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Lexicographically-Ordered Constraint Satisfaction
Problems?

Eugene C. Freuder, Robert Heffernan, Richard J. Wallace, Nic Wilson

Cork Constraint Computation Center and Department of Computer Science
University College Cork, Cork, Ireland

email:fe.freuder,r.heffernan,r.wallace,n.wilsong@4c.ucc.ie

Abstract. We describe a simple CSP formalism for handling multi-attribute pref-
erence problems with hard constraints, one that combines hard constraints and
preferences so the two are easily distinguished conceptually and for purposes of
problem solving. Preferences are represented as a lexicographic order over com-
plete assignments based on variable importance and rankings of values in each
domain. Feasibility constraints are treated in the usual manner. Since the prefer-
ence representation is ordinal in character, these problems can be solved with al-
gorithms that do not require evaluations to be represented explicitly. This includes
ordinary CSP algorithms, although these cannot stop searching until all solutions
have been checked, with the important exception of heuristics that follow the pref-
erence order (lexical variable and value ordering). We describe relations between
lexicographic CSPs and more general soft constraint formalisms and show how
a full lexicographic ordering can be expressed in the latter. We discuss relations
with (T)CP-nets, highlighting the advantages of the present formulation, and we
discuss the use of lexicographic ordering in multiobjective optimisation. We also
consider strengths and limitations of this form of representation with respect to
expressiveness and usability. We then show how the simple structure of lexico-
graphic CSPs can support specialised algorithms: a branch and bound algorithm
with an implicit cost function, and an iterative algorithm that obtains optimal val-
ues for successive variables in the importance ordering, both of which can be
combined with appropriate variable ordering heuristics toimprove performance.
We show experimentally that with these procedures a varietyof problems can be
solved efficiently, including some for which the basic lexically ordered search is
infeasible in practice.

1 Introduction

An important challenge for constraint solving is to incorporate user preferences into the
problem representation so that solutions can satisfy thesepreferences as well as hard
constraints. This is necessary if constraint technology isto be used to tackle standard
decision making problems with multiple objectives and attributes.

The constraint satisfaction paradigm appears well-suitedfor representing and solv-
ing problems composed of a mixture of ‘hard’ feasibility constraints and ‘soft’ con-? This work received support from Science Foundation Irelandunder Grants 00/PI.1/C075 and

05/IN/1886.
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straints, including those that represent user preferences. Such problems are often han-
dled by formulations in which constraint elements are associated with evaluations that
allow comparisons between these elements [1, 2]. In the present work, we use a special
soft-constraint strategy in which a preference ordering isimposed on complete assign-
ments, in terms of variables and their assigned values. Thisordering islexicographicin
form, which means that a good assignment for a more-preferred variable is more impor-
tant than a good assignment for a less-preferred variable indeciding the overall ranking
of solutions. The preference ordering is assumed to be independent of any constraints
that may hold among these variables. The constraints, therefore, restrict the alternatives
given by an ideal preference ordering to those that can actually be realized.

This form of soft constraint system is a special case of the “lexicographic CSP” or
“lex-VCSP” defined by [3]. As these authors show, lex-VCSPs are in turn equivalent
to a kind of weighted CSP (cf. Section 3). However, because ofthe character of the
ordering in our case, we do not need to represent preferencesnumerically, and we can
build up partial solutions correctly without reference to numerical operations such as
addition. In fact, this form of representation is in the spirit of the “ordinalist” view of
utility, (i.e. the interpretation of utility functions as representing the quantitative struc-
ture of (ordinal) preference relations) [4], as well as qualitative approaches to repre-
senting preferences that have emerged in AI [5]. So, while wewill follow [3] and refer
to the present representation as a “lexicographic CSP”, it is a very special case of the
class that they describe, with implications both for its usefulness as a representation in
the context of preferences and its ability to support efficient algorithms. For this reason,
we will use the term “lex-VCSP” to refer to the more general category of CSPs whose
evaluations can be ordered lexicographically.

Lexicographic CSPs (in the present sense) are potentially useful in applications that
involve multiple objectives and attributes, where attribute values comprise small finite
sets, and where feasibility constraints impose restrictions on assignments that are actu-
ally possible. We are particularly concerned with problemsin which attributes are either
qualitative in nature or take on values from a small discreteset. In these cases, an ordi-
nal model requiring stringent but reasonable assumptions may be an effective decision
aid.

For example, consider a customer who has the overall objective of buying a good-
quality digital camera. This might entail more specific objectives that can be expressed
as: “I prefer any camera with 2 megapixels over any camera with 1 megapixel, but if
they both have the same number of megapixels, I’ll choose thelighter one”. In other
words, pixels has priority over weight, with a larger value preferred in the first case and
a smaller in the second. In addition, let us suppose that a digital zoom is preferred to an
optical zoom, and this attribute has a priority between pixels and weight. To round out
this example, we will introduce some feasibility constraints: we suppose that a larger
number of pixels is associated with greater weight, and thatthere are also restrictions
between pixels and zoom-type and zoom-type and weight.

We represent these user requirements using a well-known technique from applied
decision analysis, and then show how the same example is represented as a lexico-
graphic CSP. The decision analysis involves constructing ahierarchy of objectives,
starting with a general and rather ill-defined objective that one desires, and dividing or
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specializing it into more specific objectives, which are then associated with measurable
attributes. (In the most common forms of decision analysis,numerical preference func-
tions would then be constructed that take into account priorities and tradeoffs among
these attributes [6, 7].)

good
camera

minimum
bulk

minimum
weight

maximum
resolution

maximum
pixels

zoom

����pixel

3,2,1

����zoomdig,opt ����wt 0.5,0.7
������ AAAAA3, opt

3, dig
2,dig
1, opt

3, 0.7
2,0.5
2,0.7
1, 0.5

dig,0.5
opt,0.5
opt,0.7

Fig. 1. Multiattribute decision problem, represented by a hierarchy of objectives on the left with
measurable attributes at the lowest level and by a lexicographic CSP on the right, which incor-
porates tradeoffs and restrictions as hard constraints. (Constraints are shown as viable tuples.) In
this example, the importance ordering over variables is pixel> zoom> weight; also, the values
in each domain are ordered from left to right.

Putting this problem in the form of an objectives hierarchy gives the result shown on
the left in Figure 1. Both user requirements and tradeoffs due to feasibility constraints
can be represented by the lexicographic CSP on the right in Figure 1. An important ben-
efit that is immediately evident from this example is that with lexicographic CSPs there
is a clean separation between preferences and feasibility constraints, so the two can be
incorporated into one system in a way that does not obscure either of them. Another
potential benefit is the ease of merging standard preferenceelicitation techniques with
this constraint representation.

The lexicographic CSP as defined here is amenable to certain extensions, each of
which enhances the usefulness of this form of representation. In the first place, such an
ordering might apply to only a subset of the CSP variables. Wecall this an “embed-
ded preference ordering”. In the second place, as Brewka andothers have shown, it is
sometimes useful to consider the set of lexicographic orderings that are consistent with
a given partial order, which allows more decisive comparisons between alternatives [8,
9]. More generally, it may be useful to consider different importance orderings and their
associated solutions [10], and this can be done if we have efficient algorithms.

Some recent approaches to qualitative representation of preferences have focused
on “conditional preferences”, where the preference ordering with respect to a given at-
tribute is dependent on selection of a value for a different attribute [11]. (Suppose, for
example, that our customer prefers the digital to the optical zoom with a 3 megapixel
camera, but prefers optical to digital zoom with a 1 megapixel camera.) As it turns out,
conditional preferences can also be incorporated into the lexicographic CSP represen-
tation; this is especially important because for lexicographic CSPs, comparing alterna-
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tives with respect to preference is always easy, in contrastto CP-nets. In addition, there
are important relations between lexicographic orderings and theceteris paribusorder-
ings of “CP-net” representations. In particular, it has been shown that acyclic CP-net
orderings are dominated by conditional lexicographic orderings [12, 13].

