Constraints, , 1-30 ()
© Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Local Search-Based Hybrid Algorithms for
Finding Golomb Rulers

CARLOS COTTA ccottap@lcc.uma.es

Dept. Lenguajes y Ciencias de la Computacion, E.T.S.I. Informdtica, Universidad de Mdlaga,
Campus de Teatinos, 29071 — Mdlaga, Spain

IVAN DOTU ivan.dotu@uam.es
Dept. Ingenieria Informdtica, Universidad Auténoma de Madrid, Spain

ANTONIO J. FERNANDEZ afdez@lcc.uma.es

Dept. Lenguajes y Ciencias de la Computaciéon, E.T.S.I. Informdtica, Universidad de Madlaga,
Campus de Teatinos, 29071 — Madlaga, Spain

PASCAL VAN HENTENRYCK pvh@cs.brown.edu
Brown University, Box 1910, Providence, RI 02912

Abstract. The Golomb Ruler Problem is a very hard combinatorial optimization problem that
has been tackled with many different approaches, such as Constraint Programming (CP), Local
Search (LS), Evolutionary Algorithms (EAs), and hybrid LS and CP, among others.

This paper describes several local search-based hybrid algorithms to find optimal or near-optimal
Golomb rulers. These algorithms are based on both stochastic methods and systematic tech-
niques. More specifically, the algorithms combine ideas from greedy randomized adaptive search
procedures (GRASP), scatter search (SS), tabu search (TS), clustering techniques, and constraint
programming (CP). Each new algorithm is, in essence, born from the conclusions extracted after
the observation of the previous one. With these algorithms we are capable of solving large rulers
with a reasonable efficiency. In particular, we can now find optimal Golomb rulers for up to 16
marks.

In addition, the paper also provides an empirical study of the fitness landscape of the problem
with the aim of shedding some light about the question of what makes the Golomb ruler problem
hard for certain classes of algorithm.

Keywords: Constraint Programming, Local Search, Tabu Search, Evolutionary Algorithms,
Golomb Rulers, Clustering.

1. Introduction

The concept of Golomb rulers was first introduced by W.C. Babcock in 1953 [2],
and further described by S.W. Golomb [6]. Golomb rulers are a class of undirected
graphs that, unlike usual rulers, measure more discrete lengths than the number
of marks they carry. The particularity of Golomb rulers is that all differences be-
tween pairs of marks are unique. Precisely, this feature makes Golomb rulers really
interesting in many applications in the real world, mainly in engineering. For in-
stance, in the field of communications when setting up an interferometer for radio
astronomy, placing the antennas on the marks of a Golomb ruler maximizes the
recovery of information about the phases of the signal received [4]. Golomb rulers

2 COTTA, DOTU, FERNANDEZ AND VAN HENTENRYCK

have been used for the design of self-orthogonal codes in the area of coding theory
(for error detection and correction) [30, 49]. Moreover, Golomb rulers have been
applied to many more interesting applications such as carrier frequency assignment
[17], radio communication [2], X-ray crystallography [6], and pulse phase modu-
lation [51], among others (see a description of a number of practical applications
in [14, 15, 48]). Needless to say, this feature also introduces numerous constraints
that hinder the search of short feasible rulers, let alone optimal Golomb rulers (an
Optimal Golomb Ruler — OGR — is defined as the shortest Golomb ruler for a given
number of marks; there may be multiple OGRs for a specific number of marks).

The search for OGRs is an extremely difficult task as it is a combinatorial problem
whose bounds grow geometrically with respect to the solution size [54]. This has
been a major limitation as each new ruler to be discovered is, by necessity, larger
than its predecessor. In any case, the search space is bounded and, therefore,
solvable [30]. To date, the largest number of marks for which an optimal Golomb
ruler has been found is 24 marks. Finding optimal Golomb rulers with a high
number of marks is, computationally speaking, very costly. For instance, the search
for an optimal 19 marks Golomb ruler took approximately 36,200 CPU hours on a
Sun Sparc workstation using a very specialized algorithm [14]. Moreover, optimal
solutions for 20 up to 24 marks were obtained by massive parallelism projects,
taking several months -even years for 24 marks - for each of those instances [48, 24].
[53, 55]. Finding optimal Golomb rulers has thus become a standard benchmark
to evaluate and compare a variety of search techniques, in particular, evolutionary
algorithms (EAs), constraint programming (CP) and local search (LS). Being such
an extremely difficult combinatorial task, the Golomb ruler problem represents an
ideal scenario for deploying the arsenal of search algorithms.

The main contribution of this paper is the introduction of several hybrid ap-
proaches based on EAs, LS, and CP to solve the OGR problem. Combining ideas
from greedy randomized adaptive search procedures (GRASP) [16], scatter search
(SS) [23, 32], tabu search (TS) [21, 22], clustering [27], and CP, we are capable of
solving the OGR, problem for up to 16 marks, a notorious improvement with regard
to previous approaches reported in the literature. We present successive algorith-
mic models that integrate these techniques, and show that they succeed in problem
instances where other approaches could not. We also study the search space of the
OGR problem from a general standpoint, and provide some hints on what makes
the problem hard (or more precisely, on why some representations of the problem
can be inappropriate for certain search algorithms). Indeed, one of the key aspects
of our approaches is the eclectic combination of direct and indirect formulations of
solutions in different stages of the search. Before providing more details on this,
the following section will describe the notation used in the rest of the paper, and
will survey previous related work on the OGR problem.

2. Background

The OGR problem can be classified as a fixed-size subset selection problem, such as
e.g., the p-median problem [40]. It exhibits some very distinctive features though.

LOCAL SEARCH-BASED HYBRID ALGORITHMS FOR FINDING GOLOMB RULERS 3

6

Figure 1: A Golomb Ruler with 4 marks

A brief overview of the problem, and how it has been tackled in the literature is
provided below.

2.1. Golomb Rulers: definition

A Golomb ruler consists of ordered series of non-negative integer numbers. These
numbers are referred to as marks, and corresponds to positions on a linear scale.
The difference between the values of any two marks is called the distance between
two marks, and this distance is unique for that ruler. The difference between the
first and last mark is referred to as the length of the Golomb ruler, and corresponds
to the largest distance for the Golomb ruler. By convention, it is assumed that the
first mark of the ruler is placed at position 0. For a specific number of marks, there
may exist multiple different Golomb rulers of the same length, and each Golomb
ruler of n-marks has an equivalent ruler, called the mirror image. In the mirror
image, the n-th mark of the original ruler will be at the extreme left of the image.
The new position of each mark, originally at, say ¢, will now be at n — i. The
properties of mirror images are that they have identical first-order differences with
the result that they measure an identical set of distances. This is important because
no pair of rulers with greater than six marks have been found to have the property
unless they are mirror images [48].

In other words, an n marks Golomb ruler is a sequence of n distinct non-negative
integers, called marks, a1 < ... < an, such that all the differences a; —a; (i > j) are
mutually distinct. Clearly we may assume a; = 0. By convention, a,, is the length
of the Golomb ruler. A Golomb ruler with n marks is an optimal Golomb ruler if,
and only if,

e there exists no other n marks Golomb ruler having smaller length, and

e the ruler is canonically “smaller” with respect to its equivalent. This means
that the distance between the first two marks in the ruler is less than the
corresponding distance in the equivalent ruler.

Optimality is not unique in Golomb rulers and there may be more than one
optimal Golomb ruler with a specific number of marks.

4 COTTA, DOTU, FERNANDEZ AND VAN HENTENRYCK

2.2. Representational issues

In essence, two main approaches can be distinguished for tackling this problem.
The first one is the direct approach in which the algorithm conducts the search in
the space G, of all the n marks Golomb rulers (i.e., the solution set for n marks). In
this approach, Golomb rulers are typically represented by the values of the marks
on the ruler, i.e., in an n marks Golomb ruler, a; = k (1 < 7 < n) means that k
is the value of the mark in position i. Fig.1 shows an OGR with 4 marks (observe
that all distances between any two marks are different) and the sequence (0, 1, 4, 6)
would represent directly the ruler. Its mirror image would be then represented by
the sequence (0,2, 5,6).

However, this representation turns out to be inappropriate for several approaches,
such as for EAs (for example, it is problematic with respect to developing good
crossover operators [56]). For that reason, an alternative approach is the so-called
indirect approach, in which an auxiliary S,ux space is used by the EA in order
to perform the S,ux — G, mapping. For instance, an alternative representation
consists of representing the Golomb ruler by the lengths of its segments, i.e., the dis-
tances between consecutive marks. Therefore, a Golomb Ruler can be represented
with n — 1 distances specifying the lengths of the n — 1 segments that compose it.
Following the previous example, the sequence (1,3,2) would encode the ruler in
Fig.1.

2.8. Finding OGRs

The OGR problem has been solved using very different techniques. The evolution-
ary techniques found in the literature to obtain OGRs are described in Sect. 2.4
since they are closer to our hybrid algorithms and we believe they should be re-
viewed separately for that reason. Here, we provide a brief overview of some of the
most popular non-evolutionary techniques used for this problem.

