
Efficient Sequence Alignment with Side-Constraints

by Cluster Tree Elimination

Sebastian Will, Anke Busch and Rolf Backofen

Bioinformatics Group, Institute of Computer Science,

Albert-Ludwigs-University Freiburg

Georges-Koehler-Allee 106, 79110 Freiburg,

{will,abusch,backofen}@informatik.uni-freiburg.de

Abstract

Aligning DNA and protein sequences is a core technique in molec-
ular biology. Often, it is desirable to include partial prior knowledge
and conditions in an alignment. Going beyond prior work, we aim
at the integration of such side constraints in free combination into
alignment algorithms. The most common and successful technique for
efficient alignment algorithms is dynamic programming (DP). How-
ever, a weakness of DP is that one cannot include additional con-
straints without specifically tailoring a new DP algorithm. Here, we
discuss a declarative approach that is based on constraint techniques
and show how it can be extended by formulating additional knowl-
edge as constraints. We take special care to obtain the efficiency of
DP for sequence alignment. This is achieved by careful modeling and
applying proper solving strategies. Finally, we apply our method to
the scanning for RNA motifs in large sequences. This case study
demonstrates how the new approach can be used in real biological
problems. A prototypic implementation of the method is available at
http://www.bioinf.uni-freiburg.de/Software/CTE-Alignment.

1 Introduction

Modern molecular biology relies heavily on tools for the comparison of the
macromolecules DNA, RNA, and proteins. It is most desirable to be able
to specify additional restrictions for such similarity search whenever prior

1

http://www.bioinf.uni-freiburg.de/Software/CTE-Alignment

knowledge on the analyzed molecules is available. One example is the follow-
ing. Assume that we want to align some sequences and we know already that
they share certain local motifs (subsequences). Reasonably, the sequences
should be compared taking this knowledge into account. Therefore, we need
to optimize similarity under the additional constraint that the motifs should
be matched (approximately) to each other. Another example is the enhance-
ment of RNA (or even protein) comparison by employing knowledge on the
structure of the RNAs and proteins [19, 10, 1, 21, 12]. Such tasks can get
arbitrary complicated when one wants to combine different kinds of such
prior knowledge in one comparison of sequences.

However in general, similarity searching tools do not allow to take such
prior knowledge into account automatically. The reason for this deficiency
is of algorithmic nature. Only for certain special constraints, alignment
algorithms have been discussed. In particular, there are approaches that
incorporate anchor constraints [15] and precedence constraints [16]. We will
later discuss how such constraints fit into our newly introduced framework
as simple cases. Aligning sequences and (to some extent) sequences with
additional structural information is commonly and most successfully per-
formed by dynamic programming (DP) [17, 20, 10] or, from an algorithmic
point of view, DP-based approaches like HMMs and SCFGs [18, 7]. There
is no straightforward and general way to extend a DP algorithm in order to
take additional knowledge into account.

In this paper, we propose a declarative formulation of the alignment
problem that allows an easy integration of side constraints. In principle,
declarative approaches can be extended to incorporate prior knowledge. For
this aim, such knowledge is formulated as constraints and added to the model
for unconstrained alignment. Although there already exist other declarative
alignment approaches, they were not designed to support additional side
constraints. In particular, it is not obvious how these methods can be ex-
tended by biologically meaningful constraints and how this influences their
efficiency. One such previous approach [13] is based on integer linear pro-
gramming (ILP). Since in ILP one can only use boolean variables, the ILP
model of [13] for aligning two sequences of length n and m introduces O(nm)
variables for modeling the alignment edges. Due to the resulting complex-
ity, one needs to introduce artificial restrictions on the possible alignment
edges for solving the problem in practice. Furthermore, the solving strategy
for ILP does not achieve the efficiency of DP for the unconstrained case.
Another declarative approach [22] is based on constraint programming. The
approach introduces quadratically many variables and constraints and re-
models the given DP algorithm. As a consequence, only a rather restricted

2

class of side constraints can be handled efficiently.

Contribution The general problem of alignment with side constraints is
NP-hard. However in many cases, adding only a few or special constraints
to the alignment problem will still allow for efficient computation. Usually
a constraint affects only a part of the alignment, while the rest can still be
evaluated efficiently. Also, many constraints may only modify the problem
but do not impair efficiency.

Here, we introduce a new constraint-based approach, which benefits of
such considerations. The main challenge that we face with our approach is
to compete with the very good efficiency of DP in the standard case and
allow extension by introducing new constraints.

We achieve the desired efficiency and adaption to additional constraints
by modeling the alignment problem as a semiring-based constraint opti-
mization problem in the sense of [3, 11] and then applying a special solution
strategy, which is known as cluster tree elimination (CTE) [11].

Overview In the first three sections, we describe the model, depict the
strategy of CTE, and then present special constraints in more detail. In
Section 5, we demonstrate the use of our method for biological real-world
applications by a case-study on scanning for RNA motifs. In this section,
we will extend our alignment model for the special purpose of scanning and
use several constraints to specify a complex sequence structure motif. We
close with a discussion of our work and some open problems. In particular,
we discuss a possible extension to multiple alignment with arbitrary side
constraints.

2 A Constraint Model for Sequence Alignment

We develop a constraint model for sequence alignment of two sequences
a = a1 . . . an and b = b1 . . . bm that are both words of the alphabet Σ.

2.1 Sequence Alignment

We define an alignment A of a and b as a subset of pairs of positions in a

and b, i.e.
A ⊂ {1, . . . , n} × {1, . . . ,m},

such that for all (i, j), (i′, j′) ∈ A:

1. i = i′ if and only if j = j′ and

3

2. i < i′ implies j < j′.

