
Constraints (2008) 13:21–65
DOI 10.1007/s10601-007-9031-y

Modeling Biological Networks by Action Languages
via Answer Set Programming

Steve Dworschak · Susanne Grell ·
Victoria J. Nikiforova · Torsten Schaub ·
Joachim Selbig

Published online: 25 March 2008
© Springer Science + Business Media, LLC 2007

Abstract We describe an approach to modeling biological networks by action lan-
guages via answer set programming. To this end, we propose an action language
for modeling biological networks, building on previous work by Baral et al. (Pro-
ceedings of the twelfth international conference on intelligent systems for molecular
biology/third European conference on computational biology (ISMB’04/ECCB’04)
(pp. 15–22), 2004). We introduce its syntax and semantics along with a translation
into answer set programming, an efficient Boolean Constraint Programming Par-
adigm. Finally, we describe one of its applications, namely, the sulfur starvation
response-pathway of the model plant Arabidopsis thaliana and sketch the function-
ality of our system and its usage.

Keywords Biological network model · Action language · Answer set programming

S. Dworschak (B) · S. Grell · T. Schaub · J. Selbig
Institut für Informatik, Universität Potsdam,
August-Bebel-Str. 89, 14482 Potsdam, Germany
e-mail: steve@cs.uni-potsdam.de

S. Grell · V. J. Nikiforova · J. Selbig
Max-Planck-Institut für molekulare Pflanzenphysiologie,
14424 Potsdam, Germany

J. Selbig
Institut für Biologie/Biochemie, Universität Potsdam,
Postfach 900327, 14439 Potsdam, Germany

V. J. Nikiforova
Timiryazev Institute of Plant Physiology, Russian Academy of Sciences,
Moscow 127276, Russia

22 S. Dworschak et al.

1 Introduction

Molecular biology has seen a technological revolution with the establishment of high-
throughput methods in the last years. These methods allow for gathering multiple
orders of magnitude more data than was procurable before. For turning such huge
amounts of data into knowledge, one needs appropriate and powerful knowledge
representation tools that allow for modeling complex biological systems and their
behavior. To this end, we elaborate upon qualitative methods and tools that allow
for dealing with biological and biochemical networks. Since these networks are very
large, a biologist can manually only deal with a small part of it at once. Among
the more traditional qualitative formalisms, we find e.g. Petri Nets [39, 40], Flux
Balance Analysis [5] or Boolean Networks [42]. As detailed in Baral et al. [4], these
approaches lack sufficiently expressive reasoning capacities.

Groundbreaking work addressing this deficiency was recently done by Chitta
Baral and colleagues who developed a first action language for representing and rea-
soning about biological networks [4, 48]. A comprehensive account of this approach
is given in Tran [47]. Action languages were introduced in the 1990s by Gelfond
and Lifschitz (cf. [20]) as a declarative syntactical means for describing transition
systems expressing causal relationships. By now, there exists a large variety of action
languages, like the most basic language A and its extensions [21] as well as more
expressive action languages like B [21], C [22] or K [10, 11], and variations thereof.
Traditionally, action languages are designed for applications in autonomous agents,
planning, diagnosis, etc, in which the explicit applicability of actions plays a dominant
role. This is slightly different in biological systems where reactions are a major
concern. For instance, while an agent usually has the choice to execute an action
or not, a biological reaction is often simply triggered by its application conditions.
This is addressed in Baral et al. [4] by proposing trigger and inhibition rules as an
addition to the basic action language A; the resulting language is referred to as A0

T .
A further extension, allowing knowledge about event ordering, is introduced in
Tran et al. [49].

The advantages of action languages for modeling biological systems are manifold:

• We get a simple model. The approach can thus already be used in a very early
state to verify whether the proposed model of the biological system can or cannot
hold.

• Different kinds of reasoning can be used to plan and support experiments. This
can help to reduce the number of expensive experiments.

• Further reasoning modes allow for prediction of consequences and explanation
of observations.

• The usage of static causal laws allows to easily include background knowledge
like environmental conditions, which play an important role for the development
of a biological system but are usually difficult to include in the formal model.

• The approach is elaboration tolerant1 because it allows to easily extend a part of
the model without requiring to change the rest of it.

1As put forward in McCarthy [31]: “A formalism is elaboration tolerant to the extent that it is
convenient to modify a set of facts expressed in the formalism to take into account new phenomena
or changed circumstances”.

Modeling Biological Networks by Action Languages via Answer Set Programming 23

We start by introducing our action language CT AI D by building on language A0
T

[4, 48] and C [22]. CT AI D extends C by adding biologically relevant concepts from A0
T

such as triggers and it augments A0
T , as defined in Tran and Baral [48], by providing

static causal laws for modeling background knowledge.2 Moreover, fluents (that is,
propositions changing their value over time; see below) are no longer inertial by
definition and the concurrent execution of actions can be restricted. Besides C, similar
features are for instance provided by B and K.

A feature distinguishing CT AI D from its predecessors is its concept of allowance,
which was motivated by our biological applications. The corresponding allowance
rules let us express that an action can occur under certain conditions but does not
have to occur. In fact, biological systems are characterized by a high degree of
incomplete knowledge about the dependencies among different components and
the actual reasons for their interaction. If the dependencies are well understood,
they can be expressed using triggering rules. However, if the dependencies are
only partly known or not part of the model, e.g. environmental conditions, they
cannot be expressed appropriately using triggering rules. The concept of allowance
permits actions to take place or not, as long as they are allowed (and not inhibited).
This introduces a certain non-determinism that is used to model alternative paths,
actions for which the preconditions are not yet fully understood, and slow reactions.
Of course, such a non-deterministic construct increases the number of solutions.
However, this is a desired feature since we pursue an exploratory approach to
bioinformatics that allows the biologist to browse through the possible models of
its application.

We introduce the syntax and semantics of CT AI D and give a soundness and
completeness result. For implementing CT AI D, we compile specifications in CT AI D

into logic programs under answer set semantics [2]. This approach, also referred to
as answer set programming (ASP) [4], is besides satisfiability checking (SAT), the
most popular approach to Boolean constraint solving. Both approaches offer high-
performance solvers, which are able to solve problems with millions of variables.
The two major differences between them are (i) that ASP is more expressive than
SAT3 and therefore problem representations are more succinct and (ii) that ASP
has a rich input language due to its root in knowledge representation. Although
our compilation maps specifications into a Boolean setting, our approach is able to
deal with multi-valued fluents as well. However, up to now, no such requirement was
found in our application scenarios. Hence, we also confine our formal development
to the Boolean case.

The overall approach has been implemented in Java and used meanwhile in
several different application scenarios at the Max Planck Institute for Molecular
Plant Physiology. Here we present the smallest application, namely the sulfur star-
vation response-pathway of the model plant Arabidopsis thaliana.

2To be precise, static causal laws were already informally used in Baral et al. [4].
3To be precise, ASP cannot be translated into SAT in a modular way, while the inverse is possible
[33]. Although SAT as well as ASP are basically NP-complete, a language-preserving translation of
ASP into SAT leads to an exponential blow-up in the worst case [26].

24 S. Dworschak et al.

2 Action Language CT AI D

The alphabet of our action language CT AI D consists of two nonempty disjoint sets
of symbols: a set of action names A and a set of fluent names F.4 Informally, fluents
describe changing properties of a world and actions can influence fluents. We deal
with propositional fluents that are either true or false. A fluent literal is a fluent f
possibly preceded by ¬.

We distinguish three sub-languages of CT AI D: The action description language is
used to describe the general knowledge about the system, the action observation
language is used to express knowledge about particular points of time and the action
query language is used to reason about the described system.

2.1 Action Description Language

To begin with, we fix the syntax of CT AI D’s action description language:

Definition 1 A domain description D(A, F) in CT AI D consists of expressions of the
following form:

(a causes f1, . . . , fn if g1, . . . , gm) (1)

(f1, . . . , fn if g1, . . . , gm) (2)

(f1, . . . , fn triggers a) (3)

(f1, . . . , fn allows a) (4)

(f1, . . . , fn inhibits a) (5)

(noconcurrency a1, . . . , an) (6)

(default f) (7)

where a, a1, . . . , an are actions and f, f1, . . . , fn, g1, . . . , gm are fluent literals.

Note that A0
T , as defined in Tran and Baral [48], consists of expressions of form

(1), (3), and (5) only.
A dynamic causal law is a rule of form (1), stating that f1, . . . , fn hold after the

occurrence of action a, provided that g1, . . . , gm hold when a occurs. If there are no
preconditions of the form g1, . . . , gm, the if-part can be omitted. Rule (2) is a static
causal law, used to express immediate dependencies between fluents; it guarantees
that f1, . . . , fn hold whenever g1, . . . , gm hold. Rules (3) to (6) can be used to express
whether and when an action can or cannot occur. A triggering rule (3) is used to
state that action a occurs immediately if the preconditions f1, . . . , fn hold, unless
it is inhibited. An allowance rule of form (4) states that action a can but need not
occur if the preconditions f1, . . . , fn hold. An action for which either triggering or
allowance rules are specified can only occur if one of its triggering or allowance rules,
respectively, is satisfied. An inhibition rule of form (5) can be used to express that
action a cannot occur if f1, . . . , fn hold. A rule of the form (6) is a no-concurrency

4For simplicity, we use in what follows the terms action and fluent rather than action name and fluent
name, respectively.

Modeling Biological Networks by Action Languages via Answer Set Programming 25

constraint. Actions included in such a constraint cannot occur at the same time.
Rule (7) is a default rule, which is used to define a default value for a fluent.

The latter makes us distinguish two kinds of fluents: inertial and non-inertial
fluents. Inertial fluents change their value only if they are affected by dynamic or
static causal laws. Non-inertial fluents on the other hand have the value, speci-
fied by a default rule, unless they are affected by a dynamic or static causal law.
(See end of this section, for a detailed example.) Every fluent that has no default
value is regarded to be inertial.

Additionally, we distinguish three groups of actions depending on the rules
defined for them. An action can either be a triggered, an allowed or an exogenous
action. If there are no allowance or triggering rules declared for an action occurring in
the knowledge-base, it is considered to be an exogenous action, being external to the
model. Such an exogenous action can occur at all times as long as it is not inhibited.
Otherwise, for one action, there can be several triggering or several allowance rules
but not both.

As usual, the semantics of a domain description D(A, F) is defined in terms of
transition systems [21]. An interpretation I over F is a complete and consistent set
of fluents.

Definition 2 (State) A state s ∈ S of the domain description D(A, F) is an interpre-
tation over F such that for every static causal law (f1, . . . , fn if g1, . . . , gn) ∈ D(A, F),
we have { f1, . . . , fn} ⊆ s whenever {g1, . . . , gn} ⊆ s.

Hence, we are only interested in sets of fluents satisfying all static causal laws,
i.e., correctly model the dependencies between the fluents.

Depending on the state, it is possible to decide which actions can or cannot occur.
Therefore, we define the notion of active, passive and applicable rules.

Definition 3 Let D(A, F) be a domain description and s a state of D(A, F).

1. An inhibition rule (f1, . . ., fn inhibits a) is active in s, if s |= f1 ∧ · · · ∧ fn, other-
wise the inhibition rule is passive.
The set AI(s) is the set of actions for which there exists at least one active
inhibition rule in s.

2. A triggering rule (f1, . . ., fn triggers a) is active in s, if s |= f1 ∧ · · · ∧ fn and
all inhibition rules of action a are passive in s, otherwise the triggering rule is
passive in s.
The set AT(s) is the set of actions for which there exists at least one active
triggering rule in s. The set AT(s) is the set of actions for which there exists at
least one triggering rule and all triggering rules are passive in s.

3. An allowance rule (f1, . . ., fn allows a) is active in s, if s |= f1 ∧ · · · ∧ fn and all
inhibition rules of action a are passive in s, otherwise the allowance rule is
passive in s.
The set AA(s) is the set of actions for which there exists at least one active
allowance rule in s. The set AA(s) is the set of actions for which there exists
at least one allowance rule and all allowance rules are passive in s.

4. A dynamic causal law (a causes f1, . . ., fn if g1, . . ., gn) is applicable in s, if
s |= g1 ∧ · · · ∧ gn.

5. A static causal law (f1, . . . , fn if g1, . . . , gn) is applicable in s, if s |=g1 ∧ · · · ∧ gn.

26 S. Dworschak et al.

Observe that point two and three of the definition express that an action is
activated (and thus has to occur) or may become activated as long as there is one
active triggering or allowance rule respectively. A non-exogenous action cannot
occur if either an inhibition rule for the action is active or if all triggering or allowance
rules for the action are passive, respectively.

The effects of an action are determined by the applicable dynamic causal laws
defined for this action. Following [21], the effects of an action a in a state s of domain
description D(A, F) are defined as follows:

E(a, s) = { f1, . . . , fn | (a causes f1, . . . , fn if g1, . . . , gm) is applicable in s}

The effects of a set of actions A is defined as the union of the effects of the
single actions: E(A, s) = ⋃

a∈A E(a, s). Besides the direct effects of actions, a domain
description also defines the consequences of static relationships between fluents. For
a set of static causal laws in a domain description D(A, F) and a state s, the set

L(s) = { f1, . . . , fn | (f1, . . . , fn if g1, . . . , gm) is applicable in s}

contains the heads of all static causal laws whose preconditions hold in s.
Finally, the way the world evolves according to a domain description is captured

by a transition relation; it defines to which state the execution of a set of actions leads.

Definition 4 Let D(A, F) be a domain description and S be the set of states of
D(A, F).

Then, the transition relation � ⊆ S × 2A × S determines a resulting state s′ ∈ S
after executing all actions B ⊆ A in state s ∈ S as follows:

(s, B, s′) ∈ � for s′ = E(B, s) ∪ L(s′) ∪ �(s′) ∪ (s ∩ s′)

where

�(s′) = { f | (default f) ∈ D(A, F),¬ f /∈ E(B, s) ∪ L(s′)}
∪ {¬ f | (default ¬ f) ∈ D(A, F), f /∈ E(B, s) ∪ L(s′)}

Even if no actions are performed, there can nevertheless be a change of state due
to the default values defined by the domain description. Intuitively, if actions occur,
the next state is determined by taking all effects of the applicable dynamic and static
causal laws and adding the default values of fluents not affected by these actions. The
values of all fluents that are not affected by these actions or by default values remain
unchanged.

The transition relation determines the resulting state when an action is executed,
but it cannot be used to decide whether the action happens at all, since it does not
consider triggering, allowance or inhibition rules. This is accomplished by the concept
of a trajectory, which is a sequence of states and actions that takes all rules in the
domain description into account.