A distinctive feature of lexicographic CSPs is that these problems can be solved us-
ing standard algorithms for ordinary CSPs. This contrasts with the general case for soft
constraint systems, where branch and bound techniques mustbe used to obtain prov-
ably optimal solutions. In addition, the structure of lexicographic CSPs allows efficient
algorithms to be devised that are specialized for this type of problem.

Junker has emphasized that in qualitative preference systems as opposed to multi-
criteria optimisation problems (which use globalized optimisation criteria), preferences
can be used to support specific heuristic decisions in order to make search more efficient
[14, 9]. This paper demonstrates that this is particularly true for lexicographic CSPs.

Although lexicographic orderings have a venerable historyin the study of prefer-
ence in such areas as economics and decision making [15], there has been relatively
little work on applying this idea to CSPs, and on developing algorithms to solve these
problems. [16] introduced the idea of a lexicographic ordering on sets of constraint valu-
ations, an idea developed further in [3], as already noted. [14] considered multi-criteria
preferences in connection with constrained optimization,and lexical orderings were
used in some cases to compare solutions (called “B-preferences”). Work on constraint
hierarchies [17] can also be cited, since comparisons between assignments depend on
the lexical ordering of the levels of the hierarchy, so that aconstraint violation at levelk overrides any number of violations at higher levels. [18] have studied consistency
(GAC) algorithms for constraints that induce lexicographic orderings on paired vectors
of variables. As our introductory example suggests, combining lexicographic orderings
with constraint-based reasoning may give a useful representation for many decision
problems that is also amenable to the powerful algorithms and heuristics developed in
connection with CSPs.

The remainder of the paper is organized as follows. Section 2gives a formal defi-
nition of lexicographic CSPs. Section 3 discusses relations to other formal representa-
tions that can be applied to the the kinds of problems we are interested in. Section 4
discusses strengths and limitations of a lexicographically based representation of con-
strained preferences. Sections 5 and 6 discuss search strategies for lexicographic CSPs,
including experimental comparisons on test problems. Section 5 describes search pro-
cedures based on ordinary CSP algorithms. Section 6 describes a branch and bound and
a specialized lexical search algorithm. Section 7 summarises the main conclusions.

This paper incorporates and extends some of the results presented in [19].

2 Definition of Lexicographic CSP

Definition 1. Lexicographic CSP.A finite CSP is defined in the usual way as a triplehV;D;Ci, whereV is a set of variables,D is a set of domains each of which is asso-
ciated with a member ofV , andC is a set of constraints, or relations holding between
subsets of variables.
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To specify a CSP as lexicographic, we introduce the following definitions. A la-
belling of setV is a bijection betweenf1; : : : ; jV jg andV . A lexicographic structureL overV is a pairh�; f>X : X 2 V gi, where the second component is a family of
total orders, with>X being a total order on the domain ofX , and� is a labelling ofV . We write the labelling� of V asX1; : : : ; Xn so that for eachi, Xi = �(i), andn = jV j. The associatedlexicographic order>L on (complete) assignments is defined
as follows:� >L � if and only if � 6= � and�(Xi) >Xi �(Xi), whereXi is the first
variable (i.e., with minimumi) such that� and� differ.

A lexicographic CSPis a tuplehV;D;C; �; f>X : X 2 V gi, wherehV;D; Ci is a
finite CSP andh�; f>X : X 2 V gi is a lexicographic structure overV .

A solution to a lexicographic CSP is an assignment�� such that

(i) �� is a satisfying assignment, that is, it is consistent with, or satisfies, all constraints
in C.

(ii) �� >L � holds for any other satisfying assignment�.

3 Comparisons with Other Formulations

3.1 Lexicographic CSPs and soft constraint systems

In constraint-based reasoning, preferences are often modeled as soft constraints, in
which failure to satisfy a constraint serves to deprecate the offending values, but does
not lead to outright exclusion. The most important formalisms are the valued and semir-
ing CSPs, in which evaluations are associated with domain values and with either con-
straints or constraint tuples [1, 3]. Under the proper assumptions (especially preferen-
tial independence and scale equivalence), these evaluations can be used to represent
preferences (in the form of utilities) as well as other scalable features like importance
or likelihood. The resulting problems are constraint optimization problems, in which
solutions are sought that optimize some function of the evaluations, for example the
minimum sum or the largest minimum value associated with anyvalue or tuple in an
assignment.

Each soft constraint framework includes several classes that are distinguished by
the operators used to combine and compare evaluations. Of greatest relevance here are
the fuzzy CSPs and the weighted CSPs. The former uses the max operator to combine
evaluations and selects the minimum maximum evaluation associated with a violated
constraint. The latter combines by summing evaluations andselects the minimum sum.
Lexicographic CSPs can be classified in these terms as a kind of weighted CSP. This can
be shown by embedding a lexicographic ordering within the weighted CSP framework
as follows:

Lexicographic CSP as a weighted CSP.For eachi = 1; : : : ; n we define a unary
weighted constraintWi over variableXi, given byWi(x) = kbn�i, wherex is thekth
best value in the domain ofXi andb is the largest domain size. Then for assignments�
and�, the sum of the weights associated to� is less than the sum associated to� if and
only if � >L �.
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Within this field of research, some previous work has concerned itself specifically
with lexicographic orderings. An evaluation structure forCSPs involving a lexico-
graphic ordering was originally developed within the fuzzyCSP context, in order to
avoid the limited discriminability between solution values in the normal fuzzy system
due to the use of fuzzy min and max operations for combining and comparing evalu-
ations [16]. In this formulation, preferences fork-tuples associated with a given con-
straint are ordered by increasing magnitude, and two solutions are compared beginning
with the first members of each ordering and proceeding through the lists until a dif-
ference is found. In addition, constraint priorities are incorporated into this model by
associating a priority level with each constraint, and making the evaluation for a tuple
the maximum of its preference value and the complement of thepriority value, i.e.�S(u1; : : : ; uk) = max(1� �C ; �R(u1; : : : ; uk))
where�S and�R are evaluations of the fuzzy relations associated with constraintC,
and�C isC ’s priority level. However, lexicographic CSPs as we define them do not fall
under this ‘extended’ fuzzy model, in which priorities and preferences are balanced.

A more general formulation falling within the valued CSP framework is the lex-
VCSP model, where evaluations (associated with constraintviolations) are treated as
multi-sets and the combinator is multiset-union. An additional top (>) value acts as an
absorbing element and can be used to represent violations ofhard constraints. Compar-
ison involves sorting the multisets associated with each solution by descending value
and comparing them lexicographically, beginning with the highest value and choosing
the evaluation with the smaller value for the first difference found [3]. These authors
also show that lex-VCSPs are equivalent to weighted CSPs, with positive1 serving
as the top value. Lexicographic CSPs (in our sense) can, therefore, be subsumed under
the lex-VCSP formulation; however, a different form of embedding is required than for
weighted CSPs.

Lexicographic CSP as a lex-VCSP.For eachi = 1; : : : ; n and eachx 2 D(Xi), we
define a unary soft constraint with associated constraintXi 6= x and evaluationti(x) =(n�i)b+knb , wherex is thekth best value in the domain ofXi andb is the largest domain
size. In a lex-VCSP, each complete assignment� is associated with the multiset of all
evaluations of soft constraints which� violates, that isfti(�(Xi)) : i = 1; : : : ; ng. The
lexicographic comparison of two multisets is performed by first comparing the largest
element of each set. In this case,� is preferred to� if and only if the multiset associated
with � is lexicographically prior to the multiset associated with�, as described in the
previous paragraph. Note that under this construction, ifi < j thenti(x) > tj(y) for
all valuesx andy. Also, ti(x) > ti(y) if and only if x is less-preferred thany. So�
is preferred to� if and only if �(Xi) is a better value than�(Xi), wherei is minimal
such that�(Xi) and�(Xi) differ. This holds if and only if� >L � according to the
lexicographic ordering specified in Definition 1.