We call i and j matched by A if and only if (i, j) ∈ A. Note that our
definition of an alignment as a set of alignment edges (pairs of matched
positions) is equivalent to the more common definition as a pair of alignment
strings.

The score of an alignment A, which we want to maximize, depends on
the similarity function on positions σ : {1, . . . , n}×{1, . . . ,m} → R and gap
cost γ ∈ R. It is defined as

score(A) = (n + m − 2|A|)γ +
∑

(i,j)∈A

σ(i, j). (1)

The classical DP algorithm for the alignment of a and b computes the
optimal alignment score recursively from the scores Di,j of optimal align-
ments of prefixes a1, . . . , ai and b1, . . . , bj . For computing Di,j , it evaluates
the recursion equation

Di j = max











Di−1 j−1 + σ(i, j)

Di−1 j + γ

Di j−1 + γ

with initialization

D0 0 = 0, Di 0 = iγ, and D0 j = jγ

for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Since the algorithm materializes intermediate
values, it solves the problem of computing the alignment score Dn,m in
O(nm) time.

2.2 Constraint framework

Here, we model an alignment as a constraint optimization problem in the
semiring-based framework that is described in a more general form in [3,
11]. There, one defines variables with finite domains and functions on these
variables. In our special case, the solution of the problem is a valuation
of the variables that maximizes the sum of the function values. Note that
hard constraints c can be encoded in this framework by functions that yield
−∞ if the constraint is violated and 0 otherwise. Tacitly, our arithmetic is
extended canonically in order to handle sums and maximizations involving
infinity.

4

In our model, we represent alignments of a and b by finite domain vari-
ables Xi for 1 ≤ i ≤ n with domains

dom(Xi) = {0, . . . ,m}.

Furthermore for technical reasons, we introduce the fixed variables X0 = 0
and Xn+1 = m + 1 and extend σ by defining

σ(n + 1,m + 1) = 0.

A given alignment A is uniquely encoded by a valuation (X0 = x0, . . . ,Xn+1 =
xn+1) of variables X0, . . . ,Xn+1 where

1. xi = j if (i, j) ∈ A and

2. xi = xi−1, for every i that is not matched in A.

Note that i and j are matched if and only if xi = j and xi > xi−1. For
example, the valuation

~x = (0, 1, 2, 5, 6, 6, 6, 7, 8)

of the variables X0, . . . ,X8 corresponds to the alignment

{(1, 1), (2, 2), (3, 5), (4, 6), (7, 7)},

which can be represented alternatively by

a1 a2 − − a3 a4 a5 a6 a7

b1 b2 b3 b4 b5 b6 − − b7
.

Hard constraints The only hard constraints on the variables Xi are
Xi−1 ≤ Xi for 1 ≤ i ≤ n + 1. They are modeled by functions

leqi : dom(Xi−1) × dom(Xi) → {−∞, 0}.

The scoring scheme is encoded via functions fi(Xi−1,Xi) for 1 ≤ i ≤ n + 1
that are defined by

fi(j
′, j) =

{

(j − j′ − 1)γ + σ(i, j) if j′ < j

γ otherwise.

5

General and affine gap cost For simplicity, in the rest of this work we
focus on alignment with linear gap cost. Nevertheless, the approach can be
extended to work with arbitrary gap cost. It is even possible to integrate
affine gap cost with the expected performance benefits over general gap
cost [8].

Assume a non-negative function Γ : N
+ → R for gap-cost that is sub-

additive, i.e. Γ(k) + Γ(k′) ≥ Γ(k + k′) (k, k′ > 0) and Γ(0) := 0. We are
interested in modeling the score

scoreΓ(A) =
∑

(i,j)∈A

σ(i, j) +
∑

k≥0

Γ(k) · Nk
A,

where Nk
A is the number of gaps of length k in A.

Due to the asymmetry of the model, arbitrary scoring of gaps in the sec-
ond sequence would require only a simple modification of fi. For scoring gaps
in the first sequence too, we introduce variables Gi for i = 0, . . . , n + 1 with
domain {0, . . . , i}, G0 = 0, and constraint functions gapi : {1, . . . , n}4 →
{−∞, 0} for i = 1, . . . , n + 1 that express the hard constraints

if Xi = Xi−1 then Gi = Gi−1 + 1 else Gi = 0.

By these constraints the Gi are uniquely determined by the Xi and count
the length of each gap defined by the Xi. For our example valuation, we get

i 0 1 2 3 4 5 6 7 8

Xi 0 1 2 5 6 6 6 7 8
Gi 0 0 0 0 0 1 2 0 0

Now, instead of the functions fi(Xi−1,Xi), one introduces new functions
f̄i(Xi−1,Xi, Gi−1) defined by

f̄i(j
′, j, g) =

{

Γ(j − j′ − 1) + σ(i, j) + Γ(g) if j′ < j

0 otherwise.

If Γ is an affine function, i.e. Γ(k) = α + βk (k > 0), one can simplify
the model by distinguishing gap opening and gap extension. In the model,
this only simplifies the treatment of gaps in the first sequence. Taking full
advantage of affine gap cost also for gaps in the second sequence requires
further modifications similar to those described in Subsection 3.2.

For affine cost, extend the model with linear cost again with variables
Gi and with constraint functions gapa

i that express the constraints

if Xi = Xi−1 then Gi = 1 else Gi = 0.