Modeling Biological Networks by Action Languages via Answer Set Programming 27

Definition 5 (Trajectory) Let D(A, F) be a domain description.
A trajectory s0, A1, s1, . . . , An, sn of D(A, F) is a sequence of sets of actions

Ai ⊆ A and states si of D(A, F) satisfying the following conditions for 0 ≤ i < n:

1. (si, Ai+1, si+1) ∈ �

2. AT(si) ⊆ Ai+1

3. AT(si) ∩ Ai+1 = ∅
4. AA(si) ∩ Ai+1 = ∅
5. AI(si) ∩ Ai+1 = ∅
6. |Ai+1 ∩ B| ≤ 1 for all (noconcurrency B) ∈ D(A, F).

A trajectory assures that there always is a reason why an action occurs or why it does
not occur. The second and third point of the definition make sure that the actions
of all active triggering rules are included in the set of actions and that no action for
which all triggering rules are passive is included in the set of actions. Point four and
five assure that no actions for which all allowance rules are passive and no inhibited
actions are included in the set of actions.5 The definition does not include assertions
about active allowance rules or about the occurrence of exogenous actions, because
they can be, but not necessarily have to be, included in the set of actions. (As detailed
above, this is motivated by our biological application.) The last point of the definition
assures that at most one of the actions occurring in a no-concurrency constraint can
occur at each point of time.

For illustrating the interaction of non-inertial fluents with trigger and allowance
rules, let us consider the following three domain descriptions.

1. (default ¬ f) (¬ f triggers a) (a causes f)
has trajectory model

{¬ f }, {a}, { f }, ∅, {¬ f }, {a}, { f }, ∅, {¬ f } . . .

The behavior of fluent f in this trajectory model can be visualized as follows:

f :

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

. . .

The oscillation of f is caused by the fact that it keeps returning to its default state
after each execution of action a.

2. (default ¬ f) (¬ f triggers a) (a causes f)
(default ¬g) (f triggers b) (b causes g)

has trajectory model

{¬ f,¬g}, {a}, { f,¬g} {b}, {¬ f, g}, {a}, { f,¬g} {b}, {¬ f, g} . . .

5Allowance rules can be rewritten as inhibition rules, if the corresponding action is declared to be
exogenous. But this is inadequate in view of our biological application and results in a non-modular
compilation (see Section 3).

28 S. Dworschak et al.

The behavior of fluent f and g in this trajectory model can be visualized as
follows:

g:

f :

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

. . .

. . .

As above, f and g are oscillating, yet in a complementary fashion.
3. (default ¬ f) (¬ f triggers a) (a causes f)

(default ¬g′) (f allows b) (b causes g′)
has trajectory model

{¬ f,¬g′}, {a}, { f,¬g′} {b}, {¬ f, g′}, {a}, { f,¬g′}, ∅, {¬ f, g′} . . .

The behavior of fluent f and g′ in this trajectory model can be visualized as
follows:

g ′:

f :

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

. . .

. . .

Unlike b above, b is merely allowed to happen and not automatically triggered;
as a result, g′ remains false at s4.

2.2 Action Observation Language

The action observation language provides expressions to describe particular states
and occurrences of actions:

(f at ti) (a occurs_at ti) (8)

where f is a fluent literal, a is an action and ti is a point of time. The initial point of
time is t0. For a set of actions A′ = {a1, . . . , ak} we write (A′occurs_at ti) to abbreviate
(a1occurs_at ti), . . ., (akoccurs_at ti). Intuitively, an expression of form (f at ti) is used
to state that a fluent f is true or present at time ti. If the fluent f is preceded by ¬ it
states that f is false at ti. An observation of form (a occurs_at ti) says that action a
occurs at time ti. It is possible that action a is preceded by ¬ to express that a does
not occur at time ti.

A domain description specifies how the system can evolve over time. By including
observations the possibilities of this evolution are restricted. So only when all
information, the domain description and the observations, is taken into account, we
get an appropriate picture of the underlying system. The combination of domain
description and observations is called an action theory.

Definition 6 (Action theory) Let D be a domain description and O be a set of
observations. The pair (D, O) is called an action theory.

Modeling Biological Networks by Action Languages via Answer Set Programming 29

Intuitively, trajectories specify possible evolutions of the system with respect to
the given domain description. However, not all trajectories satisfy the observations
given by an action theory. Trajectories satisfying both, the domain description as well
as given observations, are called trajectory models:

Definition 7 (Trajectory model) Let (D, O) be an action theory.
A trajectory s0, A1, s1, A2, . . . , An, sn of D is a trajectory model of (D, O), if it

satisfies all observations in O in the following way:

1. if (f at t) ∈ O, then f ∈ st

2. if (a occurs_at t) ∈ O, then a ∈ At+1.

The problem that arises here is to distinguish biologically meaningful trajectory
models. In other domains,6 often, only certain optimal trajectories are considered
to be of interest, but this is not appropriate for biological systems, since we are
not only interested in the shortest path through the transition system, but also
in, possibly longer, alternative paths and just as well in models which include the
concurrent execution of actions. Moreover, redundancy is a common phenomenon
of biological systems and it is hence impossible to simply exclude trajectory models
bearing putatively redundant information. So, to decide which actions are redundant
is thus a rather difficult problem and the question whether a model is biologically
meaningful can only be answered by a biologist, not by an automated reasoner. One
way to include additional information which may be derived from data on measure-
ment could be the use of preferences or objective functions, which are subject to
future work.

A question we can already answer is that about logical consequence of
observations.

Definition 8 Let (D, O) be an action theory. Then,

• (D, O) entails fluent observation (f at ti), written (D, O) |= (f at ti),
if f ∈ si for all trajectory models s0, A1, . . . , si, Ai+1, . . . , An, sn of (D, O),

• (D, O) entails action observation (a occurs_at ti), written (D, O) |=
(a occurs_at ti),
if a ∈ Ai+1 for all trajectory models s0, A1, . . . , si, Ai+1, . . . , An, sn of (D, O).

2.3 Action Query Language

Queries are about the evolution of the biological system, i.e., about trajectories. In
general, a query is of the form:

(f1, . . . , fn after A1 occurs_at t1, . . . , Am occurs_at tm) (9)

where f1, . . . , fn are fluent literals, A1, . . . , Am sets of actions, and t1, . . . , tm time
points.

6For instance in planning, one is usually interested in shortest or least expensive trajectories.

30 S. Dworschak et al.

For queries the most prominent question is the notion of logical consequence.
Under which circumstances entails an action theory or a single trajectory model
a query.

Definition 9 Let (D, O) be an action theory and Q be a query of form (9).7 Then,

• Q is cautiously entailed by (D, O), written (D, O) |=c Q,
if every trajectory model s0, A′

1, s1, A′
2, . . . , A′

p, sp of (D, O) satisfies
Ai ⊆ A′

i for 0 < i ≤ m ≤ p and sp |= f1 ∧ · · · ∧ fn.
• Q is bravely entailed by (D, O), written (D, O) |=b Q,

if some trajectory model s0, A′
1, s1, A′

2, . . . , A′
p, sp of (D, O) satisfies

Ai ⊆ A′
i for 0 < i ≤ m ≤ p and sp |= f1 ∧ · · · ∧ fn.

While cautiously entailed queries are supported by all models, bravely entailed
queries can be used for checking the possible hypotheses.

We want to use the knowledge given as an action theory to reason about the
corresponding biological system. Reasoning includes explaining observed behavior,
but also predicting the future development of the system or how the system may be
influenced in a particular way. The above notion of entailment is used to verify the
different types of queries introduced in the next sections.

2.3.1 Planning

In planning, we try to find possibilities to influence a system in a certain way.
Neither the initial state (viz. s0) nor the goal state (viz. sn in Definition 5) have to
be completely specified by fluent observations. A plan is then a sequence of actions
starting from one possible initial state and ending at one possible goal state. There
are usually several plans, taking into account different paths but also different initial
and goal states.

Definition 10 (Plan) Let (D, Oinit) be an action theory such that Oinit contains only
fluent observations about the initial state and let Q be a query of form (9).

If (D, Oinit) |=b Q wrt some trajectory model s0, A′
1, s1, A′

2, . . . , A′
p, sp of (D, O),

then P = {(A′
1 occurs_at t1), . . . , (A′

m occurs_at tm)} is a plan for f1, . . . , fn.

Note that a plan is always derived from the corresponding trajectory model.

2.3.2 Explanation

Usually, there are not only observations about the initial state but also about other
time points and we are more interested in understanding the observed behavior of a
system than in finding a plan to cause certain behavior of the system.

7Parameters m and n are taken as defined in (9); the same applies to fluent literals f1, . . . , fn, sets of
actions A1, . . . , Am, and time points t1, . . . , tm.

Modeling Biological Networks by Action Languages via Answer Set Programming 31

Definition 11 (Explanation) Let (D, O) be an action theory and let Q be a query of
form (9) where f1 ∧ · · · ∧ fn is equivalent to true.

If (D, O) |=b Q wrt some trajectory model s0, A′
1, s1, A′

2, . . . , A′
p, sp of (D, O),

then E = {(A′
1 occurs_at t1), . . . , (A′

m occurs_at tm)} is an explanation for the set of
observations O.

When explaining observed behavior it is neither necessary to completely define
the initial state, nor the final state. The less information is provided the more possible
explanations there are, because an explanation is one path from one possible initial
state to one possible final state, via some possible intermediate partially defined
states given by the observations. The initial state and the explanation are induced
by the underlying trajectory model.

2.3.3 Prediction

Prediction is mainly used to determine the influence of actions on the system; it tries
to answer questions about the development of the biological system. A query answers
the question whether, starting at the current state and executing a given sequence of
actions, fluents will hold or not hold after a certain time.

Definition 12 (Prediction) Let (D, O) be an action theory and let Q be a query of
form (9).

• If (D, O) |=c Q, then f1, . . . , fn are cautiously predicted,
• If (D, O) |=b Q, then f1, . . . , fn are bravely predicted.

All of the above reasoning modes are implemented in our tool and used in
our biological applications. Before describing its usage, we first detail how it is
implemented.

3 Compilation

We implemented our action language by means of a compiler mapping CT AI D onto
logic programs under answer set semantics (cf. [2, 19]). This semantics associates
with a logic program a set of distinguished models, referred to as answer sets. This
model-based approach to logic programming is different from the traditional one,
like Prolog, insofar as solutions are read off issuing answer sets rather than proofs
of posed queries. Our compiler uses efficient off-the-shelf answer set solvers like
smodels [43] or clasp [17], respectively, as a back-end, whose purpose is to
compute answer sets from the result of our compilation. Since we do not elaborate
upon theoretical aspects of this, we refer the reader to the literature for a formal
introduction to ASP (cf. [2, 19]).

Our translation builds upon and extends the one in Lifschitz and Turner [28]
and Tran and Baral [48]. We adapt the translation of the language A0

T to include
new language constructs and we extend the compilation scheme of A0

T in order to
capture the semantics of static causal laws, allowance and default rules, and of no-
concurrency constraints. In what follows, we stick to the syntax of the smodels

32 S. Dworschak et al.

system [43], using lowercase strings for predicate, function, and constant symbols
and uppercase strings for variables. A rule is of the form

h : − g1, ...,gn

which means that h is derivable if all sub-goals g1, ...,gn are derivable. Facts have no
such goals and are simply denoted by h. Integrity constraints have no head on the
left, viz.

: − g1, ...,gn

meaning that the g1, ...,gn cannot jointly hold. Furthermore, we (once) make use of
smodels’s basic cardinality constraints, having the form k {l1, . . . , lm : t1, . . . , tn} and
meaning that at least k literals among {l1, . . . , lm} must be contained in an answer set;
the remaining literals t1, . . . , tn are used for restricting the instantiation of variables
in l1, . . . , lm.

3.1 Action Description Language

The expressions defined in a domain description D(A, F) have to be composed
of symbols from A an F. When constructing the logic program for D(A, F), we
first have to define the alphabet. We declare every fluent f ∈ F and action a ∈ A,
respectively, by adding a fact of the form fluent(f), and action(a). We use
continuously a variable T, representing a time point where 0 ≤ T ≤ tmax, where
tmax is an upper time bound. This range is encoded by the smodels construct
time(0..tmax), standing for the facts time(0), . . . ,time(tmax). Furthermore, it is
necessary to add constraints expressing that f and ¬ f are contradictory.

:- holds(f,T), holds(neg(f),T), fluent(f), time(T).

An atom like holds(l,T) expresses that fluent literal l is true at time point T.
Whenever clear from the context, we only give translations for positive fluent

literals f ∈ F and omit the dual rule for the negative fluent, viz. ¬ f represented
as neg(f).

For each inertial fluent f ∈ F, we include rules expressing that f has the same
value at ti+1 as at ti, unless it is known otherwise:

holds(f,T+1) :- holds(f,T),not holds(neg(f,T+1)),not
default(f),
fluent(f),time(T),time(T+1).

For each non-inertial fluent f ∈ F, we add the fact default(f) and include for
the default value true:

holds(f,T) :- not holds(neg(f),T)), default(f), fluent(f),
time(T).

For each dynamic causal law (1) in D(A, F) and each fluent fi ∈ F, we include:

holds(fi,T+1) :-holds(occurs(a),T),holds(g1,T),. . .,holds(gn,T),
fluent(g1),. . .,fluent(gn),fluent(fi),action(a),time(T),time(T+1).

For each static causal law (2) in D(A, F) and each fluent fi ∈ F, we include:

holds(fi,T) :- holds(g1,T),. . .,holds(gn,T),
fluent(g1), . . ., fluent(gn),fluent(fi), time(T).

Modeling Biological Networks by Action Languages via Answer Set Programming 33

Every triggering rule (3) in D(A, F) is translated as:

holds(occurs(a),T) :- not holds(ab(occurs(a)),T),
holds(f1,T),. . .,holds(fn,T),
fluent(f1),. . .,fluent(fn),action(a),time(T).

Once the preconditions of the triggering rule are satisfied, the occurrence of action a
is enforced unless holds(ab(occurs(a)),T) is generated by the compilation of
an inhibition rule (see below).

For each allowance rule (4) in D(A, F), we include:

holds(allow(occurs(a)),T) :- not holds(ab(occurs(a)),T),
holds(f1,T),. . .,holds(fn,T),
fluent(f1),. . .,fluent(fn),action(a),time(T).

For every exogenous action a ∈ A, the translation includes a rule, stating that this
action can always occur.

holds(allow(occurs(a)),T) :- action(a), time(T).

Every inhibition rule (5) in D(A, F) is translated as:

holds(ab(occurs(a)),T) :- holds(f1,T),. . .,holds(fn,T),
action(a),fluent(f1),. . .,fluent(fn), time(T).

For each no-concurrency constraint (6) in D(A, F), we include an integrity
constraint assuring that at most one of the respective actions can hold at time t:

:- time(T), 2 {holds(occurs(a1),T):action(a1),. . .,
holds(occurs(an),T):action(an)}.

