
Title Enabling local computation for partially ordered preferences

Authors Fargier, Hélène;Rollon, Emma;Wilson, Nic

Publication date 2010-01

Original Citation Fargier, H,Rollon, E,Wilson, N; (2010) 'Enabling local computation
for partially ordered preferences'. Constraints, 15 (4) :516-539.
doi: 10.1007/s10601-010-9094-z [untranslated]

Type of publication Article (peer-reviewed)

Link to publisher's
version

http://link.springer.com/article/10.1007%2Fs10601-010-9094-z -
10.1007/s10601-010-9094-z

Rights © Springer Science+Business Media, LLC 2010. The
final publication is available at http://link.springer.com/
article/10.1007%2Fs10601-010-9094-z

Download date 2024-04-28 10:43:07

Item downloaded
from

https://hdl.handle.net/10468/1114

https://hdl.handle.net/10468/1114

Enabling Local Computation for Partially
Ordered Preferences

Hélène Fargier1, Emma Rollon2 and Nic Wilson3

1IRIT, 118 route de Narbonne 3162 Toulouse Cedex, France
2Technical University of Catalonia, Jordi Girona 1-3 08034, Barcelona, Spain

3Cork Constraint Computation Centre, University College Cork, Ireland
fargier@irit.fr, erollon@lsi.upc.edu, n.wilson@4c.ucc.ie

Abstract. Many computational problems linked to uncertainty and pref-
erence management can be expressed in terms of computing the marginal(s)
of a combination of a collection of valuation functions. Shenoy and Shafer
showed how such a computation can be performed using a local compu-
tation scheme. A major strength of this work is that it is based on an
algebraic description: what is proved is the correctness of the local com-
putation algorithm under a few axioms on the algebraic structure. The
instantiations of the framework in practice make use of totally ordered
scales. The present paper focuses on the use of partially ordered scales
and examines how such scales can be cast in the Shafer-Shenoy frame-
work and thus benefit from local computation algorithms. It also provides
several examples of such scales, thus showing that each of the algebraic
structures explored here is of interest.

Keywords: Soft CSP; Dynamic programming; Valuation networks/algebra.

1 Introduction

Many computational problems linked to reasoning under uncertainty can be ex-
pressed in terms of computing the marginal(s) of the combination of a collection
of (local) valuation functions. Shenoy and Shafer [23, 22] showed how such a
computation can be performed using only local computation (see also, in par-
ticular, [14]). A major strength of this work, is that it is based on an algebraic
description: what is proved is the correctness of the local computation algorithm
under a few axioms on the algebraic structure. Hence, the same algorithm may
be used in computing the projection on a given variable of a joint probability dis-
tribution described by a Bayesian network, in making the fusion of several basic
probability assignments with Dempster’s rule of combination, or in computing
the degree of consistency of a possibilistic knowledge base.

One important class of problems encompassed by the Shafer-Shenoy frame-
work is optimization. In these problems, solutions are given a score and ranked
according to a given order, and one has to find the best solutions according to
that order. When the order is total, there exists one optimal score. However,

nwilson
Typewritten Text

nwilson
Typewritten Text
Article published in Constraints Volume 15, Number 4, 516-539,
DOI: 10.1007/s10601-010-9094-z
http://www.springerlink.com/content/alt370515m33510v/
The final publication is available at www.springerlink.com

nwilson
Typewritten Text

2 Hélène Fargier, Emma Rollon and Nic Wilson

when the order is partial, there exists a family of alternatives the score of which
are incomparable—hence a set of optimal scores.

In practice, applications of Shenoy and Shafer’s framework rely on totally
ordered scales of scoring, like the MAX CSP problem [10] or the more general
VCSP problem [21]. On the other hand, AI has witnessed the emergence of
many frameworks for reasoning based on partial orders. Let us for instance cite
semiring-based constraint problems [2, 3], reasoning with preferences [4, 25, 12],
reasoning under uncertainty [7, 24], belief revision [16, 1] and default reasoning
[5, 11].

The purpose of this paper is to show whether and how optimization prob-
lems based on partial orders can be cast in the Shafer-Shenoy framework, so
as to provide them with local computation algorithms. To that end, we intro-
duce a general algebraic structure called a preference degree structure, and show
that different optimization problems, based either on total or partial orders, can
be captured by this structure. Then, we propose two different transformations,
called extension of the order and set encoding, that ensure the optimality of the
solutions computed using a local computation algorithm. The first one gener-
ates only one optimal score, while the second generates the whole set of optimal
scores.

The structure of the paper is as follows. Section 2 reviews the Shafer-Shenoy
axiomatic framework. Section 3 defines the preference degree structures and
provides examples of problems captured by these algebraic structures in order to
show that they are of interest. Section 4 presents our main contribution. It shows
when and how optimization problems based on partial orders and described
under preference degree structures can be cast as instances of the Shafer-Shenoy
framework and thus can benefit from the local computation machinery. Section 5
concludes and points out directions of future work. Proofs of the results are
included in the appendix.

This paper is an extended version of [9].

2 Axioms for local computation

We recall here some basics of the Shafer-Shenoy abstract axiomatic frame-
work [23, 22, 14] for local computation of multivariate problems. The framework
concerns valuations—each of which represents information regarding a set of
variables—and two operations: combination and marginalization. Many com-
putational problems can be expressed as marginalizing the combination of a
collection of valuations. Such a global computation can often be performed in a
more efficient way, using only local operations, if the operations satisfy certain
axioms.

Consider a finite set X = {x1, . . . , xn} of variables, each xi ranging over a
finite state space (or “domain”) Di. For S ⊆ X, DS will denote the Cartesian
product of the domains of variables in S. The elements of DS are called tuples.
When S is the empty set , we adopt the convention that D∅ consists of a single
object ♦, so that D∅ = {♦}. For d ∈ DS , the projection/restriction of d to a

Enabling Local Computation for Partially Ordered Preferences 3

subset of variables Y ⊆ S, denoted d[Y], is a subtuple of d containing only the
elements corresponding to the set Y . Given a function f over DS , when d is
defined over a superset of S, we sometimes write f(d) as an abbreviation for
f(d[S]).

In the Shafer-Shenoy framework, there is a set VS associated with each set
of variables S ⊆ X. The elements of VS are called valuations and S is the scope
of each σ ∈ VS — we write scope(σ) = S. Intuitively, σ represents some infor-
mation about the set of tuples in DS . V =

⋃
S⊆X VS is the set of all valuations.

