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Abstract Arithmetic constraints on integer intervals are supported in many con-
straint programming systems. We study here a number of approaches to implement
constraint propagation for these constraints. To describe them we introduce integer
interval arithmetic. Each approach is explained using appropriate proof rules that re-
duce the variable domains. We compare these approaches using a set of benchmarks.
For the most promising approach we provide results that characterize the effect of
constraint propagation.

Keywords Arithmetic constraints · Integer interval arithmetic ·
Constraint propagation · Local consistency

1 Introduction

1.1 Motivation

The subject of arithmetic constraints on reals has attracted a great deal of attention
in the literature. In contrast, arithmetic constraints on integer intervals have not been
studied even though they are supported in a number of constraint programming
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systems. In fact, constraint propagation for them is present in ECLiPSe, SICStus
Prolog, GNU Prolog, ILOG Solver and undoubtedly most of the systems that support
constraint propagation for linear constraints on integer intervals. Yet, in contrast
to the case of linear constraints—see notably [14]—we did not encounter in the
literature any analysis of this form of constraint propagation.

In this paper we study these constraints in a systematic way. It turns out that
in contrast to linear constraints on integer intervals there are a number of natural
approaches to constraint propagation for these constraints. They differ in the extent
to which the constraints are decomposed.

Even though arithmetic constraints on integer intervals need not be decomposed
into atomic arithmetic constraints, as is common practice for constraints on reals, we
found that it is beneficial to do so: it allows for efficient scheduling of the reduction
rules and for reuse of auxiliary variables for common subterms between constraints.

It could be argued that since integer arithmetic is a special case of real arithmetic,
specialized constraint propagation methods for integer arithmetic constraints are not
needed. Indeed, a constraint satisfaction problem (CSP) involving arithmetic con-
straints on integer variables can be solved using any known method for constraints
on reals, with additional constraints ensuring that the variables assume only integer
values. This was suggested in [6] and is implemented, for example, in RealPaver [13].
However, a dedicated study and implementation of the integer case is beneficial for
a number of reasons.

– In some cases the knowledge that we are dealing with integers yields a stronger
constraint propagation than the approach through the constraint propagation for
arithmetic constraints on reals. This can be also beneficial when we are dealing
with hybrid problems that involve arithmetic constraints on both integer and real
variables.

– The ‘indirect’ approach through the reals is based on floating-point numbers,
which are of limited precision. This implies that no exact representation exists
for integers outside certain bounds. We believe that it should be possible to deal
with large integers precisely, and that we should not revert to a floating-point
representation when other options exist. Using a library like GNU MP [11] we
can use arbitrary length integers (called multiple precision integers in GNU MP),
whose size is limited only by the available memory.

– Since arithmetic constraints on integer intervals are supported in a number
of constraint programming systems, it is natural to investigate in a systematic
way various approaches to their implementation. The approaches based on the
integers are amenable to a clear theoretical analysis. In particular, in Section 9
and Subsection 10.1 we provide the characterization results that clarify the effect
of constraint propagation for the approach that emerged in our studies as the
fastest.

An example that supports the first argument is the constraint x · y = z, where
−3 ≤ x ≤ 3, −1 ≤ y ≤ 1, and 1 ≤ z ≤ 2. When all variables are integers, there are
no solutions having x = 3 or x = −3, and the constraint propagation methods that
we consider here will actually remove these values from the domain of x. However,
if these variables are considered to be reals, these values may not be removed, and
solving the integer problem through constraint propagation methods for constraints
on reals may lead to a larger search space.
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As an indication that integer representation is not entirely a theoretical issue,
consider the following benchmark from [6]. Find n integers x1, . . . , xn, 1 ≤ xi ≤ n,
verifying the conditions

n∑

i=1

xi =
n∑

i=1

i,
n∏

i=1

xi =
n∏

i=1

i, x1 ≤ x2 ≤ . . . ≤ xn.

For n = 10 the initial maximum value of the left-hand side expression of the second
constraint equals 1010, which exceeds 232, the number of values that can be repre-
sented as 32-bit integers. For n = 16, there is already no signed integer representation
of this bound in 64 bits.

To show that arbitrary length integers can be affordable, Table 1 shows timing
results for three small C++ programs that solve the above benchmark via a basic
branch-and-propagate search process. These programs differ only in the representa-
tion of the bounds of the variables, and in the signature of the arithmetic operations
applied to these bounds: 64-bit floating point numbers (double), 64-bit integers
(long long), and arbitrary length integers (using the mpz data type of the GNU
MP library). The programs were compiled using the same optimization flags as the
default build of the GNU MP library, and the reported CPU times are user time in
seconds, measured by the time command on a 1,200 MHz AMD Athlon CPU.

The results for 64-bit integers and n ≥ 16 could be computed by initializing the
upper bound of the auxiliary variable equated to the product of all problem variables
to n!, which works for n < 20. These results indicate that on our hardware, the 64-
bit integer and floating-point implementations are equally efficient, while for these
specific problem instances, the cost of using arbitrary length integers is roughly a
factor four. Note that in a full-fledged constraint solver, this overhead would be far
less prominent, because compared to these small C++ programs, a large part of the
execution time is spent in the framework that coordinates the computation (cf. the
results in Subsection 11.2).

1.2 Plan of the Paper

In the next section we provide the relevant background material on CSPs and
arithmetic constraints. The unifying tool in our analysis is integer interval arithmetic
that is modeled after the real interval arithmetic (see, e.g., [15]). There are, however,
essential differences since we deal with integers instead of reals. For example, the

Table 1 Comparison of
timing results for various
representations

CPU time (sec)

n Solutions double long long mpz

13 22 0.44 0.41 1.69
14 60 1.37 1.35 5.27
15 159 4.45 4.50 17.44
16 377 14.54 15.04 57.31
17 377 32.66 33.54 128.26
18 1007 106.77 110.98 419.74
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product of two integer intervals does not need to be an integer interval. In Section 3
we introduce integer interval arithmetic and establish the basic results. Then in
Section 4 we show that using integer interval arithmetic we can define succinctly the
well-known constraint propagation for linear constraints on integer intervals.

The next three sections, 5, 6 and 7, form the main part of the paper. We
introduce there three approaches to constraint propagation for arithmetic constraints
on integer intervals. They differ in the way the constraints are treated: either they are
left intact, or the multiple occurrences of variables are eliminated, or the constraints
are decomposed into a set of atomic constraints. In Section 8 we discuss how these
three approaches relate to various methods used to solve arithmetic constraints on
reals.

Then in Section 9 we characterize the effect of constraint propagation for the
atomic constraints. In Section 10 we discuss in detail our implementation of the
alternative approaches, and in Section 11 we describe the experiments that were
performed to compare them. They indicate that decomposition of the constraints,
combined with a scheduling of the reduction rules that respects the hierarchical
dependencies between the atomic constraints is superior to the other approaches.
Finally, in Section 12 we provide the conclusions.

The preliminary results of this work were reported in [2] and [3].

2 Preliminaries

2.1 Constraint Satisfaction Problems

We now review the standard concepts of a constraint and of a constraint satisfaction
problem. Consider a sequence of variables X := x1, . . ., xn where n ≥ 0, with respec-
tive domains D1, . . ., Dn associated with them. So each variable xi ranges over the
domain Di. By a constraint C on X we mean a subset of D1 × . . . × Dn. Given an
element d := d1, . . ., dn of D1 × . . . × Dn and a subsequence Y := xi1 , . . ., xil of X we
denote by d[Y] the sequence di1 , . . ., dil . In particular, for a variable xi from X, d[xi]
denotes di.

A constraint satisfaction problem, in short CSP, consists of a finite sequence of
variables X with respective domains D, together with a finite set C of constraints,
each on a subsequence of X. We write it as 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉, where X :=
x1, . . ., xn and D := D1, . . ., Dn.

By a solution to 〈C ; x1 ∈ D1, . . ., xn ∈ Dn〉 we mean an element d ∈ D1 × . . . ×
Dn such that for each constraint C ∈ C on a sequence of variables X we have d[X] ∈
C. We call a CSP consistent if it has a solution and inconsistent if it does not. Two
CSPs with the same sequence of variables are called equivalent if they have the same
set of solutions. In what follows we consider CSPs whose constraints are defined in a
simple language and when reasoning about them we identify the syntactic description
of a constraint with its meaning being the set of tuples that satisfy it.

We view constraint propagation as a process of transforming CSPs that maintains
their equivalence. In what follows we define this process by means of proof rules that
operate on CSPs and preserve equivalence. An interested reader can consult [1] or
[2] for a precise explanation of this approach to describing constraint propagation.
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2.2 Arithmetic Constraints

To define the arithmetic constraints we use the alphabet that comprises

– Variables,
– Two constants, 0 and 1,
– The unary minus function symbol ‘−’,
– Three binary function symbols, ‘+,’ ‘−’ and ‘·,’ all written in the infix notation.

By an arithmetic expression we mean a term formed in this alphabet and by an
arithmetic constraint a formula of the form

s op t,

where s and t are arithmetic expressions and op ∈ {<,≤, =, �=, ≥,>}. For example

x5 · y2 · z4 + 3x · y3 · z5 ≤ 10 + 4x4 · y6 · z2 − y2 · x5 · z4 (1)

is an arithmetic constraint. Here x5 is an abbreviation for x · x · x · x · x, while 3x ·
y3 · z5 is an abbreviation for x · y3 · z5 + x · y3 · z5 + x · y3 · z5, and similarly with the
other expressions. If ‘·’ is not used in an arithmetic constraint, we call it a linear
constraint.

By an extended arithmetic expression we mean a term formed in the above
alphabet extended by the unary function symbols ‘·n’ and ‘ n

√·’ for each n ≥ 1 and
the binary function symbol ‘/’ written in the infix notation. For example

3

√
(y2 · z4)/(x2 · u5) (2)

is an extended arithmetic expression. Here, unlike in (1), x5 is a term obtained
by applying the function symbol ‘·5’ to the variable x. The extended arithmetic
expressions will be used only to define constraint propagation for the arithmetic
constraints.

Fix now some arbitrary linear ordering ≺ on the variables of the language. By a
monomial we mean an integer or a term of the form

a · xn1
1 · . . . · xnk

k

where k > 0, x1, . . ., xk are different variables ordered w.r.t. ≺, and a is a non-zero
integer and n1, . . ., nk are positive integers. We call then xn1

1 · . . . · xnk
k the power

product of this monomial.
Next, by a polynomial we mean a term of the form

�n
i=1mi,

where n > 0, at most one monomial mi is an integer, and the power products of the
monomials m1, . . ., mn are pairwise different. Finally, by a polynomial constraint we
mean an arithmetic constraint of the form s op b , where s is a polynomial with no
monomial being an integer, op ∈ {<,≤,=, �=,≥,>}, and b is an integer. It is clear
that by means of appropriate transformation rules we can transform each arithmetic
constraint to a polynomial constraint. For example, assuming the ordering x ≺ y ≺ z
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on the variables, the arithmetic constraint (1) can be transformed to the polynomial
constraint

2x5 · y2 · z4 − 4x4 · y6 · z2 + 3x · y3 · z5 ≤ 10

So, without loss of generality, from now on we shall limit our attention to polynomial
constraints.

Next, let us discuss the domains over which we interpret the arithmetic constraints.
By an integer interval, or an interval in short, we mean an expression of the form

[a..b ]
where a and b are integers; [a..b ] denotes the set of all integers between a and b ,
including a and b . If a > b , we call [a..b ] the empty interval and denote it by ∅. By a
range we mean an expression of the form

x ∈ I

where x is a variable and I is an interval. Sets of the form {x ∈ Z|x ≥ a} and
{x ∈ Z|x ≤ b} are called extended intervals.

We link the arithmetic constraints with the notion of a constraint defined in the
previous section by associating in the standard way with each arithmetic constraint
its interpretation. For an arithmetic constraint on variables x1, . . ., xn with respective
integer interval domains D1, . . ., Dn this is a subset of D1 × . . . × Dn.