6

Instead of the functions fi(Xi−1,Xi), one introduces this time new functions
f̃i(Xi−1,Xi, Gi−1) defined by

f̃i(j
′, j, g) =

{

Γ(j − j′ − 1) + σ(i, j) + α · g if j′ < j

β otherwise.

Now, the Gi work only as flags for gaps. The simplification for the affine
case is visible in the restriction of the domain of the variables Gi to {0, 1}.

2.3 Correctness of the model

Note that we correctly model alignments and their scores. We will show
this here for the model with linear gap cost. Firstly, a valuation (X0 =
x0, . . . ,Xn+1 = xn+1) represents an alignment A of a and b if and only if
the sum over all function values

∑

1≤i≤n+1

fi(xi−1, xi) + leqi(xi−1, xi)

is not −∞. Secondly in this case, this sum equals the alignment score due
to the following proposition.

Proposition 2.1

score(A) =
∑

1≤i≤n+1

fi(xi−1, xi) (2)

Proof. We show the proposition by algebraic transformation of the right
hand side of Equation 2.

∑

1≤i≤n+1

fi(xi−1, xi)

equals by splitting the sum and case distinction (cf. definition of fi)

∑

1≤i≤n+1
xi−1<xi

σ(i, xi) +
∑

1≤i≤n+1
xi−1<xi

(xi − xi−1 − 1)γ +
∑

1≤i≤n+1
xi−1=xi

γ.

Due to the definition of our model, this is equal to

∑

(i,j)∈A

σ(i, j) +
∑

1≤i≤n+1
xi−1<xi

(xi − xi−1)γ −
∑

1≤i≤n+1
xi−1<xi

γ +
∑

1≤i≤n+1
xi−1=xi

γ.

7

Since
∑

1≤i≤n+1
xi−1=xi

(xi − xi−1)γ = 0, this equals

∑

(i,j)∈A

σ(i, j) +
∑

1≤i≤n+1
xi−1≤xi

(xi − xi−1)γ −
∑

1≤i≤n+1
xi−1<xi

γ +
∑

1≤i≤n+1
xi−1=xi

γ.

{1 ≤ i ≤ n + 1 | xi−1 ≤ xi} contains all 1 ≤ i ≤ n + 1, since x0, . . . , xn+1 is
ordered due to the less or equal constraints. Thus, the term above equals

∑

(i,j)∈A

σ(i, j) + (xn+1 − x0)γ −
∑

1≤i≤n+1
xi−1<xi

γ +
∑

1≤i≤n+1
xi−1=xi

γ.

Since xn+1 = m + 1 and x0 = 0 and {1 ≤ i ≤ n + 1 | xi−1 < xi} is the set of
matched positions of sequence a in the alignment A, unified with {n + 1},
this equals

∑

(i,j)∈A

σ(i, j) + (m + 1)γ − (|A| + 1)γ +
∑

1≤i≤n+1
xi−1=xi

γ.

{1 ≤ i ≤ n + 1 | xi−1 = xi} is the set of positions in a that are not matched
by A. Thus, one can transform the term into

∑

(i,j)∈A

σ(i, j) + (m + 1)γ − (|A| + 1)γ + (n − |A|)γ

which is

∑

(i,j)∈A

σ(i, j) + (m + n − 2|A|)γ = score(A).

�

3 Efficient Solving by Cluster Tree Elimination

Here, we sketch Cluster Tree Elimination (CTE) and show its application
to the our model. We demonstrate how direct application of CTE yields
an O(nm2) algorithm. Then, by introducing modifications to the standard
CTE approach, we improve the complexity to O(nm) time.

8

Figure 1: CTD of pure sequence alignment.

3.1 Basic Mechanism

For applying CTE, we first need a cluster tree decomposition (CTD) [11].
The CTD works as a guide for the solving of the constraints. The idea is
that the problem can be processed by sending messages (corresponding to
partial solutions) along this tree structure. In such a decomposition, we
distribute variables and functions to vertices (clusters) of a tree, such that

1. each function occurs in exactly one cluster,

2. if a function occurs in a cluster, then all variables of the function are
assigned to the cluster as well, and

3. for each variable the set of clusters that contain this variable induces
a connected subtree.

Due to the definition, clusters that share variables are connected by
edges. The shared variables are called separator variables. Figure 1 shows a
cluster tree decomposition of our alignment model where edges are labeled
by separator variables. We call the cluster consisting of Xi−1,Xi, fi, and
leqi the cluster i. Note that in this figure (and the following ones) we omit
the functions leqi in our presentation.

CTE solves a constraint optimization problem by repeatedly exchanging
messages between the clusters. The messages are functions that combine
the functions of the cluster and marginalize them to the separator variables.

9

Each message becomes a new function of the receiving cluster. From cluster
i to cluster i + 1, CTE sends a function gi of the separator variable Xi.
Beginning with cluster 1 it proceeds until cluster n + 1 receives its message
gn. When sending a message from cluster i, this cluster is already augmented
by a function gi−1. Finally, it can be shown that

max
1≤j≤m

(gn(j) + fn+1(j,m + 1)) ,

which is the marginalization of the functions in cluster n + 1 to the empty
set of variables, is the maximal alignment score.

It remains to show how the messages gi are computed. Due to the CTE
algorithm, the message gi is defined for 0 ≤ j ≤ m as

gi(j) = max
0≤j′≤m

(

gi−1(j
′) + fi(j

′, j) + leqi(j
′, j)
)

. (3)

Clearly, the standard approach takes O(m2) time for computing the function
gi. Since O(n) messages are sent until the final alignment score can be com-
puted, this results in an O(nm2) algorithm. Thereby, we have shown that
the direct application of CTE to our constraint model yields a polynomial
algorithm for sequence alignment.