The procedure involved here can be clarified by a simple example. Suppose we
have a lexicographic CSP with three variables and three values. We use the integers
1,2,3 to represent each domain, with the ordering 1> 2 > 3. Similarly, variable 1 is
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the most important, variable 3 the least. Then, by the expression just given (split into
three components after multiplying out the terms in the numerator), the evaluations
associated with successive values are:

values: 1 2 3
var1: 1� 1=3 + 1=9 1� 1=3 + 2=9 1� 1=3 + 3=9
var2: 1� 2=3 + 1=9 1� 2=3 + 2=9 1� 2=3 + 3=9
var3: 1� 3=3 + 1=9 1� 3=3 + 2=9 1� 3=3 + 3=9

Or, with simplified expressions: 7=9 8=9 14=9 5=9 6=91=9 2=9 3=9
As usual with weighted-constraint formulations, the objective is to minimize the

overall valuation using the combinator described earlier.(To simplify we ignore hard
constraints, whose violation would override any of these evaluations.) Thus, in forming
multisets of evaluations, any feasible assignment in whichvariable 1 has the value 1
will have a lower maximum value (7/9) than any assignment in which this variable has
value 2 or 3, and this comparison will dominate any comparisons of evaluations related
to assignments to variables 2 and 3 (all� 6/9). And so forth.

Lexicographic CSPs can also be associated with the constraint hierarchy framework
of [17]. In an embedding of this sort, the feasibility constraints are associated with
levelH0, the level whose constraints must be satisfied in any feasible solution, and the
importance ordering is represented by the subsequent levels in the hierarchy. In this case
(unlike most constraint hierarchies), the evaluations of feasible solutions collectively
form a total order.

Lexicographic CSP as a constraint hierarchyWe definen+1 levels in the hierarchy.H0 contains all the feasible constraints. Fork = 1; : : : ; n we define a levelHk of
the constraint hierarchy containing a single unary constraint related to assignments to
variableXk in the importance ordering. For each levelk, the locally-better comparator
(such as<) is based on an error function that returns a different errorfor each assign-
ment toXk such that an error for valuea is less than that for valueb if and only if a
comes beforeb in the total order forD(Xk). This meets the definition of a constraint
hierarchy valuation: that valuation� is better than valuation� if, for all constraints
through some levelk � 1, the error associated with� is equal to that for�, and at levelk the error is strictly less for at least one constraint and less than or equal for all the rest
[17]. In addition,� is locally-better than� if and only if � >L �.



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

In each of these three cases, embedding a lexicographic CSP within the more gen-
eral framework involves making evaluations explicit, either in the form of specific scalar
values or as a level in a hierarchy. Thus, in the soft constraint frameworks, the origi-
nal n-ary soft constraint is represented byn � d evaluations. But in making this
transformation, the most significant representational feature of the lexicographic CSP
- the explicit representation of a lexicographic order - is lost, or at least obscured. In
other words, when making evaluations explicit, the more general formulations also do
away with the original ordering, at least with respect to theway in which they carry
out combinations and comparisons. (Intriguingly, in the lex-VCSP the original lexico-
graphic ordering is in a sense ‘rediscovered’ in a lexicographic ordering on multisets of
evaluations; but this is still a much more roundabout way of representing the original
problem.) In addition, by explicitly representing the lexicographic ordering, the lexi-
cographic CSP formulation avoids the need to explicitly represent the evaluations as
separate elements. Nor is this required in order to search for optimal solutions.

The take-home lesson, then, is that when the assignments form a total order in the
fashion of Definition 1, we do not have to represent constraint-weights (or a constraint
hierarchy) explicitly. This allows a greatly simplified representation of these problems
and supports a variety of specialised procedures for solving them, as described in later
sections.

3.2 Lexicographic CSPs and CP-nets

CP-nets are a recently proposed formalism for the qualitative representation of pref-
erences among outcomes with multiple attributes [11, 13]. The intention in this case
is to representconditionalpreferences. Nonetheless, it can be compared to the lexi-
cal CSP representation at several points. (And, as shown at the end of this section, the
lexicographic CSP framework can be extended to handle conditional preferences, thus
providing a further point of comparison.)

Like CSPs, CP-net structures are based on assignments of values to variables, or
“features”. As noted, CP-nets encode conditional dependencies, in which the prefer-
ence ordering of values in the domain of variableXi depends on values assigned to
other variables, called the “parents” ofXi. These orderings are stored in a “conditional
preference table” (CPT) associated withXi. A more recent variant, the TCP-net [20,
21], includes elaborations to handle relations of importance between the features of
user-selections. This corresponds to the ranking of variables in lexicographic CSPs.

A critical feature of CP-nets is that preferences are only defined under “ceteris
paribus” conditions. If, for example, featuresA andB each have two values,a1; a2 andb1; b2, respectively, and we have unconditional preferencesa1 >XA a2 andb1 >XB b2,
then we can deduce fromceteris paribusassumptions thata1b1 >N a2b1, a2b1 >Na2b2, and hencea1b1 >N a2b2, but we cannot ordera1b2 anda2b1 on this basis. As
a result of this feature, preference orders can be established on the basis of “flipping
sequences” (as illustrated in the last example). This is still true of TCP-nets, although
in some cases adjacent outcomes in a sequence can be separated by a change in two
variables rather than one.

An important difference between (T)CP-nets and lexicographic orderings (and also
soft constraints formalisms) is that while comparisons areeasy for lexicographic order-
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ings, since they are based on successive comparisons of indices, they can be extremely
hard for (T)CP-nets, since they depend on finding flipping sequences for transforming
one alternative into another [22, 23].

Although (T)CP-nets do not encode feasibility constraintsdirectly, the orderings
that they represent can be combined with such constraints inmuch the same way that
lexicographic CSPs combine a particular preference ordering with a constraint repre-
sentation [24]. With (T)CP-nets, the constrained optimisation problem involves finding
the undominated feasible outcomes. For an acyclic CP-net [24], (and similarly, for an
acyclic TCP-net [21, 25]) one can use a CSP search algorithm to find a single undom-
inated solution, by instantiating variables in an orderingcompatible with the parent-
child ordering. A “staged lexical” algorithm (see Section 6.2) can also be adapted for
this purpose. To find more than one undominated solution can,however, involve com-
putationally complex comparisons between solutions (although this is not always so:
see e.g., [26]).

Except in some trivial cases, the order on assignments generated by a CP-net, or by a
TCP-net, is never a lexicographic order. Therefore, in contrast to the systems discussed
in the previous subsection, lexicographic CSPs cannot be embedded in a CP-net, even
when the latter is extended to incorporate feasibility constraints as in [24]. (See [27] for
a formalism that extends both (T)CP-nets and lexicographicorders.) The reason for this
is that flipping sequences require that consecutive elements in the ordering differ by at
most one (CP-nets) or two (TCP-nets) elements. However, consecutive elements in a
lexicographic ordering can differ by up tojV j elements. More precisely (see [27]),

Theorem 1. Let>L be a lexicographic order (as defined above) on the set of complete
assignments, and for allX 2 V , jX j > 1. Then (a) ifjV j > 1, there exists no CP-netN onV with >N = >L, (b) if jV j > 2, there exists no TCP-netM onV with >M =>L.

Proof. Consider any� and� which are consecutive in the order,� �N �, but there
does not exist
 with � �N 
 �N �. Because� �N �, there exists some flipping
sequence� = �1; : : : ; �l = � with �i an improving flip from�i+1. But because�
and� are consecutive,l = 2 and� is an improving flip from�. By definition of an
improving flip,� and� differ on precisely one variable.

The same argument can be used to show that if� and� are consecutive in the order�N whenN is a TCP-net, then (using Lemma 5 of [20]),� is an improving (TCP-)flip
from �, so, by definition of a TCP-flip,� and� differ on either one or two variables.