3 Integer Set Arithmetic

To reason about the arithmetic constraints we employ a generalization of the
arithmetic operations to the sets of integers. Here and elsewhere Z , N , and R denote
the sets of all integers, natural numbers, and reals, respectively.

3.1 Definitions

For X, Y sets of integers we define the following operations:

– Addition:

X + Y := {x + y | x ∈ X, y ∈ Y},
– Subtraction:

X − Y := {x − y | x ∈ X, y ∈ Y},
– Multiplication:

X · Y := {x · y | x ∈ X, y ∈ Y},
– Division:

X/Y := {u ∈ Z | ∃x ∈ X∃y ∈ Y u · y = x},



An Analysis of Arithmetic Constraints on Integer Intervals 435

– Exponentiation:

Xn := {xn | x ∈ X},

for each natural number n > 0,
– Root extraction:

n
√

X := {x ∈ Z | xn ∈ X},

for each natural number n > 0.

All the operations except division and root extraction are defined in the expected
way. We shall return to the division operation in Section 7. At the moment it suffices
to note the division operation is defined for all sets of integers, including Y = ∅ and
Y = {0}. This division operation corresponds to the following division operation on
the sets of reals introduced in [18]:

X � Y := {u ∈ R | ∃x ∈ X∃y ∈ Y u · y = x}.

For an integer or real number a and op ∈ {+,−, ·, /, �} we identify a op X with
{a} op X and X op a with X op {a}.

To present the rules we are interested in we shall also use the addition and division
operations on the sets of reals. Addition is defined in the same way as for the sets of
integers, and for division we use the � operator defined above. In [15] it is explained
how to implement these operations on, possibly unbounded, real intervals.

Further, given a set A of integers or reals, we define

≤ A := {x ∈ Z | ∃a ∈ A x ≤ a},
≥ A := {x ∈ Z | ∃a ∈ A x ≥ a},

so for example ≤N = Z , and ≥{−1, 1} and ≥(−2, 2) both denote the extended interval
of all integers greater than or equal to −1, where (−2, 2) denotes an open interval of
real numbers.

When limiting our attention to intervals of integers the following simple observa-
tion is of importance.

Note 3.1 For X, Y integer intervals and a an integer the following holds:

– X ∩ Y, X + Y, X − Y are integer intervals.
– X/{a} is an integer interval.
– X · Y does not have to be an integer interval, even if X = {a} or Y = {a}.
– X/Y does not have to be an integer interval.
– For each n > 1, Xn does not have to be an integer interval.
– For odd n > 1, n

√
X is an integer interval.

– For even n > 1, n
√

X is an integer interval or a disjoint union of two integer
intervals.
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For example in the following cases we get intervals as outcomes:

[2..4] + [3..8] = [5..12],
[3..7] − [1..8] = [−5..6],

3
√[−30..100] = [−3..4],

2
√[−100..9] = [−3..3],

while in the following ones not:

[3..3] · [1..2] = {3, 6},
[3..5]/[−1..2] = {−5,−4, −3, 2, 3, 4, 5},

[−3..5]/[−1..2] = Z,

[1..2]2 = {1, 4},
2
√[1..9] = [−3.. − 1] ∪ [1..3].

To deal with the problem that non-interval domains can be produced by some of
the operations we introduce the following operation on the sets of integers:

int(X) :=
{

smallest integer interval containing X if X is finite,
Z otherwise.

For example int([3..5]/[−1..2]) = [−5..5] and int([−3..5]/[−1..2]) = Z .

3.2 Implementation

To define constraint propagation for the arithmetic constraints on integer intervals
we shall use the integer set arithmetic, mainly limited to the integer intervals. This
brings us to the discussion of how to implement the introduced operations on the
integer intervals. Since we are only interested in maintaining the property that the
sets remain integer intervals or the set of integersZ we shall clarify how to implement
the intersection, addition, subtraction and root extraction operations of the integer
intervals and the int(·) closure of the multiplication, division and exponentiation
operations on the integer intervals. The case when one of the intervals is empty is
easy to deal with. So we assume that we deal with non-empty intervals [a..b ] and
[c..d], that is a ≤ b and c ≤ d.

Intersection, addition and subtraction It is easy to see that

[a..b ] ∩ [c..d] = [max(a, c).. min(b, d)],
[a..b ] + [c..d] = [a + c .. b + d],
[a..b ] − [c..d] = [a − d .. b − c].

So the interval intersection, addition, and subtraction are straightforward to
implement.

Root extraction The outcome of the root extraction operator applied to an integer
interval will be an integer interval or a disjoint union of two integer intervals.
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We shall explain in Section 5 why it is advantageous not to apply int(·) to the outcome.
This operator can be implemented by means of the following case analysis.

Case 1. Suppose n is odd. Then

n
√

[a..b ] =
[⌈

n
√

a
⌉

..
⌊

n
√

b
⌋]

.

Case 2. Suppose n is even and b < 0. Then

n
√

[a..b ] = ∅.

Case 3. Suppose n is even and b ≥ 0. Then

n
√

[a..b ] =
[
−

⌊
| n
√

b |
⌋

.. − ⌈| n
√

a+|⌉
]

∪
[⌈| n

√
a+|⌉ ..

⌊
| n
√

b |
⌋]

where a+ := max(0, a).

Multiplication For the remaining operations we only need to explain how to
implement the int(·) closure of the outcome. First note that

int([a..b ] · [c..d]) = [min(A).. max(A)],
where A = {a · c, a · d, b · c, b · d}.

Using an appropriate case analysis we can actually compute the bounds of
int([a..b ] · [c..d]) directly in terms of the bounds of the constituent intervals.

Division In contrast, the int(·) closure of the interval division is not so straightfor-
ward to compute. The reason is that, as we shall see in a moment, we cannot express
the result in terms of some simple operations on the interval bounds.

Consider non-empty integer intervals [a..b ] and [c..d]. In analyzing the outcome
of int([a..b ]/[c..d]) we distinguish the following cases.

Case 1. Suppose 0 ∈ [a..b ] and 0 ∈ [c..d].
Then by definition int([a..b ]/[c..d]) = Z . For example,

int([−1..100]/[−2..8]) = Z .

Case 2. Suppose 0 �∈ [a..b ] and c = d = 0.
Then by definition int([a..b ]/[c..d]) = ∅. For example,

int([10..100]/[0..0]) = ∅.

Case 3. Suppose 0 �∈ [a..b ] and c < 0 and 0 < d. It is easy to see that then

int([a..b ]/[c..d]) = [−e..e],
where e = max(|a|, |b |). For example,

int([−100.. − 10]/[−2..5]) = [−100..100].
Case 4. Suppose 0 �∈ [a..b ] and either c = 0 and d �= 0 or c �= 0 and d = 0. Then

int([a..b ]/[c..d]) = int([a..b ]/([c..d] − {0})). For example

int([1..100]/[−7..0]) = int([1..100]/[−7.. − 1]).
This allows us to reduce this case to Case 5 below.
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Case 5. Suppose 0 �∈ [c..d]. This is the only case when we need to compute
int([a..b ]/[c..d]) indirectly. First, observe that we have

int([a..b ]/[c..d]) ⊆ [�min(A)� .. �max(A)�],
where A = {a/c, a/d, b/c, b/d}.

However, the equality does not need to hold here. Indeed, note for example that
int([155..161]/[9..11]) = [16..16], whereas for A = {155/9, 155/11, 161/9, 161/11} we
have �min(A)� = 15 and �max(A)� = 17. The problem is that the value 16 is obtained
by dividing 160 by 10 and none of these two values is an interval bound.

This complication can be solved by preprocessing the interval [c..d] so that its
bounds are actual divisors of an element of [a..b ]. First, we look for the least c′ ∈
[c..d] such that ∃x ∈ [a..b ] ∃u ∈ Z u · c′ = x. Using a case analysis, the latter property
can be established without search. Suppose for example that a > 0 and c > 0. In this
case, if c′ · �b/c′� ≥ a, then c′ has the required property. Similarly, we look for the
largest d′ ∈ [c..d] for which an analogous condition holds. Now int([a..b ]/[c..d]) =
[�min(A)�..�max(A)�], where A = {a/c′, a/d′, b/c′, b/d′}.

In view of this auxiliary computation (in case when 0 �∈ [c..d]) we shall introduce
in Section 10 a modified division operation with a more direct implementation.

Exponentiation The int(·) closure of the interval exponentiation is straightforward
to implement by distinguishing the following cases.

Case 1. Suppose n is odd. Then

int([a..b ]n) = [an.. b n].
Case 2. Suppose n is even and 0 ≤ a. Then

int([a..b ]n) = [an.. b n].
Case 3. Suppose n is even and b ≤ 0. Then

int([a..b ]n) = [b n.. an].
Case 4. Suppose n is even and a < 0 and 0 < b . Then

int([a..b ]n) = [0.. max(an, b n)].

3.3 Correctness Lemma

Given now an extended arithmetic expression s each variable of which ranges over
an integer interval, we define int(s) as the integer interval or the set Z obtained
by systematically replacing each function symbol by the application of the int(·)
operation to the corresponding integer set operation. For example, for the extended
arithmetic expression s := 3

√
(y2 · z4)/(x2 · u5) of (2) we have

int(s) = int
(

3
√

int(int(Y2) · int(Z 4))/ int(int(X2) · int(U5))
)

,

where we assume that x ranges over X, etc.
The discussion in the previous subsection shows how to compute int(s) given an

extended arithmetic expression s and the integer interval domains of its variables.
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The following lemma is crucial for our considerations. It is a counterpart of the so-
called ‘Fundamental Theorem of Interval Arithmetic’ established in [17]. Because we
deal here with the integer domains an additional assumption is needed to establish
the desired conclusion.

Lemma 3.2 (Correctness) Let s be an extended arithmetic expression with the vari-
ables x1, . . ., xn. Assume that each variable xi of s ranges over an integer interval Xi.
Choose ai ∈ Xi for i ∈ [1..n] and denote by s(a1, . . ., an) the result of replacing in s each
occurrence of a variable xi by ai.

Suppose that each subexpression of s(a1, . . ., an) evaluates to an integer. Then the
result of evaluating s(a1, . . ., an) is an element of int(s).

Proof The proof follows by a straightforward induction on the structure of s. ��

4 An Intermezzo: Constraint Propagation for Linear Constraints

Even though we focus here on arithmetic constraints on integer intervals, it is helpful
to realize that the integer interval arithmetic is also useful to define in a succinct
way the well-known rules for constraint propagation for linear constraints (studied
in detail in [14]). To this end consider first a constraint �n

i=1ai · xi = b , where n ≥ 0,
a1, . . ., an are non-zero integers, x1, . . ., xn are different variables, and b is an integer.
We rewrite this constraint n times, each time isolating one variable, to obtain an
extended arithmetic expression for each variable x j. To each of these extended
arithmetic expressions we apply then the int operation of Subsection 3.3, which yields
an update for the domain of the corresponding variable x j. To reason about this
procedure we can use the following rule parametrized by j ∈ [1..n]:

LINEAR EQUALITY

〈�n
i=1ai · xi = b ; x1 ∈ D1, . . ., x j ∈ Dj, . . ., xn ∈ Dn〉

〈�n
i=1ai · xi = b ; x1 ∈ D1, . . ., x j ∈ D′

j, . . ., xn ∈ Dn〉

where D′
j := Dj ∩ int

(
(b − �i∈[1..n]−{ j}ai · xi)/a j

)
.

Note that by virtue of Note 3.1

D′
j = Dj ∩ (b − �i∈[1..n]−{ j} int(ai · Di))/a j.