Firstly, it is worth mentioning some classical algorithms used to generate and
verify OGRs such as the Scientific American algorithm [12], the Token Passing
algorithm (created by Professor Dollas at Duke University) and the Shift algorithm
[37], all of them compared and described in [48]. In general, both non-systematic
and systematic methods have been applied to find OGRs. Regarding the former,
we can cite for example the use of geometry tools (e.g., projective plane construc-
tion and affine plane construction). With these approaches, one can compute very
good approximate values (i.e., near-optimal Golomb rulers whose lengths are within
several units of the corresponding optimal Golomb rulers) for OGR, with up to 158
marks [55]. As to systematic (exact) methods, we can mention the method pro-
posed by Shearer to compute OGRs up to 16 marks [54]; basically this method was
based on the utilization of branch-and-bound algorithms combined with a depth
first search strategy (i.e., backtracking algorithms), making use of upper-bounds
set equal to the minimum length in the experiments. Evidently this avoided the di-
vergence of the results and influenced positively the performance of the algorithm.
This approach has been also followed in massive parallelism initiatives such as the

LOCAL SEARCH-BASED HYBRID ALGORITHMS FOR FINDING GOLOMB RULERS 5

Table 1: Experimental results of CLS for rulers from 5 to 16 marks. Entries
indicate the relative error with respect to the optimum of the best solution found

number of marks
5 6 7 8 9 10 11 12 13 14 15 16

Relative errors 00 00 00 00 00 00 00 11.8 6.6 94 106 12.99

OGR project mentioned before. This project has been able to find the OGRs with
a number of marks between 20 and 24, although it took several months (even years)
to find optimum for each of those instances [14, 24, 42, 48].

Constraint programming techniques have also been used, although with limited
success. For example, Smith and Walsh [57] obtained interesting results in terms of
nodes in the branching schema. However, computation times are far from the results
obtained by previous approaches. More recently, Galinier et al. [19] proposed a
combination of constraint programming and sophisticated lower bounds for finding
OGRs. They showed that both the shape of the search tree (i.e., basically the
number of nodes) and the computation time depended on the different ways in
which the bound might be used.

A novel hybrid local search and constraint programming approach is presented
in [45]. The author develops a hybrid algorithm named Constrained Local Search
(CLS), which introduces a noise parameter b that indicates the number of variables
to unassign when a dead-end occurs. This parameter can take values b > 1 and
the heuristic to choose the variables to unassign is partly random and makes no
attempt to maintain completeness. For the Golomb Ruler Problem, the model is
based on the ternary and binary constraint model described in [57]. Table 1 shows
the experimental results for this approach.

2.4. FEvolutionary Approaches to the OGR

In this section we will focus on the evolutionary approaches to solve OGRs consid-
ered so far in the literature. The direct and indirect approaches, as presented in
Sect. 2.2, are discussed below.

2.4.1. Direct Approaches. In 1995, Soliday, Homaifar and Lebby [56] used a
genetic algorithm on different instances of the Golomb Ruler problem. In their
representation, each chromosome is composed by a permutation of n — 1 integers
that represents the sequence of the n — 1 lengths of its segments. In order to assure
the uniqueness of each segment length in all the individuals of the population,
certain precautions were taken: initially, an array with numbers 1 to m (i.e. the
maximum segment length) was loaded; then a repetitive sequence of random swaps
between two positions i, j (i # j and 4,5 > 1) in the array was executed; finally the
first n—1 were selected and position 1 (initially containing the value 1) was randomly
swapped with some of those selected positions. Soliday et al. also prevented mirror

6 COTTA, DOTU, FERNANDEZ AND VAN HENTENRYCK

Table 2: Results obtained by Soliday et al.’s and Feeney’s approaches. Entries
indicate the relative error with respect to the optimum of the best solution found.

number of marks
5 6 7 8 9 10 11 12 13 14 15 16

Soliday et al. 0o 0 0 29 0 127 9.7 212 170 323 364 36.5
Feeney 0 0 O 0 68 127 11.1 188 151 15.0 189 20.3

image representations by aligning the ruler. Two evaluation criteria were followed:
the overall length of the ruler, and the number of repeated measurements. The
mutation operator consisted of two types: a permutation in the segment order,
or a change in the segment lengths. As with the population generation, special
precautions were taken to assure that a segment of length 1 is retained in the ruler
as it was proved that all good Golomb rulers should have a segment of length one
[6]. A special crossover operator was designed to guarantee that descendants are
valid permutations and that length 1 was also retained.

Later, Feeney studied the effect of hybridizing genetic algorithms with local im-
provement techniques to solve Golomb rulers [15]. Namely, he examined three
methods of searching for Golomb Rulers, using genetic algorithms on its own, with
local search and Baldwinian learning, and with local search and Lamarckian learn-
ing (see e.g. [18, 25, 29| for more information on Lamarckian and Baldwinian learn-
ing). It is known that, combined with EAs, local search techniques often reduce
drastically the number of generations to find a near-optimal solution (see e.g., [41]).
However, this can be also a weakness since it can result in premature convergence to
suboptimal solutions in certain problems. Moreover, distinct learning techniques
may behave differently in solving the same problem; therefore, these techniques
usually depend greatly on the problem and even on the instance itself. The repre-
sentation used consisted of an array of integers corresponding to the marks of the
ruler. The crossover operator was similar to that used in Soliday et al.’s approach
although a sort procedure was added at the end. Mutation process was applied on
each segment of the ruler with a mutation probability, and consisted basically in
the addition to the segment mark selected for mutation of a random amount in the
range [—x,z] where x is the maximum difference between any pair of marks in any
ruler of the initial population.

Table 2 shows the results produced by Soliday et al.’s and Feeney’s approaches.
With respect to the different approaches studied by Feeney, we have selected the
best result obtained in [15], that corresponds to the execution of a genetic algorithm
(with high mutation and no crossover) without local search. Here, the maximum
number of generations allowed was 250; the program was executed three times and
the ruler whose length was closest to the average obtained in the three executions
was accepted as the most typical result (unless two had the same length in which
case the most typical result was their length). These results indicate that Soliday
et al.’s approach is not very good compared to further EA approaches to solve the

LOCAL SEARCH-BASED HYBRID ALGORITHMS FOR FINDING GOLOMB RULERS 7

Golomb problem. Observe that, for rulers with 10 to 16 marks, the relative error is
far from the known OGRs as it is between 9.7% and 36.5%. On its turn, Feeney’s
approach behaves better and maintains this error between 6.8% and 20.3% for the
same rulers, which means a significant improvement.

Feeney’s hybrid approach was found to be successful in generating near-optimal
rulers and in generating optimal Golomb rulers of a short length. Observe also that
the error remains in the short range [15.0%..20.3%)] for rulers with marks from 12
to 16. This clearly indicates a stabilization of the error. However, as it is reported
in [15], performance was really poor, as it was expected, mainly due to the local
search.

2.4.2. Indirect Approaches. Recently, Pereira et al. [46] have presented a new
EA approach to find OGRs. This new approach uses the concept of random keys
[5] to codify the information contained in each chromosome. As in the Soliday et
al.’s approach, any candidate solution for an n marks OGR is represented with
the length of each of its n — 1 segments. In fact, a chromosome is composed by a
permutation of A distinct values (where A is the maximum segment length), and
the encoding of the permutation is done with random keys (RK). The basic idea
consists of generating a sequence of n random numbers (i.e., the keys) sampled from
the interval [0, 1]; the positions in the sequence are then sorted in a decreasing order,
according to the key they store. This results in a permutation of the n indices. The
codification is based on a more advanced principle: the concept of NetKeys (an
extension of RK to problems dealing with tree network design) although the basic
idea is that described above. Two evaluation criteria, similar to those described
in [56], were followed: ruler length and whether the solution contains repeated
measurements. They also presented an alternative algorithm that adds a heuristic
favoring the insertion of small segments to the RK approach already proposed. We
will return later to this approach since it has been included in our experimental
comparison.

3. A GRASP-Based Hybrid Approach

Our first approach to tackle the Golomb ruler problem is an indirect approach
based on incorporating ideas from greedy randomized adaptive search procedures
(GRASP) to an evolutionary algorithm [9, 16]. It is thus necessary discussing firstly
the deployment of this latter metaheuristic on the OGR, problem.

3.1. Basic GRASP for the OGR Problem

GRASP can be viewed as repetitive sampling techniques [52]. Each iteration, the
algorithm produces a tentative solution for the problem at hand by means of a
greedy randomized construction algorithm. This latter algorithm assumes that so-
lutions are represented by a list of attributes, and builds solutions incrementally
by specifying values for these attributes. More precisely, the values for each at-

8 COTTA, DOTU, FERNANDEZ AND VAN HENTENRYCK

tribute are ranked according to some local quality measure, and selected using a
quality-biased mechanism. The pseudocode of this process is shown in Fig. 2.

sol «— ;

while —completed(sol) do
RCL « build a ranked candidate list.
s < select attribute value from RCL.
sol « sol U {s};

return sol;

A e

Figure 2: Pseudocode of the greedy construction process

One of the key steps in this pseudocode is the selection of an attribute from RCL
(i.e., the ranked candidate list). This can be typically done by using a qualitative
criterion (i.e., a candidate is selected among the best k elements in RCL, where k
is a parameter), or a quantitative criterion (i.e., a candidate is selected among the
elements whose quality is between ¢; and ¢1 + « - (qrcr| — q1), Where ¢; is the
quality of the ith element of RCL and « is a parameter). Notice that having k = 1
or o = 0 would thus result in a plain greedy heuristic. GRASP is based on iterating
this construction procedure (possibly applying some local improvement technique
to the so-obtained solutions), keeping the best solution generated along the run.