Valuations are primitives in the Shafer-Shenoy framework and as such require
no definition. They are simply entities that can be combined and marginalized:

– The combination of two valuations σ and τ , denoted σ�τ , is a new valuation
whose scope is scope(σ) ∪ scope(τ).

– The marginalization of one valuation σ over a set of variables T ⊆ scope(σ),
denoted σ↓T , is a new valuation whose scope is T .

A valuation system is a triplet (V,�, ↓). A valuation network (VN) is a finite
set (or multiset) Σ = {τ1, . . . , τm} ⊆ V. The task of interest over Σ is to compute
its marginal over a subset T of the set of variables involved:

(�Σ)↓T = (τ1 � . . .� τm)↓T

We assume that computing a combination is time and space exponential in
the cardinality of the union of the scopes of the valuations involved; this as-
sumption is valid for the instances of the framework we consider in this paper,
as well as most other instances. A brute-force computation of the above task
will first compute the combination of all valuations, and then its marginaliza-
tion over T , and so it is exponential in the cardinality of the union of scopes of
all valuations, and thus impractical. However, if the valuation system satisfies
the Shafer-Shenoy axioms, the marginalization task can be done by sequential
marginalization over subsets of valuations and, as a consequence, potentially
much more efficiently. This is called local computation. We write the Shafer-
Shenoy axioms as follows:

Axiom A1: If S ⊆ T ⊆ scope(σ), then (σ↓T)↓S = σ↓S .

Axiom A2: � is associative and commutative.

Axiom A3: ↓ distributes over �. Namely, if scope(σ) ⊆ T ⊆ scope(σ)∪scope(τ),
then (σ � τ)↓T = σ � τ↓T∩scope(τ).

As shown in [23, 22, 14], if the valuation system Σ satisfies Axioms A1, A2,
A3, thenΣ↓T can be computed by successively eliminating variables in Y = X\T
from Σ, where X is the set of variables involved in Σ. For yi ∈ Y , we define

Elimyi(Σ) = Σ¬yi ∪ {(�Σyi)↓X\{yi}}

4 Hélène Fargier, Emma Rollon and Nic Wilson

where Σ¬yi = {σ ∈ Σ : yi 6∈ scope(σ)} is the subset of valuations in Σ whose
scope does not contain/bear on variable yi and Σyi = Σ \Σ¬yi is the subset of
valuations that do. It can be proved that

(�Σ)↓X\{yi} = �Elimyi(Σ)

So, we can go from Σ to a new set of valuations, not bearing on yi, by
combining all the valuations that bear on yi, computing its marginal over X\{yi}
and adding it to the set of valuations that do not bear on {yi}. Applying this
principle iteratively with respect to all variables in Y , the algorithm computes
the marginal of Σ over T = X \ Y as:

(�Σ)↓X\{y1,...,yk} = �Elimyk(Elimyk−1(. . .Elimy1(Σ)))

Axioms for local computation are sufficient conditions for the correctness
of the sequential elimination procedure. They also ensure the correctness of
algorithms of message passing in a join tree decomposition of the valuation
network. The time and space complexity of these algorithms is exponential in a
structural parameter called tree-width (and thus lower than the time and space
complexities of the brute force algorithm). What is important for the purpose
of the present paper, is that it is granted that when axioms A1, A2 and A3 hold
such algorithms are available.

3 Optimization in preference degree structures

Combinatorial optimization problems can be defined in terms of a set of vari-
ables taking values on finite sets of domain values and a set of local functions
defined over these variables. Roughly speaking, solving a problem is somehow
related to assigning domain values to the variables, evaluating the functions on
those assignments and keeping the best scores/assignments according to a par-
ticular preference order. Different attempts have been made to capture different
kinds of optimization problems within a common formal framework. We propose
a general framework based on an algebraic structure called preference degree
structure. This framework captures different optimization problems both based
on total and partial orders, as we show in the collection of examples provided.

3.1 Preference degree structures

Let L be a set of values and � be a binary relation that compares the values.
We adopt the convention that ∀a, b ∈ L, a � b means that score a is better
than score b, i.e., we are oriented toward minimization. We use notation ≺ for
the associated strict relation (i.e., ∀a, b ∈ L, a ≺ b iff a � b and not(b � a))
and ∼ for the corresponding indifference relation. Let ⊗ be a binary operation:
⊗ : L× L→ L. Then,

Definition 1 A preference degree structure is a triplet 〈L,�,⊗〉 which forms
an ordered commutative monoid. Its neutral element will be denoted 1.

Enabling Local Computation for Partially Ordered Preferences 5

That is to say, � is a partial order: a reflexive, anti-symmetric and transitive
relation over L (hence a ∼ b iff a = b), and L is equipped with an internal
operation ⊗ which is associative, commutative and monotonic with respect to
� (a � b =⇒ a⊗ c � b⊗ c) and such that a⊗ 1 = a for all a.

If there exists an associative and commutative (and idempotent) operator ⊕
such that a � b ⇐⇒ a ⊕ b = a, then we say that ⊕ represents �. It is well
known that such an operation ⊕ exists if and only if any pair of elements of L
have a greatest lower bound. Notice also that if � is a total order this operator
necessarily exists (⊕ = min).

3.2 Preference networks

Combinatorial optimization problems can be defined in terms of a preference
degree structure.

Definition 2 Given a preference degree structure 〈L,�,⊗〉 and a set of vari-
ables X, a local function c is defined to be a function from DY to L, for some
Y ⊆ X. We define scope(c) = Y . A preference network C is a set (or multiset)
of local functions {c1, . . . , cm}.

Each tuple d ∈ DX receives a collection 〈c1(d), ..., cm(d)〉 of scores. The global
score of d is the aggregation of all the ci(d) according to ⊗.

Definition 3 Given a preference network C on 〈L,�,⊗〉, the global score of d ∈
DX is scoreC(d) =

⊗
ci∈C ci(d). We shall also write Scores(C) = {scoreC(d) :

d ∈ DX}.

The task is generally to compute all or one of the best global scores associated
to tuples in DX according to �. Formally,

Definition 4 Given a preference network C on 〈L,�,⊗〉, d ∈ DX is an optimal
solution if there is no d′ ∈ DX such that scoreC(d′) ≺ scoreC(d). A value a ∈ L
is an optimal score for C if a = scoreC(d) for some optimal solution d.