3.2 Improving complexity

The complexity can be improved further if we employ the internal structure
of the functions gi−1, fi, and leqi. For this reason, we rewrite Equation 3
by the semantics of leqi and expand the definition of fi.

gi(j) = max
0≤j′≤j

(

gi−1(j
′) +

{

σ(i, j) + (j − j′ − 1)γ if j′ < j

γ otherwise

)

.

Now, we can resolve the case distinction and move the constant σ(i, j) out
of the maximization. Then,

gi(j) = max







σ(i, j) + max
0≤j′<j

(

gi−1(j
′) + (j − j′ − 1)γ

)

gi−1(j) + γ.

Proposition 3.1 A helper function

gm
i (j) = max

0≤j′<j

(

gi−1(j
′) + (j − j′ − 1)γ

)

can be defined recursively and then computed in O(m) time by DP as

10

• gm
i (0)=−∞,

• gm
i (1)=gi−1(0), and

• for j > 1: gm
i (j)=max

{

gm
i (j − 1) + γ

gi−1(j − 1).

Proof. The case of j = 1 follows by definition. It remains to show that

max
0≤j′<j

(

gi−1(j
′) + (j − j′ − 1)γ

)

= max

{

gm
i (j − 1) + γ

gi−1(j − 1).

gm
i (j) = max

0≤j′<j

(

gi−1(j
′) + (j − j′ − 1)γ

)

= max







max
0≤j′<j−1

(

gi−1(j
′) + (j − j′ − 1)γ

)

gi−1(j − 1) + (j − (j − 1) − 1)γ

= max







max
0≤j′<j−1

(

gi−1(j
′) + (j − 1 − j′ − 1)γ + γ

)

gi−1(j − 1)

= max

{

gm
i (j − 1) + γ

gi−1(j − 1)

�

In consequence, the total computation of gi is done in O(m). This results
in an O(nm) time algorithm for the computation of the alignment score.1

Note that the described reduction in complexity is only shown for clus-
ters that contain exactly the variables and constraints of the (unconstrained)
alignment CTD. If one adds further constraints, as described in the follow-
ing, the reduction still applies to computing the messages in all unaffected
clusters. In principle, the complexity reduction is possible for many types
of constraints. However this requires to perform a proof for each new con-
straint. An example of such an optimization is given for the constraint
introduced in Subsection 4.2. Without further work, the messages for mod-
ified clusters can still be computed using the default-mechanism of CTE.

1
O(m) space can be achieved by further modifications to CTE.

11

3.3 Complexity considerations

Before we discuss concrete constraints that are useful for sequence alignment,
we want to discuss the complexity of sequence alignment with CTE in a more
general way.

The time complexity of CTE is O((r+N) ·deg ·kw), its space complexity
O(N · ksep), where

• N is the number of vertices in the CTD

• w is the tree width of the CTD

• sep is the maximum size of a set of separator variables

• r is the number of functions

• deg is the maximum degree of the CTD

• k is the maximum domain size of a variable.

The tree width of a tree decomposition is the maximal number of variables
in a cluster. For detailed definitions and theorems please see [11].

For the basic model of unconstrained sequence alignment without com-
plexity improvement, this yields the already given complexities of O(n ·m2)
time and O(n · m) space, since there N = n + 1, w = 2, sep = 1, r = n + 1,
deg = 1, and k = m + 2.

Due to this analysis, if we assume that additional constraints will in-
troduce at most O(n) variables and functions, additional constraints can
only increase the time complexity by increasing w and increase the space
complexity by increasing sep.

For practical applications, we are most interested in keeping w and sep

low. This is possible for most constraints presented in the next section, since
they introduce only dependencies between variables in close distance, i.e. Xi

and Xj where |i − j| is small, often 1.
The single exception are the structure constraints of Subsection 4.3.

Those constraints introduce long distance dependencies between variables.
Introducing a long distance dependency between Xi and Xj requires a re-
structuring of the cluster tree, forming a cluster that contains Xi and Xj .
Naturally, this leads to an increased tree width (and sep) compared to the
basic model. Now, it is interesting to note that additional long distance
interactions that do not cross the existing interactions can be added with-
out increasing w or sep further. Here two interactions between i and j

(i < j) and between i′ and j′ (i′ < j′) cross, if either i < i′ < j < j′ or

12

i′ < i < j < j′. The phenomenon that non-crossing interactions can be
handled with comparably low complexity is well known in the area of RNA
alignment and tree editing. [10]

Note that our approach however is not limited to such non-crossing in-
teractions. Quite on the opposite, the proposed method can adapt to in-
creasingly complex interactions with increasing computational complexity.
Nevertheless, we don’t want to conceal here that a large number of crossing
long range interactions will make the current approach impracticable. For
practical applications, the possibility to include such interactions can still
be valuable as long as their number is low. In this respect the approach is
clearly distinguished from other dynamic programming based methods (in-
cluding SCFGs [18, 7]), which cannot incorporate such interactions straight-
forwardly.

The presented method using CTE is therefore adapted to the case of
combining (possibly many) low distance constraints and crossing long dis-
tance constraints. In this case, the tree structure adequately reflects the
structure of the constrained alignment problem. When the focus is on inte-
grating many more complex and crossing constraints, other, more advanced
constraint decomposition based solving strategies might be advantageous
[6, 5], which however is beyond the scope of this paper.

4 Constraints for Sequence Alignment

Recently discussed constrained alignment approaches handled constraints
like precedence constraints [16] and anchor constraints [15]. Such constraints
can be encoded in our model straightforwardly and are handled by restricting
the domains of variables, which even increases the efficiency of our algorithm.
After reviewing these and other simple constraints, we present more complex
constraints that can be handled in our framework.