3.2 Action Observation Language

There are two different kinds of fluent observations. Those about the initial state,
(f at t0), and the fluent observations about all other states, (f at ti) for i > 0. Fluent
observations about the initial state are simply translated as facts: holds(f,0).
Because they are just assumed to be true and need no further justification. All other
fluent observations however need a justification. Due to this, fluent observations
about all states except the initial state are translated into integrity constraints of the
form, for i > 0:

:- not holds(f,ti),fluent(f),time(ti)

The initial state can be partially specified by fluent observations. In fact, only the
translation of the (initial) fluent observations must be given. All possible completions
of the initial state are then generated by adding for every fluent f ∈ F the rules:

holds(f,0):- not holds(neg(f),0).
holds(neg(f),0):- not holds(f,0).

(10)

When translating action observations of form (8) the different kinds of actions
have to be considered. Exogenous actions can always occur and need no fur-
ther justification. Such an exogenous action observation is translated as a fact:
holds(occurs(a),ti).Unlike this, observations about triggered or allowed actions

34 S. Dworschak et al.

must have a reason, e.g. an active triggering or allowance rule, to occur. To assure
this justification, the action observation is translated using constraints of the form:

:- holds(neg(occurs(a)),ti),action(a),time(ti).

assuring that every answer set must satisfy the observation (a occurs_at ti).
Apart from planning (see below), we also have to generate possible combinations

of occurrences of actions, for all states. To this effect, the translation includes two
rules for every exogenous and allowed action.

holds(occurs(a),T) :- holds(allow(occurs(a)),T),
not holds(ab(occurs(a)),T), not

holds(neg(occurs(a)),T),
action(a), time(T), T<tmax.

holds(neg(occurs(a)),T) :- not holds(occurs(a),T),
action(a), time(T), T<tmax.

(11)

The following result provides a basic correctness and completeness result; corre-
sponding results for the specific reasoning modes are either obtained as corollaries
or adaptions of its proof (see Appendix).

Theorem 1 Let (D, Oinit) be an action theory such that Oinit contains only fluent
observations about the initial state. Let Q be a query as in (9) and let

AQ = {(a occurs_at ti) | a ∈ Ai, 1 ≤ i ≤ m} .

Let T denote the translation of CT AI D into logic programs, described above.
Then, we have the following results.

1. If s0, A1, s1, A2, . . . , Am, sm is a trajectory model of (D, Oinit ∪ AQ),
then there is an answer set X of logic program T (D, Oinit ∪ AQ) such that we have
for all f ∈ F and 0 ≤ k ≤ m

(a) holds (f,k)∈ X, if sk |= f and
(b) holds (neg(f),k)∈ X, if sk |= ¬ f .
(c) holds (occurs(a),k) ∈ X, if a ∈ Ak+1

(d) holds (neg(occurs(a)),k) ∈ X, if a
∈ Ak+1

2. If X is an answer set of logic program T (D, Oinit ∪ AQ) and for 0 ≤ k ≤ m

(a) sk = { f | holds (f,k) ∈ X} ∪ {¬ f | holds (neg(f),k) ∈ X}
(b) Ak+1 = {a | holds (occurs(a),k) ∈ X}
then there is a trajectory model s0, A1, s1, A2, . . . , Am, sm of (D, Oinit ∪ AQ).

3.3 Action Query Language

In the following tmax is the upper time bound, which has to be provided when the
answer sets are computed.

Modeling Biological Networks by Action Languages via Answer Set Programming 35

3.3.1 Planning

Recall that the initial state can be partially specified; it is then completed by the rules
in (10) for taking into account all possible initial states. A plan for f1, . . . , fn (cf.
Definition 10) is translated using the predicate “achieved”. It ensures that the goal
holds in the final state of every answer set for the query.

:- not achieved.
achieved :- achieved(0).
achieved :- achieved(T+1),not achieved(T),time(T),time(T+1).
achieved(T) :- holds(f1,T),. . .,holds(fn,T),

achieved(T+1),fluent(f1),. . .,fluent(fn),time(T),time(T+1).
achieved(tmax) :- holds(f1,tmax),. . .,holds(fn,tmax),

fluent(f1),. . .,fluent(fn).

Constant tmax is the maximum number of steps in which the goals f1, . . . , fn should
be achieved. The proposition achieved(T) represents the earliest point of time T at
which the plan is successfully achieved. Once the query is satisfied only triggered
actions can occur, all other actions should not occur since that might invalidate
the plan. That is why achieved(T) occurs in the translation of every allowed and
exogenous action.

holds(occurs(a),T) :- holds(allow(occurs(a)),T),not
achieved(T),
not holds(ab(occurs(a)),T), not holds(neg(occurs(a)),T),
action(a),time(T).

holds(neg(occurs(a)),T) :- not holds(occurs(a),T),
action(a),time(T).

These rules are used to generate all possible combinations of occurrences of non-
triggered actions. Such actions can only occur as long as the goal is not yet
achieved and if they are not inhibited. If there is an answer set X for the planning
problem, then we have for a plan P (cf. Definition 10) that (a occurs_at ti) ∈ P if
holds(occurs(a),i)∈ X.

3.3.2 Explanation

The translation of an explanation contains the translation of all action and fluent
observations in O, as described above. Since the observations about the initial state
are often incomplete the translation contains the rules in (10) to generate all initial
states which do not contradict the observations. Also, we have to generate possible
combinations of occurrences of actions for all states. To this effect, the translation
includes for every exogenous and allowed action the rules in (11). If there exists an
answer set X for the explanation problem, then for an explanation E as in Definition
11 we have (a occurs_at ti) ∈ E if holds(occurs(a),i)∈ X.

3.3.3 Prediction

The translation includes all fluent and action observations in O, as described above.
As in explanation, we have to fill in missing information, which is necessary to justify
the observed behavior. That means we have to include for every fluent f two rules
of form (10) to generate possible initial states. Moreover the translation includes for

36 S. Dworschak et al.

every non-triggered action two rules similar to those of an explanation of form (11).
The actual prediction for f1, . . . , fn (cf. Definition 12) is translated as:

predicted :- holds(f1,T), . . ., holds(fn,T),
fluent(f1),. . .,fluent(fn),time(T),T >= i.

where i is the time of the latest observation. If the atom predicted is included in all
(some) answer sets, it is a cautious (brave) prediction.

4 Application

Meanwhile, we have used CT AI D in application scenarios at the Max-Planck Institute
for Molecular Plant Physiology for modeling metabolic as well as signal transduction
networks. For illustration, we describe below the sulfur starvation response-pathway
of the model plant Arabidopsis thaliana. Sulfur is essential for the plant. If the
amount of sulfur it can access is not sufficient to allow a normal development of the
plant, the plant follows a complex strategy. First the plant forms additional lateral
roots to access additional sources of sulfur and to normalize its sulfur level. How-
ever, if this strategy is not successful the plant channels its remaining resources to
form seeds.

Normally, the amount of sulfur in a plant is sufficient, but due to external,
e.g. environmental conditions, the amount of sulfur can be reduced. A problem, when
modeling this network are such environmental conditions, which are not and cannot
be part of a model and which might or might not lead to the reduction of sulfur.
Once the level of sulfur in the plant is decreased, complex interactions of different
compounds are triggered. Genes are activated, which induce the generation of auxin,
a plant hormone, playing a key role as a signal in coordinating the development
of the plant. A surplus of the auxin flux leads to the formation of additional
lateral roots. Since this consumes the scarce resources, the development should be
stopped, when it becomes apparent that it is not successful (i.e. it takes too long and
consumes too many of the plant’s resources). This “emergency stop” is triggered by
complex interactions that lead inter alia to the expression of IAA28, a gene which
is involved in the inhibition of lateral root growth. If the sulfur level is still low and
IAA28 is expressed, other processes result in a different physiological endpoint, the
production of seeds [34, 36].

We now show how this biological network can be represented as a domain
description D(A, F) in CT AI D.

A ={sulfur_depletion, sulfur_repletion, enhanced_lateral_root_formation,

iaa28_expression, rapid_seed_ production}
F ={normal_sulfur, depleted_sulfur, enhanced_lateral_roots, expressed_iaa28, seeds}

The biologist’s knowledge about the biological system, gives rise to the following
dynamic causal laws.

(sulfur_depletion causes depleted_sulfur if normal_sulfur)
(enhanced_lateral_root_ formation causes enhanced_lateral_roots)
(sulfur_repletion causes normal_sulfur)

Modeling Biological Networks by Action Languages via Answer Set Programming 37

(iaa28_expression causes expressed_iaa28)
(rapid_seed_ production causes seeds)

Additionally, two static causal laws specify the relationship between normal sulfur
and depleted sulfur. They assure that at most one of the fluents is true at all times.

(¬normal_sulfur if depleted_sulfur)
(¬depleted_sulfur if normal_sulfur)

For two of the actions, we know all the preconditions that have to be satisfied for
the actions to occur.

(depleted_sulfur triggers enhanced_lateral_root_ formation)
(expressed_iaa28, depleted_sulfur triggers rapid_seed_ production)

For the remaining three actions, it is more difficult to decide whether and when
they occur. Whether the action sulfur depletion occurs depends on environmental
conditions being outside the model. The same holds for the action sulfur repletion,
which might or might not be successful, depending on the environmental conditions.
For the occurrence of action iaa28 expression the question is not whether it occurs
but when it occurs. The longer it is delayed, the more resources are used to form
additional lateral roots.

(normal_sulfur allows sulfur_depletion)
(depleted_sulfur allows iaa28_expression)
(enhanced_lateral_roots allows sulfur_repletion)

There is only one inhibition relation in this example.

(expressed_iaa28 inhibits enhanced_root_ formation)

But only if we add a default value for the fluent enhanced lateral roots, the
inhibition relation has the desired effect of stopping the formation of additional
lateral roots.

(default¬enhanced_lateral_roots)

The knowledge that the plant either forms additional lateral roots or produces
seeds can be expressed by the following no-concurrency constraint:

(noconcurrency enhanced_lateral_roots_ formation, rapid_seed_ production)

After defining the domain description, let us define a set of observations O. The
initial state, where we still have a normal level of sulfur can be described by the
following fluent observations:

O = { (normal_sulfur at 0), (¬ enhanced_lateral_roots at 0),
(¬ expressed_iaa28 at 0), (¬ seeds at 0) }

Now that we defined our action theory (D, O), we can start to reason about it. Let
us first find an explanation for the observed behavior:

O1 = O ∪ {(sulfur_depletion occurs_at 0), (normal_sulfur at 3)}

For a time bound of tmax = 3 there are already 4 possible explanations. They all have
in common that sulfur depletion occurs at time point 0, the formation of lateral roots

38 S. Dworschak et al.

is triggered at time point 1 and the action sulfur repletion occurs at time point 2.
The explanations differ in whether and when the action iaa28 expression and the
action rapid seed production occurs. One explanation is:

(D,O1) |=b (true after sulfur_depletion occurs_at 0,
enhanced_lateral_root_ formation occurs_at 1,
enhanced_lateral_root_ formation occurs_at 2, sulfur_repletion occurs_at 2)

A second explanation is:

(D,O1) |=b (true after sulfur_depletion occurs_at 0,
enhanced_lateral_root_ formation occurs_at 1,
enhanced_lateral_root_ formation occurs_at 2,
sulfur_repletion occurs_at 2, iaa28_expression occurs_at 2)

Our next question is whether the given observations are sufficient to predict a
certain behavior of the plant.

(D,O) |=c (seeds after sulfur_depletion occurs_at 0, iaa28_expression occurs_at 1)

(D,O) |=b (normal_sulfur after sulfur_depletion occurs_at 0, iaa28_expression
occurs_at 1)

Using these predictions, we can say that when sulfur is depleted and IAA28 is
expressed the plant grows seeds, but it is still possible that it also stabilizes its sulfur
level.

Finally, we want to find a plan for the action theory (D, O) that results in the
production of seeds. For time bound tmax = 3, there are 4 plans. One possible plan is:

(D,O) |=b (seeds after sulfur_depletion occurs_at 0,
iaa28_expression occurs_at 1, enhanced_lateral_root_ formation occurs_at 1,
rapid_seed_production occurs_at 2, rapid_seed_ production occurs_at 3)

The number of plans and explanations depend on the number of allowance
rules, since the different possibilities for the occurrence of such an allowed action
is reflected by different answer sets.

4.1 Applying CT AI D to the Biological Example

Let us now show how CT AI D can be applied to an extended biological example and
explain different aspects of its reasoning capacities.

To build the model of the tested biological example of Arabidopsis plants respond-
ing to hypo-sulfur stress, we compiled the available data about the behavior of the
particular system elements and on their mutual coherence in form of interactions of
distinct nature (Fig. 1). These data were translated into the model using

1. formalization of the states of individual fluents and actions (in a binary form of
a fluent f either holding or not holding and an action a either occurring or not
occurring) at the discrete time points of response development, and

2. known reasons for the changes in these states (as causally directed connections
between fluents and actions).

Modeling Biological Networks by Action Languages via Answer Set Programming 39

+

-

Physiological endpoint II -
seed_production

Final system state -
sulfur_deficiency

PCD_rescue_
re-programming

termination_
of_life_cycle

spended_
resourses

<if> -accumulated_sulfur

decreased
_ lipids imbalanced

_ nitrogen

decreased
_ sam

neg_photo
-synthesis

neg_assi-
milated_
energy

fading_of_
metabolism

faded_
metabolism

impaired_
chlorophyll
_synthesis

decreased_
chlorophyll

increasing_of _
photorespiration

increased_
photorespiration

enforce_
nucleotide_
metabolism

enforced_
nucleotide_
metabolism

dump_c_n

dumped
_c_n

increased
_thf

decreasing
of sam

decreasing
_of_lipids

imbalancing
of sulfur-

nitrogen

increasing
of thf

<default> negative

-

-

-

System perturbatio
sulphur_reduction

surplus_auxin_flux

changed_free_
Ca2+_levels

calmodulin_activation

IAA28_
expression

Physiological endpoint I -
enhanced_lateral_roots

Initial system state -
normal_sulfur

increased_oas

increased_ serine

increased_tryptophan

glucosinolate
_catabolism

accumulated
_indole-

acetonitrile

over-expressed
_nit3

activated_
calmodulin

increasing_of_oas

increasing_of_serine

increasing_of_
tryptophan

expression
_of_nit3

expressed
_iaa28

activated
_auxin-

inducible
_genes

enhanced_
lateral_root
_formation

sulfur_depr letion

accumulated
_sulfur

accumulating
_sulfur

reduced_sulfur

<i
f>

-f
ad

ed
_m

et
ab

ol
is

m

<i
f>

en
h_

la
t_

ro
ot

s

sulfur_rr epletion

<default> negative

<default> negative -
+

+
-

+

+

+

-

spending
_resourses

actionfluent

causes

triggers

allows
if +/+ -/-

if +/- -/+

Fig. 1 A network of causal influences between elements of the system in Arabidopsis plants in
response to hypo-sulfur stress, a compilation on which a model of an extended biological example was
built and translated into CTAI D. A subset of interactions covered by the shadowed area is compiled
into a small biological example, used for the verification of the model

Fluents were represented by genes (expressed_iaa28), metabolites (increased_
tryptophan), or more complex phenotypical traits (enhanced_lateral_roots). Actions
corresponded to particular cellular processes (glucosinolate_catabolism). In such a
way, a systems’ state is described in a query by a combination of fluent and action
observations.

