCond6BoldSH
 /LatinoPalExptRomanSH
 /LatinoPalSwashSH
 /LatinWidD
 /LatinWide
 /LeeToscanini3LightSH
 /LeeToscanini5RegularSH
 /LeeToscanini7BoldSH
 /LeeToscanini9BlackSH
 /LeeToscaniniInlineSH
 /LetterGothic12PitchBT-Bold
 /LetterGothic12PitchBT-BoldItal
 /LetterGothic12PitchBT-Italic
 /LetterGothic12PitchBT-Roman
 /LetterGothic-Bold
 /LetterGothic-BoldItalic
 /LetterGothic-Italic
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Regular
 /LibrarianRegular
 /LinusPSMT
 /Lithograph-Bold
 /LithographLight
 /LongIsland
 /LubalinGraphMdITCTT
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /LydianCursiveBT-Regular
 /Magneto-Bold
 /Mangal-Regular
 /Map-Symbols
 /MarcusHobbesSH
 /Mariah
 /Marigold
 /MaritaMedium-HMK
 /MaritaScript-HMK
 /Market
 /MartinMaxxieSH
 /MathTypeMed
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MaudeMeadSH
 /MemorandumPSMT
 /Metro
 /Metrostyle-Bold
 /MetrostyleExtended-Bold
 /MetrostyleExtended-Regular
 /Metrostyle-Regular
 /MicrogrammaD-BoldExte
 /MicrosoftSansSerif
 /MikePicassoSH
 /MiniPicsLilEdibles
 /MiniPicsLilFolks
 /MiniPicsLilStuff
 /MischstabPopanz
 /MisterEarlBT-Regular
 /Mistral
 /ModerneDemi
 /ModerneDemiOblique
 /ModerneOblique
 /ModerneRegular
 /Modern-Regular
 /MonaLisaRecutITC-Normal
 /Monospace821BT-Bold
 /Monospace821BT-BoldItalic
 /Monospace821BT-Italic
 /Monospace821BT-Roman
 /Monotxt
 /MonotypeCorsiva
 /MonotypeSorts
 /MorrisonMedium
 /MorseCode
 /MotorPSMT
 /MSAM10
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MTEX
 /MTEXB
 /MTEXH
 /MT-Extra
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MTSYN
 /Music
 /MVBoli
 /MysticalPSMT
 /NagHammadiLS
 /NealCurieRuledSH
 /NealCurieSH
 /NebraskaPSMT
 /Neuropol-Medium
 /NevisonCasD
 /NewMilleniumSchlbkBoldItalicSH
 /NewMilleniumSchlbkBoldSH
 /NewMilleniumSchlbkExptSH
 /NewMilleniumSchlbkItalicSH
 /NewMilleniumSchlbkRomanSH
 /News702BT-Bold
 /News702BT-Italic
 /News702BT-Roman
 /Newton
 /NewZuricaBold
 /NewZuricaItalic
 /NewZuricaRegular
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NigelSadeSH
 /Nirvana
 /NuptialBT-Regular
 /OCRAbyBT-Regular
 /OfficePlanning
 /OldCentury
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OpenSymbol
 /OttawaPSMT
 /OttoMasonSH
 /OzHandicraftBT-Roman
 /OzzieBlack-Italic
 /OzzieBlack-Regular
 /PalatiaBold
 /PalatiaItalic
 /PalatiaRegular
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PalmSpringsPSMT
 /Pamela
 /PanRoman
 /ParadisePSMT
 /ParagonPSMT
 /ParamountBold
 /ParamountItalic
 /ParamountRegular
 /Parchment-Regular
 /ParisianBT-Regular
 /ParkAvenueBT-Regular
 /Patrick
 /Patriot
 /PaulPutnamSH
 /PcEncodingLowerSH
 /PcEncodingSH
 /Pegasus
 /PenguinLightPSMT
 /PennSilvaSH
 /Percival
 /PerfectRegular
 /Pfn2BlackItalic
 /Phantom
 /PhilSimmonsSH
 /Pickwick
 /PipelinePlain
 /Playbill
 /PoorRichard-Regular
 /Poster
 /PosterBodoniBT-Italic
 /PosterBodoniBT-Roman
 /Pristina-Regular
 /Proxy1
 /Proxy2
 /Proxy3
 /Proxy4
 /Proxy5
 /Proxy6
 /Proxy7
 /Proxy8
 /Proxy9
 /Prx1
 /Prx2
 /Prx3
 /Prx4
 /Prx5
 /Prx6
 /Prx7
 /Prx8
 /Prx9
 /Pythagoras
 /Raavi
 /Ranegund
 /Ravie
 /Ribbon131BT-Bold
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RobWebsterExtraBoldSH
 /Rockwell
 /Rockwell-Bold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RomanC
 /RomanD
 /RomanS
 /RomanT
 /Romantic
 /RomanticBold
 /RomanticItalic
 /Sahara
 /SalTintorettoSH
 /SamBarberInitialsSH
 /SamPlimsollSH
 /SansSerif
 /SansSerifBold
 /SansSerifBoldOblique
 /SansSerifOblique
 /Sceptre
 /ScribbleRegular
 /ScriptC
 /ScriptHebrew
 /ScriptS
 /Semaphore
 /SerifaBT-Black
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Sfn2Bold
 /Sfn3Italic
 /ShelleyAllegroBT-Regular
 /ShelleyVolanteBT-Regular
 /ShellyMarisSH
 /SherwoodRegular
 /ShlomoAleichemSH