Any lexicographic order on assignments contains consecutive elements� and�
which differ on all jV j variables (assuming the domain of each variable has at least
two elements). For example, if the domain of each variable isthe setf1; 2g with the
usual ordering, then the assignments(1; 2; 2; : : : ; 2) and(2; 1; 1; : : : ; 1) are consecutive
assignments in the lexicographic order which differ on every variable. So ifjV j > 2
then�N is not a lexicographic order ifN is either a CP-net or a TCP-net.2
Conditional Lexicographic Orderings.As noted above, the lexicographic representa-
tion that we employ can be extended to represent conditionalpreferences. This subject
is treated at greater length in [12] and [28]; here, we brieflysummarise the main ideas.
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A conditional lexicographic ordering, like a lexicographic ordering, is based on an
orderingX1; : : : ; Xn of the variables, and to compare two assignments we see which
is better on the first variableXi on which they differ. In this case, the ordering of the
values of the domain ofXi can be conditional on values of previous variables.

A conditional lexicographic CSP can be defined as follows:

Definition 2. Conditional lexicographic CSP.Define aconditional lexicographic struc-
ture overV to be a tupleK = h�;G;CPT i, where� is a labelling ofV , with �(i)
being writtenXi, G is a directed acyclic graph onV which is compatible with�, i.e.,(Xi; Xj) 2 G impliesi < j. CPT is a function which associates a conditional prefer-
ence tableCPT (X) to eachX 2 V . Each conditional preference tableCPT (Xi) as-
sociates a total order>Xiu with each instantiationu of the parentsUi ofXi (with respect
toG). The associatedconditional lexicographic order�K on assignments is defined as
follows: � �K � if and only if � 6= � and�(Xi) >Xiu �(Xi), whereXi is the first
variable (i.e., with smallesti) such that�(Xi) 6= �(Xi), andu = �(Ui) = �(Ui). It is
easily seen that�K is a total order on assignments.

Conditional lexicographic structures as defined above havethe requirement that the
graphG is compatible with the importance ordering of variables, sothat the parentsUi
of a variableXi are more important than the variableXi. One can relax this assump-
tion, however, and consider the more general case where parent-child relations in the
conditional preference network do not necessarily conformto importance relations in
the variable ordering. This is done by a strategy of indirection that involves a functionQ which assigns a numberQ(xju) for every valuex of Xi and assignmentu to Ui.
The conditional preference order is then defined as follows:to compare assignments�
and� we find the firstXi whereQ(�(Xi)j�(Ui)) is not equal toQ(�(Xi)j�(Ui)). IfQ(�(Xi)j�(Ui)) is less thanQ(�(Xi)j�(Ui)), we prefer� to �; else we prefer� to�. Another way of viewing this is that we are converting each assignment� = (x1;: : : ; xn) to ann-tuple of numbers�0 = (Q(x1ju1); : : : ; Q(xnjun)), whereui is the
assignment� makes toUi. The conditional lexicographic order>L is then just the
standard lexicographic order on thesen-tuples of numbers:� is preferred to� if and
only if �0 is lexicographically less than�0. Hence>L is still a total order.

This lack of restriction regarding parent-child relationsmeans that a user can ex-
press priorities and conditions on preferences independently, without having to be con-
cerned with making the relations correspond. Moreover, such problems can still be
solved efficiently, using extensions of the algorithms described below [12, 28].

3.3 Lexicographic CSPs and multiobjective optimisation

Multiobjective combinatorial optimisation (MOCO) and multiobjective programming
(MOP) are concerned with finding optimal solutions when there are more than one cri-
teria or objectives, expressed as functions (typically real-valued) on subsets of decision
variables. The problem can be stated in the following general terms:minx2X f(x) = (f1(x); : : : ; fp(x))
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whereX � <n is the feasible set andf is a vector-valued objectivef : <n �! <p,
wherefi : X �! < are the objectives [29]. In the basic case, the entire Paretofrontier
is considered. Recently, this general approach has been carried over to CSPs [30, 31, 9].

In other cases, acceptable aggregation functions can be used, such as a weighted
sum, or the objectives can be ordered. One example of the latter is the lexicographic
ordering [32]. A feasible solution̂x is lexicographically optimal if there is nox 2 X
such thatf(x) <lex f(x̂), where<lex corresponds to>L in Definition 1. In most cases,
solutions are obtained through some form of weighting scheme (cost functions), similar
to that described above in connection with weighted CSPs.

In all these cases, preferences are implicit in that smallervalues returned by an ob-
jective function are generally considered to be better (e.g. lowest weight, lowest cost).
However, in order to deal more explicitly with preferences,especially in the form of
utility scales, it is necessary to introduce further specifications and to follow certain
restrictions. As an obvious instance of the latter, it is notacceptable to combine objec-
tives considered as “utilities” with other functions that are simply physical or monetary
objectives. In addition, we cannot simply assume that some weighted additive formula
is an additive utility without establishing the necessary independence conditions (e.g.
preferential independence) and deriving coefficients (weights) that truly reflect differ-
ences of proportion among attributes [6]. (For a concise statement of this issue, see [33],
p. 646.)

There are different strategies for introducing explicit preferences into the multiob-
jective framework. The first involves relegating multiobjective optimisation and multi-
criteria decision analysis to different stages. In this case, the output of the MOCO stage
is a non-dominated set of solutions; this is then the input used by the multi-criteria deci-
sion making technique, e.g. MAUT or AHP, to order the solutions. This is the approach
advocated by some authorities [32, 29].

A second approach involves transforming each objective into a utility scale or, more
generally a preference ordering, and combining these according to the requirements for
valid aggregate preferences. This is the approach taken by Junker (see [9, 10]), who
in addition considers ordinal structures for preference representation. In his approach,
criteria are defined which are functions of subsets of decision variables; unlike MOCO
criteria, these define preference orderings. These criteria are then added to a CSP rep-
resentation in the form of extra constraints. (A third approach is also possible, in which
MOP search returns a [usually nondominated] solution that is ‘critiqued’ by the decision
maker, leading to another bout of combinatorial search under the constraints inferred
from the critique, and so forth [33]. Since this approach does not assume an explicit
preference ordering at the start, it is outside the scope of the present work.)

In the present work, we also follow the second approach. In this case, a CSP repre-
sentation allows us to use a multiobjective approach with a purely ordinal representa-
tion. Here, we consider only feasible solutions (hard constraints), but this is not a basic
limitation, since our methods can be extended to cases wherea lexicographic represen-
tation of preferences is combined with other soft constraints.

Lexicographic CSPs can be viewed as a special case of the approach used by Junker.
The main difference is that we have explored the ramifications of this special case more
extensively, including relations to other soft constraintsystems and the development
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and testing of specialised algorithms. In addition, the present exposition distinguishes
between multiobjective optimisation and multiattribute preference representations and
presents a more systematic account of their differences.

In his examples, Junker expresses his criteria as extra variables. They are, therefore,
not only distinguished constraints but distinct variables. This is comparable to a version
of the lexicographic CSP in which the lexicographic ordering holds for a subset of the
variables (what we call an embedded lexicographic ordering). However, in our case we
do not declare extra variables; instead we use ak-ary rather than ann-ary constraint to
represent the preference ordering.

4 Representing Preferences with Lexicographic Orders

The previous section served to locate lexicographic CSPs within the space of multi-
attribute representations. There are further issues concerning the manner in which pref-
erences are represented, which are of critical importance for evaluating the applicability
of this approach. These are discussed in the present section.