4.1.1 Analysis of the Initial State by using the Biological Model as Verification

To adjust the model, we tested, whether the final state, which has been observed
experimentally, can be achieved by model simulation and how the model can be
improved by fine-tuning the domain parameters (especially those for which the exact
data are absent) to make the observed final state achievable by the model. Through
this verification the unknown initial parameters could be identified.

In spite of the lack of data about the state of some of the fluents at the initial
time point, their inclusion into the model is relevant, because their involvement
in the response development has been demonstrated experimentally, and the rea-
soning about them is clear. For example, indole-acetonitrile is not in the list of
metabolites, which were detected by applying Gas chromatography – mass spec-
trometry (GC/MS) techniques, and thus it cannot be estimated whether the fluent
‘accumulated_indole_acetonitrile’ holds or does not hold from the measurements.

40 S. Dworschak et al.

Nevertheless, its accumulation has to be considered in the model, because in
sulfur stress response both sulfur-releasing catabolism of glucosinolates and over-
expression of Nit3 gene were demonstrated [6, 24], and indole-acetonitrile links
these two cellular processes with causal connections, as being simultaneously a direct
product of the first and a substrate for the second [23]. Now by simulating the
systems’ response by including a fluent observation for a particular point of time,
which is known experimentally to occur (e.g. ‘enhanced_lateral_root_formation
occurs_at 6’), a model, where fluent ‘accumulated_indole_acetonitrile’ is holding or
not holding can be tested. For the extended example in Fig. 1, into which behavior of
a system in a sulfur-deficient homeostasis is incorporated, more complex fluent traits
such as ‘imbalanced_nitrogen’ or ‘neg_assimilated_energy’ can be examined in such
a way and identified as holding or not holding at initial time points.

4.1.2 Model Verification by Comparing the Estimated and the Modeled Time
for a Queried Fluent to Hold

The causal modeling presented here allows hierarchical ordering in a causal conse-
quence of the response events from a dense network of mutual interactions. This
ordering is accomplished by assigning the earliest virtual time point to each of the
fluents and actions to hold/occur. In the simplified small example, which we used for
model adjustment (shadowed area of Fig. 1), such causal hierarchy can be predicted
without computing by just visual analysis of the network of causal influences in the
system, where the shortest distance from the initial state to a state in which a queried
fluent holds, is expressed in a number of fluents to be passed. For our small example
such predictions are in full correspondence with the virtual ordering provided by
model simulation.

4.1.3 Combinatorial Manner of Functioning of Biosystem Constituents

A comparison of sets of actions of different plans leading to alternative final states
shows that some sets of actions they pass are similar, but what is significant to reach
either of the final states is the combination of actions and their causal order. This is
shown in Table 1. The first column gives the actions in our small bioexample. The
second and third column indicate virtual time points in plans of actions for query
normal_sulfur and query sulfur_deficiency, respectively.

4.1.4 Synergism in Functioning of Systems Constituents

Analysis of co-occurrence of different actions in the plans leading to alternative states
allows reasoning about synergetic influences inside the system. In Table 2 the sets
of actions leading to the alternative states of normal sulfur or sulfur deficiency are
analyzed by their co-occurrence at the same virtual time points.

Here, in the plan to get back to normal sulfur the action ‘sulfur_reduction’ co-
occurs at time point 2 simultaneously with two groups of actions,

(i) ‘glucosinolate_catabolism’, ‘increasing_of_oas’ and ‘activation_of_auxin_
inducible_genes’ and

(ii) ‘expression_of_nit3’ and ‘increasing_of_serine’

Modeling Biological Networks by Action Languages via Answer Set Programming 41

Table 1 Comparison of the occurrence of sets of consecutive actions to achieve two different final
states (normal sulfur or sulfur deficiency)

Actions Query: normal_sulfur Query: sulfur_deficiency

sulfur_reduction 0, 1, 2 0, 2, 3
glucosinolate_catabolism 1, 2, 3 1, 3, 4
increasing_of_oas 1, 2, 3 1, 3, 4
activation_of_auxin_inducible_genes 1, 2, 3 1, 3, 4
expression_of_nit3 2, 3 2
increasing_of_serine 2, 3, 4 2, 4
enhanced_lateral_root_formation 2, 3, 4 2, 4
increasing_of_tryptophan 3, 4 3
accumulating_sulfur 3 3
surplus_auxin_flux − −
sulfur_repletion 2, 3 2
sulfur_depletion 0, 1, 2, 3 0, 1, 3
calmodulin_activation − −
iaa28_expression − −

While in a plan leading to an alternative systems state of sulfur deficiency co-
occurrence of the action ’sulfur_reduction’ with these two sets of actions is scattered
between two virtual time points, i.e. time 3 with the set (i) and time 2 with the
set (ii).

4.1.5 Essentiality of Causal Hierarchies for the Functioning of the System

Comparative analysis of actions, appearing at a particular time point in exclusively
either of the alternative plans, points at their putative essentiality for a particular
queried state to be achieved. In Table 3, all similar actions appearing in both
alternative plans are filtered out, and only query-specific actions at particular time
points are left, indicating which actions have to occur in a specific causal order for
a particular final state to be achieved. For example, ‘increasing_of_tryptophan’ has
to occur late in the causal hierarchy to let the system go back to the state of normal
sulfur.

4.1.6 By Analysis of Action Essentiality Redundant Side Branches of Informational
Flows can be Identified

Among all possible actions those can be identified in the above analysis, which
are bypassed by both sets of plans for alternative final states. E.g. among sets of
actions, which have to occur for either the recovery of normal-sulfur homeostasis
or for the new homeostatic state of sulfur deficiency, three actions are bypassed:
surplus_auxin_flux, calmodulin_activation and iaa28_expression (Table 1). These
actions constitute one particular branch of causal flow (Fig. 1). Thus, from this
comparative analysis the whole branch appeared to be non-essential for the ac-
complishment of that part of systems response modeled by the small bioexample
(shadowed part of the network in Fig. 1). However, it comes into play later and
influences the switch between two physiological endpoints, as can be revealed by
the simulation of the extended example (the whole Fig. 1).

42 S. Dworschak et al.

Table 2 Sets of consecutive actions to occur for two alternative query states (normal sulfur or sulfur
deficiency) to be achieved

Query: normal_sulfur Query: sulfur_deficiency

0 sulfur_reduction sulfur_reduction
0 sulfur_depletion sulfur_depletion
1 sulfur_reduction −
1 glucosinolate_catabolism glucosinolate_catabolism
1 increasing_of_oas increasing_of_oas
1 activation_of_auxin_induciblegenes activation_of_auxin_induciblegenes
1 sulfur_depletion sulfur_depletion
2 sulfur_reduction sulfur_reduction
2 glucosinolate_catabolism −
2 increasing_of_oas −
2 activation_of_auxin_induciblegenes −
2 expression_of_nit3 expression_of_nit3
2 increasing_of_serine increasing_of_serine
2 enhanced_lateral_root_formation enhanced_lateral_root_formation
2 sulfur_repletion sulfur_repletion
2 sulfur_depletion −
3 − sulfur_reduction
3 glucosinolate_catabolism glucosinolate_catabolism
3 increasing_of_oas increasing_of_oas
3 activation_of_auxin_induciblegenes activation_of_auxin_induciblegenes
3 expression_of_nit3 −
3 increasing_of_serine −
3 enhanced_lateral_root_formation −
3 increasing_of_tryptophan increasing_of_tryptophan
3 accumulating_sulfur accumulating_sulfur
3 sulfur_repletion −
3 sulfur_depletion −
4 − glucosinolate_catabolism
4 − increasing_of_oas
4 − activation_of_auxin_induciblegenes
4 increasing_of_serine increasing_of_serine
4 enhanced_lateral_root_formation enhanced_lateral_root_formation
4 increasing_of_tryptophan −

4.1.7 Fluent Essentiality can be Estimated by Comparative Simulation
of Alternative Models

Fluent essentiality is characterized through comparison of systems behavior modeled
for the situations when a certain fluent is altered. In a biological system, such
alterations can be obtained experimentally through e.g. gene mutations. Regarding
the biological example of sulfur stress response, plants with knocked-out IAA28 gene
are incorporated into the experiments, because,

• both enhanced lateral root formation and over-expression of IAA28 gene occur
in sulfur-stressed Arabidopsis plants [35], and

• IAA28 represents one of the nodes in the network of gene interactions, which
regulates the growth of lateral roots [32].

Modeling Biological Networks by Action Languages via Answer Set Programming 43

Table 3 Sets of consecutive actions to occur for either of two alternative query states (normal sulfur
or sulfur deficiency) to be achieved

Query: normal_sulfur Query: sulfur_deficiency

1 sulfur_reduction −
2 glucosinolate_catabolism −
2 increasing_of_oas −
2 activation_of_auxin_inducible_genes −
2 sulfur_depletion −
3 − sulfur_reduction
3 expression_of_nit3 −
3 increasing_of_serine −
3 enhanced_lateral_root_formation −
3 sulfur_repletion −
4 − glucosinolate_catabolism
4 − increasing_of_oas
4 − activation_of_auxin_inducible_genes
4 increasing_of_tryptophan −

Thus, IAA28 constitutes a causal informational link connecting sulfur stress response
to enhanced lateral root formation. Prior to the wet lab biological experiments with
IAA28 mutants, we estimated tentative importance of alterations in this gene by
comparing a CT AI D model for wild type plants (Fig. 1, small example under the
shadowed area) with the model in which IAA28 gene was switched off. In both
models, the alternative states of normal sulfur and of sulfur deficiency (i) could
be achieved and (ii) at the similar earliest time points. These model simulations,
together with non-essentiality of the whole IAA28-containing causal side branch
(determined above), point out at putative non-essentiality of IAA28 gene activity for
the earlier stages of the response development. In addition, however, as can be seen
in Table 4, the number of plans by which the states with different queried fluents can
be achieved, is generally lower for the model of IAA28 mutant. To our point of view,
this may reflect different levels of systems flexibility in a particular stress response.

Table 4 Number of plans
leading to a state with a
queried fluent in wild type
plants and in plants in which
one of the fluents is switched
off by a mutation

Queried fluent IAA28 Mutants

normal_sulfur 120157 98077
accumulated_indoleacetonitrile 92152 75448
increased_oas 92152 75448
active_auxin_inducible_genes 96248 80568
over_expressed_nit3 70848 54720
increased_serine 83688 61800
enhanced_lateral_roots 49704 49704
increased_tryptophan 71872 60736
accumulated_sulfur 106552 85880
sulfur_deficiency 57472 44096

44 S. Dworschak et al.

5 Discussion and Related Work

We proposed the action language CT AI D and showed how it can be used to represent
and reason about biological networks. CT AI D is based on the action language A0

T
introduced in Tran and Baral [48]. The latter language provides basic features
to define dynamic causal laws, triggering and inhibition rules, which turn to be a
fruitful basis but insufficient for modeling our biological applications. Moreover, our
exploratory approach made us propose the concept of allowance that enables the
experimenter to investigate alternative models “in silico”. As a consequence, we
extended A0

T by static causal laws, allowance rules, default rules and no-concurrency
constraint which furnish a more appropriate representation of our biological net-
works. Especially static causal laws and default rules can be used to include back-
ground knowledge and other dependencies like environmental conditions which
influence the biological system, but are not part of the actual biological model.
Allowance rules are mainly used to express incomplete knowledge about the reasons
why an action occurs. This missing information is a common problem for biologists
due to the immanent complexity of biological systems.

We fixed the semantics of CT AI D in the standard way by means of transition
relations, trajectories and trajectory models. In contrast to A0

T , for example, default
values can enable state changes without the occurrence of an action. Also, Baral
et al. guarantee a unique trajectory model and a unique answer set, if the initial state
is completely defined by a set of observations. This is not the case in CT AI D because
of the non-determinism introduced by allowance rules that may yield multiple
trajectory models.

We implemented our action language by means of a compiler mapping CT AI D

onto logic programs under answer set semantics. Our translation builds upon
and extends the one given in Tran and Baral [48]. The resulting tool is imple-
mented in Java and freely available at http://bioinformatics.mpimp-golm.mpg.de/
projects/own/bionet-reasoning. Technically speaking, our system takes an action
description and compiles it into a logic program. This program is then treated by
an off-the-shelf grounder, like lparse [45] or gringo [18]. Similarly, an off-the-
shelf answer set solver, like smodels [43] or clasp [16], is then utilized to compute
answer sets, which are passed to the system’s back-end for analysis by the biologist.
Given the high-performance of these systems, we have so far neither encountered
performance nor scalability problems. Most trajectory models are computed in
milliseconds. Rather, it is sometimes the huge number of such models and lacking
analysis tools that pose a bottle-neck and are thus subject of ongoing work.

Meanwhile, the application of CT AI D has proved to be useful for reconstructing
and reasoning about the behavior of biological systems. Of particular biological
interest is the possibility to characterize a (biological) system’s initial state from the
experimentally observable final states by means of explanation. Another outcome
was the identification of combinations of different actions, necessary to occur in order
to achieve a final state; this allowed for further charting the synergistic influences
inside biological systems. It was also possible to estimate the essential fluents, actions
and their causal hierarchies for the system’s functionality. The approach showed also
promise for the in silico probing of putative effects of the mutations on the stability

http://bioinformatics.mpimp-golm.mpg.de/projects/own/bionet-reasoning
http://bioinformatics.mpimp-golm.mpg.de/projects/own/bionet-reasoning

Modeling Biological Networks by Action Languages via Answer Set Programming 45

and flexibility of a biological system. We hope to expand this aspect of the analysis in
order to characterize state transitions in biological systems.

Further logic-based approaches using rule-based languages have emerged
recently. Related work has been conducted in abductive logic programming where
abduction was used in Papatheodorou et al. [38] as the principal mode of inference
for modeling gene relations from micro-array data. An integration of abduction
and induction for modeling metabolic pathways is described in Tamaddoni-Nezhad
et al. [46]. Pan et al. [37] investigate the usage of the action language GOLOG [25] for
rapid prototyping of applications in evolutionary biology. In Son and Pontelli [44],
answer set planning is directly used for planning biochemical pathways.