Let us denote Kernel�(A) (the kernel of A) as the set of �-minimal elements
of any set A (i.e., the set of elements a ∈ A such that there exists no b ∈ A with
b ≺ a). It is easy to see that:

Proposition 1 Given a preference network C on 〈L,�,⊗〉 the set of optimal
scores of C is the Kernel of Scores(C) with respect to �, i.e., a ∈ Kernel�(Scores(C))
iff a is an optimal score for C.

When � is a total order, then Kernel�(Scores(C)) is the singleton set con-
taining the unique optimal score for C. However, when � is partial, there may
be several optimal scores that are pairwise incomparable. Given a preference
network C defined on 〈L,�,⊗〉, the size of Kernel�(Scores(C)) is in the worst
case equal to the width of �, noted w(�). The width of � is the cardinality of

6 Hélène Fargier, Emma Rollon and Nic Wilson

the largest subset S of L which only contains incomparable elements (so that
a 6≺ b for all a, b ∈ S).

Let L = 〈L,�,⊗〉 be a preference degree structure. We consider the following
two problems:

[OPTL]: Given a preference network C built on preference degree structure L and
a ∈ L, does there exist an assignment d ∈ DX such that scoreC(d) ≺ a.

[FULLOPTL]: Given a network C built on preference degree structure L, and
given H ⊆ L, does there exist an assignment d ∈ DX such that ∃a ∈ H, scoreC(d) ≺
a.

Under weak assumptions these problems are NP-complete, in particular, un-
der the conditions specified in the following result.

Proposition 2 Let L = 〈L,�,⊗〉 be a preference degree structure. Suppose that
testing a � b is polynomial, that computing the combination of a multiset of
elements of L is polynomial, and that L contains some element a such that
a � 1. Then OPTL and FULLOPTL are NP-complete.

So, the optimization problem in its simple version (find an element of the
Kernel) or its full version is not harder in the case of a partially ordered scale
than in the case of a totally ordered one.

3.3 Examples of preference networks

Let us present a large class of examples that can be captured by the framework:

• MAX CSP and VCSP. In the MAX CSP [10] (resp. VCSPs [21]) framework,
the aim is to find an assignment d to all variables that minimizes the number of
violated constraints (resp. a combination, for example, the sum, of the weight
of the violated constraints). We shall use L = N ∪ {+∞}. ⊗ is the addition of
numbers and � = ≤. In these examples, L is totally ordered, ⊗ admits a neutral
element (i.e., 0) which is the best score is L.

• Semiring structures, as those used in semiring CSPs [3], are particular cases
of preference degree structures in the sense that they assume the existence of
an operator ⊕ such that a � b ⇐⇒ a ⊕ b = a. If such an operator exists for
a preference degree structure, then ⊕ is idempotent. Semiring CSPs moreover
assume that the unit element of ⊗ is absorbing for ⊕.

• Bi-attribute Pareto decision making. In many multicriteria problems one has
to simultaneously optimize several non-commensurable quantities, such as cost,
time, security, etc. For instance, in the problem of bi-scaled shortest path [13],
each edge in a graph is labeled by a cost and a duration. The cost (resp. the
duration) of a path is the sum of the costs (resp. durations) of its edges. For

Enabling Local Computation for Partially Ordered Preferences 7

these problems, we can use L = (N ∪ {+∞})× (N ∪ {+∞}), ⊗ being pointwise
addition (a, b) ⊗ (a′, b′) = (a + a′, b + b′). Pairs are compared according to the
Pareto rule: (a, b) � (a′, b′) iff a ≤ a′ and b ≤ b′. � is a partial order, but not a
total order, e.g., (3, 2) and (2, 3) are incomparable.

• Order Of Magnitude (OOM) Reasoning. We describe a slight variation of
the system of order of magnitude reasoning defined in [24]. The elements of
L are pairs 〈s, r〉 where s ∈ {+,−,±}, and r ∈ Z ∪ {−∞}. The system is
interpreted in terms of “order of magnitude” values of cost. For example, 〈−, r〉
represents something which is negative and has order of magnitude Kr (for a
large number K). Element 〈±, r〉 arises from the sum of 〈+, r〉 and 〈−, r〉. 〈±, r〉
can be thought of as the interval between 〈−, r〉 and 〈+, r〉, since the sum of a
positive quantity of order Kr and a negative quantity of order Kr can be either
positive or negative and of any order less than or equal to r. For these problems,
L = {〈±,−∞〉} ∪ {〈s, r〉 : s ∈ {+,−,±}, r ∈ Z}, and the interpretation leads
us to define the summation operation ⊗ by:

〈s, r〉 ⊗ 〈s′, r′〉 =

 〈s, r〉, if r > r′;
〈s′, r′〉, if r < r′;
〈s ∨ s′, r〉, if r = r′;

where ∨ is given by: + ∨ + = + and − ∨ − = −, and otherwise, s ∨ s′ = ±.
Operation ⊗ is commutative and associative with neutral element 〈±,−∞〉. �
is defined by the following instances: (i) for all r and s, 〈−, r〉 � 〈+, s〉; (ii) for
all s ∈ {+,−,±}, and all r, r′ with r ≥ r′: 〈−, r〉 � 〈s, r′〉 � 〈+, r〉. � is a partial
order, but not a total order; for example, 〈±, r〉 and 〈±, s〉 are incomparable
when r 6= s.

• Tolerant Pareto. The problem with a Pareto-based comparison is that the
preference provided is often not decisive enough. For instance, the two pairs
a = (acost, atime) and b = (bcost, btime) are incomparable as soon as acost < bcost
and btime < atime, and this even if the difference between acost and bcost is much
greater than difference between btime and atime.

Consider our time/cost pair. The idea is to use indifference thresholds, say
αcost for the first dimension, and αtime for the second one. If acost+αcost < bcost,
we shall say that the cost dimension has a strong preference for a over b, and
opposes a veto to the opposite preference. Then we decide that an alternative is
better than the other iff it Pareto dominates, but with respect to the thresholds
of tolerance. Formally,

a ≺ b ⇐⇒ (bcost − acost > αcost ∧ btime − atime ≥ −αtime)
∨(btime − atime > αtime ∧ bcost − acost ≥ −αcost)

a ∼ b ⇐⇒ a = b

So, when one dimension strongly prefers alternative a while the other does not
oppose a veto we do not get an incomparability, like in the classical Pareto case,

8 Hélène Fargier, Emma Rollon and Nic Wilson

but a strict preference a ≺ b. This decision rule is related to the Electre method
(see e.g. [20]). It yields a preference relation that is not complete nor transitive:
it may happen that a ≺ b and b ≺ c while a and c are not comparable (e.g.
because the time dimension that does not oppose a veto to a ≺ b nor to b ≺ c is
a vetoer for a ≺ c). Nevertheless, ≺ is acyclic.