In the OGR problem, the attributes of solutions are obviously the position of the
marks. The construction procedure would then iteratively place each of the n — 1
marks (the first mark is assumed to be a; = 0). The (¢4 1)th mark can be obtained
as a;+1 = a;+1;, where [; > 1 is the ith segment length. We thus have a potential list
of candidates based on tentative values for I; € {1,2,--}. Actually, this potential
list of candidates can be as long as desired, although a bound A € O(n) is typically
chosen. Of course, many candidates from this potential list are infeasible since they
would lead to repeated distances between marks. A potential value I; would then
be feasible if, and only if, for all j,k,7 such that 1 < j <7and 1 <k <7r <14, it
holds that (a; +1; — a;) # (ar —ax). After filtering infeasible segment lengths (only
values I; < maxi<r<r<i(ar —ag) have to be checked) we come up with the elements
of the actual RCL. A quality measure is now required. In this problem, the natural
measure is the length of the ruler. Since at each step the value of a; is known, it
turns out that the ranked list consists of the sequence of increasing feasible values
for ;. A qualitative selection criterion can then be defined by picking a random
candidate among the smallest k feasible values for ;.

3.2. Reactive GRASP vs Hybrid EA

One of the potential problems of the basic GRASP procedure described before relies
on the selection of the parameter for selecting an attribute value from the RCL. As
shown in [43], using a single fixed value for this parameter may hinder finding high-
quality solutions. Several options are possible to solve this problem. In particular,

LOCAL SEARCH-BASED HYBRID ALGORITHMS FOR FINDING GOLOMB RULERS 9

a learning-based strategy termed reactive GRASP has been proposed [44]. In this
case, the value of the parameter is chosen in each iteration from a set of discrete
values I = {my,--- ,mn}. The selection of the precise value of the parameter at
each iteration can be done on the basis of the goodness ; of the best solution ever
generated by using each parameter m;. Any of the selection mechanisms typically
used in EAs can be utilized for this purpose. For example, in [44], a roulette-wheel
procedure is proposed. Since we are dealing here with a minimization problem,
such a proportional approach would not be possible unless goodness values were
appropriately transformed. We have opted for a simpler approach: using a non-
proportionate approach. To be precise, we have considered binary tournament for
selecting parameter values.

Using a reactive approach allows the algorithm focusing on the more appropriate
subset of parameter values. However, it can still face difficulties if optimal (or near-
optimal) solutions comprise an attribute value whose rank in the RCL is high: a low
value of the selection parameter would preclude picking this attribute value; a high
enough value of the selection parameter could select it, but many other low-quality
attributes as well. A finer-grain mechanism would be required here, so that it is
possible to use different values of the parameter not just in each application of the
construction phase, but in each internal step of the construction algorithm. Here
is where EAs come into play.

EAs can be used to evolve the sequence of n — 1 selection parameters used within
an application of the construction algorithm (we will denote this approach as HEA-
GRASP after hybrid EA-GRASP). In principle, this implies that each individual
would be a sequence (ry,--- ,r,_1), where r; would be the parameter used in the
ith iteration of the construction algorithm. Two practical considerations must be
taken into account though. The first one refers to the genotype-to-phenotype map-
ping: by making randomized choices of attribute values this mapping would be
stochastic. Since this would result in an increased level of complexity of the algo-
rithm, a deterministic choice is made. To be precise, the value r; indicates that the
r;th best attribute value should be selected in the ith step. The second considera-
tion refers to the last step of the construction algorithm. In this last step it does not
make sense to pick any other attribute value than the smallest one. For this reason,
rn—1 = 1, and individuals need only contain the sequence (rq,---,r,_2). Notice
that this representation of solutions is orthogonal [47], i.e., any sequence represents
a feasible solution, and hence, standard operators for crossover and mutation can
be used to manipulate them.

3.8. Experimental Results

The experiments have been performed using four different algorithms: plain GRASP,
reactive GRASP, a permutational EA following [46], and HEAGRASP. The plain
GRASP algorithm used a qualitative selection mechanism using k = n as parame-
ter. In the case of reactive GRASP, five different equally-spaced values between 2
and n were considered. As to the EAs, an elitist generational model (popsize = 100,
px = .9, pps = 1/n) with binary tournament selection has been utilized. For the

10 COTTA, DOTU, FERNANDEZ AND VAN HENTENRYCK

Table 3: Relative distances to optimum for plain GRASP, reactive GRASP,
the permutational EA (permEA), and HEAGRASP. Globally best results (resp.
globally best median results) for each instance size are shown in boldface (resp.
underlined).

plain GRASP reactive GRASP permEA HEAGRASP
instance best median best median best median best median
OGR-5 0 0 0 0 0 0 0 0
OGR-6 0 0 0 0 0 0 0 0
OGR-7 0 0 0 0 0 0 0 0
OGR-8 0 0 0 0 0 0 0 0
OGR-9 0 0 0 0 0 0 0 0
OGR-10 9.1 12.7 7.3 7.3 0 9.1 0 0
OGR-11 8.3 12.5 2.8 2.8 2.8 4.2 2.8 2.8
OGR-12 21.2 23.5 11.8 12.9 9.4 11.8 10.6 11.8
OGR-13 19.8 21.7 10.4 12.3 6.6 8.5 4.7 7.5
OGR-14 16.5 28.3 11.0 15.7 12.6 16.5 6.3 9.4
OGR-15 26.5 32.5 6.6 18.5 15.2 17.2 7.3 9.9
OGR-16 27.7 36.7 18.1 19.8 16.9 20.9 6.8 11.3

hybrid EA, each gene can take values r; € [1..n], uniform crossover is used, and
mutation is done by randomly increasing or decreasing a gene by 1. The permu-
tational EA uses the interpretation mechanism described in [46]. Random keys
are here directly substituted by permutations, being partially-mapped crossover
(PMX) [20] used for recombination, and the swap operator [39] for mutation. In all
cases, the algorithms have been run 30 times for 10° evaluations. No fine tuning of
these parameters has been attempted.

The results of plain GRASP and reactive GRASP are shown in Table 3. As it
can be seen, reactive GRASP quickly outperforms plain GRASP as the instance
size increases. Notice also that the results of this reactive GRASP are better than
those of the basic EA approaches reported in Sect. 2.3.

Focusing on the EAs, notice firstly that the permutational EA provides compara-
ble results to those of reactive GRASP. HEAGRASP provides roughly the same per-
formance that the permutational EA for small instance sizes, but becomes clearly
superior when the number of marks increases. A non-parametrical statistical test
~Wilcoxon ranksum [31], since the results are not normally distributed— indicates
that the differences are significant for 10, 11, 14, 15, and 16 marks.

The HEAGRASP algorithm also performed efficiently regarding computation time
as the average time of the HEAGRASP algorithm for solving the OGR problem
instances of 11, 12, 13, 14, 15 and 16 marks was 1.5, 2.4, 3.6, 5.3, 7.6 and 11.3
minutes respectively.

LOCAL SEARCH-BASED HYBRID ALGORITHMS FOR FINDING GOLOMB RULERS 11

4. Fitness Landscapes for the Golomb Ruler Problem

The notion of fitness landscapes was firstly introduced in [58] to model the dynamics
of evolutionary adaptation in nature. The fitness landscape analysis of a problem
can help to identify its structure in order to improve the performance of search
algorithms (e.g., to predict the behavior of a heuristic search algorithm, or to exploit
some of its specific properties). For this reason, this kind of analysis has become a
valuable tool for evolutionary-computation researchers.

This section tries to shed some light on the question of what makes the Golomb
ruler problem hard for certain types of search algorithm. The OGR problem is also
a problem for which several representations had been tried, but that lacked an anal-
ysis of the combinatorial properties of the associated fitness landscapes. Here, we
will analyze the fitness landscapes resulting from the two problem representations
described before, the classical direct encoding of rulers, and the use of a GRASP-
based decoder. We will assume below that n is the number of marks for a specific
Golomb ruler, and that a = {(aq,...,a,) and b = (b1, ..., b,) are arbitrary solutions
from G,,. Analogously, r = (ry, -+ ,rn—2) and ' = (r{,--- ,7/,_,) are arbitrary vec-
tors from N2, representing the vector of indices for selecting segment lengths. We
denote by v the bijective function performing the genotype-to-phenotype mapping
N2 5 G,,.

4.1. Distance Measures and Neighborhood Structure

We define a fitness landscape for the OGR as a triple (G,,, f, d),, where, as already
mentioned, G,, is the set of all the n marks Golomb rulers (i.e., the solution set), f is
a fitness function that attaches a fitness value to each of the points in G,, (i.e., f(a)
is equal to a,, the length of @), and d : G,, x G,, — N is a function that measures a
distance between any two points in G,,. We have defined one distance function for
each of the Golomb ruler representations already commented. Specifically for the
direct formulation (i.e., that based on lists of marks) we have defined the distance
function d as follows:

d(a,b) = max{| b; —a; |,1 <i<n}. (1)

In other words, d(a,b) returns the maximum difference between any two corre-
sponding marks in a and b. Also, for our indirect formulation (i.e., the GRASP-
based formulation) we have defined the distance function d as the L; norm (the
Manhattan distance) on the vector of indices, i.e.,

d(a,b) = d((r), () = 3 |7 — 7! | (@)
=1

A first issue to be analyzed regards the neighborhood structure induced by these
distance measures. More precisely, consider the number of solutions reachable from
a certain point in the search space, by a search algorithm capable of making jumps
of a given distance. In the direct formulation, this number of solutions turns out to

12 COTTA, DOTU, FERNANDEZ AND VAN HENTENRYCK

=1)
=3)

number of neighbors (g:
number of neighbors (&:

o

10 . " " . . . s

90 100 110 120 130 140 150 160 170 180 190 90 100 110 120 130 140 150 160 170 180
fitness fitness

(a) (b)

Figure 3: Number of neighbors for different values of the local radius € in a 12
marks Golomb ruler problem. (a) e = 1, (b) e = 3. Notice the log-scale in the
Y-axis.

be variable for each point of G,,, as shown in Fig. 3. We have implemented and used
a logic-programming based constraint solver to solve the Golomb ruler constraint
satisfaction problem for an arbitrary number of marks. Our solver, implemented in
GNU Prolog [11], is based on the model proposed in [3]. In particular, the solver
generates a list of all possible distances between any pair of marks 4,5 (i < j and
i,7 € [1..n]) in the ruler and then imposes a global constraint all-different on this
list instead of imposing the set of binary inequalities between any two marks i, j.
The efficiency is further improved by adding some redundant constraints leading
to an improvement of the domain pruning. This solver calculates the number of
possible neighbors that are located within a given distance e (called the local radius)
of certain solution « (i.e., it obtains the cardinality of the set {{c1,...,¢n) € Gy, |
a; —e < ¢ <a;+e€1<i<n}). The solver is then applied to a large sample of
solutions covering a wide range of fitness values.