To see that this rule preserves equivalence, first note that all our reduction rules
compute the domain updates via intersection with the original domain, preventing
that domains are extended by their application. Further, suppose that for some d1 ∈
D1, . . ., dn ∈ Dn we have �n

i=1ai · di = b . Then for j ∈ [1..n] we have

d j = (b − �i∈[1..n]−{ j}ai · di)/a j

which by the Correctness Lemma 3.2 implies that

d j ∈ int
(
(b − �i∈[1..n]−{ j}ai · xi)/a j

)
,

i.e., d j ∈ D′
j.
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Next, consider a constraint �n
i=1ai · xi ≤ b , where a1, . . ., an, x1, . . ., xn and b are as

above. To reason about it we can use the following rule parametrized by j ∈ [1..n]:
LINEAR INEQUALITY

〈�n
i=1ai · xi ≤ b ; x1 ∈ D1, . . ., x j ∈ Dj, . . ., xn ∈ Dn〉

〈�n
i=1ai · xi ≤ b ; x1 ∈ D1, . . ., x j ∈ D′

j, . . ., xn ∈ Dn〉
where D′

j := Dj ∩ (≤int(b − �i∈[1..n]−{ j}ai · xi)/a j).
To see that this rule preserves equivalence, suppose that for some d1 ∈ D1, . . .,

dn ∈ Dn we have �n
i=1ai · di ≤ b . Then a j · d j ≤ b − �i∈[1..n]−{ j}ai · di. By the Correct-

ness Lemma 3.2

b − �i∈[1..n]−{ j}ai · di ∈ int(b − �i∈[1..n]−{ j}ai · xi),

so by definition

a j · d j ∈≤ int(b − �i∈[1..n]−{ j}ai · xi)

and consequently

d j ∈≤ int(b − �i∈[1..n]−{ j}ai · xi)/a j.

This implies that d j ∈ D′
j.

As an alternative to evaluating int(�i∈[1..n]−{ j}ai · xi) on every application of the
LINEAR EQUALITY and LINEAR INEQUALITY rules, we could maintain the
interval int(�n

1 ai · xi) in an auxiliary variable, and subtract int(a j · x j) from it. This
corresponds to the two-step propagation described in [14]. If changes to Dj are
propagated back to the auxiliary variable, this does not affect the reduction achieved
by the subsequent applications of the rules, while the number of interval arithmetic
operations involved in the application of a rule becomes constant, instead of linear
in the number n of variables.

5 Constraint Propagation: Direct Approach

As a first approach to constraint propagation for arithmetic constraints on integer
intervals, we propose to use the constraints directly, in their original form. This is an
extension of the approach of Section 4 from linear constraints to general arithmetic
constraints, and entails that these constraints are rewritten to isolate all occurrences
of each variable. The resulting extended arithmetic expressions are then evaluated
to obtain updates for the isolated variables.

The following example illustrates this approach. Consider the constraint

x3 · y − x ≤ 40

and the ranges x ∈ [1..100] and y ∈ [1..100]. We can rewrite it as

x ≤
⌊

3
√

(40 + x)/y
⌋

(3)

since x assumes integer values. The maximum value the expression on the right-

hand side can take is
⌊

3
√

140
⌋

, so we conclude x ≤ 5. By reusing (3), now with the
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information that x ∈ [1..5], we conclude that the maximum value the expression on

the right-hand side of (3) can take is actually
⌊

3
√

45
⌋

, from which it follows that x ≤ 3.
In the case of y we can isolate it by rewriting the original constraint as y ≤

40/x3 + 1/x2 from which it follows that y ≤ 41, since by assumption x ≥ 1. So we
could reduce the domain of x to [1..3] and the domain of y to [1..41]. This interval
reduction is optimal, since x = 1, y = 41 and x = 3, y = 1 are both solutions to the
original constraint x3 · y − x ≤ 40. So rewriting the constraint as x ≥ x3 · y − 40 does
not yield a new lower bound for x.

More formally, consider a polynomial constraint �m
i=1mi = b where m > 0, no

monomial mi is an integer, the power products of the monomials are pairwise
different, and b is an integer. Suppose that x1, . . ., xn are its variables ordered
w.r.t. ≺.

Select a non-integer monomial ml and assume it is of the form

a · yn1
1 · . . . · ynk

k ,

where k > 0, y1, . . ., yk are different variables ordered w.r.t. ≺, a is a non-zero
integer and n1, . . ., nk are positive integers. So each yi variable equals to some
variable in {x1, . . ., xn}. Suppose that yp equals to x j. We introduce the following
proof rule:

POLYNOMIAL EQUALITY

〈�n
i=1mi = b ; x1 ∈ D1, . . ., x j ∈ Dj, . . ., xn ∈ Dn〉

〈�n
i=1mi = b ; x1 ∈ D1, . . ., x j ∈ D′

j, . . ., xn ∈ Dn〉

where D′
j := int

(
Dj ∩ np

√
int

(
(b − �i∈[1..m]−{l}mi)/s

) )
, with s := a · yn1

1 · . . . · y
np−1

p−1 ·
y

np+1

p+1 . . . · ynk
k .

To see that this rule preserves equivalence, choose some d1 ∈ D1, . . ., dn ∈ Dn.
To simplify the notation, given an extended arithmetic expression t denote by t′ the
result of evaluating t after each occurrence of a variable xi is replaced by di.

Suppose that �m
i=1m′

i = b . Then

d
np

j · s′ = b − �i∈[1..m]−{l}m′
i,

so by the Correctness Lemma 3.2 applied to b − �i∈[1..m]−{l}m′
i and to s

d
np

j ∈ int(b − �i∈[1..m]−{l}mi)/ int(s).

Hence

d j ∈ np
√

int(b − �i∈[1..m]−{l}mi)/ int(s)

and consequently

d j ∈ int

(
Dj ∩ np

√
int

(
(b − �i∈[1..m]−{l}mi)/s

) )

i.e., d j ∈ D′
j.

Note that we do not apply int(·) to the outcome of the root extraction operation.
For even np this means that the second operand of the intersection can be a union of
two intervals, instead of a single interval. To see why this is desirable, consider the
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constraint x2 − y = 0 in the presence of ranges x ∈ [0..10], y ∈ [25..100]. Using the
int(·) closure of the root extraction we would not be able to update the lower bound
of x to 5.

Next, consider a polynomial constraint �m
i=1mi ≤ b . Below we adopt the as-

sumptions and notation used when defining the POLYNOMIAL EQUALITY rule.
To formulate the appropriate rule we stipulate that for the extended arithmetic
expressions s and t

int((≤s)/t) := ≥ Q ∩ ≤ Q,

with Q = (≤int(s))/ int(t).
To reason about this constraint we use the following rule:

POLYNOMIAL INEQUALITY

〈�n
i=1mi ≤ b ; x1 ∈ D1, . . ., x j ∈ Dj, . . ., xn ∈ Dn〉

〈�n
i=1mi ≤ b ; x1 ∈ D1, . . ., x j ∈ D′

j, . . ., xn ∈ Dn〉

where D′
j := int

(
Dj ∩ np

√
int

(≤(b − �i∈[1..m]−{l}mi)/s
) )

, with s := a · yn1
1 · . . . · y

np−1

p−1 ·
y

np+1

p+1 . . . · ynk
k .

To prove that this rule preserves equivalence, choose some d1 ∈ D1, . . ., dn ∈ Dn.
As above given an extended arithmetic expression t we denote by t′ the result of
evaluating t when each occurrence of a variable xi in t is replaced by di.

Suppose that �m
i=1m′

i ≤ b . Then

d
np

j · s′ ≤ b − �i∈[1..m]−{l}m′
i.

By the Correctness Lemma 3.2

b − �i∈[1..m]−{l}m′
i ∈ int(b − �i∈[1..m]−{l}mi),

so by definition

d
np

j · s′ ∈≤ int(b − �i∈[1..m]−{l}mi).

Hence by the definition of the division operation on the sets of integers

d
np

j ∈≤ int(b − �i∈[1..m]−{l}mi)/ int(s)

Consequently

d j ∈ np
√

≤ int(b − �i∈[1..m]−{l}mi)/ int(s).

This implies that d j ∈ D′
j.

Note that the set ≤ int(b − �i∈[1..m]−{l}mi), which occurs when the expression for D′
j

is expanded according to the above definition of int((≤s)/t), is not an interval. So to
properly implement this rule we need to extend the implementation of the division
operation discussed in Subsection 3.2 to the case when the numerator is an extended
interval.

If the sum of the intervals associated with each of the monomials in a polynomial
constraint is maintained in an auxiliary variable, as we discussed at the end of
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Section 4 for linear constraints, then the rules can be applied using a constant
number of interval additions. However, interval division is not the inverse operation
of interval multiplication, so the same technique cannot be applied to monomials,
and the number of multiplications and exponentiations will be linear in the size of
the monomial s.

In an optimized version of the direct approach we simplify the fractions of two
polynomials by splitting the division over addition and subtraction and by dividing
out common powers of variables and greatest common divisors of the constant
factors. Subsequently, fractions whose denominators have identical power products
are added. We used this optimization in the initial example by simplifying (40 + x)/x3

to 40/x3 + 1/x2. The reader may check that without this simplification step we can
only deduce that y ≤ 43.

To provide details of this optimization, given two monomials s and t, we
denote by

[s/t]
the result of performing this simplification operation on s and t. For example, [(2 ·
x3 · y)/(4 · x2)] equals (x · y)/2, whereas [(4 · x3 · y)/(2 · y2)] equals (2 · x3)/y.

Because the validity of the simplification depends on the sign of the denominator,
we assume that the domains of the variables y1, . . ., yp−1, yp+1, . . ., yn of ml do not
contain 0. For a monomial s involving variables ranging over the integer intervals
that do not contain 0, the set int(s) either contains only positive numbers or only
negative numbers. In the first case we write sign(s) = + and in the second case we
write sign(s) = −.

The new domain of the variable x j in the POLYNOMIAL INEQUALITY rule is
defined using two sequences m′

0...m
′
n and s′

0...s
′
n of extended arithmetic expressions

such that

m′
0/s′

0 = [b/s] and m′
i/s′

i = −[mi/s] for i ∈ [1..m].
Let S := {s′

i | i ∈ [0..m] − {l}} and for an extended arithmetic expression t ∈ S let
It := {i ∈ [0..m] − {l} | s′

i = t}. We denote then by pt the polynomial
∑

i∈It
m′

i. The
new domains are then defined by

D′
j := int

(
Dj ∩ np

√≤ int (�t∈S pt � t)
)

if sign(s) = +, and by

D′
j := int

(
Dj ∩ np

√≥ int (�t∈S pt � t)
)

if sign(s) = −. Here the int(s) notation used in the Correctness Lemma 3.2 is extended
to expressions involving the division operator � on real intervals in the obvious way.
We define the int(·) operator applied to a bounded set of reals, as produced by the
division and addition operators in the above two expressions for D′

j, to denote the
smallest interval of reals containing that set.

Returning again to the discussion of the two-step propagation technique of [14],
which we started at the end of Section 4, note that in this case, the int(·) operation
is applied after removing the common power products. For this reason, there is
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no straightforward way to calculate int(�t∈S pt � t) from the sum of all intervals
associated with the monomials of a polynomial constraint.

6 Constraint Propagation: Partial Decomposition

As a second approach to constraint propagation for arithmetic constraints on integer
intervals, we limit our attention to a special type of polynomial constraints, namely
the ones of the form s op b , where s is a polynomial in which each variable occurs at
most once and where b is an integer. We call such a constraint a simple polynomial
constraint. By introducing auxiliary variables that are equated with appropriate
monomials we can decompose any polynomial constraint into a sequence of simple
polynomial constraints. This allows us also to compute the integer interval domains
of the auxiliary variable from the integer interval domains of the original variables.
We apply then to the simple polynomial constraints the rules introduced in the
previous section.

To see that the restriction to simple polynomial constraints can make a difference
consider the constraint

100x · y − 10y · z = 212,

and ranges x, y, z ∈ [1..9]. We rewrite it into the sequence

u = x · y, v = y · z, 100u − 10v = 212,

where u, v are auxiliary variables, each with the domain [1..81].
It is easy to check that the POLYNOMIAL EQUALITY rule introduced in the

previous section does not yield any domain reduction when applied to the original
constraint 100x · y − 10y · z = 212. In the presence of the discussed optimization the
domain of x gets reduced to [1..3].