This example cannot be cast as a preference network stricto sensu, but its
closure by transitivity can be, using pointwise addition as the combination. Let
≺∗ be the transitive closure of ≺. It can be shown that a ≺∗ b holds if and only if
either (i) bcost−acost > 0 and btime−atime > 0, or (ii) there exists k ∈ {1, 2, . . .}
such that either (a) bcost − acost > kαcost and btime − atime ≥ −kαtime or (b)
btime − atime > kαtime and bcost − acost ≥ −kαcost.

In this rule, the thresholds are considered as elementary units of strong pref-
erence. So, a is better than b when, going from b to a, the enhancement on
one dimension (e.g. the cost dimension) is greater than the degradation in the
other dimension, this enhancement (resp. degradation) being evaluated on a scale
whose unit is αcost (resp. αtime).

4 Casting preference networks in the local computation
scheme

Applications of local computation for optimization focus on the case when the
optimization is made with respect to a total order (though see [19, 15]). We
will show that it applies to many other situations, which involve only partially
ordered scales.

In the following, we present three ways of embedding preference networks into
Shenoy and Shafer’s framework in order to benefit from the local computation
machinery. It is important to note that in all these encodings our focus in on
optimization problems using partial orders. First, we show that a direct encoding
of the preference degree structure is inadequate, because the local computation
algorithm will only generate the greatest lower bound of the achievable scores,
rather than an optimal score. Then, we investigate two alternative approaches:
the use of an extension of the original order (this provides one of the optimal
scores, provided that such an extension exists), and the use of a set encoding
of the preference degree structure (this is always possible and provides all the
optimal scores).

4.1 Direct encoding

Preference networks can be simply cast as a problem of combination of valua-
tions, letting V =

⋃
S⊆X{f : DS 7→ L} and defining � in a pointwise fashion:

Definition 5 Let 〈L,�,⊗〉 be a preference degree structure, let X be a set of
variables, and let σ and τ be two local functions. The local function σ � τ with
scope scope(σ) ∪ scope(τ) is defined as follows. For any d ∈ Dscope(σ)∪scope(τ),
define (σ � τ)(d) = σ(d)⊗ τ(d). (Recall that σ(d) means σ(d[scope(σ)]).)

Enabling Local Computation for Partially Ordered Preferences 9

Then the global score function is simply the combination of the ci in C.

Proposition 3 For any preference network C over 〈L,�,⊗〉 and d ∈ DX ,
scoreC(d) = (�ci∈Cci)(d).

Also, � satisfies axiom A2 iff ⊗ is associative and commutative, which gives a
fundamental justification for having ⊗ associative and commutative in preference
degree structures.

Example 1. Consider a MAX CSP problem with two variables X = {x1, x2}
with domains D1 = D2 = {0, 1}. Recall that the preference degree structure in
MAX CSP problems is 〈L = N ∪ {∞},�=≤,⊗ = +〉. Let C = {c1, c2}, where
c1(x1) = x1 and c2(x2) = x2. The global score function c1(x1) ⊗ c2(x2) is a
new function with scope {x1, x2} which can be extensionally defined with the
following table:

x1 x2 c1(x1)⊗ c2(x2)
0 0 0
0 1 1
1 0 1
1 1 2

Now, consider a bi-attribute Pareto decision making problem defined over the
same set of variables and domain values as the previous example. Recall that
the preference degree structure in this case is 〈L = (N∪{+∞})× (N∪{+∞}),�
,⊗〉, where ⊗ is pointwise addition and � is the simple Pareto comparison. Let
C = {c1, c2}, where c1(x1) = (x1, 1− x1) and c2(x2) = (x2, x2). The global score
function c1(x1) ⊗ c2(x2) is a new function with scope {x1, x2} which can be
extensionally defined with the following table:

x1 x2 c1(x1)⊗ c2(x2)
0 0 (0,1)
0 1 (1,2)
1 0 (1,0)
1 1 (2,1)

�

We will see below that difficulties arise with the marginalisation operator
when � is not a total order. For the case when � is a total order, the min
operator is well defined and we can set, for T ⊆ scope(σ),

σ↓T (d) = mind′∈Dscope(σ),d=d′[T]{σ(d′)}

This definition ensures the satisfaction of axioms A1 and A3, and that for any
C built on 〈L,�,⊗〉, (�c∈Cc)↓∅ is the optimal score for C.

We can consider using the same technique when there exists an operator ⊕
such that a � b ⇐⇒ a ⊕ b = a, and such that 〈L,⊗,⊕〉 is a (commutative)

10 Hélène Fargier, Emma Rollon and Nic Wilson

semiring, i.e., ⊗ and ⊕ are both associative and commutative, and ⊗ distributes
over ⊕: a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) for all a, b, c ∈ L. This assumption is
made in semiring CSPs [2, 3]. We can then define a marginalization operator as
follows:

Definition 6 Suppose there exists a commutative and associative operator ⊕
such that a � b ⇐⇒ a ⊕ b = a, and ⊗ distributes over ⊕. Let us define the
operation ↓ as follows, where T is any subset of scope(σ):

∀σ, d ∈ DT : σ↓T (d) =
⊕

d′∈Dscope(σ),d=d′[T] σ(d′)

The local computation axioms are then satisfied (the result follows from
Theorem 2 of [15]):

Proposition 4 Let 〈L,�,⊗〉 be a preference degree structure. Suppose that there
exists a commutative and associative operator ⊕ such that a � b ⇐⇒ a⊕b = a,
and such that ⊗ distributes over ⊕. Then, axioms A1, A2 and A3 are satisfied
by � and ↓ as defined in Definitions 5 and 6.