4.1 Some Simple Constraints

Match A simple example of a constraint for extending the model is the
match constraint Match(i, j), which enforces that ai is matched to bj. It
restricts the class of valid alignments to those alignments A, where

(i, j) ∈ A.

In our model, this is expressed by adding the constraints

Xi = j and Xi−1 < Xi.

13

By definition of our model, the conjunction of these two constraints is equi-
valent to the match constraint. The match constraint can be extended easily
to the case, where ai must be aligned to either bj or b′j . The corresponding
constraints are Xi ∈ {j, j′} and Xi−1 < Xi.

Exact Match A second simple example of a constraint that extends the
model is the exact matching constraint ExMatch(i). It enforces that ai is
matched to a position in b that contains the same symbol as ai itself. For-
mally, the exact matching constraint ExMatch(i) is defined on alignments A
by

∃j : (i, j) ∈ A ∧ ai = bj .

In our model, this is expressed by adding the following constraints

Xi ∈ {j|bj = ai} and Xi−1 < Xi.

Forbidding Gaps The no gap constraint NoGap(i, i′) ensures that the sub-
sequence ai...ai′ is aligned to a subsequence of b without any gaps. Formally,
this means that

• (i, j) ∈ A and

• ∀1 ≤ k ≤ i′ − i : (i + k, j + k) ∈ A.

In our model, this is expressed by adding the constraints

• Xi−1 < Xi and

• Xi+k = Xi+k−1 + 1 for all 1 ≤ k ≤ i′ − i.

Precedence A precedence constraint PrecL(i, j), handled in [16], tells that
in the alignment position i of the first sequence is left of position j of the
second sequence. Formally, this means that

∀(k, l) ∈ A : k ≤ i =⇒ l < j.

In our model, this condition is encoded as

Xi < j.

Noteworthy, by the less or equal constraints leqi of our basic constraint
model, this implies for all 1 ≤ k < i that Xk < j. Similarly, one can define
a precedence constraint PrecR(i, j) that expresses the symmetric case that
position i in a is right of position j in b.

14

Anchors An anchor constraint, as discussed in [15], tells that position i in
the first sequence and position j in the second sequence can only be aligned
to each other and furthermore, positions strictly left (resp. right) of i are
aligned to positions strictly left (resp. right) of j. Formally, the anchor
constraint Anchor(i, j) is defined on alignments A by

∀(k, l) ∈ A : (k < i ∧ l < j) ∨ (k > i ∧ l > j) ∨ (k = i ∧ l = j)

In our model, this is expressed by the constraints

• Xi−1 < j,

• Xi+1 > j, and

• Xi = j ∨ Xi = Xi−1.

Together, the first and last constraint imply Xi ≤ j. The constraints
are directly propagated to the domains of Xi and Xi−1 and do not increase
the complexity of our constraint problem. Via the less or equal constraints
leqi the new domain information is further propagated to the domains of all
variables.

In this section, we discuss two more challenging extensions by example.
Namely, the incorporation of prior knowledge on aligned segments and the
extension to sequence structure alignment.

4.2 Aligned Segment Constraints

As example of constraining the alignment between segments in a and b, we
consider the constraint that at least x of the positions {k, . . . , k′} in a have
to be matched with positions {l, . . . , l′} in b. For extending our model by
this constraint, we add variables Ak−1, . . . , Ak′ and for each k ≤ i ≤ k′ the
function ci(Ai−1, Ai,Xi−1,Xi) that encodes the hard constraint

Ai = Ai−1 +

{

1 if Xi−1 < Xi and l ≤ Xi ≤ l′

0 otherwise.

We fix Ak−1 = 0. Since the variables Ai count the proper matches in the
prefix segment {k,. . . ,i}, the values of Ai are in the range {0, . . . , i− k + 1}.
To satisfy the constraint, Ai has to be at least max(0, x − (k′ − i)) since
positions larger than i can contribute at most k′− i matches. We can finally
express the constraint by restricting the domain of Ai to

{max(0, x − (k′ − i)), . . . , i − k + 1}.

15

Figure 2: CTD of an alignment with segment constraints.

Figure 2 shows the cut-out of the CTD that is affected by the extension
of the model. CTE works essentially as in the standard case. For k ≤ i ≤ k′,
CTE sends messages gi depending on the separator variables that each can
be computed in O(mk̄) time where k̄ = k′−k+1. Thus, the total complexity
is

O(m(n − k̄) + mk̄2).

Note that, as assumed in this result, one can transfer the complexity im-
provement of the previous section to this case of constrained alignment. It
suffices to look at the message gi from the cluster i that contains a variable
Ai (and thus contains the variables Xi, Xi−1, and Ai−1 by construction).
We cover only the case that the cluster i − 1 also contains a variable Ai−1,
which is violated only once at the beginning of the segment. Then, the mes-
sage gi, which depends on values for Xi and Ai, is given (already using the

16

semantic of leqi and ci) as

gi(j, a) = max
0≤j′≤j

{

gi−1(j
′, a − 1) + fi(j

′, j) if j′ < j and l ≤ j ≤ l′

gi−1(j
′, a) + fi(j

′, j) otherwise.