4.1 Representational adequacy and expressiveness

Preferences refer to selections of outcomes from sets of alternatives [34]. (Here, we only
consider “riskless choice”, where uncertainty is not represented explicitly.) We follow
the usual convention in artificial intelligence in not distinguishing between overt choices
and verbal judgments of preference. In either case preferences can be represented by
binary relations with properties such as transitivity and reflexivity that reflect basic
rationality assumptions. Our definition of lexicographic structure is consistent with a
preference relation on the set of full CSP assignments, and there is an associated order-
preserving (utility) function by virtue of this relation being both transitive and complete
[35]. More precisely, the properties of a lexicographic ordering given in Definition 1
imply that the ordering on full assignments is transitive and complete; this follows from
the fact that distinct assignments differ in at least one value and that for any two distinct
assignments� and�, the ordering of these assignments depends solely on someXi,
the variable with the minimum labeli on which they differ. Hence, by a well-known
theorem (see [35]), there is a real-valued functionu such that for any two assignments,� and�: � >L � () u(�) > u(�)

Moreover, the axiomatic constructions of Fishburn and Plott, Little and Parks show
that, given an ordering on vectors of attribute values that is transitive, antisymmetric
and complete, together with an independence condition of the following form:(x1; : : : ; xi�1; ai; xi+1; : : : ; xn) >L (x1; xi�1; : : : ; bi; xi+1; : : : ; xn)i� (y1; : : : ; yi�1; ai; yi+1; : : : ; yn) >L (y1; : : : ; yi�1; bi; yi+1; : : : ; yn);
and an axiom of noncompensation between attribute domains with the following form
(where>Xi is the projection of>L toXi):if (xi >Xi yi i� zi >Xi wi)
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and (yi >Xi xi i� wi >Xi zi)then (x >L y i� z >L w) and (y >L x i� w >L z);
then this orderingmustbe lexicographic [36, 37].1 2 This form of ordinal representa-
tion, therefore, can be given a sound axiomatic foundation.In this respect, it can be
distinguished from most if not all other ordinal representations.

Lexicographic CSPs are associated with an aggregated utility function, since this
function is based on subutilities on individual domains. Byusing a qualitative repre-
sentation in this context, we circumvent many difficult issues regarding the validity of
a preference representation that arise when one associatesnumerical values with CSP
elements and combines them according to standard operatorssuch as addition. In par-
ticular, we do not have to worry about whether we meet the assumptions that, (i) the
aggregate (derived) scale values are consistent with preferences based on full alterna-
tives, (ii) the scales for distinct attributes are commensurate, so their values can be
meaningfully combined. In the latter case, unless one determines coefficients of pro-
portionality by requiring the user to specify equivalent marginal rates of substitution, it
is not clear that summed ‘preference values’ are genuine additive utilities (cf. [6]).

In this connection, it should be noted that in our running example, while two of
the attributes are quantitative in nature, neither can be associated with marginal rates
of substitution without grossly distorting the character of the actual sets of attribute
values, which are finite and small. This would seem to rule outor at least severely
constrain approaches based on multi-attribute utility theory (MAUT) in such domains.
Other approaches to multi-attribute scaling, such as AHP [7], involve equally stringent
assumptions. Similar criticisms of approaches that involve numerical scaling have been
made in the literature on multi-criteria decision making, e.g. [38].

On the other hand, this form of qualitative preference representation has some obvi-
ous limitations. Lexicographic orders are an extreme case where there are no tradeoffs
in preference between the values of any two attributes. Referring back to the introduc-
tory example, suppose that a 4 megapixel camera is available, but the weight of this
camera is 7, a ten-fold increase over the next-highest value. In this case, our customer
might decide that the extra megapixel does not compensate for the added weight of the
camera; but this of course violates a lexicographic ordering, where any improvement in
number of pixels will outweigh any increase in weight.

Because of such situations, the practical importance of lexicographic orderings has
sometimes been questioned. Perhaps the best-known critique along these lines is that
of Keeney and Raiffa [6] (but see also [15]). We must admit that such criticisms have

1 The axiom of noncompensation says that the ordering on complete assignments depends just
on which is better on individual attributes, not on how much better or worse they are on each
attribute. This prevents cases where, for example, somew >Xj z comparison overrides az >Xi w comparison, while the correspondingy >Xj x comparison does not override thex >Xi y comparison. In such cases the consequent may not follow fromthe antecedents.

2 In the description above, we have substituted our notation for the original notation of [36].
Since the domain and assignment orderings in the present paper have the same properties as� and�i, respectively, in [36], the theorem on lexicographicity also follows from the axioms
in their present form.
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merit. Thus, there will be cases, namely those in which tradeoffs of one sort or another
are important, where a system based on lexicographic ordering is inappropriate.

At the same time, we contend that there are cases where balancing tradeoffs is either
unnecessary or can be finessed. In some cases, the user may order domains and variables
in accordance with a lexicographic order as we have defined it. In other cases, the
user may be willing to impose such an order in order to obtain the representational
and computational benefits. As a special case of this, the user may be able to specify
a degree of ordering consistent with a small number of lexicographic orders, so that
a small set of optimal solutions can be derived, with selection among them on other
grounds. (This strategy has been discussed by Junker [9].) Finally, there are cases, such
as the one given above, where tradeoffs can be finessed by imposing additional unary
constraints. This is because such cases tend to occur when the values are extreme and,
therefore, will have low preference values and may even havea negative valence.

Thus, while it is to be expected that there will be situationswhere simple lexico-
graphic CSPs do not capture all aspects of the preference relation, if they are appropriate
or if there is an acceptable total ordering on variables, then, as noted above, a repre-
sentation can be provided that is transitive and complete, and has a sound axiomatic
foundation.

4.2 Preference elicitation

When comparing alternative representations of preference, we must consider not only
the soundness of the formal representation but also the degree to which the assump-
tions undergirding the representation can be met in practice. The latter may be called
“soundness-in-use” as opposed to “soundness-in-conception”. This issue is significant
for the present work because observations of practice and careful empirical assessment
both indicate that fewer inconsistencies arise when preference elicitation is based on a
representation that is ordinal in character [39] [40] [41].If inconsistencies occur, this
means that the assumptions required by the model have not been met in practice. These
results therefore show that even when cardinal representations (such as MAUT) are
well grounded formally, it is harder to meet the conditions expressed by the axioms us-
ing this form of representation than is the case with ordinalrepresentations, including
lexicographic orderings.

Other empirical studies support the idea that simple rankings of differences and
exclusion of alternatives on the basis of a few attributes are more natural activities
than value and attribute scaling. Thus, there is a large bodyof work showing that most
people use “noncompensatory” strategies, such as lexicographic ordering or elimination
by aspects, when they must choose among alternatives that vary along several attributes
[42]. This relative ease of use may explain why lexicographic orderings have been used
in the past in decision-making applications, despite theirinability to express tradeoffs
directly, as noted by the main proponents of MAUT [6].

A useful aspect of the lexicographic CSP framework is that itallows one to represent
ideal preference orderings in a clearcut fashion while still indicating why they cannot
be realized. In contrast, these two aspects are not clearly distinguished in the usual
soft constraint formulation. This is the principle of “decoupling” discussed in [24]. It
is significant that, unlike the CP-net with feasibility constraints, which is a composite
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system, the lexicographic CSP achieves a kind of “presentational” decoupling while re-
taining a representational coupling internally by combining preferences and feasibility
constraints into a single (CSP) framework.

5 Solving Lexicographic CSPs with Ordinary CSP Algorithms

In addition to being well-grounded and perspicuous, the lexicographic CSP representa-
tion supports a variety of approaches to finding optimal solutions. As noted by Junker,
with an ordinal representation such as this, preferences are not compiled into utility
scales prior to search; instead, search methods are used that are based directly on the
original preference orders [10]. This also obviates the need for global soft constraint
representations such as those described in [31].

5.1 Basic strategies

The clear division between hard constraints and preferences in lexicographic CSPs al-
lows us to use ordinary CSP search algorithms, which discardassignments that violate
the former. This, of course, is not a practical strategy for weighted CSPs when there
are no hard constraints, because in most cases if search werenot bounded, no partial
solutions could be discarded. This is also true for lex-VCSPs, and here one cannot usu-
ally order search in terms of constraint evaluations, sincea single variable can be in the
scope of more than one constraint. Thus, we can make the following statement:

If a lexicographic CSP has a solution�� (cf. Definition 1), then this solution can be
found and identified as optimal using a complete CSP algorithm with any order of
instantiation of the variables.

In this case, a CSP algorithm is used to find all feasible solutions, and these can be
compared lexicographically to find the optimal one. Essentially, this is a kind of filtered
generate-and-test where we generate all feasible solutions in order to find the optimal
one.

In addition, we have the following important special case:

If a lexicographic CSP is solved with a complete depth-first CSP algorithm using an
ordering of variables and values consistent with the lexicographic ordering (“lexical
ordering”), then�� will be the first feasible solution found.