It follows that under the conditions of Proposition 4 we can use sequential
elimination to compute (�c∈Cc)↓∅. Unfortunately, this computation is not faith-
ful to the notion of optimality in L: it may well happen that the score computed
by this marginalisation is not achievable: (�c∈Cc)↓∅ does not necessarily belong
to the kernel at all. More precisely, the following holds:

Theorem 1 Given a preference degree structure 〈L,�,⊗〉, and if � and ↓ are
defined according to Definitions 5 and 6, the following assertions are equivalent:

- ∀C, (�c∈Cc)↓∅ ∈ Kernel�(Scores(C))
- � is a total order.

This result is a rather negative one: unless we are working with a total order,
the computation of a (sub)set of optimal scores cannot be understood in terms
of combination and marginalization of soft constraints as it is usually done.
What this kind of approach computes is actually a (greatest) lower bound of the
Kernel:

Proposition 5 If � and ↓ are defined according to Definitions 5 and 6, then
∀a ∈ Kernel�(Scores(C)), (�ci∈Cci)

↓∅ � a. In fact, (�ci∈Cci)
↓∅ is the greatest

lower bound of Kernel�(Scores(C)).

However, this value (�ci∈Cci)
↓∅ does not necessarily belong to the kernel.

Example 2. Consider the problems defined in Example 1. The operator ⊕ in the
MAX CSP problem is min. It is easy to see that the kernel of the set of scores
is 0, which can be obtained by marginalizing the global score function over all
variables. The operator ⊕ in the bi-attribute Pareto decision making problem is
the pointwise minimum, i.e., (a, b)⊕(a′, b′) = (min(a, a′),min(b, b′)). The kernel

Enabling Local Computation for Partially Ordered Preferences 11

of the set of scores is {(0, 1), (1, 0)}. However, (c1⊗c2)↓∅ = (0, 0), although there
is no assignment in DX with a global score of (0, 0). Note that (0, 0) is a lower
bound of {(0, 1), (1, 0)}, that is, (0, 0) � (0, 1) and (0, 0) � (1, 0). �

Finally, recall that variable elimination approaches are potentially exponen-
tial in time and space with respect to the treewidth, which is rather computa-
tionally expensive for just an approximation of the result. We shall circumvent
this difficulty by working with another comparator. The first solution is to simply
extend �.

4.2 Extending �

A classical approach in Pareto-based multicriteria optimization problems is to
optimize a linear combination of the criteria. The important idea here is that
any solution minimizing this sum is known to be Pareto optimal. Namely, one
optimizes according to a new comparator, say �′, such that a � b implies a �′ b:
if a is better than b according to the original relation, then it is still the case
with the new one. But �′ can rank scores that are incomparable with respect to
�. Such a relation is called an extension of the original relation.

Definition 7 Let �′ and � be two relations on a set L. Then we say �′ extends
� if and only if a � b implies a �′ b.

Example 3. Consider our running bi-attribute Pareto decision making problem
in Example 1. Let us interpret valuation (a, b) as (cost, time). Then, we shall
decide (a, b) �′ (a′, b′) if and only if a + β · b ≤ a′ + β · b′. �′ is complete and
if β is high enough, there are no ties, so that �′ is a total order (equal to a
lexicographic order with time being more important than cost). �

Optimizing with respect to an extension leads to solutions that are optimal
with respect to the original relation. More precisely:

Proposition 6 Let �′ and � be two partial orders on a set L. If �′ extends �,
then for any A ⊆ L, Kernel�′(A) ⊆ Kernel�(A).

Now, if there exists a totally ordered extension �′ of � such that 〈L,�′,⊗〉
is a preference degree structure, it is then possible to define ⊕ as the min of two
scores according to �′.

Like the approach described in Section 4.1, the present one provides the user
with a unique score, but this one has the advantage of systematically proving
an optimal one, rather than a lower bound. As a matter of fact, we have seen
that when optimizing with respect to Pareto, we can use an extension based on
a weighted sum (or a lexicographic order). The OOM comparison can also be
extended by such a comparison procedure, using super increasing weights [6].

Unfortunately, such a totally ordered extension does not necessarily exist, as
shown in the following example.

12 Hélène Fargier, Emma Rollon and Nic Wilson

Example 4. Consider a preference network defined over the preference degree
structure 〈L = Z,�,⊗ = ×〉, where a � b ⇐⇒ a = b. Suppose there exists a
total order �′ on L extending � and such that 〈L,�′,⊗〉 is a preference degree
structure. Since �′ is total, we have either 1 �′ −1 or −1 �′ 1. 1 �′ −1 implies
by monotonicity 1⊗−1 �′ −1⊗−1, and so −1 �′ 1. Similarly, −1 �′ 1 implies
1 �′ −1, so in either case we have 1 �′ −1 �′ 1, contradicting antisymmetry. �

The following result gives sufficient conditions for an appropriate extension
to exist, where a1 is defined to be a and, for k ≥ 1, ak+1 = ak ⊗ a.

Theorem 2 Let 〈L,�,⊗〉 be a preference degree structure with unit element 1,
which also satisfies the following two properties:

(i) for all a, b ∈ L with a 6= b and all k > 0 we have ak 6= bk;
(ii) a⊗ c � b⊗ c ⇒ a � b for all a, b, c ∈ L.

Then there exists a total order �′ on L extending � and such that for all a, b, c ∈
L, a ⊗ c �′ b ⊗ c ⇐⇒ a �′ b, and so, in particular, 〈L,�′,⊗〉 is a preference
degree structure.

The idea behind the proof of the theorem is, roughly speaking, that, un-
less � is already a total order, we can always add extra orderings to � whilst
maintaining the properties (i) and (ii) and the properties of a preference degree
structure. A maximal relation satisfying the properties and extending � is then
a total order.

The theorem requires strong conditions. Condition (ii), together with the
monotonicity property of preference degree structures, implies the following
strong monotonicity property: a ⊗ c � b ⊗ c ⇐⇒ a � b for all a, b, c ∈ L.
This implies, in particular, that if a 6= b then for all c, a⊗ c 6= b⊗ c. Condition
(i) is a somewhat similar property to this. For an example where the conditions
are satisfied, consider the preference degree structure 〈L,�,⊗〉, similar to that
described for bi-attribute Pareto decision making, with L = N × N, ⊗ being
pointwise addition (a, b) ⊗ (a′, b′) = (a + a′, b + b′), and where � is given by:
(a, b) � (a′, b′) ⇐⇒ a ≤ a′ and b ≤ b′.