Boolean constraint processing techniques have also been successfully applied to
other biological areas. For instance, [29, 30] report speed-ups of several orders of
magnitude by using Boolean satisfiability solvers for Haplotype Inference. Con-
straint programming as such has already been applied to many biological problems,
as best witnessed by the proceedings of the workshop series on Constraint Based
Methods for Bioinformatics as well as this special issue of the Constraint Journal
at hand. Among many others, we find Fanchon et al. [14], Backofen et al. [1], and
Eveillard et al. [13].

A very sophisticated and rather advanced automated reasoning tool for sys-
tems biology can be found in the area of constraint programming, namely the
BIOCHAM [7] system. BIOCHAM relies on CTL [8] and is thus particularly strong
in modeling temporal aspects of systems biology. Unlike our abstract approach, the
constraint-based approach offers fine-grained capacities for modeling biochemical
processes, including kinetics and reactions.

The relationship between action languages and more traditional approaches, like
Petri nets [39, 40], π -calculus [41], or pathway logic [12], is elaborated upon in
detail in Baral et al. [4] and Tran [47]. Basically, all aforementioned approaches
are primarily aiming at simulation, that is, prediction in our terminology. Com-
plementary reasoning modes, such as explanation and diagnosis or planning, are
usually only addressable in an indirect way. Another difference manifests itself by
the rather natural treatment of incomplete information in our framework, which is no
intrinsic feature of other approaches. See Baral et al. [4] and Tran [47] for a detailed
discussion on this relationship. However, given that these approaches have already
proved their value for modeling biological applications, it will be interesting to see
how similar domains can be modeled in their and our framework.

Acknowledgements We are grateful to Philippe Veber and Sven Thiele for fruitful discussions and
valuable hints on improving our paper.

This work was partially funded by the Max Planck Society and by the Federal Ministry of
Education and Research within the GoFORSYS project (http://www.goforsys.org/; grant 0313924).

Appendix

A Compilation of CT AI D to Logic Programs

This section summarizes the translation of CT AI D to logic programs in view of
proving Theorem 1.

http://www.goforsys.org/

46 S. Dworschak et al.

Given a domain description D(A, F), we define the translation T as the following
collection of rules:

1. For every time point 0 ≤ t ≤ m, we have a fact:

time(t). (12)

2. For every action a ∈ A and every fluent f ∈ F, we have a fact:

fluent(f). (13)

action(a). (14)

3. For every fluent f ∈ F and every time point 0 ≤ t ≤ m, we have a constraint:

:- holds(f, t),holds(neg(f), t),fluent(f),time(t). (15)

4. For every fluent f ∈ F, we have a pair of rules of the form:

holds(f, 0) :- not holds(neg(f), 0). (16)

holds(neg(f), 0) :- not holds(f, 0). (17)

5. For every statement (default f) ∈ D and every time point 0 ≤ t ≤ m, we have a
rule and a fact of the form:

holds(f, t):-not holds(neg(f), t),default(f),

fluent(f),time(t). (18)

default(f). (19)

An analogous pair is contained for each statement (default ¬ f) ∈ D.
6. For every (inertial) fluent f ∈ F such that (default f)
∈ D and (default ¬ f)
∈

D, and every time point 0 ≤ t < m, we have two rules of the form:

holds(f, t + 1) :- holds(f, t),not holds(neg(f), t + 1),

not default(f),fluent(f),time(t),time(t+ 1).

(20)

holds(neg(f), t + 1) :- holds(neg(f), t),not holds(f, t + 1),

not default(f),fluent(f),time(t),time(t+1).

(21)

7. For every static causal law (f1, . . . , fn if g1, . . . , gm) ∈ D, each fi where 1 ≤
i ≤ n, and every time point 0 ≤ t ≤ m, we have a rule of the form:

holds(fi, t) :- holds(g1, t), . . . ,holds(gn, t),

fluent(g1), . . . ,fluent(gn),fluent(fi),time(t). (22)

Modeling Biological Networks by Action Languages via Answer Set Programming 47

8. For every dynamic causal law (a causes f1, . . . , fn if g1, . . . , gm) ∈ D, each fi

where 1 ≤ i ≤ n, and every time point 0 ≤ t < m, we have a rule of the form:

holds(fi, t + 1) :- holds(occurs(a), t),

holds(g1, t), . . . ,holds(gn, t),

fluent(g1), . . . ,fluent(gn),fluent(fi),

action(a),time(t),time(t + 1). (23)

9. For every allowance rule (f1, . . . , fn allows a) ∈ D, each fi where 1 ≤ i ≤ n, and
every time point 0 ≤ t ≤ m, we have a rule of the form:

holds(allow(occurs(a)), t) :- not holds(ab(occurs(a)), t),

holds(f1, t), . . . ,holds(fn, t),

fluent(f1), . . . ,fluent(fn),

action(a),time(t). (24)

10. For every exogenous action a ∈ A and every time point 0 ≤ t ≤ m ∈ D,
we have:

holds(allow(occurs(a)), t) :- action(a),time(t). (25)

11. For every exogenous or allowed action a ∈ A and every time point 0 ≤ t < m,
we have two rules of the form:

holds(occurs(a), t) :- holds(allow(occurs(a)), t),

not holds(ab(occurs(a)), t),

not holds(neg(occurs(a)), t),

action(a),time(t), t < m. (26)

holds(neg(occurs(a)), t) :- not holds(occurs(a), t),

action(a),time(t), t < m. (27)

12. For every triggering rule (f1, . . . , fn triggers a) ∈ D and every time point 0 ≤
t ≤ m, we have a rule of the form:

holds(occurs(a), t) :- not holds(ab(occurs(a)), t),

holds(f1, t), . . . ,holds(fn, t),

fluent(f1), . . . ,fluent(fn),

action(a),time(t). (28)

48 S. Dworschak et al.

13. For every inhibition rule (f1, . . . , fn inhibits a) ∈ D and every time point 0 ≤
t ≤ m, we have a rule of the form:

holds(ab(occurs(a)), t) :- holds(f1, t), . . . ,holds(fn, t),

fluent(f1), . . . ,fluent(fn),

action(a),time(t). (29)

14. For every no-concurrency constraints (noconcurrency a1, . . . , an) ∈ D and
every time point 0 ≤ t ≤ m, we have a constraint:

:- time(t), 2 {holds(occurs(a1), t) : action(a1), . . . ,

holds(occurs(an), t) : action(an)}. (30)

Next, we address fluent observations about the initial state, given by Oinit.

1. For every observation (f at 0) ∈ Oinit, we have a fact:

holds(f, 0). (31)

And finally, we deal with the fluent observations stemming from a query Q as
in (9), and collected in AQ in Theorem 1

1. For every occurrence of (a occurs_at t) ∈ AQ such that a is an exogenous action,
we have a fact:

holds(occurs(a), t). (32)

2. For every occurrence of (a occurs_at t) ∈ AQ such that a is no exogenous action,
we have a constraint:

:- holds(neg(occurs(a)), t),action(a),time(t). (33)

B Auxiliary Definitions and Results

We start with recalling some definitions from answer set theory.
Given a rule

p0 ← p1, . . . , pm, not pm+1, . . . , not pn ,

we define

head(r) = p0

body(r) = {p1, . . . , pm, not pm+1, . . . , not pn}
body+(r) = {p1, . . . , pm}
body−(r) = {pm+1, . . . , pn}

lit(r) = head(r) ∪ body+(r) ∪ body−(r).

Let � be a normal logic program and X be a set of atoms. Then, the reduct of �

relative to X is defined as �X = {head(r) ← body(r)+ | r ∈ � and body− ∩ X = ∅}.
A set X of atoms is an answer set of �, if X is the ⊆-smallest model of �X .

Modeling Biological Networks by Action Languages via Answer Set Programming 49

Our proof makes use of an alternative characterization of answer sets relying on
splitting sequences [27]. This characterization makes use of the concept of a splitting
set. A splitting set for a program � is a set of literals U such that8

if {head(r)} ∩ U
= ∅, then lit(r) ⊆ U for each r ∈ � .

A splitting set U divides the program in two parts, namely, the bottom of �,
defined as

bU (�) = {r | lit(r) ⊆ U} ,

and the top of �, that is, � \ bU (�).
Note that the bottom bU (�) does not contain any head atoms from the top � \

bU (�), that is,

lit(bU (�)) ∩ head(� \ bU (�)) = ∅ .

This implies according to [15, Theorem 8] that a set X of atoms is an answer set of
� iff there is an answer set9 Y of bU (�) such that X is an answer set of {p ← | p ∈
Y} ∪ (� \ bU (�)).

Given two sets U, X of literals and a program �, define

eU (�, X) =
⎧
⎨

⎩
r′

∣
∣
∣
∣
∣
∣

r ∈ �U,X ,

head(r′) = head(r),
body+(r′) = body+(r) \ U,

body−(r′) = body−(r) \ U

⎫
⎬

⎭
(34)

where

�U,X = {r ∈ � | (body+(r) ∩ U) ⊆ X and (body−(r) ∩ U) ∩ X = ∅} . (35)

A solution to � wrt a splitting set U is a pair 〈X0, X1〉 such that

1. X0 is an answer set of bU (�)

2. X1 is an answer set of eU (� \ bU (�), X0)

3. X0 ∪ X1 is consistent

Given a splitting set U for �, the basic splitting set theorem [27] tells us that a set X
of literals is a consistent answer set of � iff X = X0 ∪ X1 for some solution 〈X0, X1〉
to � wrt U .

A sequence 〈Ui〉i∈I of splitting sets for � such that Ui ⊂ Uj whenever i < j and⋃
i∈I Ui = lit(�) is a splitting sequence for �. The definition of a solution extends to

splitting sequences as follows. A solution to � wrt a splitting sequence 〈Ui〉i∈I is a
sequence 〈Xi〉i∈I of sets of literals such that

1. X0 is an answer set of bU0(�)

2. Xi+1 is an answer set of eUi(bUi+1(�) \ bUi(�),
⋃

j≤i X j)

3.
⋃

i∈I Xi is consistent

8While a normal rule r yields a singleton as head(r), an integrity constraint yields ∅.
9Recall that we deal with finite programs, yielding finite answer sets.

50 S. Dworschak et al.

Note that every literal in bU0(�) belongs to U0 ∩ lit(�), and every literal in
eUi(bUi+1(�) \ bUi(�),

⋃
j≤i X j) belongs to (Ui+1 \ Ui) ∩ lit(�). Accordingly, we have

for a solution 〈Xi〉i∈I that

X0 ⊆ U0 ∩ lit(�) (36)

Xi+1 ⊆ (Ui+1 \ Ui) ∩ lit(�) (37)

and so Xi ∩ X j = ∅ for all distinct i, j ∈ I.
In analogy to the basic version, we have according to the splitting sequence

theorem [27] that given a splitting sequence 〈Ui〉i∈I for �, a set X of literals is a
consistent answer set of � iff X = ⋃

j≤i Xj for some solution 〈Xi〉i∈I to � wrt 〈Ui〉i∈I .

C Proof of Theorem 1

To begin with, we define a splitting sequence

〈Ub , U0, U1, . . . , Um〉
where

Ub = {time(i) | 0 ≤ i ≤ m} (38)

∪ {action(a) | a ∈ A} (39)

∪ {fluent(f) | f ∈ F} (40)

∪ {default(f) | f ∈ F} (41)

U0 = Ub (42)

∪ {holds(f, 0),holds(neg(f), 0) | f ∈ F} (43)

Ui = Ub ∪ U0 ∪ · · · ∪ Ui−1 (44)

∪ {holds(f, i),holds(neg(f), i) | f ∈ F} (45)

∪ {holds(occurs(a), i−1),holds(neg(occurs(a)), i−1) | a∈ A} (46)

∪ {holds(allow(occurs(a)), i − 1) | a ∈ A} (47)

∪ {holds(ab(occurs(a)), i − 1) | a ∈ A} for 1 ≤ i ≤ m . (48)

According to [27], a set X of literals is an answer set of a program � iff

X = Xb ∪ X0 ∪ · · · ∪ Xm

for some solution 〈Xb , X0, . . . , Xm〉 of � wrt splitting sequence 〈Ub , U0,

U1, . . . , Um〉.
Letting � be T (D, Oinit ∪ AQ), this splitting sequence induces the following

sequence of programs:

• �b = bUb (�)

This program is induced by Ub and contains the definitions of time points,
actions, fluents, as well as non-inertial fluents, distinguished by default
statements.

Modeling Biological Networks by Action Languages via Answer Set Programming 51

• �0 = eUb (bU0(�) \ bUb (�), Xb)

This program is induced by U0 and, intuitively, contains the rules and constraints
expressing information about the initial state. That is, rules and constraints
whose literals are indexed with 0.

• �i = eUi−1(bUi(�) \ bUi−1(�), Xb ∪ ⋃
j≤i−1 X j) for 1 ≤ i ≤ m

This program is induced by Ui and, intuitively, contains all rules and constraints
expressing information about the ith state. That is, rules and constraints whose
literals are indexed with i.

Finally, we note that any answer set of � = T (D, Oinit ∪ AQ) is consistent given that
head(�) contains positive literals only (see A).

C.1 Proof of Part 1 of Theorem 1

Let s0, A1, s1, A2, . . . , Am, sm be a a trajectory model of (D, Oinit ∪ AQ).
We have to show that � = T (D, Oinit ∪ AQ) has an answer set X satisfying

1. holds(f, k) ∈ X, if sk |= f ,
2. holds(neg(f), k) ∈ X, if sk |= ¬ f ,
3. holds(occurs(a), k) ∈ X, if a ∈ Ak+1 ,
4. holds(neg(occurs(a)), k) ∈ X, if a
∈ Ak+1 .

for all f ∈ F, a ∈ A , and 0 ≤ k ≤ m.
By the splitting sequence theorem, it is sufficient to show that X = Xb ∪

X0 ∪ · · · ∪ Xm for some solution 〈Xb , X0, . . . , Xm〉 of � wrt splitting sequence
〈Ub , U0, U1, . . . , Um〉.

To this end, we let

Xb = {time(i) | 0 ≤ i ≤ m} (49)

∪ {action(a) | a ∈ A} (50)

∪ {fluent(f) | f ∈ F} (51)

∪ {default(f) | f ∈ F, (default f) ∈ D} (52)

X0 = {holds(f, 0) | f ∈ F, s0 |= f } (53)

∪ {holds(neg(f), 0) | f ∈ F, s0 |= ¬ f } (54)

Xi = {holds(f, i) | si |= f } (55)

∪ {holds(neg(f), i) | si |= ¬ f } (56)

∪ {holds(occurs(a), i − 1) | a ∈ Ai} (57)

∪ {holds(neg(occurs(a)), i − 1) | a
∈ Ai} (58)

∪ {holds(allow(occurs(a)), i − 1) | a ∈ AA(si−1)} (59)

∪ {holds(allow(occurs(a)), i − 1) | a ∈ AE} (60)

∪ {holds(ab(occurs(a)), i − 1) | a ∈ AI(si−1)} (61)

where AE is the set of exogenous actions:

AE = {a | a ∈ A, {(f1, . . . , fn allows a), (f1, . . . , fn triggers a)} ∩ D = ∅)}.