However, if we repeatedly apply the POLYNOMIAL EQUALITY rule to the
simple polynomial constraint 100u − 10v = 212, we eventually reduce the domain of
u to the empty set (since this constraint has no integer solution in the ranges u, v ∈
[1..81]) and consequently can conclude that the original constraint 100x · y − 10y ·
z = 212 has no solution in the ranges x, y, z ∈ [1..9], without performing any search.
Note that this effect still occurs if we replace one occurrence of y by a fresh variable
with the same domain.

As noted in [8], decomposing constraints also prevents the evaluation of subex-
pressions whose domains did not change, which may reduce the number of interval
arithmetic operations performed during constraint propagation. In our case duplicate
occurrences of variables are removed, so the reduction rules additionally become
idempotent. However, this can be seen as a side-effect: rules still update variables
that they depend on, only now this update is indirect, through other variables.

Consider for example the constraint x3 · y − x ≤ 40 of Section 5. If we rewrite this
constraint as u − x ≤ 40, with u = x3 · y and x, y ∈ [1..100], then via u ≤ x + 40 we
can set the upper bound for u to 140. Via x = 3

√
u/y we can then set the upper for x

to 5. This allows us to set the upper bound for u to 45 via u ≤ x + 40, etc. From this
point of view the auxiliary variables, and the idempotence that they entail, can be
seen as an optimization that prevents the evaluation of expressions that will not lead
to further domain updates.
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7 Constraint Propagation: Full Decomposition

In this third approach we focus on a small set of ‘atomic’ arithmetic constraints. We
call an arithmetic constraint atomic if it is in one of the following two forms:

– A linear constraint,
– x · y = z.

Using appropriate transformation rules involving auxiliary variables we can de-
compose any arithmetic constraint to a sequence of atomic arithmetic constraints,
similar to the decomposition of linear constraints into constraints on groups of three
variables in clp(FD) [8]. In this transformation, as with partial decomposition, the
auxiliary variables are equated with monomials, so we can easily compute their
domains.

We explained already in Section 4 how to reason about linear constraints. For a
treatment of disequalities see, e.g., [14, 20]. Next, we focus on the reasoning for the
multiplication constraint x · y = z in the presence of the non-empty ranges x ∈ Dx,
y ∈ Dy and z ∈ Dz. To this end we introduce the following three domain reduction
rules:

MULTIPLICATION 1

〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉
〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ D′

z〉

MULTIPLICATION 2

〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉
〈x · y = z ; x ∈ D′

x, y ∈ Dy, z ∈ Dz〉

MULTIPLICATION 3

〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉
〈x · y = z ; x ∈ Dx, y ∈ D′

y, z ∈ Dz〉

where D′
z := Dz ∩ int(Dx · Dy), D′

x := Dx∩int(Dz/Dy), and D′
y := Dy∩int(Dz/Dx).

The way we defined the multiplication and the division of the integer intervals
ensures that the MULTIPLICATION rules 1,2, and 3 are equivalence preserving.
Consider for example the MULTIPLICATION 2 rule. Take some a ∈ Dx, b ∈ Dy

and c ∈ Dz such that a · b = c. Then a ∈ {x ∈ Z | ∃z ∈ Dz∃y ∈ Dy x · y = z}, so a ∈
Dz/Dy and a fortiori a ∈ int(Dz/Dy). Consequently a ∈ Dx ∩ int(Dz/Dy). Because
we also have Dx ∩ int(Dz/Dy) ⊆ Dx, this shows that the MULTIPLICATION 2 rule
is equivalence preserving.

The following example shows an interaction between all three MULTIPLICA-
TION rules.

Example 7.1 Consider the CSP

〈x · y = z ; x ∈ [1..20], y ∈ [9..11], z ∈ [155..161]〉. (4)
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To facilitate the reading we underline the modified domains. An application of the
MULTIPLICATION 2 rule yields

〈x · y = z ; x ∈ [16..16], y ∈ [9..11], z ∈ [155..161]〉
since, as already noted in Subsection 3.2, [155..161]/[9..11]) = [16..16], and [1..20] ∩
int([16..16]) = [16..16]. Applying now the MULTIPLICATION 3 rule we obtain

〈x · y = z ; x ∈ [16..16], y ∈ [10..10], z ∈ [155..161]〉
since [155..161]/[16..16] = [10..10] and [9..11] ∩ int([10..10]) = [10..10]. Next, by the
application of the MULTIPLICATION 1 rule we obtain

〈x · y = z ; x ∈ [16..16], y ∈ [10..10], z ∈ [160..160]〉
since [16..16] · [10..10] = [160..160] and [155..161] ∩ int([160..160]) = [160..160].

So using all three multiplication rules we could solve the CSP (4).

Now let us clarify why we did not define the division of the sets of integers Z and
Y by

Z/Y := {z/y ∈ Z | y ∈ Y, z ∈ Z , y �= 0}.
The reason is that in that case for any set of integers Z we would have Z/{0} = ∅.
Consequently, if we adopted this definition of the division of the integer intervals,
the resulting MULTIPLICATION 2 and 3 rules would not be anymore equivalence
preserving. Indeed, consider the CSP

〈x · y = z ; x ∈ [−2..1], y ∈ [0..0], z ∈ [−8..10]〉.
Then we would have [−8..10]/[0..0] = ∅ and consequently by the MULTIPLICA-
TION 2 rule we could conclude

〈x · y = z ; x ∈ ∅, y ∈ [0..0], z ∈ [−8..10]〉.
So we reached an inconsistent CSP while the original CSP is consistent.

The transformation to atomic constraints can strengthen the reduction. Consider
for example the simple constraint

w · x · y · z = 24

with w = 4 and x, y, z ∈ [1..4]. Application of the POLYNOMIAL EQUALITY rule
does not reduce any of the domains, but if we replace the constraint with

u · v = t, w · x = u, y · z = v

with additional ranges t = 24, u ∈ [4..16], and v ∈ [1..16], then by application of the
MULTIPLICATION 3 rule to u · v = t we reduce the domain of v to [2..6]. Next, by
application of the MULTIPLICATION 2 rule to the same constraint we reduce the
domain of u to [4..12], and finally by application of the MULTIPLICATION 3 rule
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to w · x = u we reduce the domain of x from [1..4] to [1..3]. Note, however, that this
effect depends on the decomposition. If we had decomposed the constraint as

z · (y · (x · w)) = 24

with an auxiliary variable introduced for each pair of matching brackets, then we
would not have been able to reduce any of the domains of x, y, and z.

In the remainder of the paper we will also consider variants of the full decompo-
sition approach where we allow squaring and exponentiation as atomic constraints.
For this purpose we explain the reasoning for the constraint x = yn in the presence
of the non-empty ranges x ∈ Dx and y ∈ Dy, and for n > 1. To this end we introduce
the following two rules:

EXPONENTIATION

〈x = yn ; x ∈ Dx, y ∈ Dy〉
〈x = yn ; x ∈ D′

x, y ∈ Dy〉

ROOT EXTRACTION

〈x = yn ; x ∈ Dx, y ∈ Dy〉
〈x = yn ; x ∈ Dx, y ∈ D′

y〉
where D′

x := Dx ∩ int(Dn
y), and D′

y := int(Dy ∩ n
√

Dx).
To prove that these rules are equivalence preserving suppose that for some a ∈ Dx

and b ∈ Dy we have a = b n. Then a ∈ Dn
y, so a ∈ int(Dn

y) and consequently a ∈ Dx ∩
int(Dn

y). Also b ∈ n
√

Dx, so b ∈ Dy ∩ n
√

Dx, and consequently b ∈ int(Dy ∩ n
√

Dx).
With exponentiation as an atomic constraint, full decomposition leads to idempo-

tent rules, and the discussion at the end of Section 6 applies.

8 Relation to Hull and Box Consistency

In this section we relate the three approaches introduced above to the well-known
methods for constraint propagation of arithmetic constraints on real variables, whose
domains are represented by floating-point intervals. An overview of these methods
is provided in [9]. Floating-point intervals are intervals of reals, with bounds from a
finite set F ⊆ R ∪ {−∞,∞} of floating-point numbers that contains representations
−∞ and ∞ for plus and minus infinity. For floating-point intervals, the counterpart
of the int(·) operation is the hull of a set of real numbers defined as the smallest
floating-point interval containing the set. Ideally, for an arithmetic constraint c on
the variables x1, . . ., xn with respective floating-point interval domains D1, . . ., Dn

we would like to enforce hull consistency, which entails that for all i ∈ [1..n]
Di = hull(xi ∈ R | ∃x1 ∈ D1, . . . , xi−1 ∈ Di−1, xi+1 ∈ Di+1, . . . , xn ∈ Dn

(x1, . . . , xn) ∈ C).

However, no efficient procedure exists for enforcing hull consistency on arbi-
trary arithmetic constraints. Therefore, the natural approach is to first decompose
constraints into atomic constraints, each containing a single arithmetic operation.
Maintaining hull consistency for the decomposed constraints can be done efficiently,
using proof rules similar to the ones that we introduced, but hull consistency for the
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resulting decomposed CSP is a weaker notion of consistency than hull consistency
for the original CSP.

Our full decomposition approach can be seen as the integer interval equivalent
of the method for computing hull consistency for a decomposition that we just
described, with the exception that linear constraints are not decomposed further.
In the floating-point case, because of the accumulation of the rounding errors,
the characterization of the resulting form of constraint propagation in terms of
hull consistency is possible only if all constraints, including linear constraints, are
decomposed into single-operator constraints.

To illustrate this consider the constraint x + y + z = w with the variables ranging
over the floating-point intervals Dx, Dy, Dz and Dw. When we evaluate Dx + Dy +
Dz using the floating-point interval arithmetic to compute an update for Dw, we have
three options which two intervals to add first. Because the floating-point addition
is non-associative, we actually compute the hull of a decomposition that has an
extra variable added for either x + y, x + z or y + z, and the resulting interval is
potentially a proper superset of hull(Dx + Dy + Dz). Moreover, different rewritings
of the constraint correspond to different decompositions, and although this need not
be a problem in practice, the resulting form of local consistency is no longer clearly
defined.

In contrast, for integer intervals, we do not need to deal with the accumulation
of the rounding errors and the linear constraints can be left intact. Our other
two approaches can be seen as variants of the full decomposition approach that
exploit this property further: for partial decomposition we allow more than one
multiplication per proof rule, and in the direct approach the decomposition is not
made explicit at all. Apart from these variations, all three approaches are the same
in one important aspect: multiple occurrences of the same variable are treated as
different variables. To illustrate this, consider the constraint x3 + x = 0, with x ∈
[−1..1]. While x = 0 is the unique solution, none of our three approaches will be able
to reduce the domain of x. The reason is that the two occurrences of x are essentially
treated as different variables in the reduction rules. This problem is known as the
dependency problem of interval arithmetic.

In the context of constraints on reals [5] proposed to deal with the dependency
problem using the notion of box consistency. It is a weaker notion of local consistency
than hull consistency, but is potentially stronger than hull consistency for the
decomposition of a constraint into atomic constraints (see, e.g., [9]). Enforcing box
consistency, as described in [21], consists of fixing the domains of all variables except
one, and then narrowing the domain of this variable by iteratively instantiating
it with subdomains at the boundary of the original domain, each time verifying
consistency of the constraint in the presence of the domains of the other variables,
and subtracting the subdomain from the original domain if the instantiation leads to
a failure.

The second step of the ‘trial-and-prune’ procedure for enforcing box consistency
that we just sketched can be implemented by enforcing hull consistency on a decom-
position of the original constraint. So the procedure for enforcing box consistency
can be seen as consisting of a number of procedures including the one that enforces
hull consistency. One could apply the same technique to the arithmetic constraints
on integer intervals, replacing the enforcement of hull consistency by one of our
approaches to constraint propagation. This would lead to an integer equivalent
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of the box consistency. The efficiency of the resulting procedure depends on the
choice of the underlying approach to constraint propagation, which provides another
argument for the efficiency analysis of the approaches here considered.