Because 〈L,�′,⊗〉 is a preference degree structure based on a total order, it is
possible to define ⊕ as the min of two scores according to �′. Then, Definitions
5 and 6 can be applied and Axioms A1, A2 and A3 are satisfied, thanks to
Proposition 4. Hence the sequential elimination procedure (see Section 2) may
be used to obtain an optimal score with respect to �′, which is also (because �′
extends �) an optimal score with respect to �. In other words, when conditions
(i) and (ii) are satisfied, it is always possible to obtain an optimal score by
non-serial dynamic programming.

4.3 Set-based Encoding

There is a very general way of using Shafer-Shenoy framework to optimize over
a preference degree structure. The idea is to move from L to 2L (i.e., the set of

Enabling Local Computation for Partially Ordered Preferences 13

subsets of L) and define a marginalization operator able to keep the best scores
in L according to �. In other words, when a and b in L are not comparable, the
marginalization operator keeps both. Then, if a preference network C defined
over L is mapped to one over 2L, local computation over the new network is
faithful to the notion of optimality in L.

There exist other works in the literature aiming to use local computations
over optimization problems using partial orders. In [19, 8], set-based encoding
is defined as a way to deal with multiobjective optimization problems based
on a Pareto comparison. The transformation has been defined over c-semirings
by Rollon and Larrosa [18] under the name of frontier algebra. Our encoding
generalises the latter. In short, we show that (i) the set-based encoding also
works in the general case of any type of partially ordered scoring scale and (ii)
preference networks are rich enough to capture this kind of transformation.

We define the set-based encoding extension of a preference degree structure
as follows.

Definition 8 Let 〈L,�,⊗〉 be a preference degree structure. Then, its set-based
encoding extension is 〈L,⊗s,⊕s〉, where

– L = {finite A ⊆ L : A 6= ∅, A = Kernel�(A)}
– A⊗s B = Kernel�({a⊗ b : a ∈ A, b ∈ B})
– A⊕s B = Kernel�(A ∪B).

In words, L is the set of finite subsets of L that do not contain comparable
elements according to �, and ⊗s and ⊕s are able to keep all non-comparable
elements according to � in L. Notice that a singleton is its own kernel, thus
belongs to L. Moreover, L is stable with respect to the kernel-based union: for
any A,B ∈ L,Kernel�(A ∪B) ∈ L.

We have the following important property:

Proposition 7 〈L,⊗s,⊕s〉 is a (commutative) semiring.

The ⊕s operator is faithful to �, in the following sense:

Proposition 8 ∀a, b ∈ L, a � b ⇐⇒ {a} ⊕s {b} = {a}

Let C be a preference network defined over the preference degree structure
〈L,�,⊗〉. For any local function c in C, let c be the local function taking its scores
in L, defined by: c(d) = {c(d)} and denote C = {c : c ∈ C} the transformation
of C by this “singletonization”. We then have:

Proposition 9 Axioms A1, A2 and A3 are satisfied by � and ↓ as defined in
Definitions 5 and 6 from the set operations ⊗s and ⊕s provided by Definition 8.

Thanks to Proposition 9, we can then compute (�c∈Cc)↓∅ using local com-
putation. (�c∈Cc)↓∅ provides a unique score in the set based preference degree
scale L. We shall then prove that this set is the set of scores in L that are optimal
with respect to �.

14 Hélène Fargier, Emma Rollon and Nic Wilson

Proposition 10 (�c∈C c)↓∅ = Kernel�(Scores(C)).

In other words, the set of optimal elements Kernel�(Scores(C)) can be ex-
pressed as the marginalization of a combination, and computed using local com-
putation. Through the set-based encoding, local computation can be used to
compute the set of optimal values of any preference network, i.e., variable elim-
ination is possible for any preference network.

Example 5. Consider the bi-attribute Pareto decision making problem in Ex-
ample 1. Recall that the set of variables is X = {x1, x2}, the set of domain
values is D1 = D2 = {0, 1}, and the set of functions is C = {c1, c2} where
c1(x1) = (x1, 1 − x1) and c2(x2) = (x2, x2). The singletonization of C is C =
{c1, c2}, where c1(x1) = {(x1, 1 − x1)} and c2(x2) = {(x2, x2)}. The global
score function c1(x1)⊗s c2(x2) is a new function with scope {x1, x2} which can
be extensionally defined with the following table:

x1 x2 c1(x1)⊗s c2(x2)
0 0 {(0,1)}
0 1 {(1,2)}
1 0 {(1,0)}
1 1 {(2,1)}

The result of computing (c1 ⊗s c2)↓∅ is {(0, 1), (1, 0)}, which is the kernel of
Scores(C), i.e., the set of optimal scores. �

The theoretical application of local computation must not overshadow its
practical range of application. As we have said, variable elimination is in the
worst case exponential with respect to the structural parameter treewidth. This
is the case if we consider that size of the score sets is 1. Depending on how
discriminating � is, we may get a considerably larger score set at some point in
the computation.

We assume that any operation a⊗ b or comparison a � b is made in bounded
constant time.

Proposition 11 Given a preference network C on any preference degree struc-
ture 〈L,�,⊗〉, the time and space complexity of the variable elimination proce-
dure is O(w(�)2 × (m + n) × dtw) and O(w(�) × n × dtw), respectively, where
w(�) is the width of the order �, m is the number of functions, n is the number
of variables, d is the maximum domain size and tw is the structural parameter
treewidth.

The width of the order � can, in certain cases be relatively small. Its value
is 1, obviously, for the total orders (e.g. Max CSP). For the OOM (Order of
Magnitude reasoning) case, the largest kernel is {〈±, r1〉, . . . , 〈±, rk〉}, where
{r1, . . . , rk} is the set of possible values for the order of magnitude (typically,
reduced to a small selection of qualitative values: “null”, negligible”, “weak”,

Enabling Local Computation for Partially Ordered Preferences 15

“significant”, “high”, “very high”). For Pareto comparison on n criteria, all of
them using a totally ordered scale the width is exponential in the number of
criteria. This is an additional reason to prefer extensions of the partial order
where possible, for example using a weighted sum as usually done, or to use par-
tial orders as extensions; one might also consider, for example, a tolerant Pareto
rule or attempting to use an epsilon approximation [8, 17] to reduce the number
of incomparabilities (although the indifference relation is no longer transitive).

However, it is important to note that there exist other important practical
cases as, for example, Pareto comparison based on a product of totally ordered
scales such as integers or reals, for which the width of the order is not finite. In
such cases, the sizes of the kernels can become very large, and local computation
can be impractical.