The outcome of this experiment indicates that the connectivity of the fitness land-
scape increases with worse fitness values. Furthermore, this effect is stronger as we
increase the neighborhood radius (see Fig.3). This kind of irregularity is detri-
mental for search algorithm navigating this landscape [8], since the neighborhood
structure tends to guide the search towards low-fitness regions. This means that a
search algorithm on this landscape would have to be continuously fighting against
this drifting force. On the contrary, notice that the fitness landscape of the indi-
rect formulation is perfectly regular, since its topology is isomorphic to N*~2. In
principle, this regularity makes this landscape more navigable since no underlying
drift effect exists.

LOCAL SEARCH-BASED HYBRID ALGORITHMS FOR FINDING GOLOMB RULERS 13

4.2. Fitness-Distance Correlation

Fitness-distance correlation (FDC) [28] is one of the most widely used measures
for assessing the structure of the landscape. It also constitutes a very informative
measure to evaluate the problem difficulty for evolutionary algorithms [26]. FDC
allows quantifying the correlation between fitness values, and the distance to the
nearest optimum in the search space. Landscapes with a high FDC typically exhibit
a big valley structure [50] (this is not always the case though [28, 7]).

It is typically assumed that low FDC is associated with problem difficulty for local
search. Nevertheless, the interplay of this property with other landscape features is
not yet well understood. Indeed, it will be later shown how landscape ruggedness
and neighborhood irregularity can counteract high FDC values. Focusing on the
problem under consideration, the optimum value opt,, for n marks Golomb rulers is
known (up to n = 24, enough for our analysis). We can then obtain a sample of m
locally-optimal solutions A = {a1,...,a,,} C G, and easily calculate the sets F' =
{fil fi=fla:),1 <i<m,a; € A} and D = {d; | d; = d(a;,opt,),1 <i<m,a; €
A}. Then we can compute the correlation coefficient as FDC = Cgrp/ (orop),
where

1 _ —
Crp=—% (fi=F)di—d) 3)

i=1

is the covariance of F' and D, and op,0op, f and d are, respectively, the standard
deviations and means of F' and D. Observe that this definition depends on the
definition of the distance function, and as shown in Sect. 4.1, we consider two
different definitions for the two problem representations. In all cases, locally optimal
solutions are computed by using hill climbing from a fixed sample of seed feasible
solutions.

The results indicate a high correlation for the direct formulation, specially for
low values of the local radius €. This can be explained by the fact that the fitness
of a solution is actually the value of the last mark, and this value will not change
above the given e within the neighborhood. FDC starts to degrade for increasing
values of this local radius. To be precise, FDC values for ¢ = 1 up to € = 4
are 0.9803, 0.9453, 0.8769, and 0.8221 respectively. In the case of the indirect
formulation (¢ = 1), the FDC value is 0.8478, intermediate between ¢ = 3, and
€ = 4. These results indicate that the indirect formulation can attain FDC values
comparable to those of the direct formulation, but without suffering from some of
the problems of the latter. Actually, the high FDC values for the direct formulation
are compensated by two related facts, namely that there is a drift force towards
low-fitness regions as mentioned in Sect. 4.1, and that the number of local optima
is higher for low values of the local radius, specially in the high-fitness region.

4.8. Result Analysis

Our analysis indicates that the high irregularity of the neighborhood structure
for the direct formulation introduces a drift force towards low-fitness regions of

14 COTTA, DOTU, FERNANDEZ AND VAN HENTENRYCK

the search space. This contrasts with other problems in which the drift force is
beneficial, since it guides the search to high-fitness regions (see [8]). The indirect
formulation that we have considered does not have this drawback, and hence would
be in principle more amenable for conducting local search in it. The fact that
fitness-distance correlation is very similar in both cases also support this hypothesis.
The computational cost is another issue to be considered. Navigating through the
space of feasible solutions in the direct representation is very expensive from a
computational point of view [10]. An indirect approach, or a direct approach in
which the requirement of feasibility were dropped, is more adequate for search
methods based on the iterative generation of solutions. These two approaches will
be precisely considered in the following section.

5. Hybrid Approaches Based on Scatter Search

In this section we consider two hybrid algorithms that incorporate ideas from the
method described in Sect. 3 (i.e., the EA based on greedy randomized adaptive
search procedures (GRASP)), and tabu-based local search methods (TS), constraint
programming and scatter search (SS). This last technique, described in the follow-
ing, is a generic template which is thoroughfully described in [32].

5.1. A Basic View of Scatter Search

Scatter search (SS) is a metaheuristic based on population-based search whose ori-
gin can be traced back to the 1970s in the context of combining decision rules and
problem constraints [32]. Among the salient features of SS we can cite the absence
of biological motivation, and the emphasis put in the use of problem-aware mecha-
nisms, such as specialized recombination procedures, and LS techniques. These are
also distinctive features of memetic algorithms (MAs) [35, 36, 38, 41]. Actually, in
a broad sense, SS might be considered a particular case of MA. As in nature, the
convergent evolution of the above-mentioned algorithmic features thus emphasizes
their practical usefulness.

Fig.4 shows the diagram of a generic SS algorithm. As it can be seen, the algo-
rithm is based on the iterative application of a collection of search procedures on a
pool of solutions (the reference set), much like it is done in EAs (actually, SS can
be safely characterized as an EA). More precisely, the following components can be
identified in the algorithm:

e A diversification generation method for generating a collection of raw solutions,
possibly using some initial solution as “seed”.

e An improvement method for enhancing the quality of raw solutions.

o A reference set update method for building the reference set from the initial set
of solutions generated, and for maintaining it by incorporating some solutions
produced in subsequent steps.

LOCAL SEARCH-BASED HYBRID ALGORITHMS FOR FINDING GOLOMB RULERS 15

population P

) iterate PSize times) ‘
Diversification Improvement
: Generation Method Method : ‘

offspring

iterate for each subset in NewSubsets o .\ . ‘

Improvement . .
Method i ’ I

0®eo !

............................ \
Solution Combination i Referente Set
Method Update Method
— ¥ RefSet
- . yes New
S Subset Generation solutions ‘
B Method generated? ’
,,,,,,,,,,,, y —

no

NewSubsets

Restart Reference

stop Set Method

Figure 4: Sketch of the scatter search algorithm. Solutions for the problem consid-
ered are represented as circles. White circles are used to represent “raw” solutions,
as obtained from the application of the diversification method or the solution com-
bination method; as to dark circles, they represent “improved” solutions obtained
by applying the improvement method to the former solutions.

16 COTTA, DOTU, FERNANDEZ AND VAN HENTENRYCK

e A subset generation method for selecting solutions from the reference set, and
arranging them in small groups (pairs, triplets, or larger groups) for undergoing
combination.

e A solution combination method for creating new raw solutions by combining
the information contained in a certain group of solutions.

o A restart reference set method for refreshing the reference set once it has been
found to be stagnated. This can be typically done by using the diversification
generation method plus the improvement method mentioned above, but other
strategies might be considered as well.

The specification of a particular SS algorithm is completed once the items above
are detailed. The next subsections will be devoted to this purpose.

5.2. Scatter Search for the Golomb Ruler Problem

Our SS algorithm makes use of both an indirect approach and a direct approach in
different stages of the search. More specifically, the indirect approach is used in the
phases of initialization and restarting of the population and takes ideas borrowed
from HEAGRASP. The direct approach is considered in the stages of recombination
and local improvement; particularly, the local improvement method is based on a
tabu search (TS) algorithm described in Sect. 5.2.2. In the following we describe
the instantiation of each component of the algorithm.

5.2.1. Diversification Generation Method. The diversification generation method
serves two purposes in the SS algorithm considered: it is used for generating the
initial population from which the reference set will be initially extracted, and it is
utilized for refreshing the reference set whenever a restart is needed.

The generation of new solutions is performed by using a randomized procedure
that tries to generate diverse solutions. The basic method utilizes the GRASP-
decoding techniques mentioned in Sect. 3.2. To be precise, solutions are constructed
by generating random parameter vectors (ri,--- ,r,_2), 7; € [l..n], and feeding
them to the GRASP-decoder. A variant of this process is used in subsequent
invocations to this method for refreshing the population. This variant is related to
an additional dynamic constraint that is imposed in the algorithm: in any solution,
it must hold that a,, < L, where L is the length of the best feasible Golomb ruler
found so far. To fulfill this constraint, new solutions are constructed by generating
two feasible rules following the procedure described before, and submitting them
to the combination method (see Sect. 5.2.5), which guarantees compliance with the
mentioned constraint.