One transforms gi(j, a) further, after inserting the definition of fi. Then,
gi(j, a) =

max
0≤j′≤j











gi−1(j
′, a − 1) + (j − j′ − 1)γ + σ(i, j) if j′ < j and l ≤ j ≤ l′

gi−1(j
′, a) + (j − j′ − 1)γ + σ(i, j) if j′ < j and j 6∈ [l..l′]

gi−1(j
′, a) + γ if j′ = j

= max
0≤j′≤j

{

gi−1(j
′,C(j, a)) + (j − j′ − 1)γ + σ(i, j) if j′ < j

gi−1(j
′, a) + γ if j′ = j

= max







σ(i, j) + max
0≤j′<j

(

gi−1(j
′,C(j, a)) + (j − j′ − 1)γ

)

gi−1(j, a) + γ

where for our fixed l and l′, C(j, a) =

{

a − 1 if l ≤ j ≤ l′

a otherwise.
Now, we define a helper function

gm
i (j, a) = max

0≤j′<j

(

gi−1(j
′,C(j, a)) + (j − j′ − 1)γ

)

.

Using gm
i , we can express gi(j, a) by

gi(j, a) = max

{

σ(i, j) + gm
i (j, a)

γ + gi−1(j, a).

Finally, gm
i can be defined recursively as in the previous section as

gm
i (0, a) = −∞,

gm
i (1, a) = g(1,C(j, a)),

and

for j > 1: gm
i (j, a) = max

{

gm
i (j − 1,C(j, a)) + γ

gi−1(j − 1,C(j, a)),

We have demonstrated, that for this class of constraints the efficiency
can be improved in the same way as in the case of unconstrained alignment.
Here, the additional constraints do not interfere with the nature of our score
that enables the recursive decomposition.

17

4.3 Structure Constraints

Here as additional input, we have two structures (of RNAs or even proteins)

Pa ⊂ {1, . . . , n} × {1, . . . , n}

and

Pb ⊂ {1, . . . ,m} × {1, . . . ,m}

and a function

ω : {1, . . . , n} × {1, . . . , n} × {1, . . . ,m} × {1, . . . ,m} → R.

A pair (il, ir) ∈ Pa (resp. (jl, jr) ∈ Pb) expresses a dependency, e.g. base
pairing in RNA, between the positions il and ir (resp. jl and jr). The
function ω yields a score for aligning pairs of dependent positions.

The score of an alignment A is now defined in extension of Eq. 1 as

score(A) +
∑

(il,ir)∈Pa,(jl,jr)∈Pb,

(il,jl)∈A,(ir ,jr)∈A

w(il, ir; jl, jr).

Our alignment model can be extended by adding for each (il, ir) ∈ Pa

functions hilir(Xil−1,Xil ,Xir−1,Xir) that are defined as

hilir(j
′
l , jl, j

′
r, jr) =

{

ω(il, ir; jl, jr) if j′l < jl, j′r < jr, and (jl, jr) ∈ Pb

0 otherwise.

(4)
Figure 3 provides an example for Pa = {(kl, kr), (ll, lr)} and arbitrary

Pb. It demonstrates the general construction principle of such a CTD for
the base pairs in Pa that are not crossing. Only for non-crossing base-pairs
the tree width and separator size can be controlled in this way, crossing base
pairs introduce crossing dependencies (cf the discussion of Subsection 3.3 for
crossing interactions). The good support for non-crossing base pairs favors
the use for completely or almost non-crossing RNA structures.

Due to the base pair (kl, kr) (and analogously for (ll, lr)), the decom-
position contains a node consisting of the variables Xkl

,Xkr
and their pre-

decessors Xkl−1,Xkr−1, since these variables depend on each other via the
function hklkr

. This node is parent of two sub-trees. In its left sub-tree,
we handle the alignment for positions between kl and kr and in the right

18

Figure 3: Example sequence structure alignment CTD (see text for details).

sub-tree the alignment for the positions less than kl. Due to the conditions
for a CTD, the variable Xkl

has to be shared with nodes of the left sub-tree,
since it is constrained to variables in the leftmost leave.

In this tree structure, CTE begins with the leave vertices and proceeds
to the root. From each cluster, it sends a message to its parent cluster. The
final alignment score is obtained from the root node.

5 Case Study: Scanning for RNA Motifs

For demonstrating the use of our method in real biological applications, we
study the scanning for non-coding RNA (ncRNA). In this problem, we want
to find a similar occurrence of a given ncRNA in a larger sequence, e.g.
a complete genome. This scanning must take into account sequence and

19

structure, and additionally satisfy certain constraints.
An example of such an ncRNA is small nucleolar RNA (snoRNA). It has

a characteristic structure, see Fig 4, consisting of two stems and two highly
conserved sequence boxes ANANNA and ACA (H/ACA-type snoRNA).
Here, the N in the sequence ANANNA is the usual symbol for any nu-
cleotide; a stem is the common structural motif of RNAs consisting of a
series of stacked base pairs. We can describe the search pattern by giving
the structure as a set of base pairs and the two sequence boxes with their po-
sitions in the pattern. Hence, we need to combine three kinds of constraints
in this example, namely

• structure constraints,

• exact match constraints, and

• no gap constraints.

This combination will not be easily expressed in other settings. In the
following, we extend our constraint model for the special purpose of scanning
(Subsection 5.1). Then we discuss the integration of side constraints in
Subsection 5.2.

UCAGCCACCC
G

CCAC
UGCACC

UGACCAG
GUC

U
C

U G
U U G G C

U G G U G C A
A

U C C A
GUG G U GAG C U G A

U
A

G U A A A
C
C C C A G C U U

A G G
A AA C A G G G U

U G
U U C

U U C
A
U

GU
GGA

UG
ACUCUGU

GCC
GAAAGCAUGGG

A
A

CAGCC
U

Figure 4: A snoRNA with its characteristic structure and highly conserved
sequence boxes.