5 Conclusion and perspectives

The Shafer-Shenoy framework characterizes the assumptions under which local
computation can be applied. Although the framework does not restrict the order
among scores to be total, the main applications of local computation are based
on total orders. However, the practical importance of problems using partial
orders is undeniable, for example, in multi-criteria optimization.

In this paper we propose an algebraic structure called preference network
able to capture a great variety of problems, and focus on the ways of embedding
preference networks into the Shafer-Shenoy framework. We have shown that a
direct encoding is sound with respect to optimality when using total orders, but it
is not necessarily the case when using partial orders. To overcome this difficulty,
we propose two alternative encodings. The first one is based on extending the
partial order into a total one. Its shortcoming however is that in some problems a
total order extension does not necessarily exist. Thus, this approach is not always
applicable. The second approach is based on a set-based encoding of the original
network. The virtue of this approach is that it is always possible. Therefore, any
preference network, using either a total or a partial order, can always benefit from
the local computation machinery through our set-based encoding, although there
can be computational problems, in particular, if the number of optimal solutions
is large.

But, as is the case for the tolerant Pareto example, there are meaningful
structures of preferences that are not captured by preference networks. Other
examples include preorders and semiorders, that allow richer indifference rela-
tions than identity, and can lead to less incomparabilities than if one attempted
to model the problem with a partial order. Further research will be developed
around the algebraic study of such structures.

Appendix: Proofs

This appendix includes proofs of the results, with the second part consisting of
the proof of Theorem 2 along with some additional auxiliary results.

16 Hélène Fargier, Emma Rollon and Nic Wilson

Proof (Proposition 1).
Suppose that a ∈ Kernel�(Scores(C)). Then there exists some d ∈ DX with

a = scoreC(d). If a were not an optimal score for C then d would not be an opti-
mal solution so there would exist d′ with scoreC(d′) ≺ scoreC(d) = a, which
would contradict a ∈ Kernel�(Scores(C)) because scoreC(d′) ∈ Scores(C).
Hence a ∈ Kernel�(Scores(C)) implies a is an optimal score for C.

Conversely, suppose that a is an optimal score for C. Then a = scoreC(d)
for some optimal solution d, so a ∈ Scores(C). If a /∈ Kernel�(Scores(C)) then
there exists some a′ ∈ Scores(C) with a′ ≺ a, and so there exists some d′ ∈ DX

with a′ = scoreC(d′), which contradicts the fact that d is an optimal solution.
Hence if a is an optimal score for C then a ∈ Kernel�(Scores(C)).

�

Proof (Proposition 2).
The fact that OPTL and FULLOPTL are in NP follows easily, since, by the

hypothesis, combination and testing of dominance are polynomial, so we can
confirm in polynomial time that scoreC(d) ≺ a for any given d and a.

To prove NP-hardness of OPTL: By the hypothesis, there exists some element
a such that a � 1. It follows by monotonicity that ak � ak−1 for all k > 0, where
a1 = a and ak = a⊗ ak−1, for k > 1. Thus, by transitivity, ak � a for all k > 0
and thus, using transitivity again, ak � 1 for all k > 0.

We can use a reduction from 3SAT, by generating for each clause a local
function on its variables which only take two different values: 1 (when the clause
is satisfied) and a (when violated). Then for any d, either score(d) = 1 (when d
satisfies all the clauses) or score(d) � a (when d violates some clause). Hence,
the CNF is satisfiable if and only if there is a d such that score(d) ≺ a. This
proof also shows that FULLOPTL is NP-hard (letting H = {a}).

�

Proof (Proposition 3). This follows immediately from Definitions 3 and 5. �

Proof (Proposition 4).
Axiom A1 can be shown to hold, using the commutativity and associativity

of ⊕. Axiom A2 follows immediately from the commutativity and associativity
of ⊗. Axiom A3 can be proved using distributivity: see the proof of Theorem 2
in [15], noticing that 〈L,⊗,⊕〉 is a semiring. �

Proof (Theorem 1).
By the definitions, (�c∈Cc)↓∅ is equal to

⊕
(Scores(C)). Suppose firstly that

� is a total order. Then ⊕ is just minimum with respect to �, so
⊕

(Scores(C))
is the minimum element of Scores(C). Thus (�c∈Cc)↓∅ is the unique element in
Kernel�(Scores(C)).

Enabling Local Computation for Partially Ordered Preferences 17

Conversely, suppose that � is not a total order, so that there are two scores
a and b that are incomparable, i.e., a ⊕ b 6= a, b. Then for the trivial problem
C = {c} with c(1) = a, c(2) = b, Kernel�(Scores({c})) = {a, b}, whereas c↓∅

equals a⊕ b, which is different from a and from b. �

Proof (Proposition 5).
We first show that (i) for any finite A ⊆ L, the greatest lower bound of A

is equal to
⊕
A. The equivalence a � b ⇐⇒ a ⊕ b = a and idempotence of ⊕

easily imply that
⊕
A is a lower bound for A. Now, consider any lower bound

b for A. We have that b � a1 and b � a2 implies that b � a1 ⊕ a2, using the
above equivalence. Iterating this yields b �

⊕
A. This implies that

⊕
A is the

greatest lower bound for A.
Next we show that (ii)

⊕
A is equal to

⊕
Kernel�(A). For any a ∈ A \

Kernel�(A), there exists b ∈ Kernel�(A) with b � a. Then a ⊕ b = b, which
implies that

⊕
A equals

⊕
A \ {a}. Iterating this shows that

⊕
A is equal to⊕

Kernel�(A).
Together, (i) and (ii) imply that the greatest lower bound of Kernel�(A)

is
⊕

Kernel�(A) which equals
⊕
A. Putting A = Scores(C), we have that

(�ci∈Cci)
↓∅, which equals

⊕
A, is equal to the greatest lower bound of Kernel�(Scores(C)).

�

Proof (Proposition 6). This follows immediately from Definition 7. �

To prove Proposition 7 we make use of the following lemma:

Lemma 1. Let A, B and C be finite subsets of L. We write A⊗′B for {a⊗ b :
a ∈ A, b ∈ B}. We abbreviate Kernel� to Kernel.

(i) Operation ⊗′ is commutative and associative;
(ii) A⊗′ (B ∪ C) = (A⊗′ B) ∪ (A⊗′ C).