These facts give us considerable flexibility with regard to search strategies, so we
can tailor search to fit the problem features. In particular,if there are many feasible
solutions, then a simple lexical ordering of variables and values may be an excellent
strategy. On the other hand, when it is not reasonable to use alexical ordering, this will
be because there are too few feasible solutions, and it is just this condition where good
CSP heuristics, i.e. those designed to find feasible solutions quickly, may be useful.
For these reasons, we begin our examination of solving methods with a study of ordi-
nary CSP algorithms. In addition, since good heuristics should be transferrable to more
sophisticated search techniques, results relevant for thelatter can also be established.
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5.2 Experimental tests

For experimental purposes, a total order can be simulated using random constraint sat-
isfaction problems, where variables and values are represented as integers, 1 throughn
and 1 throughjdij, respectively, wherejdij is the size of theith domain. More specifi-
cally, the numerical labels of the variables and values serve as the required indices. In
both cases, lower integer values represent preferred elements. Thus the solution, (1/1,
2/1, 3/1, ...,n/1), wherex/y is the variable/value labelling, is the most preferred, (1/1,
2/1, 3/1, ...,n/2) the next-most preferred, etc. In keeping with the definition of a lex-
icographic ordering, a shift of value fromk to k + 1 for a given variable represents a
greater change in preference than a shift fromk to k + r for any variable with a higher
index number.

In random problems of this type, the pattern of hard constraints has no relation to
the preference ordering. These problems, therefore, have the usual pattern of difficulty,
easy, hard, (relatively) easy, with respect to finding afeasiblesolution as either den-
sity or constraint tightness is varied while the other parameter is held constant [43].
Although we are interested in finding the best acceptable solution, since the number
of feasible solutions changes dramatically as either density or tightness increases, we
should still see a crossover at some point between lexically-ordered search and search
based on ordinary CSP heuristics.

For our initial experiments, we used random problems with fixed values for number
of variables, domain size, density and constraint tightness. The number of variables
ranged from 10 to 40 in different experiments, and domain sizes were 10, 20, or 30.
Although other densities were tested, in this section we restrict ourselves to density 0.5
for varying tightnesses.

In the initial experiments (Figures 2 and 3), algorithms forforward checking (FC)
[44] and maintained arc consistency with AC-3 (MAC-3) [45] were written in C++
(by RH). In later experiments (Tables 1-5), MAC algorithms were coded in Lisp (by
RJW). Extensive cross-comparisons ensured that results for search nodes and constraint
checks were identical for versions of FC and MAC-3 written inthe two languages. All
experiments were run on a Dell Work Station PWS 330 running at1.8 GHz. Since
times, search nodes and constraint checks were always positively correlated for a given
experiment, nodes expanded is used for most comparisons. Run time data is included in
the Tables to give a more global measure of effort, since in this case the same measure
could be used for both binary and nonbinary problems.

We compared performance of lexically-ordered search with that of two well-known
variable and value ordering heuristics: (dynamic) minimumdomain size variable order-
ing, where selection is based on current domain size, and (dynamic) minimum-conflicts
value ordering, where values are selected that have the smallest sum of conflicts with
values in adjacent future domains [46]. Although value ordering cannot make the all-
solutions problem more efficient, it was of interest to determine whether such heuristics
can find good solutions more quickly.

Figure 2 shows the search effort required by lexical ordering versus search with
good CSP heuristics for forward checking. As expected, lexical search ordering is su-
perior when there are many solutions. However, it was somewhat surprising that high
efficiency is maintained over a considerable portion of the tightness range. In these
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Fig. 2. Effort required, (i) to discover the best solution (“best”), (ii) to prove it optimal (“opt”).
Forward checking algorithm, with either lexical ordering or good heuristics for ordinary CSPs.
The effort required by a compromise ordering (min domain andlexical value) to discover the
best solution is also shown. (The “opt” curve for this strategy is almost identical to that for the
good-heuristics case.) Ten-variable problems, with fixed density = 0.5 and tightness varying in
steps of 0.05. Sample size at each step is 50 problems. For tightness� 0.65 problems have no
solutions.

cases, ordinary heuristics are grossly inefficient either for finding the best solution or
for determining optimality. However, despite the rigorousrequirement that all solutions
be tested, a crossover effect does occur as the number of solutions decreases, so that al-
gorithms with good CSP heuristics can find the best solution and prove optimality with
less effort than the lexical ordering. The crossover point occurs before the point where
problems no longer have solutions, where lexical ordering must lose any advantage.

Figure 2 also shows the effort required by a compromise strategy (variable order-
ing by minimum domain size with ties broken by lexical ordering and lexically-ordered
value selection) to find the best solution (without proving that it is the best). This strat-
egy is much better at locating such solutions than the strategy based solely on good CSP
heuristics, which makes the former suitable for either branch and bound or anytime pro-
cedures.

With MAC-3, the efficiency of lexical ordering is improved further, in relation to
the other algorithms, so that for these small problems the crossover is no longer ap-
parent. This apparent synergy between consistency maintenance and lexically ordered
search may occur because arc consistency maintenance confers a greater benefit in the
one-solution than the all-solutions case. However, the same crossover effect can be ob-
served with larger problems, and becomes more pronounced asdomain size increases
(Figure 3, Table 1). Note that the y-axis in Figure 3 is logarithmic, so that after two
corresponding curves cross, there is an interval of tightness where the heuristic method
improves on the lexical ordering by a factor of 2-4.
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Fig. 3. Effort required by MAC-3 to obtain provably optimal solutions with lexical and compro-
mise ordering. Twenty-variable problems with density = 0.5and domain size = 10, 20 and 30.
Tightness varied in steps of 0.05 for each curve. Sample sizeat each step is 50.

6 More Advanced Solving Methods

6.1 Branch and bound with CSP heuristics

An alternative form of search is to combine branch and bound with CSP heuristics
involving dynamic variable ordering. (Obviously, lexically ordered search cannot be
improved in this manner, since it orders search in terms of animplicit cost function.) We
have already described a cost function for the weighted CSP version of lexicographic
CSPs that uses base arithmetic, but for lexicographic CSPs we do not need to calculate
the actual values of this function, which are quite large forany but small problems.
Instead, we simply compare successive values following thelexical variable ordering
until we encounter a difference.

Specifically, suppose that variableXi is the variable currently being considered for
instantiation, and this variable is thekth most important variable in the ordering. To
evaluate the current partial solution, we start from the first variable in the lexical order-
ing. If a variable has an assignment, we check this against its instantiation in the best
assignment found so far; if it does not yet have an assignment, we check the best re-
maining value in its domain against the best assignment. In either case, if we encounter
a value greater than the best found so far, then search can back up. Pseudocode for this
algorithm is shown in Figure 4.

The efficiency of this procedure could suffer when combined with variable ordering
heuristics, if variables of high priority occur late in the search order, and good values
are still available. Despite this potential limitation, this form of branch and bound does
well in comparisons with other methods (Table 1). Not only does it give further im-
provements in performance when there are few solutions, butits performance degrades
more slowly than the ordinary CSP algorithm when the number of feasible solutions
increases, and in these cases it avoids checking a large proportion of solutions. It is also
much less sensitive to increases in domain size than lexicalordering. It, therefore, can
be used with less concern about the exact properties of the problem.
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initialise values in best-solution to BIGVAL

lexico-bnb (partial-solution, remaining-variables)
if remaining-variables� nil

save partial-solution as new best-solution
and continue //backtrack

else
select next-variable and remove from remaining-variables
for each value in its ordered domain

if instantiating next-variable with this value leads to an arc consistent problem
and
bounds-check(next-variable, next-value) returns true //under bound

lexico-bnb (new-partial-solution, remaining-variables)
continue //backtrack

bounds-check (candidate-var, candidate-value)
underbound = true; comparison-succeeded = false
while variables remain to be compared & not comparison-succeeded

select next-variable = most important unchecked variable
get value best-value for this variable from current best-solution
if next-variable == candidate-var

curr-assign = candidate-value
else if next-variable is instantiated

curr-assign = current assignment of next-variable
else //smallest value is most-preferred value

curr-assign = smallest value in current domain of next-variable

//perform comparisons
if curr-assign> best-value

comparison-succeeded = true
underbound = false

else if curr-assign< best-value
comparison-succeeded = true

if comparison-succeeded
if underbound

return true
else

return false
else

return true

Fig. 4.Branch and bound pseudocode for lexicographic CSPs.