52 S. Dworschak et al.

Consider the following three cases:

Xb By construction, Program �b = bUb (�) has a unique smallest model, which
is Xb .
In other words, Xb is the unique answer set of �b = bUb (�).

X0 Program �0 = eUb (bU0(�) \ bUb (�), Xb) consists of the following types of
rules:10

1. Simplifications of constraints of form (15) wrt Xb , viz.

:- holds(f, 0),holds(neg(f), 0).

Clearly, this constraint belongs to �
X0
0 .

Given that s0 is a state, the construction of X0 implies that either
holds(f, 0) ∈ X0 or holds(neg(f), 0) ∈ X0. Hence, this constraint is
inapplicable. And so X0 is trivially closed under this constraint, as is any
model of �

X0
0 smaller than X0.

2. Rules of form (16), viz.

holds(f, 0) :- not holds(neg(f), 0).

holds(neg(f), 0) :- not holds(f, 0).

Given that s0 is a state, we distinguish two cases.

(a) If s0 |= f , then holds(f, 0) ∈ X0 and holds(neg(f), 0)
∈ X0.
As a consequence, we have (holds(f, 0) :-) ∈ �

X0
0 .

As above, X0 is trivially closed under this fact and holds(f, 0)

belongs to X0 iff it belongs to the smallest model of �
X0
0 .

(b) If s0 |= ¬ f , then holds(neg(f), 0) ∈ X0 and holds(f, 0)
∈ X0.
As a consequence, we have (holds(neg(f), 0) :-) ∈ �

X0
0 .

As above, X0 is trivially closed under this fact and holds(neg(f), 0)

belongs to X0 iff it belongs to the smallest model of �
X0
0 .

3. Rules of form (18) simplified by Xb , viz.

holds(f, 0) :- not holds(neg(f), 0).

We have to distinguish two cases:

(a) If s0 |= f , then clearly s0
|= ¬ f and thus holds(neg(f), 0)
∈ X0. As
a consequence, {holds(f, 0):-} ∈ �

X0
0 . X0 is trivially closed under

this fact.
(b) If s0 |= ¬ f , then holds(neg(f), 0) ∈ X0 and the rule is not con-

tained in �
X0
0 . Therefore, X0 is also trivially closed under �

X0
0 .

The case of (default ¬ f) ∈ D is dealt with analogously.
4. Simplifications of rules of form (22) wrt Xb , viz.

holds(fi, 0) :- holds(g1, 0), . . . ,holds(gm, 0).

Clearly, this rule belongs to �
X0
0 .

10Recall that �0 consists of rules from � that have been “evaluated” wrt Xb .

Modeling Biological Networks by Action Languages via Answer Set Programming 53

Note that the above rule stems from a static causal law (f1, . . . , fn

if g1, . . . , gm) in the action description D. Hence, we have fi ∈ s0 when-
ever {g1, . . . , gm} ⊆ s0.
By construction of X0, we also have holds(fi, 0) ∈ X0 whenever
{holds(g1, 0), . . . ,holds(gm, 0)} ⊆ X0. Clearly, this holds for any model
of �

X0
0 , in particular, the smallest one.

We have shown that X0 is closed under �
X0
0 and thus a model of �

X0
0 .

Moreover, we have demonstrated that X0 is closed under �
X0
0 iff any smaller

model of �
X0
0 is. Hence, X0 is the smallest model of �

X0
0 . In other words, X0 is

an answer set of �
X0
0 .

Xi By definition of a trajectory (cf. Definition 5), (si−1, Ai, si) is a valid transition.
The program �i = eUi−1(bUi(�) \ bUi−1(�), Xb ∪ ⋃

j≤i−1 X j) consists of the fol-
lowing rules:

1. Constraints of form (15) simplified by Xb , viz.

:- holds(f, i),holds(neg(f), i).

This rule belongs to �
Xi
i . Since (si−1, Ai, si) is a valid transition, Xi either

contains holds(f, i) or holds(neg(f), i). Hence, Xi is trivially closed
under this rule since the constraint will not be applicable.

2. Rules of form (18) simplified by Xb , viz.

holds(f, i) :- not holds(neg(f), i).

We have to distinguish two cases:

(a) If si |= f , then clearly s0
|= ¬ f and thus holds(neg(f), i)
∈ Xi. As a
consequence, {holds(f, i):-} ∈ �

Xi
i . Xi is trivially closed under this

fact. Since holds(f, i) belongs to every model of �
Xi
i , it belongs to

the smallest one.
(b) If si |= ¬ f , then holds(neg(f), i) ∈ Xi and the rule is not contained

in �
Xi
i . Therefore Xi is also trivially closed under �

Xi
i .

In case of (default ¬ f) ∈ D the argumentation is done analogously.
3. Simplifications of rules of form (20) wrt. Xb ∪ X0 ∪ Xi−1, viz.

holds(f, i) :- not holds(neg(f), i).

holds(neg(f), i) :- not holds(f, i).

We have to distinguish two cases:

(a) If si |= f , then holds(f, i) ∈ Xi and as a consequence,
{holds(f, i):-} ∈ �

Xi
i . Xi is trivially closed under this fact.

(b) If si |= ¬ f , then holds(neg(f), i) ∈ Xi and as a consequence,
{holds(neg(f), i):-} ∈ �

Xi
i . Xi is trivially closed under this fact.

In both cases the rules are reduced to facts. Hence, they are contained in
the minimal model of �

Xi
i .

4. Simplifications of rules of form (22) wrt. Xb . viz.

holds(fk, i) :- holds(g1, i), . . . ,holds(gn, i).

54 S. Dworschak et al.

We have to distinguish two cases:

(a) If si |= gl for 1 ≤ l ≤ n, then due to Definition 2 si |= fk. As a con-
sequence, we have {holds(g1, i), . . . ,holds(gn, i),holds(fk, i)} ⊂
Xi. That is, Xi is closed under �

Xi
i . Clearly, this holds for every model

of �
Xi
i , in particular, the smallest one.

(b) If si
|= gl for ∃l : 1 ≤ l ≤ n then we have that holds(neg(gl), i) ∈ Xi.
Xi is trivially closed under �

Xi
i , since the rule is not applicable.

5. If the dynamic law (a causes f1, . . . , fn if g1, . . . , gm) was applicable
(Definition 3), we get the following simplified rule of form (23) wrt.
Xb ∪ X0 ∪ Xi−1:

holds(fk, i) :- holds(occurs(a), i − 1).

We now have to distinguish two cases:

(a) If a ∈ Ai we have holds(occurs(a), i − 1) ∈ Xi. Since the dynamic
law was applicable in si−1, we have si |= fk and as a consequence
holds(f, i) ∈ Xi. Therefore Xi is closed under the mentioned rule.
Clearly, this holds for every model of �

Xi
i , in particular, the

smallest one.
(b) If a
∈ Ai we have holds(occurs(a), i − 1)
∈ Xi. Then the rule is

not applicable, and Xi is closed under �
Xi
i .

If the dynamic law was not applicable in si−1, then Xi is trivially closed
because the above rule is not contained in �i.11

6. Simplifications of rules of form (24) wrt. Xb ∪ X0 ∪ Xi−1 viz.

holds(allow(occurs(a)), i − 1):-not holds(ab(occurs(a)), i − 1).

We have to distinguish two cases:

(a) If holds(allow(occurs(a)), i − 1) ∈ Xi we have that a ∈
AA(si−1). By definition of AA(si−1) and AI(si−1) we have
that holds(ab(occurs(a)), i − 1)
∈ Xi, otherwise a would be
passive in si−1. Since we have si−1 |= f1 ∧ · · · ∧ fn (Definition 3) if
a ∈ AA(si−1), we also have {holds(f1, i), . . . ,holds(fn, i)} ∈ Xi−1.
As a consequence, Xi is closed under the considered rule. We have
{holds(allow(occurs(a)), i − 1):-} ∈ �

Xi
i , thus holds(allow

(occurs(a)), i − 1) is contained in any model of �
Xi
i , in particular,

the smallest one.
(b) If holds(allow(occurs(a)), i−1)
∈ Xi we have that a
∈ AA(si−1).

Furthermore, two cases need to be distinguished.

i. If we have a ∈ AI(si−1) then we have holds(allow
(occurs(a)), i − 1) ∈ Xi by construction of Xi. Since the rule
will not be contained in �

Xi
i , Xi is trivially closed under this rule.

11When constructing �i the rule is dropped because at least one of holds(g1, i − 1), . . . ,

holds(gn, i − 1) must be false in Xi−1.

Modeling Biological Networks by Action Languages via Answer Set Programming 55

ii. If we have a
∈ AI(si−1), at least one of holds(f1, i), . . . ,
holds(fn, i) must be false. Since we have a
∈ AA(si−1), we can
conclude si−1
|= f1 ∧ · · · ∧ fn (Definition 3). Therefore at least
for one fl for 1 ≤ l ≤ n we have that holds(fl, i)
∈ Xi−1. Since
then the rule is not contained in �i, Xi is trivially closed under
this rule.

7. Simplifications of rules of form (25) wrt. Xb viz.

holds(allow(occurs(a)), i − 1).

Whenever there is no allowance or triggers rule for an action a specified
in D, we have holds(allow(occurs(a)), i − 1) ∈ Xi. The rule is closed
under Xi and the fact holds(allow(occurs(a)), i − 1) belongs to Xi if
it belongs to the smallest model of �

Xi
i .

8. Simplifications of rules of form (26) wrt. Xb viz.

holds(occurs(a), i − 1) :- holds(allow(occurs(a)), i − 1),

not holds(ab(occurs(a)), i − 1),

not holds(neg(occurs(a)), i − 1).

holds(neg(occurs(a)), i − 1) :- not holds(occurs(a), i − 1).

Since (si−1, Ai, si) is a valid transition, we have to distinguish two cases:

(a) If a ∈ Ai, then we have holds(occurs(a), i − 1) ∈ Xi and
holds(neg(occurs(a)), i − 1)
∈ Xi. Then we can simplify to

holds(occurs(a), i − 1) :- holds(allow(occurs(a)), i − 1),

not holds(ab(occurs(a)), i − 1).

It is clear that we have holds(ab(occurs(a)), i − 1)
∈ Xi, otherwise
we won’t have the given transition because an inhibition rule
would be applicable (cf. Definition 5). The same holds for
holds(allow(occurs(a)), i − 1) ∈ Xi, because a must be an ex-
ogenous or explicitly allowed action (see Definition of Xi). As
a consequence, Xi is closed under the considered rule. We have
{holds(occurs(a), i − 1) :- holds(allow(occurs(a)), i − 1).} ∈
�

Xi
i . Since we just figured out that we have holds(allow

(occurs(a)), i − 1) ∈ Xi, holds(occurs(a), i − 1) belongs to any
model of �

Xi
i , in particular, the smallest one.

(b) If a
∈ Ai, then we have holds(occurs(a), i − 1)
∈ Xi and
holds(neg(occurs(a)), i − 1) ∈ Xi. We can reduce to

holds(neg(occurs(a)), i − 1).

It is easy to see that Xi is closed under this rule.
Since holds(neg(occurs(a)), i − 1) belongs to any model of �

Xi
i , it

belongs to the smallest one.

56 S. Dworschak et al.

9. If the triggering rule (f1, . . . , fn triggers a) ∈ D was applicable
(Definition 3), we get the following simplified rule of form (28) wrt.
Xb ∪ X0 ∪ Xi−1 viz.

holds(occurs(a), i − 1) :- not holds(ab(occurs(a)), i − 1).

Again, two cases need to be distinguished:

(a) If a ∈ Ai, then we have holds(occurs(a), i − 1) ∈ Xi and
holds(neg(occurs(a)), i − 1)
∈ Xi. Due to the semantics given
in Definition 5, we have holds(ab(occurs(a)), i − 1)
∈ Xi,
because otherwise a would be blocked by an inhibition
rule. That is, Xi is closed under the above rule. We have
{holds(occurs(a), i − 1):-.} ∈ �

Xi
i . Thus, holds(occurs(a)),

i − 1) belongs to any model of �
Xi
i , in particular, the smallest one.

(b) If a
∈ Ai, then we have holds(occurs(a), i − 1)
∈ Xi and
holds(neg(occurs(a)), i − 1) ∈ Xi. We have to show that
holds(ab(occurs(a)), i − 1) ∈ Xi. Due to the fact that a
∈ Ai,
we must have a ∈ AT(si−1) (Definition 3). The only case when
considering an applicable triggering rule is that there exists an
applicable inhibition rule. That means, a ∈ AI(si−1). By construction
of Xi, we have holds(ab(occurs(a)), i − 1) ∈ Xi and Xi is closed
under the considered rule.

If the triggering rule was not applicable in si−1, then Xi is trivially closed
because the above rule is not contained in �i.

10. If the inhibition rule (f1, . . . , fn inhibits a) ∈ D was applicable
(Definition 3), we get the following simplified rule of form (29) wrt.
Xb ∪ X0 ∪ Xi−1 viz.

holds(ab(occurs(a)), i − 1).

Since we have a ∈ AI(si−1), we have holds(ab(occurs(a)), i − 1) ∈
Xi. That is, Xi is closed under the considered rule and the fact
holds(ab(occurs(a)), i − 1) belongs to Xi if it belongs to the smallest
model of �

Xi
i .

If the inhibition rule was not applicable, then the rule is not considered
in �i at all, because at least one of holds(f1, i − 1), . . . ,holds(fn, i − 1)

must be false in Xi−1.
11. No-concurrency constraint of form (30), viz.

:- 2 {holds(occurs(a1), i − 1), . . . ,holds(occurs(an), i − 1)}

belongs to �
Xi
i . The constraint will never be applicable, because otherwise

the condition |Ai ∩ B| ≤ 1 in Definition 5 would be violated and we won’t
have a valid transition.

12. Rules of form (32) remain untouched in �
Xi
i , viz.

holds(occurs(a), i − 1).

Modeling Biological Networks by Action Languages via Answer Set Programming 57

Definition 7 states that we must have a ∈ Ai. Hence, we have
holds(action(a), i − 1) ∈ Xi. Since the rule is a fact, Xi is trivially
closed and the fact belongs to the smallest model of �

Xi
i .

13. Simplified constraints of form (33) wrt. Xb , viz.

:- holds(neg(occurs(a)), i − 1). (62)

Since we have that a ∈ Ai, we have holds(occurs(a), i − 1) ∈ Xi and
holds(neg(occurs(a)), i − 1)
∈ Xi. Hence, the constraint belongs to
�

Xi
i and will not be applicable.