9 A Characterization of the MULTIPLICATION Rules

It is useful to reflect on the effect of the proof rules used to achieve constraint prop-
agation. In this section, by way of example, we focus on the MULTIPLICATION
rules and characterize their effect using the notion of bounds consistency as defined
in [16], limited to integer intervals. Let us recall first the definition that we adopt
here to the multiplication constraint. Given an integer interval [l..h] we denote by
[l, h] the corresponding real interval.

Definition 9.1 The CSP 〈x · y = z ; x ∈ [lx..hx], y ∈ [ly..hy], z ∈ [lz..hz]〉 is called
bounds consistent if

– ∀a ∈ {lx, hx} ∃b ∈ [ly, hy] ∃c ∈ [lz, hz] a · b = c,
– ∀b ∈ {ly, hy} ∃a ∈ [lx, hx] ∃c ∈ [lz, hz] a · b = c,
– ∀c ∈ {lz, hz} ∃a ∈ [lx, hx] ∃b ∈ [ly, hy] a · b = c.

The following result entails that the MULTIPLICATION rules will not reduce a
CSP beyond bounds consistency.

Theorem 9.2 (Bounds consistency) Suppose a CSP 〈x · y=z ; x∈ Dx, y∈ Dy, z∈ Dz〉
with the integer interval domains is bounds consistent. Then it is closed under the
applications of the MULTIPLICATION 1,2 and 3 rules.

Proof See the Appendix. ��

This theorem shows that the MULTIPLICATION rules entail a notion of local
consistency, say M-consistency, that is implied by bounds consistency. However,
M-consistency does not imply bounds consistency. Here is an example. Consider
the CSP

〈x · y = z ; x ∈ [−2..1], y ∈ [−3..10], z ∈ [8..10]〉.

It is not bounds consistent, since for y = −3 no real values a ∈ [−2, 1] and c ∈ [8, 10]
exist such that a · (−3) = c. Indeed, it is easy to check that

{y ∈ R | ∃x ∈ [−2, 1] ∃z ∈ [8, 10] x · y = z} = (−∞,−4] ∪ [8, ∞).

However, this CSP is closed under the applications of the MULTIPLICATION 1,
2 and 3 rules since

– [8..10] ⊆ int([−2..1] · [−3..10]), as int([−2..1] · [−3..10]) = [−20..10],
– [−2..1] ⊆ int([8..10]/[−3..10]) as int([8..10]/[−3..10]) = [−10..10], and
– [−3..10] ⊆ int([8..10]/[−2..1]) as int([8..10]/[−2..1]) = [−10..10].
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The following result clarifies that this example identifies the only cause of discrep-
ancy between M-consistency and bounds consistency. Here, given an integer interval
D := [l..h] we define 〈D〉 := {x ∈ Z | l < x < h}.

Theorem 9.3 (Bounds consistency 2) Consider a CSP φ := 〈x · y = z ; x ∈ Dx, y ∈
Dy, z ∈ Dz〉 with non-empty integer interval domains and such that

0 ∈ 〈Dx〉 ∩ 〈Dy〉 implies 0 ∈ Dz. (5)

Suppose φ is closed under the applications of the MULTIPLICATION 1, 2 and 3
rules. Then it is bounds consistent.

Proof See the Appendix. ��

Consequently the MULTIPLICATION rules only fail to enforce bounds consis-
tency for the constraint x · y = z in case the domains of x and y are both of the form
[l..h], with l < 0 and h > 0 while z can assume either only positive numbers, or only
negative numbers. Because the zeroes in the domains of x and y do not contribute
to any solution, we can remedy this effect by temporarily splitting these domains
in a positive interval and a negative interval. Bounds consistency for the constraint
x · y = z is then achieved by applying the MULTIPLICATION rules to the resulting
subproblems, and updating the domain of each variable with the int(·) closure of the
union of its domain in these subproblems.

In [20] similar rules to our MULTIPLICATION rules are defined that apply this
technique directly. They were defined without the use of interval arithmetic. It is
also shown there that the LINEAR EQUALITY and LINEAR INEQUALITY rules
enforce bounds consistency.

10 Implementation Details

10.1 Weak Division

We already mentioned in Section 3 that the division operation on the intervals
does not admit an efficient implementation. The reason is that the int(·) closure
of the interval division [a..b ]/[c..d] requires an auxiliary computation in case when
0 �∈ [c..d]. The preprocessing of [c..d] becomes impractical for small intervals [a..b ],
and large [c..d], occurring for example for the constraint

∏n
i=1 xi = ∏n

i=1 i, of the
benchmark problem mentioned in Subsection 1.1. This can be remedied by using
the following variant of the division operation. We call it weak division since it yields
a larger set (and so is ‘weaker’).

[a..b ] : [c..d] :=
⎧
⎨

⎩

[�min(A)� .. �max(A)�] if 0 �∈ [c..d], or
0 /∈ [a..b ] and 0 ∈ {c, d} and c < d,

[a..b ]/[c..d] otherwise

where A = {a/c′, a/d′, b/c′, b/d′}, and [c′..d′] = [c..d] − {0}.
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Then int([a..b ] : [c..d]) can be computed by a straightforward case analysis already
used for int([a..b ]/[c..d]) but now without any auxiliary computation. The weak
division operator gives rise to the following versions of the MULTIPLICATION
rules 2 and 3:

MULTIPLICATION 2w

〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉
〈x · y = z ; x ∈ D′

x, y ∈ Dy, z ∈ Dz〉

MULTIPLICATION 3w

〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉
〈x · y = z ; x ∈ Dx, y ∈ D′

y, z ∈ Dz〉

where D′
x := Dx ∩ int(Dz : Dy), and D′

y := Dy ∩ int(Dz : Dx).
In the assumed framework based on constraint propagation and tree search, all do-

mains become eventually singletons or empty sets. It can easily be verified that both
division operations are then equal, i.e., [a..b ] : [c..d] = [a..b ]/[c..d], for a ≥ b and
c ≥ d. For this reason, we can safely replace any of the reduction rules introduced in
this paper, notably POLYNOMIAL EQUALITY, POLYNOMIAL INEQUALITY,
and MULTIPLICATION 2 and 3, by their counterparts based on the weak division.
For the MULTIPLICATION rules specifically, the following theorem states that
both sets of rules actually achieve the same constraint propagation.

Theorem 10.1 (MULTIPLICATION) A CSP 〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉
with the integer interval domains is closed under the applications of the MULTIPLI-
CATION 1, 2 and 3 rules iff it is closed under the applications of the MULTIPLICA-
TION 1, 2w and 3w rules.

Proof See the Appendix. ��

Let us clarify now the relation between the MULTIPLICATION rules and the
corresponding rules based on real interval arithmetic combined with the rounding
of the resulting real intervals inwards to the largest integer intervals. The CSP
〈x · y = z ; x ∈ [−3..3], y ∈ [−1..1], z ∈ [1..2]〉, which we already discussed in the
introduction, shows that these approaches yield different results. Indeed, using
the MULTIPLICATION rule 2 we can reduce the domain of x to [−2..2], while
the latter approach yields no reduction.

On the other hand, the applications of the MULTIPLICATION rules 2w and
3w to 〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉 such that int(Dz : Dx) �= int(Dz/Dx) and
int(Dz : Dy) �= int(Dz/Dy) (so in cases when the use of the weak interval division dif-
fers from the use of the interval division) do coincide with the just discussed approach
based on real interval arithmetic and inward rounding. This is a consequence of the
way the multiplication and division of real intervals are defined, see [15]. However,
as we already stated in the introduction, we believe that the limited precision of
floating-point interval arithmetic, and the modest overhead of arbitrary length
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integers justify a separate implementation of these rules for arithmetic constraints
on integer intervals.

10.2 Implementation

10.2.1 Platform

Our experiments were performed using OpenSolver [23], an experimental constraint
solver based on constraint propagation and tree search. OpenSolver can be con-
figured by software plug-ins in a number of predefined categories, corresponding
to different aspects of constraint propagation and tree search, which makes it
particularly well-suited for carrying out comparative studies of implementations of
constraint solvers. The categories of plug-ins that are relevant for the experiments
reported here are:

– variable domain types, which implement the domains of variables,
– domain reduction functions (DRFs), which correspond to the reduction rules,
– schedulers of DRFs, which determine the order in which the DRFs are applied,
– branching strategies, which split the search tree after constraint propagation has

terminated, and
– several categories corresponding to different aspects of a search strategy that

determine how to traverse a search tree.

All experiments were performed using the IntegerInterval variable domain
type plug-in. Domains of this type consist of an indication of the type of the interval
(bounded, unbounded, left/right-bounded, or empty), and a pair of arbitrary length
integer bounds. This plug-in, and the DRFs operating on it are built using the already
mentioned GNU MP library, which provides arbitrary length integers and arithmetic
operations on them, including operations for rounding the outcome of divisions and
root extractions in the desired direction.

The branching strategy that we used selects variables using a chronological
ordering in which the auxiliary variables come last. The domain of the selected
variable is split into two subdomains using bisection, so the resulting search trees are
binary trees. In all experiments we searched for all solutions, traversing the entire
search tree by means of depth-first leftmost-first chronological backtracking.

For the experiments in this paper a DRF plug-in has been developed that
implements the domain reduction rules discussed in the previous sections. Every
constraint of a CSP is enforced by a number of instantiations of this DRF: one for
each variable occurrence.

The scheduler plug-in that we used in the experiments maintains a flag per
DRF, indicating whether the DRF is pending application or not. Initially, all DRFs
are pending application. If the application of a DRF (or the branching strategy)
modifies the domains of one or more variables, all DRFs whose output depends
on these variables become pending application. Since in general—as illustrated by
the example at the beginning of Section 5—the DRFs are non-idempotent, this may
include the DRF that has just been applied. By default, the scheduler plug-in keeps
cycling through the set of DRFs for a given CSP in a specified order, applying those
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DRFs that are pending application. The cycling stops when no DRF is pending
application, or when the domain of a variable becomes empty.

10.2.2 Scheduling of Reduction Rules

It was already shown in [22] that controlling the order in which variables are updated
can improve the efficiency of constraint propagation algorithms, and for this purpose,
our scheduler plug-in can be supplied with a schedule. Such a schedule is a sequence
of indices into the set of DRFs that describes the order in which the scheduler will
visit them, as an alternative to cycling. This is used in combination with full and
partial decomposition, where we distinguish user constraints from the constraints
that are introduced to define the values of auxiliary variables. Before considering
for execution a DRF f that is part of the implementation of a user constraint, we
make sure that all auxiliary variables that f relies on are updated. For this purpose,
the indices of the DRFs that update these variables precede the index of f in the
schedule. If f can change the value of an auxiliary variable, its index is followed
by the indices of the DRFs that propagate back these changes to the variables that
define the value of this auxiliary variable.

For example, rewriting x3 · y − x ≤ 40 to simple constraints introduces an auxil-
iary variable u, which is equated with x3 · y. This leads to five reduction rules: one for
each occurrence of a variable after the rewriting step. We number these reduction
rules as follows, where we underline in the constraint the variable that is updated by
the rule:

1. u = x3 · y
2. u = x3 · y
3. u = x3 · y
4. u − x ≤ 40
5. u − x ≤ 40

The fragment of the generated schedule that corresponds to enforcing the constraint
x3 · y − x ≤ 40 is then 4,2,3,1,5. Rules 4 and 5 correspond to the original inequality,
but rule 4 potentially modifies u, so in the schedule, rule 4 is followed by rules 2 and
3, that propagate any changes to u back to x and y. Before considering rule 5 for
application, the schedule specifies that first rule 1 should be considered, so that any
changes to the domains of x and y are propagated to the domain of u.