6.2 A specialised lexicographic CSP algorithm

Another strategy for search algorithms in this domain is to devise procedures that are
sensitive to the properties of a lexicographic order. In this vein, we have implemented
a specialized iterative algorithm for lexicographic CSPs that we call “staged lexical
search”. Search is done repeatedly, in each case until the first solution is found, and for
each repetition or stage of search, one more variable is chosen in lexical order, i.e. in
accordance with the importance ordering. Values for this variable are chosen according
to the preference ordering for this domain, starting with the most-preferred value.

Thus, in Stage 1 we first select variableX1 according to the lexical (importance)
ordering, and then use any heuristic to select the others. When we have found a feasible
solution, we know that the assignment forX1 is optimal, so we retain it for the remain-
der of search. In Stage 2, we first select variableX2, so the first feasible solution found
will include an optimal assignment for this variable. And soforth. Pseudocode for the
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staged lexical algorithm is shown in Figure 5. Although developed independently, this
algorithm is a special case of preference-based search [14], where the criteria on which
search is based form a total order.

As noted earlier, methods for lexicographic ordering in multiobjective optimisation
generally use a weighting scheme, in contrast to adding successive constraints accord-
ing to the importance ordering of the criteria. However, a specialised technique used to
find Pareto-optimal solutions, called the epsilon-constraints method, is based on a sim-
ilar strategy to that used for preference-based search. Theepsilon-constraint problem is
defined as follows: min fj(x)
subject to fk(x) � �k; k = 1; : : : ; n k 6= j
For CSPs with ordered domains, this corresponds to finding a minimal value in domainj, while allowing a choice of values in domainsj + 1; : : : ; n, subject only to some
minimal difference from the optimal. In the present case,�k (k > j) can be considered
to be set high enough to allow any domain value to be chosen. However, since the
purpose of the epsilon-constraint method is to find solutions that belong to the Pareto
frontier, it does not involve successive addition of constraints in the manner of the CSP
methods. (A basic description of this method is in [47]; see [48] for a recent discussion.)k = 1

while k � n
level =k
while level� n //search for next solution

if level == k
selectkth variable in importance order

else
select next-variable according to some heuristic

while values remain and viable assignment not found
if level == k

select value according to preference ordering and propagate
else

select value according to some heuristic and propagate
if all assignments have failed at this level

//can’t happen if level ==k and there is a solution
backtrack and set level = level - 1

else
level = level + 1

save assignment made at levelk //this is optimalk = k + 1
Fig. 5.Pseudocode for staged lexical algorithm for lexicographicCSPs.
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In the form just described, this algorithm also compares well with other methods
(Table 1). Not only does it do almost as well as branch and bound when there are few
solutions, but it never does much worse than simple lexical ordering for problems with
many solutions. In addition, mean runtimes for staged lexical were almost identical to
those for branch and bound in cases where there were few or no solutions (when there
were many solutions, staged lexical was faster). It may, therefore, be the algorithm of
choice if only one method is desired for all species of problems. It may also be possible
to improve the algorithm somewhat since often after a certain stage, the same solution
is found repeatedly.

6.3 Further experimental comparisons

In this section, we present results based on other problem sets. The first set of results
is for random problems with a larger number of variables. Thesecond is for problems
with heterogeneous structure, consisting of an easy subproblem with loose constraints
and a hard subproblem with tighter constraints. To facilitate comparison with previous
tests, these problems have similar size and density to the random 20-variable problems.
The third set of results is for problems derived from a real-world configuration problem
obtained from the Configuration Benchmarks Library maintained by the Computational
Logic and Algorithms Group at the University of Copenhagen (ESVS Benchmark #7
3).

For 40-variable problems with the same domain size and density as before, the same
trends appear, but the differences are magnified. In particular, for problems in the critical
complexity region, the branch and bound and staged lexical algorithms are an order of
magnitude better on average than the basic lexical ordering. Although the compromise
method is also better than simple lexical ordering for the hard problems (mean nodes =
280,514, using the min domain heuristic), since it is clearly dominated by the advanced
methods, results for this method are omitted from this and later tables. Interestingly,
the difference between the two advanced methods is now quitepronounced as soon as
one enters the easy portion of the complexity space. (For purposes of comparison, we
include data for these problems based on ordinary CSP searchfor one solution using
the same variable ordering heuristic. This serves to show how effective the advanced
methods are for problems that are also hard as CSPs.)

Problems with heterogeneous structure were like the original set of homogeneous
random problems in having 20 variables, with domains of size10, and the overall graph
density was 0.50. There were two components, each with ten variables: an ‘easy’ com-
ponent with very loose constraints (tightness = 0.05) and a ‘hard’ component with
tighter constraints (either 0.60 or 0.65). These components were linked by constraints
also with a tightness of 0.05. Within each component as well as for the links, the propor-
tion of edges was 0.5. These problems were of a type that has been called “composed”
problems [49].

For the experiments described here, the importance ordering was such that the ten
variables in the easy component were designated as the ten most important. (If the order-
ing favored variables in the hard component, the results were similar to those given for

3 http://www.itu.dk/research/cla/externals/clib/esvs.pm
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Table 1.Search Efficiency Comparisons

hard problems easy problems
domain size 10 20 30 10 20 30

tightness 0.35 0.45 0.50 0.30 0.40 0.45
lexical
median nodes 149 4631 30,959 26 85 292
mean nodes 347 9084 121,786 37 174 1027
mean solns 1 1 1 1 1 1
mean runtime 0.53 20.0 415.9 0.04 0.28 2.2

CSP compromise
median nodes 1402 7404 26,053373,260 - -
mean nodes 1599 7927 29,858410,654 - -
mean solns 193 35 8 196,731 - -
mean runtime 1.4 19.6 100.6 30.3 - -

branch and bound
median nodes 165 1238 6252 322 945 2381
mean nodes 217 2020 9395 380 1189 2991
mean solns 2 1 1 6 6 6
mean runtime 0.41 5.2 32.5 0.41 2.2 6.9

staged lexical
median nodes 325 1511 7152 230 338 506
mean nodes 390 2330 9778 237 375 607
mean solns 20 20 20 20 20 20
mean runtime 0.39 5.4 31.7 0.14 0.43 0.98

Notes. Twenty-variable problems, sample size 100. MAC algorithm. “hard problems” are near
the critical complexity peak for lexical ordering. “easy problems” are near the edge of the hard
region for lexical (cf. Figure 3). “solns” is number of feasible solutions found during the entire
search; for CSP compromise this is the total number of solutions per problem. Branch and bound
and staged lexical algorithms employed the compromise ordering. Here and elsewhere run times
are in seconds.

random problems.) In this case, search using a basic lexicalordering does very poorly
because of excessive thrashing, since conflicts are not uncovered until search is deep
in the tree. For this algorithm, search could not be run to completion for all problems,
so it was only possible to derive a lower bound (based on totalaccumulation of nodes
across a problem-set). At the same time, the advanced methods when given an appro-
priate heuristic were able to solve these problems efficiently. (The heuristic used in this
case was the FF2 heuristic of [50], a Brelaz-like heuristic which is sensitive to relative
constrainedness of different parts of the problem.) Here, the staged lexical algorithm
outperformed branch and bound significantly and did not encounter any difficult prob-
lems. As a result, the former sometimes outperformed the standard lexically ordered
search by at least five orders of magnitude with respect to themean.