We have shown that Xi is closed under �
Xi
i and thus a model of �

Xi
i . Moreover,

we have demonstrated that Xi is closed under �
Xi
i iff any smaller model of �

Xi
i

is. Hence, Xi is the smallest model of �
Xi
i . In other words, Xi is an answer set

of �
Xi
i .

C.2 Proof of Part 2 of Theorem 1

Let X be an answer set of � = T (D, Oinit ∪ AQ).
We have to show that there is a trajectory model s0, A1, s1, A2, . . . , Am, sm of

(D, Oinit ∪ AQ) such that for 0 ≤ k ≤ m

sk = { f | holds(f, k) ∈ X} ∪ {¬ f | holds(neg(f), k) ∈ X} (63)

Ak+1 = {a | holds(occurs(a), k) ∈ X}. (64)

By the splitting sequence theorem, we have that X = Xb ∪ X0 ∪ · · · ∪ Xm for
some solution 〈Xb , X0, . . . , Xm〉 of � wrt splitting sequence 〈Ub , U0, U1, . . . , Um〉.

We distinguish the following two cases.

X0 Consider s0 = { f | holds(f, 0) ∈ X0} ∪ {¬ f | holds(neg(f), 0) ∈ X0}.
In fact, X0 is an answer set of Program �0 = eUb (bU0(�) \ bUb (�), Xb), con-
sisting of the following types of rules:12

1. Simplifications of constraints of form (15) wrt Xb , viz.

:- holds(f, 0),holds(neg(f), 0).

The fact that X0 is an answer set implies that

{holds(f, 0),holds(neg(f), 0)}
⊆ X0. (65)

Accordingly, we also have { f,¬ f }
⊆ s0. In other words, s0 is consistent.
2. Rules of form (16), viz.

holds(f, 0) :- not holds(neg(f), 0).

holds(neg(f), 0) :- not holds(f, 0).

12Recall that �0 consists of rules from � that have been “evaluated” wrt Xb .

58 S. Dworschak et al.

Given that (65) holds and that X0 is an answer set, the definition of an
answer set implies that either holds(f, 0) ∈ X0 or holds(neg(f), 0) ∈
X0. Accordingly, by the construction of s0, we also have either f ∈ s0 or
¬ f ∈ s0. In other words, s0 is complete.

3. Simplifications of rules of form (22) wrt Xb , viz.

holds(fi, 0) :- holds(g1, 0), . . . ,holds(gm, 0).

Again, the fact that X0 is an answer set implies that it is closed under such
rules. By construction of s0, the same applies to s0. To be precise, we have
fi ∈ s0 whenever {g1, . . . , gm} ⊆ s0 for 1 ≤ i ≤ n. Accordingly, s0 is closed
under the static causal law (f1, . . . , fn if g1, . . . , gm).

In all, we have shown that s0 is a complete and consistent set of fluents being
closed under all static laws in action description D.

Xi Consider a transition (si−1, Ai, si) with
si = { f | holds(f, i) ∈ Xi} ∪ {¬ f | holds(neg(f), i) ∈ Xi} and
Ai = {a | holds(occurs(a), i − 1) ∈ Xi}. Xi is an answer set of Program �i =
eUi−1(bUi(�) \ bUi−1(�), Xi−1).
We have to show the following things: si is consistent, complete and closed
under the static rules. Furthermore, all conditions in Definition 5 must be
satisfied. At first, for every holds(f, i) ∈ Xi we have to find an explanation
due to Definition 4 wrt. its value in si−1. This means that

si = E(Ai, si−1) ∪ L(si) ∪ �(si) ∪ (si−1 ∩ si) (66)

must be satisfied.
The next part is to show that the remaining conditions in Definition 5 hold:

AT(si−1) ⊆ Ai (67)

AT(si−1) ∩ Ai = ∅ (68)

AA(si−1) ∩ Ai = ∅ (69)

AI(si−1) ∩ Ai = ∅ (70)

|Ai ∩ B| ≤ 1 for all (noconcurrency B) ∈ D(A, F). (71)

The last part is to show that the transition is indeed a part of the trajectory
model, that is, the conditions in Definition 7 due to the given observations in
AQ must be satisfied.

1. �i contains constraints of form (15) simplified by Xb , viz.

:- holds(f, i),holds(neg(f), i).

Since Xi is an answer set, we have

{holds(f, i),holds(neg(f), i)}
⊆ Xi. (72)

Thus we can conclude that we have { f,¬ f }
⊆ si and si is consistent.

Modeling Biological Networks by Action Languages via Answer Set Programming 59

2. To show that si is complete we have to prove that we have at least
holds(f, i) ∈ Xi or holds(neg(f), i) ∈ Xi. We have to distinguish the
following cases:

(a) If we have default(f) ∈ Xb then �i contains a rule of form (18)
simplified by Xb , viz.

holds(f, i) :- not holds(neg(f), i).

It is easy to see that Xi contains holds(f, i) if it does not contain
holds(neg(f), i). By construction of si and given that (72) is satisfied
we have either f ∈ si or ¬ f ∈ si.

(b) If we have default(f)
∈ Xb then �i contains rules of form (20). To
write down the simplified rules by Xb ∪ X0 ∪ Xi−1 we have to distin-
guish different cases.

i. holds(f, i − 1) ∈ Xi−1:

holds(f, i) :- not holds(neg(f), i).

The definition of an answer set implies that we have at least
holds(f, i) ∈ Xi or holds(neg(f), i) ∈ Xi when considering
only this rule in �i. By construction of si, and again given that
(72) is satisfied, we have either f ∈ si or ¬ f ∈ si.

ii. holds(neg(f), i − 1) ∈ Xi−1:

holds(neg(f), i) :- not holds(f, i).

The argumentation is the same as in the previous case, we have
either f ∈ si or ¬ f ∈ si.

Since every fluent must be a default or inertial, we now have shown that
si is complete.

3. Consider the following rule of form (22) wrt. Xb , viz.

holds(fk, i) :- holds(g1, i), . . . ,holds(gn, i).

Every answer set Xi of �i contains holds(fk, i) if it contains
holds(g1, i), . . . ,holds(gn, i). Hence, by construction of si we have si |=
gl for 1 ≤ l ≤ n and as a consequence, si |= fk. That is, si is closed under
the static rules.

4. We now assume that we have holds(f, i) ∈ Xi. Two cases need to be
distinguished. To give an intuition, we are looking whether the value of f
changes between si−1 and si or not. If it does not change, either no static
or dynamic law was applicable and therefore the value of f is defined
by default or inertia in si. If it changes, then f must be a direct effect
applying a dynamic law, or indirect effect applying a static rule that was

60 S. Dworschak et al.

not applicable in si−1 but in si. If none of them can be applied, a default
must have been fired.

(a) holds(f, i − 1) ∈ Xi−1: By construction of si−1 and si we have that
f ∈ si−1 and f ∈ si. Different cases need to be distinguished, since
there are different rules in �i with holds(f, i) in their head.

i. Rule of form (18) simplified by Xb , viz.

holds(f, i) :- not holds(neg(f), i).

We have to ensure that no rule with head holds(neg(f), i)
is applicable.13 For rule (20) this is the case, since we have
default(f) ∈ Xb and it is not contained in �i at all.
In Rule (22) at least one of holds(g1, i), . . . ,holds(gn, i) needs
to be false in Xi, so we have wlog. holds(g1, i)
∈ Xi.14 As a
consequence, we have ¬ f
∈ L(si).
Rule (23) requires at least one of holds(g1, i − 1), . . . ,

holds(gn, i − 1) to be false in Xi−1. Thus, we have wlog.
holds(g1, i − 1)
∈ Xi−1 and the rule is not contained in �i

at all.15

We can conclude ¬ f
∈ E(Ai, si−1), f ∈ (si−1 ∩ si) and f ∈ �(si).
That is, (66) is satisfied.

ii. Rule of form (20) simplified by Xb ∪ X0 ∪ Xi−1, viz.

holds(f, i) :- not holds(neg(f), i).

At first, we can conclude default(f)
∈ XB, otherwise the rule
won’t be contained in �i. That is, we have f
∈ �(si) since f is no
default. As one can see, the resulting rule is exactly the same as in
the previous case. Hence, we have ¬ f
∈ L(si), ¬ f
∈ E(Ai, si−1),
f ∈ (si−1 ∩ si) and (66) satisfied.

iii. Rules of form (22) wrt. Xb , viz.

holds(fk, i) :- holds(g1, i), . . . ,holds(gn, i).

Since Xi is an answer set and the rule was built from a static causal
law, we can conclude f ∈ L(si). Given that (72) is satisfied, we can
conclude ¬ f
∈ E(Ai, si−1) from rule (23), ¬ f
∈ L(si) from rule
(22) and ¬ f
∈ �(si) from rule (18). ¬ f
∈ (si−1 ∩ si) is satisfied
since we are in the case that holds(f, i) ∈ Xi, hence ¬ f
∈ si.
Thus, (66) is satisfied.

iv. Rule of form (23) simplified by Xb ∪ X0 ∪ Xi−1, viz.

holds(fk, i) :- holds(occurs(a), i − 1).

13Remember that for rules of form (22) and (23) also rules with negative heads are contained in the
encoding if there are dynamic or static laws with negative heads given in the action description D.
14This means that no static rule with ¬ f in its head was applicable.
15This means that no dynamic law with ¬ f in its head was applicable.

Modeling Biological Networks by Action Languages via Answer Set Programming 61

If this rule is satisfied, we have a ∈ Ai and f ∈ E(Ai, si−1). Again,
given that (72) is satisfied, we can conclude ¬ f
∈ (si−1 ∩ si), ¬ f
∈
E(Ai, si−1), ¬ f
∈ L(si), ¬ f
∈ �(si). That is, (66) is satisfied.

(b) holds(neg(f), i − 1) ∈ Xi−1: We are now concerning the fact that
the value of holds(f, i − 1) resp. holds(f, i) changes between Xi−1

and Xi. By construction of si−1 and si we have that ¬ f ∈ si−1 and
f ∈ si. Again, we have to consider all rules with holds(f, i) in their
head.

i. Rule of form (18) simplified by Xb , viz.

holds(f, i) :- not holds(neg(f), i).

Since this rule was built from a default rule in D, we can
conclude f ∈ �(si). Since (72) is satisfied, we have ¬ f
∈ �(si),
¬ f
∈ E(Ai, si−1), ¬ f
∈ L(si). By construction of si and si−1 we
have ¬ f
∈ (si−1 ∩ si).16 Thus, (66) is satisfied.

ii. Rules of form (20) simplified by Xb ∪ X0 ∪ Xi−1. Since we have
holds(f, i − 1)
∈ Xi−1 and holds(f, i) ∈ Xi, none of the rules is
contained in �

Xi
i at all. That is, holds(f, i) can’t be derived by

these rules and we do not have to consider this case.
iii. Rules of form (22) wrt. Xb , viz.

holds(fk, i) :- holds(g1, i), . . . ,holds(gn, i).

We have holds(g1, i), . . . ,holds(gn, i) ∈ Xi and therefore si |=
gl for 1 ≤ l ≤ n. Since this rule was built from a static rule in D,
we can conclude f ∈ L(si). Since (72) is satisfied, we have ¬ f
∈
L(si), ¬ f
∈ E(Ai, si−1), ¬ f
∈ �(si). Thus, (66) is satisfied.

iv. Rule of form (23) simplified by Xb ∪ X0 ∪ Xi−1, viz.

holds(fk, i) :- holds(occurs(a), i − 1).

We can conclude f ∈ E(Ai, si−1) since the encoded dynamic
law must have been applicable in si−1. By (72) we have ¬ f
∈
E(Ai, si−1), ¬ f
∈ �(si), ¬ f
∈ L(si) and thus, (66) is satisfied.

5. In case that we have holds(neg(f), i) ∈ Xi the argumentation is done
analogously.

6. We now show that the equations (67) to (71) are satisfied. At first, we
show that (71) is satisfied. The fact that Xi is an answer set of �i implies
that the constraint (30) is satisfied:

:- 2 {holds(occurs(a1), i − 1), . . . ,holds(occurs(an), i − 1)}
That is, at most one of holds(occurs(a1), i−1), . . . ,holds(occurs(an),
i − 1) is true in Xi. By construction of Ai, (71) is satisfied.

16We will skip this condition in the following cases.

62 S. Dworschak et al.

For every a ∈ Ai we have holds(occurs(a), i − 1) ∈ Xi. To show that
(67) to (70) are satisfied, we distinguish between the following rules:

(a) Rules of form (26) wrt. Xb viz.

holds(occurs(a), i − 1) :- holds(allow(occurs(a)), i − 1),

not holds(ab(occurs(a)), i − 1),

not holds(neg(occurs(a)), i − 1).

The fact that holds(occurs(a), i − 1) ∈ Xi implies that at least rule
(24) or rule (25) was applicable, because these are the rules allowing
for deriving holds(allow(occurs(a)), i − 1).

i. The case that rule (25) was applicable needs not to be con-
sidered, since then we have a
∈ AT(si−1), a
∈ AT(si−1), a
∈
AA(si−1), a
∈ AA(si−1) and a
∈ AI(si−1).17

ii. Recall rule (24) simplified by Xb :

holds(allow(occurs(a)), i − 1)

:- not holds(ab(occurs(a)), i − 1),

holds(f1, i − 1), . . . ,holds(fn, i − 1).

If this rule is applicable in �i, we have holds(f1, i − 1), . . . ,

holds(fn, i − 1) ∈ Xi−1. We can conclude si−1 |= f1 ∧ · · · ∧ fn

and a ∈ AA(si−1) (Definition 3) since this rule was built from an
allowance rule.18 We have holds(ab(occurs(a)), i − 1)
∈ Xi

and can conclude a
∈ AA(si−1), since rule (29) was not applica-
ble. That is, (69) is satisfied.

We have holds(ab(occurs(a)), i − 1)
∈ Xi. The only rule where
holds(ab(occurs(a)), i − 1) can be derived is rule (29). Rule (29)
was built from an inhibition rule and since the rule was not applicable
in �i we have a
∈ AI(si−1). By construction of Ai, (70) is satisfied.

(b) Rule of form (28) wrt. Xb ∪ X0 ∪ Xi−1 viz.

holds(occurs(a), i − 1) :- not holds(ab(occurs(a)), i − 1).

Since we have {holds(f1, i − 1), . . . ,holds(fn, i − 1)} ∈ Xi−1 and
this rule was built from a triggering rule, we can conclude a ∈
AT(si−1) and because of holds(ab(occurs(a)), i − 1)
∈ Xi we have
a
∈ AT(si−1). By construction of Ai, equations (67) and (68) are
satisfied.
As in the previous case, we have holds(ab(occurs(a)), i − 1)
∈ Xi.
Again, we can conclude a
∈ AI(si−1). Hence, (70) is satisfied.