5.2.2. Local Improvement Method. The improvement method is responsible for
enhancing raw solutions produced by the diversification generation method, or by
the solution combination method. In this case, improvement is achieved via the use

LOCAL SEARCH-BASED HYBRID ALGORITHMS FOR FINDING GOLOMB RULERS 17

of a tabu-search algorithm. This TS algorithm works on tentative solutions that
may be infeasible, i.e., there may exist some repeated distances between marks.
The goal of the algorithm is precisely to turn infeasible rulers into feasible ones,
respecting the dynamic constraint a,, < L. Whenever this is achieved, a new
incumbent solution is obviously found.

To guide the search, the algorithm uses a notion of constraint violations on the
distances. The violation v, (d) of a distance d in a n marks ruler o is the number
of times distance d appears between two marks in the ruler ¢ beyond its allowed
occurrences, i.e.,

Uo(d) = max(0,#{d;; =d | 1<i<j<n}—-1) (4)

where d;; = a; — a;. The overall violation v(o) of a n marks ruler ¢ is simply the
sum of the violations of its distances d, i.e., v(o) = >, p Vo (d), where D = {d;; |
1<i<yj<n}

The moves in the local search consist of changing the value of a single mark.
Since marks are ordered, a mark a, can only take a value in the interval I,(x) =
[az—141,az+1—1]. As a consequence, the set of possible moves is M(o) = {(z,p) |
(I<x<n) A (p€ Is(x))}. Observe that a; is fixed to 0, and a,, is not allowed to
grow. To prevent cycling, a tabu list of movements is kept. The list stores triplets
(x,p,i), where x is a mark, p is a possible position for mark z, and 7 represents the
first iteration where mark = can be assigned to p again. The tabu tenure, i.e., the
number of iterations (z,p) stays in the list, is dynamic and randomly generated in
the interval [4,100]. For a ruler o and an iteration k, the set of legal moves is thus
defined as

M (0, k) = {(z,p) € M(0) | ~tabu(w,p, k)}. ()

where tabu(z, p, k) holds if the assignment a, < p is tabu at iteration k. The tabu
status can be overridden whenever an assignment reduces the smallest number
of violations found so far. Thus, if ¢* is the ruler with the smallest number of
violations found so far, the neighborhood also includes the moves

M (0,07) = {(z,p) € M(0) | v(oas — p]) <v(e")} (6)

where ola, < p] denotes the ruler o where variable a, is assigned to p. To inten-
sify the search, the current solution is reinitialized to the initial ruler oy (in the
current TS run) whenever no improvement in the number of violations took place
for mazStable iterations. The algorithm returns the best solution o* found. Fig. 5
shows the complete pseudocode of the TS algorithm.

5.2.8. Reference Set Update Method. As to the reference set update method, it
must produce the reference set for the next step by using the current reference set
and the newly produced offspring (or by using the initial population generated by
diversification at the beginning of the run or after a restart). Several strategies are
possible here. Quality is an obvious criterion to determine whether a solution can
gain membership to the reference set: if a new solution is better than the worst

18 COTTA, DOTU, FERNANDEZ AND VAN HENTENRYCK

1 TS(O’Q)

2 tabu — {};

4. o — op;

5. k «— 0;

6 s« 0;

7 while k < mazlter & v(c) >0 do
8. select (z,p) € MT(0,k) U M*(0,0*) minimizing v(o[a, < p]);
9. T < RANDOM([4,100]));

10. tabu — tabu U {{z,p,k + 7)};
11. o — olay < p;

12. if v(o) < v(o*) then

13. 0" — o;

14. s« 0;

15. else if s > maxzStable then
16. O < 00;

17. s« 0;

18. tabu — {};

19. else

20. S++;

21. kt+

22. return o*;

Figure 5: Pseudocode of the TS algorithm

existing solution, the latter is replaced by the former. In the OGR, we consider
that a solution z is better than a solution y if the former violates less constraints, or
violates the same number of constraints but has a lower length. It is also possible
to gain membership of the reference set via diversity. To do so, a subset of diverse
solutions (i.e., distant solutions to the remaining high-quality solutions in the set —
an appropriate definition of a distance measure is needed for this purpose) is kept
in the reference set, and updated whenever a new solution improves the diversity
criterion.

If at a certain iteration of the algorithm no update of the reference set takes place,
the current population is considered stagnated, and the restart method is invoked!.
This method works as follows: let i be the size of the reference set; the best solution
in the reference set is preserved, A = p(u — 1)/2 solutions are generated using the
diversification generation method and the improvement method, and the best u—1
out of these X\ solutions are picked and inserted in the reference set.

5.2.4. Subset Generation Method. This subset generation method creates the
groups of solutions that will undergo combination. The combination method used is
in principle generalizable to an arbitrary number of parents, but we have considered

LOCAL SEARCH-BASED HYBRID ALGORITHMS FOR FINDING GOLOMB RULERS 19

the standard two-parent recombination. Hence the subset generation method has
to form pairs of solutions. This is done exhaustively, producing all possible pairs.
It must be noted that since the combination method utilized is deterministic, it
does not make sense to combine again pairs of solutions that were already coupled
before. The algorithm keeps track of this fact to avoid repeating computations.

5.2.5. Solution Combination Method. The combination of solutions is performed
using a procedure that bears some resemblance with the GRASP-decoding men-
tioned in Sect. 5.2.1. There are some important differences though: firstly, the
procedure is fully deterministic; secondly, the solution produced by the method is
entirely composed of marks taken from either of the parents; finally, the method
ensures that the a,, < L constraint is fulfilled.

The combination method begins by building a list £ of all marks x present in
either of the parents, such that z < L 2. Then, starting from a; = 0, a new
mark x is chosen at each step 4 such that (i) a;—1 < z, (ii) there exist n — ¢ marks
greater than z in £, and (iii) a local optimization criterion is optimized. This
latter criterion is minimizing Z;: Vo (z — a;j)* + (¥ — a;—1), where o is the partial
ruler. This expression involves minimizing the number of constraints violated when
placing the new mark, as well as the subsequent increase in length of the ruler. The
first term is squared to raise its priority in the decision-making.

5.8. Experimental Results

To evaluate our hybrid (memetic) approach, a set of experiments for problem sizes
ranging from 10 marks up to 16 marks has been realized (instances below 10 marks
are too easy, so they have not been considered). In all the experiments, the max-
imum number of iterations for the tabu search was set to 10,000, the size of the
population and reference set was 190 and 20 respectively, and the arity of the com-
bination method was 2. The reference set is only updated on the basis of the quality
criterion. One of the key points in the experimentation has been analyzing the in-
fluence of the local search strategy with respect to the population-based component.
To this end, we have experimented with partial Lamarckism [25], that is, applying
the local improvement method just on a fraction of the members of the population.
To be precise, we have considered a probability prg for applying LS (i.e., TS) to
each solution. The values prs € {0.1,0.2,0.4,0.6,0.8,1.0} have been considered.
All algorithms were run 20 times until an optimal solution was found, or a limit in
the whole number of evaluations was exceeded. This number of evaluations was set
so as to allow a fixed average number e of LS invocations (e = 10,000 TS runs).
Thus, the number of evaluations was limited in each of the instances to e/prs. This
is a fair measure since the computational cost is dominated by the number of TS
invocations.

Table 4 reports the experimental results for the different instances considered.
Row SSzx corresponds to the execution of our algorithm with a local improvement
rate of pr,g = zx. The table reports the relative distance (percentage) to the known

20 COTTA, DOTU, FERNANDEZ AND VAN HENTENRYCK

Table 4: Relative distances to optimum for different probabilities of the SS
algorithm and the algorithms GROHEA and HEAGRASP. Globally best results
(resp. globally best median results) for each instance size are shown in boldface
(resp. underlined).

number of marks

10 11 12 13 14 15 16

HEAGRASP Best 0 2.8 10.6 4.7 6.3 7.3 6.8
Median 0 2.8 11.8 7.5 9.4 9.9 11.3

GROHEA Best 0 0 0 0 3.1 4.6 5.6
Median 0 0 7.1 5.6 7.1 8.6 10.2

SS1.0 Best 0 0 0 0 1.6 0 4.0
Median 0 0 0 0 2.4 4.0 6.2

SS0.8 Best 0 0 0 0 0.8 1.3 2.3
Median 0 (4] 0 0 1.6 3.3 5.6

SS0.6 Best 0 0 0 0 0.8 0 2.8
Median 0 0 0 0 1.6 4.0 6.2

SS0.4 Best 0 0 0 0 0 1.3 1.1
Median 0 0 0 0 1.6 4.0 5.6

SS0.2 Best 0 0 0 0 0 0.7 3.4
Median 0 0 0 0 1.6 4.0 6.2

SS0.1 Best 0 0 0 0 0 0.7 3.4
Median 0 0 0 0 1.6 3.3 5.6

optimum for the best and median solutions obtained. The table also shows the
results obtained by HEAGRASP. As to algorithm GROHEA [13], it provides the best
results reported in the literature for this problem via a population-based approach,
and therefore it is the benchmark reference for our algorithm. Specifically for this
latter algorithm, the maximum number of iterations for the tabu search was also
10,000, the size of the population was 50, and the probabilities p,, and px were
both set to 0.6.