To see that an appropriate scheduling of the rules can be beneficial compared
to cycling through the rules, suppose that all rules are pending application, and
that Dx = Dy = [1..100], and Du = Z . If we iterate the rules in their original order
1,2,3,4,5 then we first reduce Du to [1..1004] by means of rule 1. Next, rules 2 and
3 are executed without making any changes. Rule 4 then reduces Du to [1..140],
which makes rules 2 and 3 pending application again. Next, rule 5 is executed
without reducing Dx. Because x and y have not changed, rule 1 is not set to
pending application, and rule 2 is the first rule that is applied in the second cycle,
which reduces Dx to [1..5]. If use the generated schedule 4,2,3,1,5 instead, the same
reduction is achieved immediately after applying the first two rules, instead of the six
rules that are applied if we just cycle through the rules.

For full decomposition, there can be hierarchical dependencies between auxiliary
variables. Much like the HC4revise procedure of [4], the generated schedule then
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specifies a bottom-up traversal of this hierarchy in a forward evaluation phase, and
a top-down traversal in a backward propagation phase. These phases are performed
before and after applying a DRF of a user constraint, respectively. In the forward
evaluation phase, the DRFs that are executed correspond to the MULTIPLICA-
TION 1 and EXPONENTIATION rules. The DRFs of the backward propagation
phase correspond to the MULTIPLICATION 2 and 3, and ROOT EXTRACTION
rules. The HC4revise procedure is part of the HC4 algorithm, which enforces
hull consistency for constraints on the reals using an implicit decomposition. For
a discussion of this algorithm in the context of controlled constraint propagation,
see [12].

10.2.3 Constraint Rewriting

The proposed approaches were implemented by first rewriting arithmetic constraints
to polynomial constraints, and then to a sequence of DRFs that correspond to the
rules of the approach used. We implemented the following variants:

du (direct, unoptimized): the direct approach, discussed in Section 5, where we
isolate all variable occurrences in the original constraints without decomposing
them first;

do (direct, optimized): the optimization of the direct approach, discussed at the
end of Section 5, which involves dividing out common powers of variables
in the extended arithmetic expressions that arise from isolating the variable
occurrences;

pu (partial, unoptimized): partial decomposition into simple constraints, as dis-
cussed in Section 6. The decomposition is implemented by introducing an
auxiliary variable for every nonlinear power product. This procedure may
introduce more auxiliary variables than necessary;

po (partial, optimized): an optimized version of variant pu, where we stop intro-
ducing auxiliary variables as soon as the constraints contain no more duplicate
occurrences of variables;

fm (full, multiplication): full decomposition into atomic constraints, as discussed
in Section 7, allowing only linear constraints and multiplication as atomic
constraints;

fs (full, squaring): idem, but also allowing x = y2 as an atomic constraint;
fe (full, exponentiation): idem, allowing x = yn for all n > 1 as an atomic

constraint.

If the distinction between the different variants of an approach is irrelevant, we will
sometimes omit the subscripts to the names d, p, and f.

Full and partial decomposition are implemented as a rewrite step, where the
auxiliary variables are introduced. The resulting CSP is then rewritten using the
direct approach. During the first rewrite step the hierarchical relations between
the auxiliary variables are recorded, and the schedules are generated as a part of the
second rewrite step. For variants po and f the question of which auxiliary variables to
introduce is an optimization problem in itself. Some choices result in more auxiliary
variables than others. We have not treated this issue as an optimization problem
but relied on the (somewhat arbitrary) heuristics described below. For this reason
we have to consider the possibility that performance of variants po and f can be
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further improved because in our experiments we used a suboptimal decomposition.
The heuristics are as follows.

– For variant po we replace nonlinear power products from left to right, so the
rightmost nonlinear term of a polynomial constraint is always left intact.

– For the full decomposition approach, nonlinear power products are processed
in the order in which they occur in the problem statement, after normalization
to polynomial constraints. On the first occurrence of a nonlinear power product,
we start introducing auxiliary variables for terms that divide the power product
by multiplying or exponentiating existing variables, and keep doing so until
we have introduced an auxiliary variable that corresponds to the full power
product. When there are several choices for which existing variables to multiply
or exponentiate, we introduce an auxiliary variable for a term with the largest
possible sum of exponents, thereby giving preference to exponentiation over
multiplication, insofar as it is allowed by the variant. For variant fe we first
introduce auxiliary variables for all exponentiations in the power product. For
variant fs, we first introduce auxiliary variables for all exponentiations that divide
the power product, and whose exponent is a power of 2. Unused auxiliary
variables are deleted at a later stage.

To illustrate the latter heuristic, suppose we want to introduce an auxiliary
variable for the term x5 · y3 · z. If we allow exponentiation, we start by introducing
auxiliary variables u1 and u2 for the exponentiations in the term, and constrain
them as follows: u1 = x5, u2 = y3. Next we can introduce an auxiliary variable u3

for x5 · y3, x5 · z, or y3 · z by adding a constraint that multiplies two of the variables
u1, u2, and z. Because the sum of exponents is highest for the first option, we
add u3 = u1 · u2. Finally u4 is introduced to replace the original term: u4 = u3 · z.
With only squaring allowed, we would be making these decisions in the presence of
auxiliary variables for x2, x4, and y2, where x4 is obtained by squaring x2. In this case,
the first auxiliary variable introduced would be for x4 · y2. With only multiplication
allowed, after introducing u1 = x · x and u2 = u1 · u1, we would be expanding the
term be repeatedly multiplying it with x, y, or z.

Except for the optimized version of the direct approach, our current implemen-
tation can be optimized further by adopting the two-step propagation of linear
constraints described in [14], as discussed at the end of Section 4. Because linear con-
straints are never decomposed, the effect is essentially the same for all alternatives
that we discussed, so we have not considered this technique in our evaluation.

11 Experiments

11.1 Problems

For evaluating the alternative approaches, we used the integer problems described
below. Problems with only integer variables and arithmetic constraints are rare in
practice, and in that sense, our benchmark problems are artificial, but they serve
well to generate a purely integer workload. The approach that works best on these
problems can also be expected to work well in a hybrid setting, where integer
variables and arithmetic constraints are mixed with other types of variables and
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constraints. In that case, only a fraction of the workload will be devoted to integer
arithmetic, but with the results of this study we can be confident that we are dealing
with these constraints in an efficient way.

Cubes The problem is to find all natural numbers n ≤ 105 that are a sum of four
different cubes, for example

13 + 23 + 33 + 43 = 100.

This problem is modeled as follows:

〈1 ≤ x1, x1 ≤ x2 − 1, x2 ≤ x3 − 1, x3 ≤ x4 − 1, x4 ≤ n,

x3
1 + x3

2 + x3
3 + x3

4 = n; n ∈ [1..105], x1, x2, x3, x4 ∈ Z〉

Opt We are interested in finding a solution to the constraint x3 + y2 = z3 in the
integer interval [1..105] for which the value of 2x · y − z is maximal.

Fractions This problem is taken from [19]: find distinct nonzero digits such that the
following equation holds:

A
BC

+ D
EF

+ G
HI

= 1

There is a variable for each letter. The initial domains are [1..9]. To avoid symmetric
solutions an ordering is imposed:

A
BC

≥ D
EF

≥ G
HI

Also two redundant constraints are added:

3
A

BC
≥ 1 and 3

G
HI

≤ 1

Because division is not present in our arithmetic expressions, the above constraints
are multiplied by the denominators of the fractions to obtain arithmetic constraints.
We studied a representation for this problem using one equality and four inequalities
for the ordering and the redundant constraints, and 36 disequalities A �= B, A �=
C, ..., H �= I.

Kyoto The problem (see [10]) is to find the number n such that the alphanumeric
equation

K Y O T O
K Y O T O

+ K Y O T O
T O K Y O

has a solution in the base-n number system. Our representation uses a variable for
each letter and one variable for the base number. The variables K and T may not be
zero. There is one large constraint for the addition, 6 disequalities K �= Y ... T �= O
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and four constraints stating that the individual digits K, Y, O, T, are smaller than the
base number. To spend some CPU time, we searched base numbers 2..100.

Sumprod This is the problem cited in Subsection 1.1, for n = 14. We use the
following representation:

〈x1 + . . . + xn = c1 + . . . + cn,

x1 · . . . · xn = c1 · . . . · cn,

x1 ≤ x2, x2 ≤ x3, . . . , xn−1 ≤ xn ;
x1, . . . , xn ∈ [1..n],
c1 ∈ {1}, c2 ∈ {2}, . . . , cn ∈ {n}〉

For n = 14, the value of the expression
∏n

i=1 i equals 14!, which exceeds 232, and to
avoid problems with the input of large numbers, we used bound variables c1, . . . , cn

and constraint propagation to evaluate it.

11.2 Results

Tables 2 and 3 compare the implemented variants of our approaches on the problems
defined in the previous subsection. The first two columns of Table 2 list the number
of variables and DRFs that were used. Column nodes lists the size of the search
tree, including failures and solutions. The next two columns list the number of times
that a DRF was applied, and the percentage of these applications that the domain
of a variable was actually modified. For the opt problem, the DRF that implements
the optimization is not counted, and its application is not taken into account. The
reported CPU times are user time in seconds, as reported by the UNIX time
command on a 1,200 MHz Athlon CPU. The last column compares the performance
of our implementation to that of ECLiPSe, and will be discussed at the end of this
section.

Table 3 lists measured numbers of basic interval operations. Note that for variant
do, there are two versions of the division and addition operations: one for integer
intervals, and one for intervals of reals of which the bounds are rational numbers
(marked Q). Columns multI and multF list the numbers of multiplications of two
integer intervals, and of an integer interval and an integer factor, respectively. These
are different operations in our implementation.

For the cubes, opt, and sumprod problems, the constraints are already in simple
form, so variants du, do and po are identical. For cubes and opt all nonlinear terms
involve a single multiplication or exponentiation, so for these experiments also
variants pu and fe are the same. For the fractions problem, and for sumprod, no
exponentiations are used, so all three variants of the full decomposition approach
that we implemented are identical.

The results of these experiments clearly show the disadvantage of implementing
exponentiation by means of multiplication: there is less domain reduction because we
increase the number of variable occurrences (see the dependency problem, discussed
in Section 8). For opt and variant fm, the run did not complete within reasonable time
and was aborted.

For fractions the symbolic manipulation of variant do reduces the search tree by
a factor 0.70. However, this reduction is not reflected in the timings, and in fact the
CPU time even increases. The reason is that computing the domain updates involves
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Table 2 Statistics and comparison with ECLiPSe

nvar nDRF nodes DRFs applied % eff. CPU (sec) ECLiPSe

Cubes 6.54 s
d,po 5 14 169,755 1,876,192 9.52 9.69 =
pu,fe 9 22 169,755 2,237,590 16.28 6.53 =
fm 13 34 206,405 3,011,749 20.02 8.53 −
fs 13 34 178,781 2,895,717 20.62 8.80 −

Opt 5,752.70 s
d,po 4 7 115,469 5,187,002 42.16 21.55 +
pu,fe 8 15 115,469 9,800,017 60.00 22.75 +
fm 10 21 ? ? ? ? −
fs 10 21 5,065,195 156,906,444 46.49 422.93 −

Fractions 6.90 s
du 9 154 11,289 1,193,579 3.65 15.40 =
do 9 154 7,879 734,980 3.45 17.38 =
pu 37 210 11,289 1,410,436 23.27 4.89 =
po 32 200 11,289 1,385,933 21.65 5.25 =
f 43 208 11,131 1,426,204 27.76 4.98 =

Kyoto 302.73 s
du 5 37 87,085 3,299,814 6.09 21.84 =
do 5 37 87,085 3,288,461 5.94 44.56 +
pu 13 53 87,085 3,781,514 23.02 10.93 =
po 12 51 87,085 3,622,461 21.45 11.24 =
fm 16 60 87,087 4,276,066 26.70 10.40 =
fs 16 60 87,085 4,275,957 26.70 10.39 =
fe 16 59 87,085 3,746,532 23.26 9.42 =

Sumprod 23.25 s
d,po 28 82 230,233 10,910,441 7.91 102.49 =
pu 30 86 230,233 9,196,772 9.39 80.59 =
f 54 134 55,385 3,078,649 18.01 23.75 =

adding intervals of real numbers. The arithmetic operations on such intervals are
more expensive than their counterparts on integer intervals, because the bounds have
to be maintained as rational numbers. Arithmetic operations on rational numbers are
more expensive because they involve the computation of greatest common divisors.
For kyoto the symbolic manipulation did not reduce the size of the search tree, so
the effect is even more severe.