17Recall that rule (25) is only contained in �i if a is an exogenous action, that is {(f1, . . . ,

fn allows a), (f1, . . . , fn triggers a)} ∩ D = ∅.
18We will shorten this argumentation in the next cases by simply saying if the rules were applicable
or not applicable.

Modeling Biological Networks by Action Languages via Answer Set Programming 63

7. What remains left to show is that in (si−1, Ai, si) the observations in AQ

are satisfied (Definition 7). If a is an exogenous action, the fact that Xi is
an answer set of �i implies that we have holds(occurs(a), i − 1) ∈ Xi

since rule (32) is a fact:

holds(occurs(a), i − 1).

By construction of Ai, we have a ∈ Ai.
If a is no exogenous action, the simplified constraint (33) must be satisfied:

:- holds(neg(occurs(a)), i − 1). (73)

Since rule (27) must be satisfied we can conclude holds(neg
(occurs(a)), i − 1)
∈ Xi and holds(occurs(a), i − 1) ∈ Xi, otherwise
the constraint (33) won’t be satisfied. By construction of Ai, we have
a ∈ Ai.

We now have shown that for every answer X set of � = T (D, Oinit ∪ AQ)

there is a trajectory model s0, A1, s1, A2, . . . , Am, sm of (D, Oinit ∪ AQ) such
that for 0 ≤ k ≤ m we have

sk = { f | holds(f, k) ∈ X} ∪ {¬ f | holds(neg(f), k) ∈ X}
Ak+1 = {a | holds(occurs(a), k) ∈ X}.

References

1. Backofen, R., Will, S., & Bornberg-Bauer, E. (1999). Application of constraint programming
techniques for structure prediction of lattice proteins with extended alphabets. Bioinformatics,
15(3), 234–242.

2. Baral, C. (2003). Knowledge representation, reasoning and declarative problem solving.
Cambridge University Press.

3. Baral, C., Brewka, G., & Schlipf, J. (Eds.) (2007). Proceedings of the ninth international con-
ference on logic programming and nonmonotonic reasoning (LPNMR’07). Lecture Notes in
Artificial Intelligence, Vol. 4483. Springer-Verlag.

4. Baral, C., Chancellor, K., Tran, N., Tran, N., Joy, A., & Berens, M. (2004). A knowledge based
approach for representing and reasoning about signaling networks. In Proceedings of the twelfth
international conference on intelligent systems for molecular biology/third European conference
on computational biology (ISMB’04/ECCB’04) (pp. 15–22). ISCB.

5. Bonarius, H. P. J., Schmid, G., & Tramper, J. (1997). Flux analysis of underdetermined metabolic
networks: The quest for the missing constraints. Trends in Biotechnology, 15, 308314.

6. Booth, E. J., Walker, K. C., & Griffiths, D. W. (1991). A time-course study of the effect of sulfur
on glucosinolates in oilseed rape (brassica napus) from the vegetative stage to maturity. Journal
of the Science of Food and Agriculture, 56, 479–493.

7. Chabrier-Rivier, N., Fages, F., & Soliman, S. (2004). The biochemical abstract machine biocham.
In V. Danos & V. Schächter (Eds.) Proceedings of the second workshop on computational
methods in systems biology (pp. 172–191). Springer.

8. Clarke, E., Grumberg, O., & Peled, D. (1999). Model checking. MIT Press.
9. Danos, V., & Schächter, V. (Eds.) (2005). Computational methods in systems biology, interna-

tional conference (CMSB 2004), Paris, France, May 26–28, 2004, revised selected papers. Lecture
Notes in Computer Science, Vol. 3082. Springer.

10. Eiter, T., Faber, W., Leone, N., Pfeifer, G., & Polleres, A. (2003). A logic programming approach
to knowledge-state planning. Artificial Intelligence, 144(1–2), 157–211.

11. Eiter, T., Faber, W., Leone, N., Pfeifer, G., & Polleres, A. (2004). A logic programming approach
to knowledge-state planning: Semantics and complexity. ACM Transactions On Computational
Logic, 5(2), 206–263.

64 S. Dworschak et al.

12. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., & Talcott, C. L. (2002). Pathway logic:
Executable models of biological networks. Electr. Notes Theor. Comp. Sci., 71.

13. Eveillard, D., Ropers, D., de Jong, H., Branlant, C., & Bockmayr, A. (2004). A multi-scale
constraint programming model of alternative splicing regulation. Theoretical Computer Science,
325(1), 3–24.

14. Fanchon, E., Corblin, F., Trilling, L., Hermant, B., & Gulino, D. (2004). Modeling the molec-
ular network controlling adhesion between human endothelial cells: Inference and simulation
using constraint logic programming. In V. Danos & V. Schächter (Eds.), Lecture Notes in
Bioinformatics—Computational Methods in Systems Biology (pp. 104–118).

15. Ferraris, P., & Lifschitz, V. (2005). Mathematical foundations of answer set programming. In S.
Artëmov, H. Barringer, A. d’Avila Garcez, L. Lamb & J. Woods (Eds.), We will show them!
Essays in honour of dov gabbay, (Vol. 1, pp. 615–664). College Publications.

16. Gebser, M., Kaufmann, B., Neumann, A., & Schaub, T. (2007). Clasp: A conflict-driven answer
set solver. In C. Baral, G. Brewka & J. Schlipf (Eds.), Proceedings of the ninth international
conference on logic programming and nonmonotonic reasoning (LPNMR’07). Lecture Notes in
Artificial Intelligence, (Vol. 4483, pp. 260–265). Springer-Verlag.

17. Gebser, M., Kaufmann, B., Neumann, A., & Schaub, T. (2007). Conflict-driven answer set
solving. In M. Veloso (Ed.), Proceedings of the twentieth international joint conference on
artificial intelligence (IJCAI’07) (pp. 386–392). AAAI Press/The MIT Press. Available at
http://www.ijcai.org/papers07/contents.php.

18. Gebser, M., Schaub, T., & Thiele, S. (2007). GrinGo: A new grounder for answer set program-
ming. In C. Baral, G. Brewka & J. Schlipf (Eds.), Proceedings of the ninth international conference
on logic programming and nonmonotonic reasoning (LPNMR’07). Lecture Notes in Artificial
Intelligence, (Vol. 4483, pp. 266–271). Springer-Verlag.

19. Gelfond, M., & Lifschitz, V. (1991). Classical negation in logic programs and disjunctive data-
bases. New Generation Computing, 9, 365–385.

20. Gelfond, M., & Lifschitz, V. (1993). Representing action and change by logic programs. Journal
of Logic Programming, 17(2–4), 301–321.

21. Gelfond, M., & Lifschitz, V. (1998). Action languages. Electronic Transactions on Artifical
Intelligence, 3(6), 193–210.

22. Giunchiglia, E., & Lifschitz, V. (1998). An action language based on causal explanation:
Preliminary report. In Proceedings of the national conference on artificial intelligence (AAAI)
(pp. 623–630). AAAI.

23. Halkier, B. A., & Gershenzon, J. (2006). Biology and biochemistry of glucosinolates. Annual
Review of Plant Biology, 57, 303–333.

24. Kutz, A., Müller, A., Hennig, P., Kaiser, W. M., Piotrowskiand, M., & Weiler, E. W. (2002). A
role for nitrilase 3 in the regulation of root morphology in sulphur-starving arabidopsis thaliana.
Plant Journal, 30, 95–106.

25. Levesque, H., Reiter, R., Lespérance, Y., Lin, F., & Scherl, R. (1997). Golog: A logic program-
ming language for dynamic domains. Journal of Logic Programming, 31(1–3), 59–83.

26. Lifschitz, V., & Razborov, A. (2006). Why are there so many loop formulas? ACM Transactions
on Computational Logic, 7(2), 261–268.

27. Lifschitz, V., & Turner, H. (1994). Splitting a logic program. In Proceedings of the eleventh
international conference on logic programming (pp. 23–37). MIT Press.

28. Lifschitz, V., & Turner, H. (1999) Representing transition systems by logic programs. In M.
Gelfond, N. Leone & G. Pfeifer (Eds.), Logic programming and non-monotonic reasoning.
Lecture Notes in Artificial Intelligence, (Vol. 1730, pp. 92–106). Springer-Verlag.

29. Lynce, I., & Marques-Silva, J. (2006). Efficient haplotype inference with boolean satisfiability.
In Y. Gil & R. Mooney (Eds.), Proceedings of the twenty-first national conference on artificial
intelligence (AAAI’06). AAAI Press.

30. Lynce, I., & Marques-Silva, J. (2006). Sat in bioinformatics: Making the case with haplotype
inference. In A. Biere & C. Gomes (Eds.) Proceedings of the ninth international conference on
theory and applications of satisfiability testing (SAT’06). Lecture Notes in Computer Science, (Vol.
4121, pp. 136–141). Springer-Verlag.

31. McCarthy, J. (1998). Elaboration tolerance. http://www.formal.stanford.edu/jmc/elaboration.
html.

32. Montiel, G., Gantet, P., Jay-Allemand, C., & Breton, C. (2004). Transcription factor networks.
Pathways to the knowledge of root development. Plant Physiology, 136, 3478–3485.

33. Niemelä, I. (1999). Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence, 25(3–4), 241–273.

http://www.ijcai.org/papers07/contents.php
http://www.formal.stanford.edu/jmc/elaboration.html
http://www.formal.stanford.edu/jmc/elaboration.html

Modeling Biological Networks by Action Languages via Answer Set Programming 65

34. Nikiforova, V. J., Daub, C. O., Hesse, H., Willmitzer, L., & Hoefgen, R. (2005). Integrative gene-
metabolite network with implemented causality deciphers informational fluxes of sulfur stress
response. Journal of Experimental Botany, 56, 1887–1896.

35. Nikiforova, V. J., Freitag, J., Kempa, S., Adamik, M., Hesse, H., & Hoefgen, R. (2003). Transcrip-
tome analysis of sulfur depletion in arabidopsis thaliana: Interlacing of biosynthetic pathways
provides response specificity. Plant Journal, 33, 633–650.

36. Nikiforova, V. J., Kopka, J., Tolstikov, V., Fiehn, O., Hopkins, L., Hawkesford, M. J., et al.
(2005). Systems re-balancing of metabolism in response to sulfur deprivation, as revealed by
metabolome analysis of arabidopsis plants. Plant Physiology, 138, 304–318.

37. Pan, Y., Tu, P., Pontelli, E., & Son, T. (2004). Construction of an agent-based framework for
evolutionary biology: A progress report. In J. Leite, A. Omicini, P. Torroni & P. Yolum (Eds.),
Proceedings of the second international workshop on declarative agent languages and technologies
(DALT’04). Lecture Notes in Computer Science, (Vol. 3476, pp. 92–111). Springer-Verlag.

38. Papatheodorou, I., Kakas, A., & Sergot, M. (2005). Inference of gene relations from microar-
ray data by abduction. In C. Baral, G. Greco, N. Leone & G. Terracina (Eds.), Proceed-
ings of the eighth international conference on logic programming and nonmonotonic reasoning
(LPNMR’05). Lecture Notes in Artificial Intelligence, (Vol. 3662, pp. 389–393). Springer-Verlag.

39. Pinney, J. W., Westhead, D. R., & McConkey, G. A. (2003). Petri net representations in systems
biology. Biochemical Society Transactions, 31(Pt 6), 1513–1515.

40. Reddy, V. N., Mavrovouniotis, M. L., & Liebman, M. N. (1993). Petri net representations in
metabolic pathways. In Proc. First ISMB (pp. 328–336).

41. Regev, A., Panina, E. M., Silverman, W., Cardelli, L., & Shapiro, E. Y. (2004). Bioambients: An
abstraction for biological compartments. Theoretical Computer Science, 325(1), 141–167.

42. Shmulevich, I., Dougherty, E. R., Kim, S., & Zhang, W. (2002). Probabilistic boolean networks:
A rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18(2), 261–274.

43. Simons, P., Niemelä, I., & Soininen, T. (2002). Extending and implementing the stable model
semantics. Artificial Intelligence, 138(1–2), 181–234.

44. Son, T., & Pontelli, E. (2007). Planning for biochemical pathways: A case study of answer set
planning in large planning problem instances. In M. De Vos & T. Schaub (Eds.), Proceedings of
the workshop on software engineering for answer set programming (SEA’07), number CSBU-
2007-05 in Department of Computer Science, University of Bath, Technical Report Series,
(pp. 116–130). ISSN 1740-9497.

45. Syrjänen, T. (1998). Lparse 1.0 user’s manual. http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz.
46. Tamaddoni-Nezhad, A., Chaleil, R., Kakas, A., & Muggleton, S. (2006). Application of abductive

ilp to learning metabolic network inhibition from temporal data. Machine Learning, 64(1–3),
209–230.

47. Tran, N. (2006). Reasoning and hypothesing about signaling networks. Ph.D. thesis, Arizona State
University.

48. Tran, N., & Baral, C. (2004). Reasoning about triggered actions in AnsProlog and its application
to molecular interactions in cells. In D. Dubois, C. Welty & M. Williams (Eds.), Proceedings
of the ninth international conference on principles of knowledge representation and reasoning
(KR’04) (pp. 554–564). AAAI Press.

49. Tran, N., Baral, C., & Shankland, C. (2005). Issues in reasoning about interaction net-
works in cells: Necessity of event ordering knowledge. In M. Veloso & S. Kambhampati
(Eds.), Proceedings of the twentieth national conference on artificial intelligence (AAAI’05)
(pp. 676–681). AAAI Press.

http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz

	Modeling Biological Networks by Action Languages via Answer Set Programming
	Abstract
	Introduction
	Action Language CTAID
	Action Description Language
	Action Observation Language
	Action Query Language
	Planning
	Explanation
	Prediction

	Compilation
	Action Description Language
	Action Observation Language
	Action Query Language
	Planning
	Explanation
	Prediction

	Application
	Applying CTAID to the Biological Example
	Analysis of the Initial State by using the Biological Model as Verification
	Model Verification by Comparing the Estimated and the Modeled Time for a Queried Fluent to Hold
	Combinatorial Manner of Functioning of Biosystem Constituents
	Synergism in Functioning of Systems Constituents
	Essentiality of Causal Hierarchies for the Functioning of the System
	By Analysis of Action Essentiality Redundant Side Branches of Informational Flows can be Identified
	Fluent Essentiality can be Estimated by Comparative Simulation of Alternative Models

	Discussion and Related Work
	Appendix
	A Compilation of CTAID to Logic Programs
	B Auxiliary Definitions and Results
	C Proof of Theorem 1
	C.1 Proof of Part 1 of Theorem 1
	C.2 Proof of Part 2 of Theorem 1

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