The results are particularly impressive. Firstly, observe that our hybrid algorithm
systematically find optimal rulers for up to 13 marks. GROHEA is also capable
of eventually finding some optimal solutions for these instance sizes, but notice
that the median values are drastically improved in the SS algorithm. In fact, the
median values obtained by the SS algorithm for these instances correspond exactly
to their optimal solutions. Comparatively, the results are even better in larger OGR
instances: our SS can find optimal ORGs even for 14 and 15 marks, and computes
high-quality near-optimal solutions for 16 (i.e., 1.1% from the optimum). These
results clearly outperform GROHEA; indeed, the latter cannot provide optimal values
for instance sizes larger than 14 marks. Moreover, all SSzxx significantly improve
the median values obtained by GROHEA on the larger instances of the problem.
These results clearly indicate the potential of hybrid EAs for finding optimal and
near-optimal rulers.

LOCAL SEARCH-BASED HYBRID ALGORITHMS FOR FINDING GOLOMB RULERS 21

7000
001
f=
ésmowmw
E oo4
%5000—7.0'6
b= =08 M —
£ mi10 i M
5 4000
£ M
N —
2 L
£ 3000
£
2
g 2000
S
ks
2 1000
g 1—1‘1_‘
Q
0 ‘_'_'_‘ T T T
10 11 12 13 14 15 16

number of marks

Figure 6: Computational effort (measured in number of TS invocations) to find the
best solution.

We have also conducted statistical tests to ascertain whether there are significant
performance differences between the different LS application rates. This has been
done using a non-parametric Wilcoxon ranksum test again. Except in three head-
to-head comparisons for 14 marks (prs = 1.0 vs prg = 0.8 and prg = 0.1, and
prs = 0.4 vs prg = 0.1), there is no statistically significant difference (at the
standard 0.05 level) in any instance size for the different values of prg. While this
is consistent with the fact that the average number of TS invocations is constant,
it raises the issue of whether the associated computational cost is the same or not.
The answer to this question can be seen in Fig. 6. As expected, the computational
cost increases with the size of the problem. Quite interestingly, the average cost
decreases for 16 marks. This behavior owes to the higher difficulty of the problem
for this latter size: the algorithm quickly reaches a near-optimal value (a remarkable
result), and then stagnates (longer runs would be required to improve the solutions
from that point on). A statistical comparison between the computational cost
of SSzx for a given instance size indicates that the differences are almost always
significant for the lower range of sizes (up to 12 marks), and become non-significant
as the size increases. For 16 marks, there is just one case of statistically significant
difference of computational cost (prs = 0.4 vs prs = 0.8). Since the small values of
prs imply a lower computational cost for instance sizes in the low range, and there
is no significant difference in either quality or computational cost with respect to

22 COTTA, DOTU, FERNANDEZ AND VAN HENTENRYCK

higher values of prs in the larger instances, it seems that values prs € {0.1,0.2}
are advisable.

5.4. Scatter Search + CP + Clustering

The algorithm presented in the previous sections yields very impressive results,
however, we want to pursue it further. There are two aspects (among others)
that we can improve very straightforwardly. First, we realized that Constraint
Programming can be of help at some point. Second, we believe that diversity in the
population is almost as important as the quality of it. Basically, our last proposal
is an improvement over the hybrid algorithm presented in the previous section. It
relies on clustering to achieve diversity in the reference set and complete search
to attempt to find optimal rulers at the recombination step. These enhancements
produce superior results as it will be shown later (e.g., the new hybrid is now
capable of solving rulers up to 16 marks). Let us then introduce the new features
incorporated into our algorithm:

5.4.1. Solution Combination by Complete Search. Recombination methods are
usually introduced in order to generate new high quality and diverse individuals.
Our current recombination mechanism achieves these goals, however what we pur-
sue here is something different. We are trying to generate optimal solutions with
this operator.

We have been dealing with values of marks through all this research. Now we
turn to look into the distances between marks. We realized that a complete search
procedure that incorporates propagation techniques would be perfectly suited to
search for a solution when fed with the appropriate distances. Complete search
procedures tend to be very inefficient with very large search spaces, however we
can limit that in this case by only taking into account the distances between marks
of the two individuals to be combined. For example, imagine we have the two rulers
of 9 marks to be combined:

o= (0151323344750 55)
oo = (027111224 30 40 47)

The distances between marks of both rulers are
[1,2,3,4,5,6,7,8, 10, 11, 12, 13]

Note that we only consider distances between two consecutive marks 4, j where
i+ 1 = j. To fully characterize the problem we need to take all the distances into
account, however these are the distances we are going to restrict the search to.
More precisely, we use those distances to feed a complete search procedure whose
goal is to quickly attempt to generate valid (hopefully optimal) rulers. In order to
do this we need to formulate the problem as a CSP. Now, the variables are distances
D;; between marks (where ¢ < j). The domain of the variables D;; where i +1 = j
is reduced to the values previously shown. The rest of the variables can take any

LOCAL SEARCH-BASED HYBRID ALGORITHMS FOR FINDING GOLOMB RULERS 23

value in [1..m] where m is the length of the ruler (note that the value of m is not
important as we will soon clarify). The set of constraints is as follows:

Vi, j,k,l (i #k,j#1) : Dj; # Dy (7

Since we are going to execute this procedure within the SS cycle, we can take

advantage of dynamic information, such as the length L of the shortest valid ruler

in the population. This is explicitly indicated in the procedure by introducing a
constraint:

min(lx) < L (8)

where min(ly) is the minimum length possible for a partial ruler k.

5.4.2. Empirical Observations. We have now fully characterized the problem
our complete search procedure is going to be dealing with. However we found
two options at this point: (1) use a CP solver, or (2) take advantage of the data
structures already implemented in our algorithm. The first option implies we can
plug a black-box to our SS algorithm to which we pass a set of distances and then
expect a solution or a confirmation that no valid solution can be found. We can
take advantage of efficient propagation techniques and sophisticated heuristics.

On the other hand, taking advantage of the structures already implemented, we
can focus on instantiating only variables D;; corresponding to distances between
consecutive marks; if we instantiate the variables in the same order as they would
physically appear in the ruler, we can easily calculate the rest of the distances and
thus, check the validity of the partial solution very quickly. This can be viewed as
limiting the search variables to the ones representing distances between consecutive
marks and using a lexicographic variable ordering heuristic. Note that in this case
we do not need to worry about the value of m, the upper bound in the value of the
non-consecutive distances, since we are not focusing the search on them, but only
on the consecutive ones.

Both approaches were tested and we found that the latter was consistently faster
than the former; as it allows us to ignore non-consecutive distance variables. Still,
the reduction of the search space was not enough to yield a very fast mechanism.
Remember that we implement this procedure as a combination operator, and thus,
we cannot devote more than a few seconds to it.

In our experimental tests we discovered that, when reducing the search space to
consider only the consecutive distances of the optimal ruler, the procedure was able
to find a solution in less than a second for up to 14 marks, and less than 5 seconds
for 15 and 16 marks. However, introducing more distances slowed down the process
exponentially, and if within those distances a valid solution was not possibly found,
the time cost grew immensely. After a few more experiments we designed the next
mechanism:

1. Select the two rulers to be combined.

2. Calculate the consecutive distances having into account that some distances
might be repeated; for example, in two 15 mark rulers (14 consecutive distances)
we typically find around 20 different distances.

24 COTTA, DOTU, FERNANDEZ AND VAN HENTENRYCK

3. Randomly select n + 3 distances from the previous step, being n the number of
marks in the ruler (i.e., 4 distances more than needed).

4. Run the complete search procedure with those distances, with a time limit of 4
seconds.

5. If a valid solution was found, return it, if not call the old recombination mech-
anism.

Note that this procedure can also find near optimal rulers if the chosen distances
allow it. Obviously, we can be missing some potential optimal rulers by randomly
selecting n + 3 distances, but we found it to be the best trade-off between time and
efficiency. That is, if there was a valid solution for the given distances, the complete
search procedure would almost always find it within the given time limit.

5.4.83. Diversity in the Population: Clustering. We also realized that the popu-
lation got stuck very frequently. The solutions provided by the LS mechanism were
of high quality, and thus converged very quickly to the same region of the search
space. Restarts were required to drive the search towards different regions. Since
the population was selected in an elitist fashion, the algorithm was often unable to
generate better individuals that could be included in the reference set.

Diversity is thus a key aspect of a population. It is very important to be able
to generate individuals in different regions of the search space while maintaining a
relatively high quality in all of them. In this sense we directed our efforts towards
implementing a clustering algorithm. Clustering deals with finding a structure
in a collection of unlabelled data, and it can be considered the most important
unsupervised learning mechanism; a loose definition of clustering could be “the
process of organizing objects into groups whose members are similar in some way”.
A cluster is therefore a collection of objects which are “similar” among them and
are “dissimilar” to the objects belonging to other clusters.

In our population we have individuals that are vectors of marks, however, we are
going to transform them into distances between marks as in the previous subsection.
Our goal is thus to group individuals with similar sets of distances in the same
cluster. The algorithm for clustering is very simple; imagine we consider 7 clusters:

1. Transform the vectors of marks into vectors of distances (actually, in binary
vectors that indicate whether a distance is included in the individual or not).
For example, the individual representing a 9 marks ruler

o1 =(015132334475055)
will be transformed into
x(c1)=[1011100101101000 ...]

where a 1 in x(01)[é] indicates that the distance i is included in the individual
o1, where 7 is in the range from to three times the number of marks; this limit

LOCAL SEARCH-BASED HYBRID ALGORITHMS FOR FINDING GOLOMB RULERS 25

[was imposed after the observation that optimal rulers try to incorporate the
lowest different distances between consecutive marks so that the ruler’s length
is minimized.