 /ShotgunBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SignatureRegular
 /Signboard
 /SignetRoundhandATT-Italic
 /SignetRoundhand-Italic
 /SignLanguage
 /Signs
 /Simplex
 /SissyRomeoSH
 /SlimStravinskySH
 /SnapITC-Regular
 /SnellBT-Bold
 /Socket
 /Sonate
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /SpruceByingtonSH
 /SPSFont1Medium
 /SPSFont2Medium
 /SPSFont3Medium
 /SpsFont4Medium
 /SPSFont4Medium
 /SPSFont5Normal
 /SPSScript
 /SRegular
 /Staccato222BT-Regular
 /StageCoachRegular
 /StandoutRegular
 /StarTrekNextBT-ExtraBold
 /StarTrekNextPiBT-Regular
 /SteamerRegular
 /Stencil
 /StencilBT-Regular
 /Stewardson
 /Stonehenge
 /StopD
 /Storybook
 /Strict
 /Strider-Regular
 /StuyvesantBT-Regular
 /StylusBT
 /StylusRegular
 /SubwayRegular
 /SueVermeer4LightItalicSH
 /SueVermeer4LightSH
 /SueVermeer5MedItalicSH
 /SueVermeer5MediumSH
 /SueVermeer6DemiItalicSH
 /SueVermeer6DemiSH
 /SueVermeer7BoldItalicSH
 /SueVermeer7BoldSH
 /SunYatsenSH
 /SuperFrench
 /SuzanneQuillSH
 /Swiss721-BlackObliqueSWA
 /Swiss721-BlackSWA
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721-LightObliqueSWA
 /Swiss721-LightSWA
 /Swiss911BT-ExtraCompressed
 /Swiss921BT-RegularA
 /Syastro
 /Sylfaen
 /Symap
 /Symath
 /SymbolGreek
 /SymbolGreek-Bold
 /SymbolGreek-BoldItalic
 /SymbolGreek-Italic
 /SymbolGreekP
 /SymbolGreekP-Bold
 /SymbolGreekP-BoldItalic
 /SymbolGreekP-Italic
 /SymbolGreekPMono
 /SymbolMT
 /SymbolProportionalBT-Regular
 /SymbolsAPlentySH
 /Symeteo
 /Symusic
 /Tahoma
 /Tahoma-Bold
 /TahomaItalic
 /TamFlanahanSH
 /Technic
 /TechnicalItalic
 /TechnicalPlain
 /TechnicBold
 /TechnicLite
 /Tekton-Bold
 /Teletype
 /TempsExptBoldSH
 /TempsExptItalicSH
 /TempsExptRomanSH
 /TempsSwashSH
 /TempusSansITC
 /TessHoustonSH
 /TexCatlinObliqueSH
 /TexCatlinSH
 /Thrust
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-ExtraBold
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Times-Semibold
 /Times-SemiboldItalic
 /TimesUnic-Bold
 /TimesUnic-BoldItalic
 /TimesUnic-Italic
 /TimesUnic-Regular
 /TonyWhiteSH
 /TransCyrillic
 /TransCyrillic-Bold
 /TransCyrillic-BoldItalic
 /TransCyrillic-Italic
 /Transistor
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /TranslitLS
 /TranslitLS-Bold
 /TranslitLS-BoldItalic
 /TranslitLS-Italic
 /TransRoman
 /TransRoman-Bold
 /TransRoman-BoldItalic
 /TransRoman-Italic
 /TransSlavic
 /TransSlavic-Bold
 /TransSlavic-BoldItalic
 /TransSlavic-Italic
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TribuneBold
 /TribuneItalic
 /TribuneRegular
 /Tristan
 /TrotsLight-HMK
 /TrotsMedium-HMK
 /TubularRegular
 /Tunga-Regular
 /Txt
 /TypoUprightBT-Regular
 /UmbraBT-Regular
 /UmbrellaPSMT
 /UncialLS
 /Unicorn
 /UnicornPSMT
 /Univers
 /UniversalMath1BT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Italic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-CondensedOblique
 /UniversExtended-Bold
 /UniversExtended-BoldItalic
 /UniversExtended-Medium
 /UniversExtended-MediumItalic
 /Univers-Italic
 /UniversityRomanBT-Regular
 /UniversLightCondensed-Italic
 /UniversLightCondensed-Regular
 /Univers-Medium
 /Univers-MediumItalic
 /URWWoodTypD
 /USABlackPSMT
 /USALightPSMT
 /Vagabond
 /Venetian301BT-Demi
 /Venetian301BT-DemiItalic
 /Venetian301BT-Italic
 /Venetian301BT-Roman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /VinetaBT-Regular
 /Vivaldii
 /VladimirScript
 /VoguePSMT
 /Vrinda
 /WaldoIconsNormalA
 /WaltHarringtonSH
 /Webdings
 /Weiland
 /WesHollidaySH
 /Wingdings-Regular
 /WP-HebrewDavid
 /XavierPlatoSH
 /YuriKaySH
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Medium
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZappedChancellorMedItalicSH
 /ZurichBT-BlackExtended
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