In general, the introduction of auxiliary variables leads to a reduction of the
number of interval operations compared to the direct approach. As discussed at
the end of Section 6, this is because auxiliary variables prevent the evaluation of
subexpressions that did not change. This effect is strongest for fractions, where
the main constraint contains a large number of different power products. Without
auxiliary variables all power products are evaluated for every POLYNOMIAL
EQUALITY rule defined by this constraint, even those power products the variable
domains of which did not change. With auxiliary variables the intervals for such
unmodified terms are available immediately, which leads to a significant reduction
of the number of interval multiplications. For sumprod, the difference between
variants d and pu is a bit artificial, because the operations that are saved involve
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Table 3 Measured numbers (thousands) of interval operations

root exp div multI multF sum total

Cubes
d,po 1,182 4,224 0 0 4,756 4,245 14,408
pu,fe 180 181 0 0 4,756 4,245 9,363
fm 0 0 589 438 4,927 4,363 10,317
fs 192 198 384 198 4,842 4,305 10,121

Opt
d,po 2,299 4,599 1,443 1,444 11,064 5,187 26,037
pu,fe 1,636 1,538 2,150 738 8,138 4,445 18,645
fm ? ? ? ? ? ? ?
fs 21,066 18,106 54,172 18,285 106,652 57,470 275,751

Fractions
du 0 0 868 28,916 14,238 13,444 57,466
do 0 0 51 11,892 8,010 6,727 29,584

1,550 Q 1,355 Q
pu 0 0 734 933 4,736 4,669 11,071
po 0 0 776 1,509 5,292 5,147 12,725
f 0 0 693 339 4,835 4,769 10,636

Kyoto
du 735 11,041 1,963 13,853 10,853 13,946 52,390
do 735 8,146 218 8,955 12,516 10,592 48,749

4,310 Q 3,277 Q
pu 383 759 1,591 484 5,324 7,504 16,044
po 383 759 1,597 1,360 5,756 8,008 17,863
fm 0 0 1,991 578 5,324 7,505 15,398
fs < 0.5 < 0.5 1,990 578 5,324 7,504 15,397
fe 1 1 1,554 484 5,324 7,504 14,868

Sumprod
d,po 0 0 4,032 100,791 85,419 149,479 339,721
pu 0 0 2,186 27,948 81,728 149,479 261,340
f 0 0 609 205 25,799 46,960 73,573

the computation of the constant term c1 · . . . · cn. A comparable number of interval
additions can be saved if we introduce a variable for the constant term c1 + . . . + cn. If
we add these variables to the CSP all variants of the direct and partial decomposition
approaches are essentially the same.

That stronger reduction is achieved as a result of full decomposition, mentioned
in Section 7, is seen for the fractions benchmark and more prominently for sumprod.
In the latter benchmark, this effect depends on a decomposition of the term

∏n
i=1 xi

as x1 · (x2 · (. . . · (xn−1 · xn) . . .)), with an auxiliary variable for each pair of matching
brackets. The decomposition then matches the chronological ordering used to select
the variable for branching. If the ordering is reversed, the number of nodes is equal
to that of the other approaches. The effect described in Section 6 is not demonstrated
by these experiments.

If we do not consider the symbolic manipulation of variant do, variant fe leads
to the smallest total number of interval operations in all cases, but the scheduling
mechanism discussed in Section 10 is essential for a consistent good performance.
If for example the schedule is omitted for opt, the number of interval operations
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almost triples, and performance of variants pu and fe is then much worse than that
of du. This is conform the observations of [12], where it is demonstrated that for
constraints on reals, enforcing hull consistency for a decomposition through repeated
application of the HC4revise procedure yields superior performance compared to the
basic HC3 algorithm. Based on these observations, we expect that the benefit of using
the schedule will grow with the number of variables.

The total numbers of interval operations in Table 3 do not fully explain all
differences in elapsed times. One of the reasons is that different interval operations
have different costs. Also some overhead is involved in applying a reduction rule, so
if the number of applications differs significantly for two experiments, this influences
the elapsed times as well (opt, d, pu). The elapsed times are not the only measure
that is subject to implementation details. For example, we implemented division by a
constant interval [−1.. − 1] as multiplication by a constant, which is more efficient in
our implementation. Such decisions are reflected in the numbers reported in Table 3.

For each of the benchmarks, the last column of Table 2 compares the performance
of the variants that we implemented with that of an ECLiPSe [7] program that directly
encodes the problem statement of Subsection 11.1 using the ic library. For each
problem, the first entry in this column lists the CPU time reported by ECLiPSe for
an all-solution search, where we applied the same branching scheme as we used in
OpenSolver. The other entries compare propagation strength, for which we ran the
solvers without search, and compared the resulting domains of the variables. A mark
‘=’ means that the computed domains are the same, ‘+’ that our variant achieved
stronger reduction, and ‘-’ that constraint propagation is weaker than with ECLiPSe.

In addition, for cubes we verified that the number of nodes in the ECLiPSe search
tree is identical to that for all variants except fm and fs, which nicely fits with the
comparable CPU times. In contrast, for the kyoto benchmark, the number of nodes
in the search tree is substantially lower for our approaches than for ECLiPSe, and
so is the CPU time. For the opt problem the CPU time for our approaches (except
fm) is also substantially lower than for ECLiPSe. We have not verified the number of
nodes visited by the minimize/2 built-in, but the sequence of suboptimal solutions
is identical to that found by our approaches (not verified for fm). For this comparison
we used ECLiPSe version 5.10.

12 Conclusions

In this paper we discussed a number of approaches to constraint propagation for
arithmetic constraints on integer intervals. To assess them we implemented them
using the OpenSolver framework of [23], and compared their performance on a
number of benchmark problems. We can conclude that:

– Implementation of exponentiation by multiplication gives weak reduction. In the
full decomposition approach x = yn should be used as an atomic constraint.

– The optimization of the direct approach, where common powers of variables
are divided out, can significantly reduce the size of the search tree, but the
resulting reduction steps rely heavily on the division and addition of rational
numbers. These operations are more expensive than their integer counterparts,
because they involve the computation of greatest common divisors. As a result,
our implementation of this approach was inefficient.
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– Introducing auxiliary variables can be beneficial in two ways: it may strengthen
constraint propagation, as discussed in Sections 6 and 7, and it may prevent the
evaluation of subexpressions the variable domains of which did not change.

– As a result, given an appropriate scheduling of the rules, the full and partial
decomposition approaches perform better than the direct approach without the
optimization, in terms of numbers of interval operations. Actual performance
depends on many implementation aspects. However for our test problems the
performance of variants pu, po and fe does not differ much, except for one case
where the decomposition of a single multiplication of all variables significantly
reduced the size of the search tree.

Because of the inherent simplicity of the reduction rules and the potential
reduction of the search tree, full decomposition of arithmetic constraints into mul-
tiplication, exponentiation, and linear constraints is our method of choice. However,
a hierarchical scheduling of the resulting reduction rules is essential for efficient
constraint propagation, and if a solver does not provide facilities for controlling the
propagation order, the direct approach seems preferable.

Given that the optimization of the direct approach can achieve a significant reduc-
tion of the search tree, it would be interesting to combine it with full decomposition.
Depending on the effect of the symbolic manipulation, a selection of the optimized
rules that enforce a particular constraint according to variant do could be used as
redundant rules. In this case, the internal computations need not be precise, and
we could maintain the rational bounds as floating-point numbers, thus avoiding the
expensive computation of greatest common divisors.

Acknowledgements We would like to thank Maarten van Emden and the referees of earlier
versions for useful comments.

Appendix

We provide here the proofs of the Bounds consistency Theorems 9.2 and 9.3, and the
MULTIPLICATION Theorem 10.1.

Proof of the Bounds Consistency Theorem 9.2 Let φ := 〈x · y = z ; x ∈ Dx, y ∈ Dy,

z ∈ Dz〉. Call a variable u of φ bounds consistent if the bounds of its domain satisfy
the condition of the bounds consistency (see Definition 9.1).

Given an integer interval [l..h] denote by [l..h] the corresponding real interval
[l, h]. Suppose that Dx = [lx..hx], Dy = [ly..hy], Dz = [lz..hz]. To show that φ is
closed under the applications of the MULTIPLICATION 1 rule it suffices to prove
that

{lz, hz} ⊆ int(Dx · Dy). (6)

So take c ∈ {lz, hz}. By the bounds consistency of z we have c = a · b for some
a ∈ Dx and b ∈ Dy. Since Dx and Dy are integer intervals we have �a�, �a� ∈ Dx and
�b�, �b� ∈ Dy. To prove (6), by the definition of Dx · Dy, we need to find a1, a2 ∈ Dx

and b1, b2 ∈ Dy such that

a1 · b1 ≤ c ≤ a2 · b2.
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The choice of a1, a2, b1 and b2 depends on the sign of a and of b and is provided in
the following table:

Condition a1 b1 a2 b2

a = 0 a �b� a �b�
b = 0 �a� b �a� b
a > 0, b > 0 �a� �b� �a� �b�
a > 0, b < 0 �a� �b� �a� �b�
a < 0, b > 0 �a� �b� �a� �b�
a < 0, b < 0 �a� �b� �a� �b�

To prove that φ is closed under the applications of the MULTIPLICATION 2 and
3 rules it suffices to prove

{lx, hx} ⊆ int(Dz/Dy) and {ly, hy} ⊆ int(Dz/Dx). (7)

We need to distinguish a number of cases. The case analysis depends on the
position of 0 w.r.t. each of the intervals Dx and Dy. This leads to nine cases, which by
symmetry between x and y can be reduced to six cases. We present here the proofs
for representative three cases.

Case 1. lx ≥ 0, ly ≥ 0.
By the bounds consistency of x for some b ∈ [ly, hy] we have lx · b ∈ [lz, hz].
Then b ≤ hy and lx ≥ 0, so lx · b ≤ lx · hy. Also lz ≤ lx · b , so

lz ≤ lx · hy.

Next, by the bounds consistency of y for some a ∈ [lx, hx] we have a · hy ∈
[lz, hz]. Then lx ≤ a and hy ≥ 0, so lx · hy ≤ a · hy. Also a · hy ≤ hz, so

lx · hy ≤ hz.

So lx · hy ∈ [lz..hz] and consequently by the definition of the integer inter-
vals division

lx ∈ Dz/Dy and hy ∈ Dz/Dx.

By a symmetric argument

hx ∈ Dz/Dy and ly ∈ Dz/Dx.

Case 2. lx ≥ 0, hy ≤ 0.
By the bounds consistency of x for some b ∈ [ly, hy] we have hx · b ∈
[lz, hz]. Then b ≤ hy and hx ≥ 0, so hx · b ≤ hx · hy. Also lz ≤ hx · b , so

lz ≤ hx · hy.

Next, by the bounds consistency of y for some a ∈ [lx, hx] we have a · hy ∈
[lz, hz]. Then a ≤ hx and hy ≤ 0, so a · hy ≥ hx · hy. Also hz ≥ a · hy, so

hx · hy ≤ hz.
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So hx · hy ∈ [lz..hz] and consequently by the definition of the integer
intervals division

hx ∈ Dz/Dy and hy ∈ Dz/Dx.

Further, by the bounds consistency of x for some b ∈ [ly, hy] we have lx ·
b ∈ [lz, hz]. Then ly ≤ b and lx ≥ 0, so lx · ly ≤ lx · b . Also lx · b ≤ hz, so

lx · ly ≤ hz.

Next, by the bounds consistency of y for some a ∈ [lx, hx] we have a · ly ∈
[lz, hz]. Then lx ≤ a and ly < 0, so lx · ly ≥ a · ly. Also a · ly ≥ lz, so

lz ≤ lx · ly.