5.1 A scanning constraint model

For searching such a pattern in a large target sequence, we first need to
modify our basic constraint model for sequence alignment.

For explaining our extension, we use a running example, where we scan
for a pattern of length 7, i.e. sequence a in a large sequence b, here of length
100. A possible alignment for this example could look like this:

a1 a2 a3 − a4 a5 a6 a7

b1 . . . b50 − − b51 b52 b53 b54 b55 − b56 . . . b100,
(5)

20

i.e. A = {(3, 51), (4, 53), (5, 54), (6, 55)}.
When scoring this alignment for scanning purposes, the gaps to the left

and right of a must not contribute to the score. Therefore, we modify the
cost functions fi in order to allow such gaps without cost. The functions
are re-defined as

for 1 ≤ i ≤ n : fi(j
′, j) =











σ(i, j) if j′ = 0 and j′ < j

(j − j′ − 1)γ + σ(i, j) if j′ 6= 0 and j′ < j

γ otherwise

and fn+1(j
′, j) = 0.

Then, our scanning example can be modeled using variables X0, . . . ,X8,
the constraints leqi and the modified functions fi. Our example alignment
of Eq. (5) corresponds to the valuation

X0 X1 X2 X3 X4 X5 X6 X7 X8

0 0 0 51 53 54 55 55 101

Now, the valuation is scored by the sum of function values

f1(0, 0) + f2(0, 0) + f3(0, 51) + f4(51, 53)+

f5(53, 54) + f6(54, 55) + f7(55, 55) + f8(55, 101)

and due to our modification in the scanning model this is evaluated as

= γ + γ + σ(3, 51) + [γ + σ(4, 53)] + σ(5, 54) + σ(6, 55) + γ + 0

=
∑

(i,j)∈A

σ(i, j) + 4γ.

As intended, the new scoring does not penalize the end gaps in the first
alignment row.

5.2 Constraints for ncRNA scanning

We can now extend the scanning model for our special application of snoRNA
finding by adding constraints. We denote the snoRNA sequence of length n

by a and the set of base pairs in our snoRNA pattern by Pa, b is our target
sequence with length m.

21

Constraining Sequence Boxes First, we need to enforce that the se-
quence boxes are matched exactly and without gaps to identical sequences
in b. We add the following constraints for the ANANNA box at positions
66 − 71 in sequence a (cf. Subsection 4.1 for the precise interpretation of
the constraints).

• ExMatch(i) for i = 66, 68, 71

• NoGap(66, 71).

and for the ACA box (positions 132-134) the constraints

• ExMatch(i) for i = 132, 133, 134

• NoGap(132, 134).

These constraints can be added to our model one by one. The resulting
cluster tree decomposition can be computed incrementally while inserting
the constraint. Each time, we will add constraints to certain nodes of the
CTD, however none of these constraints requires to change the structure of
the CTD.

Scoring structure More complex is the scoring of structural similarity.
For our case study, we choose to score base pair matches using base pair
probabilities. There, we adapt an idea of PMcomp [9], which was also
pursued in [21] and proved biologically meaningful. There is even earlier
work using pair probabilities in the context of constraints [4].

Following the idea of [9, 21], we predict the probability pij of each base
pair (i, j) in structures of b, using a local variant of McCaskill’s algorithm [14,
2]. Note that these probabilities reflect a full energy model of RNAs. Then,
each match of base pairs (i, j) in a and (k,l) in b shall improve the score by

ω(i, j; k, l) = τ log
pkl

p0

with a suitable choice of p0 as “background probability”. τ is just a weighting
factor to balance the score contribution of sequence and structure similarity.

This allows us to score any base pair match and thus we set

Pb = {(k, l)|1 ≤ k < l ≤ m,pkl > 0}.

This scoring will reflect the structural similarity of the pattern and the target
sub-sequence sufficiently well, without the need of a single, fixed structure
in the target sequence.

22

Then, we extend our model by adding the constraint of Eq. 4 in Subsec-
tion 4.3 for each base pair (il, ir) ∈ Pa. Practically, we add the constraints
iteratively to our model. Each time, we will also compute the new cluster
tree decomposition. Importantly, this requires a re-structuring of the CTD
for each constraint. This constraint specific rearrangement can be given
generically for the newly introduced dependencies.

6 Conclusion

We present the first declarative approach to sequence alignment that is
equally efficient as the commonly used method of dynamic programming.
However, due to the declarative nature of the presented algorithm, it is
extensible by additional constraints. This extensibility subsumes and goes
beyond earlier constrained alignment approaches. Especially, we have shown
how certain prior knowledge and structure information can be incorporated
into the alignment model. By applying cluster tree elimination to the re-
sulting extended alignment problem, we solve it efficiently. Furthermore, we
have demonstrated for the alignment problem how CTE could profit from
intelligent reasoning on the constraint model. Thereby, we hint at possible
improvements of a current constraint solving strategy. As a demonstration of
the CTE-based alignment method, we provide a prototypic implementation
(http://www.bioinf.uni-freiburg.de/Software/CTE-Alignment).

It is therefore still attractive to study constrained alignment using more
advanced constraint solving techniques like WCSP with tree decomposi-
tions [5] or decomposition with branch-and-bound, e.g. AND/OR search [6].
Also improved techniques could promote the automation of the method and
make even more complex combinations of side constraints practicable.

The biological relevance and use of the presented work is demonstrated
by a case study about motif scanning. There, we discuss how to find similar
occurrences of snoRNA sequence structure patterns in large sequences.