The success of these algorithms was not simply due to the use of an appropriate
heuristic, since when FF2 was used with the all-solutions “compromise” strategy de-
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Table 2.Search Comparisons for Larger Problems

hard problemseasy problems
tightness 0.20 0.15

CSP-1 sol
median nodes 38,054 42
mean nodes 62,005 55
mean solns 1 1
mean runtime 323.9 0.10

lexical
median nodes 375,040 68
mean nodes 817,710 120
mean solns 1 1
mean runtime 5768.6 0.24

branch and bound
median nodes 51,301 160,480
mean nodes 76,513 4,385,167
mean solns 1.4 41
mean runtime 444.3 3294.1

staged lexical
median nodes 64,526 969
mean nodes 83,612 1007
mean solns 40 40
mean runtime 526.9 2.0

Notes. Forty-variable problems, domain size 10, density 0.5 sample size 100. For reference,
“CSP-1 sol” shows results for ordinary CSP search, using mindomain and lexical value ordering.
Other notes as in Table 1.

scribed earlier, the algorithm could not be run to completion on any of these problems
using a 10 million node cutoff. This is not surprising, sincethese problems typically
have millions of feasible solutions.

The original ESVS configuration problem has 26 variables (with domain sizes rang-
ing from two to 61) and 11 constraints with a maximum arity of five. In constructing
preference problems, we first discarded six variables that were disconnected. (They
were not of interest in the present context since the most preferred value is always
available). Then the remaining 20 variables were labelled lexically (following the order
of listing in the source file), and 100 Lexicographic CSPs were constructed with dif-
ferent lexical orders on these variables by renaming the variables according to random
permutations of the original labels. (This particular strategy allowed us to continue us-
ing the lexical labels as indicators of importance in the solver code.) Doing this, we
were able to test our algorithms over a large sample of possible importance orderings
with respect to configuration components. For each algorithm, the solver code was the
original code updated with code for generalised arc consistency; hence the algorithm
employed a generalised form of MAC3.
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Table 3.Search Comparisons for Heterogeneous Problems

tightness of hard component
0.60 0.55

lexical
median nodes 138,999 27
mean nodes > 10M > 7M
mean solns 1 1

branch and bound
median nodes 389 1268
mean nodes 109,332 411,791
mean solns 3.0 5.3
mean runtime 7.3 23.3

staged lexical
median nodes 254 243
mean nodes 259 247
mean solns 20 20
mean runtime 0.18 0.13

Notes. Twenty-variable problems, domain size 10, density 0.5, with two components of size 10:
an ‘easy’ part with constraints of tightness = 0.05 and a ‘hard’ part with tightness as indicated
in the column headers. The two components are linked by constraints with tightness = 0.05. The
density value given above also holds within each component and for the proportion of possible
links between them. “M” means million. Sample size 100. Other notes as in Table 1.

We generated three sets of problems using the approach just described. The first
set of (easy) problems was generated from the original ESVS problem. For the second
set, the original problem was altered by adding new constraints so that the constraint
graph was a single connected component, and by changing someof the relations to
reduce difference in support for domain values, especiallyin binary domains, and finally
by discarding tuples associated with solutions until the problem became difficult for
simple lexical search. The 100 most difficult problems were then culled from a set of
1000 generated according to the methods described in the previous paragraph. Finally,
a third base problem was derived by duplicating the variables and constraints from
the second (and relabelling the variables) and adding a constraint that connected the
two sub-problems via corresponding variables with binary domains, that included only
tuples with distinct values (i.e. (0, 1) and (1, 0)). Then 100problems were generated
according to the methods described in the previous paragraph.

The results of these experiments are shown in Table 4. The basic pattern of results
corresponds to those of previous experiments. Problems based on the original ESVS
problem have many feasible solutions (3.1 million in this case), and here branch and
bound algorithms are relatively inefficient. When feasiblesolutions are harder to find,
then the advanced algorithms outperform simple lexical search by up to an order of
magnitude. In addition, the disparity between means and medians indicates that while
most problems are still easy, certain importance orderingswreck havoc with the simple
lexically-ordered search, leading to a high mean search effort.
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Table 4.Search Comparisons for Configuration Problems

original (easy) altered large altered
ESVS ESVS ESVS

lexical
median nodes 20 294 41
mean nodes 20 899 98,707
mean solns 1 1 1
mean runtime 0.01 0.25 32.3

branch and bound
median nodes 789 305 3684
mean nodes 41,294 418 21,170
mean solns 3.1 2.7 6.0
mean runtime 23.9 0.13 8.9

staged lexical
median nodes 210 363 851
mean nodes 210 536 6062
mean solns 20 20 40
mean runtime 0.10 0.17 2.2

Notes. Each set of problems consists of 100 different importance orderings derived from an orig-
inal configuration problem. Branch and bound and staged lexical search employed min domain
variable ordering.

6.4 Problems with embedded lexicographic orders

In a final set of experiments, we considered problems for which preferences are re-
stricted to a subset of the variables in the CSP representation, that we call “embedded
preference orderings”. Cases like these may arise often in practice, where in addition
to variables representing attributes whose values are subject to user selection, there
are variables representing constraints of various kinds that the user has no preferences
about, such as physical constraints on design, features notvisible to the user, etc. These
experiments employed the 20-variable random and heterogeneous problems used in
previous tests, but now only the first 5 or 10 variables in the lexical ordering were used
as the basis for preferences. With the heterogeneous problems, the embedded ordering
was in the easy component; this represents the case where preferences are associated
with less constrained parts of a problem that contains other, difficult subproblems. (Note
that the alternative case is already modelled by the embedded orderings in the homoge-
neous random problems.) For algorithms that involved lexical ordering, the procedure
switched to an appropriate heuristic once the variables in the preference ordering were
instantiated: minimum domain size for the random problems and FF2 for the composed
problems.

A selection of the results is shown in Table 5. Differences among algorithms are for
the most part similar to those observed in previous experiments, although the branch
and bound is more efficient than before on the heterogeneous problems when only 25%
of the variables are in the embedded lexicographic order. Most significantly, the spe-
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cialised algorithms continue to outperform the standard lexical ordering on these prob-
lems even when only a small proportion of the variables are inthe embedding.

Table 5.Search Comparisons for Problems with Embedded Lexicographic Orders

problems random<20,10,.50> composed 10-10
tightness 0.35 0.30 0.60 0.60

embedd. size 10 10 10 5
lexical
median nodes 149 26 122,480 29
mean nodes 347 37 > 10M 12,000
mean solns 1 1 1
mean runtime 0.54 0.03 - 14.3

branch and bound
median nodes 171 373 535 209
mean nodes 220 422 109,480 213
mean solns 4 27 6 1
mean runtime 0.27 0.30 9.3 0.21

staged lexical
median nodes 280 185 209 132
mean nodes 345 192 214 135
mean solns 10 10 10 5
mean runtime 0.35 0.10 0.23 0.16

Notes. Twenty-variable problems used in previous experiments (cf. Tables 1 and 3). For com-
posed problems, tightness value is for the hard component. (The embedded ordering is in the
easy component.) “embedd. size” is the number of variables in the preference ordering. “M”
means million. Sample size 100. Other notes as in Table 1.

7 Conclusions

By combining lexicographic orderings with the classical CSP formalism, we can rep-
resent both preferences and hard feasibility constraints together in a manner that is
formally well-grounded, easily comprehended, and amenable to robust techniques for
problem solving. A constraint-based representation may also make it possible to extend
the application of lexicographic orderings in a significantfashion, by precluding some
types of tradeoffs through feasibility constraints.

The completeness of lexicographic orderings allows more comparisons between al-
ternatives than is possible with other qualitative preference formulations, such as CP-
nets. At the same time, such comparisons are often much more straightforward. De-
sirable features like conditional preferences can also be incorporated into this form of
representation.

Problem solving methods based on the ordinal properties of lexicographic CSPs are
often very efficient. In our studies of search algorithms forlexicographic CSPs, we de-
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vised several search strategies that are effective for the task of finding optimal solutions,
including a branch and bound strategy and a specialized algorithm that takes advantage
of the lexicographic ordering to find successive optimal assignments in a series of itera-
tions. These procedures sometimes outperformed a standardform of search that directly
follows the lexicographic ordering by several orders of magnitude.
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