2. Calculate 7 random centroids. The centroids are the vectors that represent the
clusters, their central points. Thus, the centroids are vectors of the same length

as the individuals that characterize a cluster. If we already had the vectors
separated in clusters, the centroid of a cluster k; would be a vector:

aq a9 ay
| ki [[kil [kl

centroid(k;) = |

where | k; | is the number of vectors in cluster k; and a; is the number of vectors
in cluster k; in which thet j-th bit is set to 1. Since we have no clusters yet we
calculate the centroids randomly.

3. Assign every vector to its nearest centroid, creating thus the clusters. The
distance measure we use is that of the cosine of the angles formed by the vector
and the centroid.

4. Recalculate the centroids with the now real information of the vectors in the
clusters.

5. Repeat steps 3 and 4 until no centroid is changed in step 4 or until a maximum
number of iterations is reached, in our case 10.

This procedure thus follows the conspicuous k-means algorithm [33]. Upon appli-
cation of this algorithm, the population is divided into 7 clusters. This fact itself
does not ensure diversity in the reference set. To maintain a high degree of diversity
without harnessing its quality we rank the vectors in every cluster and then select
the best w individuals from each cluster, and we include them in the Reference Set.

Note that this process is relatively time consuming, and thus, it is only performed
for the initial population and after a restart. However, at any generation, the
algorithm updates the reference set in a way that the premise the best w individuals
of each cluster are maintained in the reference set is satisfied.

5.5. FExperimental Results on the CP-Based Hybrid Proposal

In this section we show results for our hybrid algorithm after the incorporation of
the new features. The experiments have been performed on rulers from 14 up to
16 marks, and with probability prs¢ = 0.1, which we found to be one of the most
consistent ones after the previous experiments. Regarding the diversity mechanism,
we have performed three different sets of experiments varying the values of the
clustering parameters. These different sets of parameters are: 7 = 5, w = 4;
7 =10, w =2 and 7 = 20, w = 1. The remaining parameters are the same as in
Sect. 5.3.

Table 5 depicts the results for these new experiments and a comparison of the
results presented in Sect. 5.3 for prg = 0.1. As a first result we can see that for

26 COTTA, DOTU, FERNANDEZ AND VAN HENTENRYCK

Table 5: Relative distances to the optimum for SS0.1 and the im-
proved algorithm SS+7-w. Globally best results (resp. globally best
median results) for each instance size are shown in boldface (resp.

underlined).
14 15 16
best median best median best median
SS0.1 0 1.6 0.7 3.3 3.4 5.6
SS+5-4 0 0 0 3.3 0 5.6
SS+10-2 0 1.6 1.3 4.6 5.1 7.3
SS+20-1 0 0.8 0.7 5.2 3.4 7.3

14 marks the algorithm SS+5-4 always finds the optimal solution, which did not
happen with SSzz. Secondly (and maybe more important), we are now able to
solve the 16 marks ruler. Also note that SS+5-4 seems to dominate the rest of
the instances of SS+7-w, perhaps because it corresponds to the optimal balance
between quality and diversity.

6. Summary, Conclusions and Future Work

Finding Golomb rulers is an extremely challenging optimization problem with many
practical applications that has been approached by a variety of search methods in
recent years. It combines hard and dense feasibility constraints and an optimization
function to minimize the length of the ruler. In this paper we have proposed a
battery of local-search based algorithms that find optimal or near-optimal Golomb
rulers at a reasonable computational cost.

Initially, we have described a hybrid EA that incorporates a GRASP-like proce-
dure for decoding the chromosome into a feasible solutions. The advantages of this
approach are twofold: first of all, problem-knowledge is exploited by means of the
pseudo-greedy mapping from genotype to phenotype; secondly, the representation
turns out to be orthogonal, and hence standard string-oriented operators for re-
combination and mutation can be used. This algorithm, deeply described in [9],
has also been the starting point of the subsequent evolutionary hybrid algorithms.

Then, we have tried to divulge some light on the question of what makes a problem
hard for a certain search algorithm for the Golomb Ruler Problem. This has been
done via an analysis of the fitness landscape of the problem, as it was done by the
authors in [10]. Our analysis indicates that the high irregularity of the neighborhood
structure for the direct formulation introduces a drift force towards low-fitness
regions of the search space. The indirect formulation that we have considered
does not have this drawback, and hence would be in principle more amenable for
conducting local search in it.

LOCAL SEARCH-BASED HYBRID ALGORITHMS FOR FINDING GOLOMB RULERS 27

We have also proposed a memetic (hybrid) approach (MA) for finding near-
optimal Golomb rulers at an acceptable computational cost. The MA combines, in
different stages of the algorithm, a GRASP-like procedure (for diversification and
recombination) and tabu search (for local improvement) within the general tem-
plate of scatter search. The results of the MA have been particularly good, clearly
outperforming other state-of-the-art evolutionary approaches for this problem. One
of the aspects on which our analysis has been focused is the influence of the LS
component. We have shown that lower rates of Lamarckianism achieve the best
tradeoff between computational cost and solution quality.

Later, we have introduced several improvements to the previous algorithm to yield
outstanding results: we are able to solve a 16 marks ruler and to consistently solve
every 14 marks rulers in our testbed. This last algorithm is based on a Scatter
Search template and includes a complete search inherited technique to combine
individuals, and a clustering procedure which we apply to our population in order
to achieve a higher degree of diversity.

The algorithm tested using different sets of parameters referred to the clustering
mechanism is consistently superior to the previous algorithm without the improve-
ments.

Related to the paragraph above it arises the issue of automatic parameter adjust-
ment. Our algorithm has a few parameters that have been manually tuned throught
out the research. However, there are several interesting techniques that have ap-
peared in the literature in the last years. In the future, it would be very clever to
try to include them in our algorithm and study their performance. Examples of
these are [34] and [1].

We are currently exploring alternatives for some of the operators used in this last
algorithm. Preliminary experiments with multi-tier reference sets —i.e., including
a diversity section— do not indicate significant performance changes. A deeper
analysis is nevertheless required here. In particular, it is essential that the particular
distance measure used to characterize diversity correlate well with the topology of
the search landscape induced by the reproductive operators. Defining appropriate
distance measures in this context (and indeed, checking their usefulness in practice)
will be the subsequent step.

As for the final hybrid resulting of the introduction of the new improvements,
there is a very obvious observation: the SS and the LS deal with marks, while the
Clustering and Complete Search deal with distances. We plan to make it uniform
and possibly implement all the techniques so they can deal with distances. More
efficient clustering techniques are also worth being studied.

Acknowledgements.

The work of first and third authors was partially supported by Spanish MCyT
under contracts TIN2004-7943-C04-01 and TIN2005-08818-C04-01.

28

COTTA, DOTU, FERNANDEZ AND VAN HENTENRYCK

Notes

Notice that the TS method used for local improvement is not deterministic. Thus, it might
be possible that further applications of TS on the stagnated population resulted in an im-
provement. However, due to the computational cost of this process, it is advisable to simply
restart.

It might happen that the number of such marks were not enough to build a new ruler. In that
case, a dummy solution with length oo (that is, the worst possible value) is returned.

References

1.

10.

11.

12.
13.

14.

15.

16.

17.

B. Adenso-Diaz and M. Laguna. Fine tuning of algorithms using fractional experimental
designs and local search. Operations Research, 54(1):99-114, 2006.

W.C. Babcock. Intermodulation interference in radio systems. Bell Systems Technical Jour-
nal, pages 63-73, 1953.

R. Bartédk. Practical constraints: A tutorial on modelling with constraints. In J. Figwer,
editor, 5th Workshop on Constraint Programming for Decision and Control, pages T—17,
Gliwice, Poland, 2003.

F. Biraud, E. Blum, and J. Ribes. On optimum synthetic linear arrays with applications to
radioastronomy. IEEE Transactions on Antennas and Propagation, 22(1):108-109, 1974.

J. Bean. Genetic algorithms and random keys for sequencing and optimization. ORSA
Journal on Computing, 6:154-160, 1994.

G.S. Bloom and S.W. Golomb. Aplications of numbered undirected graphs. Proceedings of
the IEEE, 65(4):562-570, 1977.

K.D. Boese, A.B. Kahng, and Muddu S. A new adaptive multi-start technique for combina-
torial global optimizations. Operations Research Letters, 16:101-113, 1994.

C. Bierwirth, D.C. Mattfeld, and J.-P. Watson. Landscape regularity and random walks
for the job shop scheduling problem. In J. Gottlieb and G.R. Raidl, editors, Evolutionary
Computation in Combinatorial Optimization, volume 3004 of Lecture Notes in Computer
Science, pages 21-30, Berlin, 2004. Springer.

C. Cotta and A.J. Ferndndez. A hybrid GRASP - evolutionary algorithm approach to Golomb
ruler search. In Xin Yao et al., editors, Parallel Problem Solving From Nature VIII, number
3242 in Lecture Notes in Computer Science, pages 481-490, Berlin Heidelberg, 2004. Springer.
C. Cotta and A.J. Fernandez. Analyzing fitness landscapes for the optimal golomb ruler
problem. In J. Gottlieb and G.R. Raidl, editors, Fvolutionary Computation in Combinato-
rial Optimization, volume 3248 of Lecture Notes in Computer Science, pages 68-79, Berlin
Heidelberg, 2005. Springer.