An interesting further research direction is the extension of the intro-
duced approach to multiple alignment. There, in particular the extension
via the progressive alignment heuristic seems promising. Important issues
there are the combination of constraints and how to guarantee that for all
possible consistent constraint sets an alignment can be constructed.

Acknowledgment

We thank the anonymous reviewers who helped to improve the quality of
the paper. Rolf Backofen and Sebastian Will are partially supported by the

23

http://www.bioinf.uni-freiburg.de/Software/CTE-Alignment

EU Network of Excellence REWERSE (project reference number 506779).
We thank Jana Hertel and Peter Stadler for motivating the ncRNA-scanning
example.

References

[1] R. Backofen and S. Will. Local sequence-structure motifs in RNA. Jour-
nal of Bioinformatics and Computational Biology (JBCB), 2(4):681–
698, 2004.

[2] S. H. Bernhart, I. L. Hofacker, and P. F. Stadler. Local RNA base
pairing probabilities in large sequences. Bioinformatics, 22(5):614–5,
2006.

[3] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint sat-
isfaction and optimization. Journal of the ACM, 44(2):201–236, 1997.

[4] F. Chetouani, P. Monestie, P. Thebault, C. Gaspin, and B. Michot.
ESSA: an integrated and interactive computer tool for analysing RNA
secondary structure. Nucleic Acids Research, 25(17):3514–22, 1997.

[5] S. de Givry, T. Schiex, and G. Verfaillie. Exploiting tree decomposition
and soft local consistency in weighted csp. In Proc. of AAAI-06, page 6,
2006.

[6] R. Dechter and R. Mateescu. AND/OR search spaces for graphical
models. Artificial Intelligence, 171(2-3):73–106, 2007.

[7] S. R. Eddy and R. Durbin. RNA sequence analysis using covariance
models. Nucleic Acids Research, 22(11):2079–2088, 1994.

[8] O. Gotoh. An improved algorithm for matching biological sequences.
Journal of Molecular Biology, 162:705–708, 1982.

[9] I. L. Hofacker, S. H. Bernhart, and P. F. Stadler. Alignment of RNA
base pairing probability matrices. Bioinformatics, 2004.

[10] T. Jiang, G. Lin, B. Ma, and K. Zhang. A general edit distance between
RNA structures. Journal of Computational Biology, 9(2):371–88, 2002.

[11] K. Kask, R. Dechter, J. Larrosa, and A. Dechter. Unifying cluster-tree
decompositions for reasoning in graphical models. Artificial Intelli-
gence, 166(1-2):165–193, 2005.

24

[12] G. Lancia, R. Carr, B. Walenz, and S. Istrail. 101 optimal PDB struc-
ture alignments: a branch-and-cut algorithm for the maximum contact
map overlap problem. In Proc. of the Fifth Annual International Con-
ferences on Compututational Molecular Biology (RECOMB01). ACM
Press, 2001.

[13] H.P. Lenhof, K. Reinert, and M. Vingron. A polyhedral approach to
RNA sequence structure alignment. In Proc. of the Second Annual
International Conferences on Compututational Molecular Biology (RE-
COMB98), volume 5, pages 517–30. ACM Press, 1998.

[14] J. S. McCaskill. The equilibrium partition function and base pair
binding probabilities for RNA secondary structure. Biopolymers, 29(6-
7):1105–19, 1990.

[15] B. Morgenstern, N. Werner, S. J. Prohaska, R. Steinkamp, I. Schneider,
A. R. Subramanian, P. F. Stadler, and J. Weyer-Menkhoff. Multiple
sequence alignment with user-defined constraints at GOBICS. Bioin-
formatics, 21(7):1271–1273, 2005.

[16] G. Myers, S. Selznick, Z. Zhang, and W. Miller. Progressive multi-
ple alignment with constraints. In Proceedings of the first annual in-
ternational conference on Computational molecular biology (RECOMB
1997), pages 220–225, 1997.

[17] S. B. Needleman and C. D. Wunsch. A general method applicable to
the search for similarities in the amino acid sequence of two proteins.
Journal of Molecular Biology, 48(3):443–53, 1970.

[18] Y. Sakakibara, M. Brown, R. Hughey, I. S. Mian, K. Sjolander, R. C.
Underwood, and D. Haussler. Recent methods for RNA modeling using
stochastic context-free grammars. In Proc. 5th Symp. Combinatorical
Pattern Matching, 1994.

[19] D. Sankoff. Simultaneous solution of the RNA folding, alignment and
protosequence problems. SIAM J. Appl. Math., 45(5):810–825, 1985.

[20] T.F. Smith and M.S. Waterman. Comparison of biosequences. Adv.
appl. Math., 2:482–489, 1981.

[21] S. Will, K. Reiche, I. L. Hofacker, P. F. Stadler, and R. Backofen. In-
ferring non-coding rna families and classes by means of genome-scale
structure-based clustering. PLOS Computational Biology, 3(4):e65,
2007.

25

[22] R. H. C. Yap. Parametric sequence alignment with constraints. Con-
straints, 6(2/3):157–172, 2001.

26

	Introduction
	A Constraint Model for Sequence Alignment
	Sequence Alignment
	Constraint framework
	Correctness of the model

	Efficient Solving by Cluster Tree Elimination
	Basic Mechanism
	Improving complexity
	Complexity considerations

	Constraints for Sequence Alignment
	Some Simple Constraints
	Aligned Segment Constraints
	Structure Constraints

	Case Study: Scanning for RNA Motifs
	A scanning constraint model
	Constraints for ncRNA scanning

	Conclusion