So lx · ly ∈ [lz..hz] and consequently by the definition of the integer intervals
division

lx ∈ Dz/Dy and ly ∈ Dz/Dx.

Case 3. lx < 0 < hx, ly ≥ 0.
The proof for this case is somewhat more elaborate. By the bounds con-
sistency of x for some b ∈ [ly, hy] we have lx · b ∈ [lz, hz]. Then ly ≤ b and
lx < 0, so lx · ly ≥ lx · b . But also lx · b ≥ lz, so

lz ≤ lx · ly.

Next, by the bounds consistency of y for some a ∈ [lx, hx] we have a · ly ∈
[lz, hz]. Then lx ≤ a and ly ≥ 0, so lx · ly ≤ a · ly. But also a · ly ≤ hz, so

lx · ly ≤ hz.

So lx · ly ∈ [lz..hz] and consequently by the definition of the integer intervals
division

lx ∈ Dz/Dy and ly ∈ Dz/Dx.

Further, by the bounds consistency of x for some b ∈ [ly, hy] we have
hx · b ∈ [lz, hz]. Then ly ≤ b and hx > 0, so hx · ly ≤ hx · b . But also hx · b ≤
hz, so

hx · ly ≤ hz.

Next, we already noted that by the bounds consistency of y for some a ∈
[lx, hx] we have a · ly ∈ [lz, hz]. Then a ≤ hx and ly ≥ 0, so a · ly ≤ hx · ly. But
also lz ≤ a · ly, so

lz ≤ hx · ly.

So hx · ly ∈ [lz..hz] and consequently by the definition of the integer inter-
vals division

hx ∈ Dz/Dy.

It remains to prove that hy ∈ Dz/Dx. We showed already lx · ly ≤ hz.
Moreover, lx < 0 and ly ≤ hy, so lx · hy ≤ lx · ly and hence

lx · hy ≤ hz.



464 K.R. Apt, P. Zoeteweij

Also we showed already lz ≤ hx · ly. Moreover hx > 0 and ly ≤ hy, so
hx · ly ≤ hx · hy and hence

lz ≤ hx · hy.

So if either lz ≤ lx · hy or hx · hy ≤ hz, then either lx · hy ∈ [lz..hz] or hx ·
hy ∈ [lz..hz] and consequently hy ∈ Dz/Dx.
If both lx · hy < lz and hz < hx · hy, then

[lz..hz] ⊆ [lx..hx] · hy.

In particular for some a ∈ Dx we have lz = a · hy, so hy ∈ Dz/Dx, as well.

This concludes the proof for this case. ��

Proof of the Bounds Consistency Theorem 9.3 We consider each variable in turn.
We begin with x. Suppose that Dx = [lx..hx]. φ is closed under the applications of
the MULTIPLICATION 2 rule, so

{lx, hx} ⊆ int(Dz/Dy). (8)

To show the bounds consistency of x amounts to showing

{lx, hx} ⊆ Dz � Dy. (9)

(Recall that given real intervals X and Y we denote by X � Y their division, defined
in Section 3.)

Case 1. int(Dz/Dy) = Z .
This implies that 0 ∈ Dz ∩ Dy, so by the definition of real intervals division
Dz � Dy = 〈−∞, ∞〉. Hence (9) holds.

Case 2. int(Dz/Dy) �= Z .
So int(Dz/Dy) is an integer interval, say int(Dz/Dy) = [lzy..hzy]. Two
subcases arise.

Subcase 1. Dz � Dy is a, possibly open ended, real interval.
By (8) for some b1, b2 ∈ Dy and c1, c2 ∈ Dz we have

lzy · b1 = c1,

hzy · b2 = c2.

Let

b := min(b1, b2), b := max(b1, b2), c := min(c1, c2), c := max(c1, c2).

So {lzy, hzy} ⊆ [c, c] � [b , b ]. Also [c, c] � [b , b ] ⊆ Dz � Dy. Hence
{lzy, hzy} ⊆ Dz � Dy and consequently, by the assumption for this
subcase, [lzy, hzy] ⊆ Dz � Dy. This proves (9) since by (8) {lx, hx} ⊆
[lzy, hzy].

Subcase 2. Dz � Dy is not a, possibly open ended, real interval.
In what follows for an integer interval D := [l..h] we write D > 0 if l > 0,
D < 0 if h < 0. Also recall that 〈D〉 := {x ∈ Z | l < x < h}.
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This subcase can arise only when Dz > 0 and 0 ∈ 〈Dy〉 or Dz < 0 and
0 ∈ 〈Dy〉, see [18] (reported as Theorem 4.8 in [15]), where the definition
of the division of real intervals is considered.
Since φ is closed under the MULTIPLICATION rule 3

Dy ⊆ int(Dz/Dx).

So int(Dz/Dx) �= ∅ since by assumption Dy is non-empty. Also, since
0 �∈ Dz, we have int(Dz/Dx) �= Z . So int(Dz/Dx) is a non-empty integer
interval such that 0 ∈ 〈int(Dz/Dx)〉.

But Dz > 0 or Dz < 0, so if Dx > 0, then int(Dz/Dx) > 0 or int(Dz/Dx) < 0 and
if Dx < 0, then int(Dz/Dx) > 0 or int(Dz/Dx) < 0, as well. So 0 ∈ 〈Dx〉. Hence 0 ∈
〈Dx〉 ∩ 〈Dy〉 while 0 �∈ Dz. This contradicts (5). So this subcase cannot arise.

The proof for the variable y is symmetric to the one for the variable x.
Consider now the variable z. φ is closed under the applications of the MULTI-

PLICATION 1 rule, so

Dz ⊆ int(Dx · Dy).

Take now c ∈ Dz. Then there exist a1, a2 ∈ Dx and b1, b2 ∈ Dy such that a1 · b1 ≤
c ≤ a2 · b2. We can assume that both inequalities are strict, that is,

a1 · b1 < c < a2 · b2, (10)

since otherwise the desired conclusion is established.
Let

a := min(a1, a2), a := max(a1, a2), b := min(b1, b2), b := max(b1, b2).

We now show that a ∈ [a..a] and b ∈ [b ..b ] exist such that c = a · b . Since
[a..a] ⊆ Dx and [b ..b ] ⊆ Dy, this will establish the bounds consistency of z.

The choice of a and b depends on the signs of a1 and b2. When one of these
values is zero, the choice is provided in the following table, where in each case on
the account of (10) no division by zero takes place:

Condition a b

a1 = 0 c/b2 b2

a2 = 0 c/b1 b1

b1 = 0 a2 c/a2

b2 = 0 a1 c/a1

It is straightforward to show that in each case the quotient belongs to the corre-
sponding interval. For example, when a1 = 0 we need to prove that c/b2 ∈ [a..a]. By
(10) a2 �= 0. If a2 > 0, then again by (10), b2 > 0, so c/b2 ∈ [0..a2]. In turn, if a2 < 0,
then also by (10) b2 < 0, so, yet again by (10), c/b2 ∈ [a2..0].

When neither a1 nor b2 is zero, the choice of a and b has to be argued case by case.

Case 1. a1 > 0, b2 > 0.
Then by (10) b1 < c/a1 and c/b2 < a2. Suppose that both b2 < c/a1 and
c/b2 < a1. Then a1 · b2 < c < a1 · b2, which is a contradiction. So either
c/a1 ≤ b2 or a1 ≤ c/b2, that is either c/a1 ∈ [b1..b2] or c/b2 ∈ [a1..a2].
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Case 2. a1 > 0, b2 < 0.
Then by (10) b1 < c/a1 and a2 < c/b2. Suppose that both b2 < c/a1 and
a1 < c/b2. Then a1 · b2 < c < a1 · b2, which is a contradiction. So either
c/a1 ≤ b2 or c/b2 ≤ a2, that is either c/a1 ∈ [b1..b2] or c/b2 ∈ [a2..a1].

Case 3. a1 < 0, b2 > 0.
Then by (10) c/a1 < b1 and c/b2 < a2. Suppose that both c/a1 < b2 and
c/b2 < a1. Then a1 · b2 < c < a1 · b2, which is a contradiction. So either
b2 ≤ c/a1 or a1 ≤ c/b2, that is either c/a1 ∈ [b2..b1] or c/b2 ∈ [a1..a2].

Case 4. a1 < 0, b2 < 0.
Then by (10) c/a1 < b1 and a2 < c/b2. Suppose that both c/a1 < b2 and
a1 < c/b2. Then a1 · b2 < c < a1 · b2, which is a contradiction. So either
b2 ≤ c/a1 or c/b2 ≤ a1, that is either c/a1 ∈ [b2..b1] or c/b2 ∈ [a2..a1].

So in each of the four cases we can choose either a := a1 and b := c/a1 or a := c/b2

and b := b2. ��

Proof of the MULTIPLICATION Theorem 10.1 The weak interval division pro-
duces larger sets than the interval division. As a result the MULTIPLICATION rules
2w and 3w yield a weaker reduction than the original MULTIPLICATION rules 2
and 3. So it suffices to prove that φ := 〈x · y = z ; x ∈ Dx, y ∈ Dy, z ∈ Dz〉 is closed
under the applications of the MULTIPLICATION 1, 2 and 3 rules assuming that
it is closed under the applications of the MULTIPLICATION 1, 2w and 3w rules.
Suppose that Dx = [lx..hx], Dy = [ly..hy], Dz = [lz..hz]. The assumption implies

{lx, hx} ⊆ int(Dz : Dy) (11)

and

{ly, hy} ⊆ int(Dz : Dx) (12)

The proof is by contradiction. Assume that (11) and (12) hold, while φ is not
closed under application of MULTIPLICATION 2 and 3. Without loss of generality,
suppose that MULTIPLICATION 2 is the rule that can make a further reduction.
This is the case iff

int(Dz/Dy) ⊂ int(Dz : Dy).

By definition, the proper inclusion implies that ly ≥0 or hy ≤0. Assume ly ≥0, the case
for hy ≤0 is similar. Let l′y := max(1, ly), and let A := {lz/ l′y, lz/hy, hz/ l′y, hz/hy}, and
B := {lz/ lx, lz/hx, hz/ lx, hz/hx}. A further implication of the proper inclusion is that
one or both of l′y and hy do not have a multiple in Dz: otherwise min(A) and max(A)

would be elements of Dz/Dy, and we would have int(Dz : Dy) = int(Dz/Dy). The
cases for l′y and hy can be seen in isolation, and their proofs are similar, so here we
only consider the case that l′y does not have a multiple in Dz. In what follows we can
assume 0 /∈ Dz, since otherwise l′y and hy do have a multiple in Dz.

Case 1. lz > 0.
From (11) it follows that hx ≤ �max(A)�, which for the case l′y, hy, lz, hz >

0 that we consider here implies hx ≤ �hz/ l′y�. Because [lz..hz] does not
contain a multiple of l′y, we have �hz/ l′y� = �lz/ l′y�, so

hx ≤ �lz/ l′y�.
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A further consequence of (11) is that lx, hx > 0. From (12) it follows that
l′y ≥ �min(B)�, which for lx, lz > 0 implies

l′y ≥ �lz/hx� ≥ lz/hx ≥ lz/�hz/ l′y�.
Because l′y is no divisor of lz, and both numbers are positive, we have
�lz/ l′y� < lz/ l′y, and consequently l′y > lz/(lz/ l′y), leading to l′y > l′y, which
is a contradiction.

Case 2. hz < 0. Similarly, because l′y, hy > 0 and lz, hz < 0, it follows from (11) that
lx ≥ �min(A)� = �lz/ l′y�, and lx, hx < 0. Because [lz..lh] does not contain a
multiple of l′y, we have �lz/ l′y� = �hz/ l′y�, so

lx ≥ �hz/ l′y�.
We use this information in the following implication of (12):

l′y ≥ �min(B)� = �hz/ l′x� ≥ hz/ l′x

to get l′y ≥hz/�hz/ l′y�. Because |�hz/ l′y�| < |hz/ l′y|, we have l′y > hz/(hz/ l′y),
leading to l′y > l′y, which is a contradiction. ��
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