D. Diaz and P. Codognet. GNU Prolog: beyond compiling Prolog to C. In E. Pontelli and
V. Santos Costa, editors, 2nd International Workshop on Practical Aspects of Declarative
Languages (PADL’2000), volume 1753 of Lecture Notes in Computer Science, pages 81-92,
Boston, USA, 2000. Springer.

A.K. Dewdney. Computer recreations. Scientific American, pages 14-21, 1986.

Ivdn Dotu and Pascal Van Hentenryck. A simple hybrid evolutionary algorithm for finding
golomb rulers. In D. Corne et. al., editor, Congress on Evolutionary Computation Conference
(CEC2005), volume 3, pages 2018-2023, Edinburgh, Scotland, 2005. IEEE.

A. Dollas, W. T. Rankin, and D. McCracken. A new algorithm for Golomb ruler derivation
and proof of the 19 mark ruler. IEEE Transactions on Information Theory, 44:379-382,
1998.

B. Feeney. Determining optimum and near-optimum Golomb rulers using genetic algorithms.
Master thesis, Computer Science, University College Cork, October 2003.

T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. Journal of
Global Optimization, 6:109-133, 1995.

R.J.F. Fang and W.A. Sandrin. Carrier frequency assignment for non-linear repeaters. Com-
sat Technical Review, 7:227-245, 1977.

LOCAL SEARCH-BASED HYBRID ALGORITHMS FOR FINDING GOLOMB RULERS 29

18.

19.

20.

21.
22.
23.
24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

C. Giraud-Carrier. Unifying learning with evolution through baldwinian evolution and lamar-
ckism: A case study. In H-J. Zimmermann, G. Tselentis, M. van Someren, and G. Dounias,
editors, Advances in Computational Intelligence and Learning: Methods and Applications,
pages 159-168. Kluwer Academic Publishers, 2002.

P. Galinier, B. Jaumard, R. Morales, and G. Pesant. A constraint-based approach to the
Golomb ruler problem. In 3rd International Workshop on Integration of AI and OR Tech-
niques (CP-AI-OR’2001), 2001.

D.E. Goldberg and R. Lingle Jr. Alleles, loci and the traveling salesman problem. In J.J.
Grefenstette, editor, Proceedings of an International Conference on Genetic Algorithms,
Hillsdale, 1985. Lawrence Erlbaum Associates.

F. Glover. Tabu search — part i. ORSA Journal of Computing, 1(3):190-206, 1989.

F. Glover. Tabu search — part ii. ORSA Journal of Computing, 2(1):4-31, 1989.

F. Glover. A template for scatter search and path relinking. Lecture Notes in Computer
Science, 1363:13-54, 1997.

M. Garry, D. Vanderschel, et al. In search of the optimal 20, 21 & 22 mark Golomb rulers.
GVANT project, http://members.aol.com/golomb20/index.html, 1999.

C. Houck, J.A. Joines, M.G. Kay, and J.R. Wilson. Empirical investigation of the benefits
of partial lamarckianism. FEvolutionary Computation, 5(1):31-60, 1997.

T. Jones and S. Forrest. Fitness distance correlation as a measure of problem difficulty for
genetic algorithms. In L.J. Eshelman, editor, Proceedings of the 6th International Confer-
ence on Genetic Algorithms, pages 184-192, San Francisco, CA, 1995. Morgan Kaufmann
Publishers.

A.K. Jain, N.M. Murty, and P.J. Flynn. Data clustering: A review. ACM Computing
Surveys, 31(3):264-323, 1999.

T. Jones. Ewolutionary Algorithms, Fitness Landscapes and Search. Phd thesis, Santa Fe
Institute, University of New Mexico, Alburquerque, May 1995.

B.A. Julstrom. Comparing darwinian, baldwinian, and lamarckian search in a genetic algo-
rithm for the 4-cycle problem. In S. Brave and A.S. Wu., editors, Late Breaking Papers at
the 1999 Genetic and Evolutionary Computation Conference, pages 134—138, Orlando, FL,
1999.

T. Klove. Bounds and construction for difference triangle sets. IEEE Transactions on
Information Theory, 35:879-886, July 1989.

E.L. Lehmann and H.J.M. D’Abrera. Nonparametrics: Statistical Methods Based on Ranks.
Prentice-Hall, Englewood Cliffs, NJ, 1998.

M. Laguna and R. Marti. Scatter Search. Methodology and Implementations in C. Kluwer
Academic Publishers, Boston MA, 2003.

J. B. MacQueen. Some methods for classification and analysis of multivariate observations.
In 5-th Berkeley Symposium on Mathematical Statistics and Probability, volume 1, pages
281297, Berkeley, 1967. University of California Press.

L. Paquete M. Birattari, T Stutzle and K. Varrentrapp. A racing algorithm for configuring
metaheuristics. In W.B. Lagndon et al., editor, Genetic and Evolutionary Computation
Conference (GECCO), pages 11-18, San Francisco, CA, 2002. Morgan Kaufmann.

P. Moscato and C. Cotta. A gentle introduction to memetic algorithms. In F. Glover and
G. Kochenberger, editors, Handbook of Metaheuristics, pages 105-144. Kluwer Academic
Publishers, Boston MA, 2003.

P. Moscato and C. Cotta. Memetic algorithms. In T. Gonzélez, editor, Handbook of Approx-
tmation Algorithms and Metaheuristics, chapter 22. Taylor & Francis, 2006.

D. McCracken. Minimum redundancy linear arrays. Senior thesis, Duke University, Durham,
NC, January 1991.

P. Moscato, C. Cotta, and A. Mendes. Memetic algorithms. In G.C. Onwubolu and B.V.
Babu, editors, New Optimization Techniques in Engineering, pages 53—-85. Springer, Berlin
Heidelberg, 2004.

B. Manderick, M. de Weger, and P. Spiessens. The genetic algorithm and the structure of the
fitness landscape. In R.K. Belew and L.B. Booker, editors, Proceedings of the Fourth Inter-
national Conference on Genetic Algorithms, pages 143—-150, San Mateo CA, 1991. Morgan
Kaufmann.

30

40.
41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

COTTA, DOTU, FERNANDEZ AND VAN HENTENRYCK

P. Mirchandani and R. Francis. Discrete Location Theory. Wiley-Interscience, 1990.

P. Moscato. Memetic algorithms: A short introduction. In D. Corne, M. Dorigo, and
F. Glover, editors, New Ideas in Optimization, pages 219-234. McGraw-Hill, Maidenhead,
Berkshire, England, UK, 1999.

OGR project. http://wuw.distributed.net/ogr/, on-going since September 14, 1998.

M. Prais and C.C. Ribeiro. Parameter variation in GRASP procedures. Investigacidon Op-
erativa, 9:1-20, 2000.

M. Prais and C.C. Ribeiro. Reactive GRASP: an application to a matrix decomposition
problem in TDMA traffic assignment. INFORMS Journal on Computing, 12:164—176, 2000.
S. Prestwich. Trading completeness for scalability: Hybrid search for cliques and rulers. In
CPAIOR-01, pages 159-174, Ashford, Kent, England, 2001.

F.B. Pereira, J. Tavares, and E. Costa. Golomb rulers: The advantage of evolution. In
F. Moura-Pires and S. Abreu, editors, Progress in Artificial Intelligence, 11th Portuguese
Conference on Artificial Intelligence, number 2902 in Lecture Notes in Computer Science,
pages 29-42, Berlin Heidelberg, 2003. Springer.

N.J. Radcliffe. Equivalence class analysis of genetic algorithms. Complex Systems, 5:183-205,
1991.

W.T. Rankin. Optimal Golomb rulers: An exhaustive parallel search implementation. Master
thesis, Duke University Electrical Engineering Dept., Durham, NC, December 1993.

J.P. Robinson and A.J. Bernstein. A class of binary recurrent codes with limited error
propagation. IEEE Transactions on Information Theory, 13:106-113, 1967.

C. Reeves. Landscapes, operators and heuristic search. Annals of Operational Research,
86:473-490, 1999.

J. Robbins, R. Gagliardi, and H. Taylor. Acquisition sequences in PPM communications.
IEEE Transactions on Information Theory, 33:738-744, 1987.

M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search procedures. In
F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, pages 219-249. Kluwer
Academic Publishers, Boston MA, 2003.

W. Schneider. Golomb rulers. MATHEWS: The Archive of Recreational Mathematics,
http://www.wschnei.de/number-theory/golomb-rulers.html, 2002.

J.B. Shearer. Some new optimum Golomb rulers. IEEE Transactions on Information Theory,
36:183-184, January 1990.

J. B. Shearer. Golomb ruler table. Mathematics Department, IBM Research,
http://www.research.ibm.com/people/s/shearer/grtab.html, 2001.

S.W. Soliday, A. Homaifar, and G.L. Lebby. Genetic algorithm approach to the search for
Golomb rulers. In L.J. Eshelman, editor, 6th International Conference on Genetic Algo-
rithms (ICGA’95), pages 528-535, Pittsburgh, PA, USA, 1995. Morgan Kaufmann.

B.M. Smith and T. Walsh. Modelling the Golomb ruler problem. In Workshop on non-binary
constraints (IJCAI’99), Stockholm, 1999.

S. Wright. The roles of mutation, inbreeding, crossbreeding and selection in evolution. In
D.F. Jones, editor, 6th Intenational Congress on Genetics, volume 1, pages 356-366, 1932.