(iii) Kernel(A ∪ (Kernel(B)) = Kernel(A ∪B);
(iv) Kernel(A⊗′ (Kernel(B)) = Kernel(A⊗′ B);

Proof. (i) Commutativity of ⊗′ follows from commutativity of ⊗. Regarding
associativity, we have A⊗′ (B⊗′C) = A⊗′ {b⊗ c : b ∈ B, c ∈ C} = {a⊗ (b⊗ c) :
a ∈ A, b ∈ B, c ∈ C}. Similarly, we can see that (A ⊗′ B) ⊗′ C = {(a ⊗ b) ⊗ c :
a ∈ A, b ∈ B, c ∈ C}. Associativity of ⊗′ then follows from that of ⊗,

(ii) A⊗′ (B ∪ C) = {a⊗ d : d ∈ B ∪ C} = {a⊗ b : b ∈ B} ∪ {a⊗ c : c ∈ C} =
(A⊗′ B) ∪ (A⊗′ C).

(iii) We first show that Kernel(A ∪ (Kernel(B))) ⊆ Kernel(A ∪ B). To prove a
contradiction, suppose that a ∈ Kernel(A∪(Kernel(B))) but a /∈ Kernel(A∪B).
We have a ∈ A ∪B, so there exists b ∈ A ∪B with b ≺ a. It cannot be the case
that b ∈ A∪Kernel(B) or else a would not be in Kernel(A∪ (Kernel(B))). Thus
b ∈ B − Kernel(B) so there exists some c ∈ Kernel(B) with c ≺ b. Transitivity

18 Hélène Fargier, Emma Rollon and Nic Wilson

of ≺ implies that c ≺ a, contradicting a ∈ Kernel(A ∪ (Kernel(B))), since c ∈
A ∪ (Kernel(B)).

We next show that Kernel(A ∪ B) ⊆ Kernel(A ∪ (Kernel(B))). Suppose
that a ∈ Kernel(A ∪ B), and to prove a contradiction, that a /∈ Kernel(A ∪
(Kernel(B))). Since A ∪ Kernel(B) ⊆ A ∪ B this must mean that a /∈ A ∪
Kernel(B) (else a wouldn’t be in Kernel(A ∪ B)), so a ∈ B − Kernel(B). But
then there exists b ∈ B (and so b ∈ A ∪ B) with b ≺ a, which contradicts
a ∈ Kernel(A ∪B).
(iv) We first show that Kernel(A⊗′ (Kernel(B))) ⊆ Kernel(A⊗′B). Suppose, to
prove a contradiction, that e ∈ Kernel(A⊗′(Kernel(B))) but e /∈ Kernel(A⊗′B).
There exists a ∈ A and b ∈ Kernel(B) with e = a⊗ b. Since e /∈ Kernel(A⊗′ B)
there exists a′ ∈ A and b′ ∈ B with a′ ⊗ b′ ≺ e. Since b′ ∈ B there exists
b′′ ∈ Kernel(B) with b′′ � b′. By monotonicity, a′ ⊗ b′′ � a′ ⊗ b′ ≺ e, which
contradicts e ∈ Kernel(A⊗′ (Kernel(B))).

We now show that Kernel(A⊗′ B) ⊆ Kernel(A⊗′ (Kernel(B))). Suppose, to
prove a contradiction, that there exists some e ∈ Kernel(A⊗′ B)−Kernel(A⊗′
(Kernel(B))). Write e = a ⊗ b, where a ∈ A and b ∈ B. There exists b′ ∈
Kernel(B) with b′ � b. Monotonicity implies that a ⊗ b′ � e, which implies
that a ⊗ b′ = e, since e ∈ Kernel(A ⊗′ B). Hence e ∈ A ⊗′ Kernel(B). Since
e /∈ Kernel(A ⊗′ (Kernel(B))) there exists f ∈ Kernel(A ⊗′ (Kernel(B))) with
f ≺ e. But f ∈ A⊗′ B, which contradicts e ∈ Kernel(A⊗′ B). �

Proof (Proposition 7).
Consider any finite subsets A,B,C ⊆ L.

Commutativity of ⊕s: It follows from commutativity of ⊗′ (Lemma 1(i)).
Associativity of ⊕s: A ⊕s (B ⊕s C) = Kernel(A ∪ Kernel(B ∪ C)), which, by
Lemma 1(iii), equals Kernel(A ∪ B ∪ C). By commutativity of ⊕s, we have
(A ⊕s B) ⊕s C = C ⊕s (A ⊕ B) which thus equals Kernel(A ∪ B ∪ C), proving
associativity of ⊕s.
Associativity of ⊗s: A ⊗s (B ⊗s C) = Kernel(A ⊗′ Kernel(B ⊗′ C)), which
by Lemma 1(iv) equals Kernel(A ⊗′ (B ⊗′ C)). Similarly, (A ⊗s B) ⊗s C =
Kernel((A ⊗′ B) ⊗′ Kernel(C)) = Kernel((A ⊗′ B) ⊗′ C). Associativity of ⊗s
then follows from associativity of ⊗′ (Lemma 1(i)).
Distributivity: A ⊗s (B ⊕s C) = Kernel(A ⊗′ Kernel(B ∪ C)), which equals
Kernel(A⊗′ (B∪C)) by Lemma 1(iv), which equals Kernel((A⊗′B)∪ (A⊗′C)),
by Lemma 1(ii).

We have (A⊗s B)⊕s (A⊗s C) = Kernel(Kernel(A⊗′ B) ∪Kernel(A⊗′ C))
which equals, applying Lemma 1(iii) twice, Kernel((A ⊗′ B) ∪ (A ⊗′ C)). We
therefore have A⊗s (B ⊕s C) = (A⊗s B)⊕s (A⊗s C), as required. �

Proof (Proposition 8).
By definition of the kernel, a � b if and only if Kernel�({a, b}) = {a}. The

definition of ⊕s is A ⊕s B = Kernel�(A ∪ B). Hence {a} ⊕s {b} = {a} iff
Kernel�({a, b}) = {a}. Therefore, a � b iff {a} ⊕s {b} = {a} .

Enabling Local Computation for Partially Ordered Preferences 19

�

Proof (Proposition 9).
Directly follows from Proposition 7 (〈L,⊗s,⊕s〉 is a semiring) and the proof

of Proposition 4 (Axioms A1, A2, A3 are satisfied for valuation structures gen-
erated by semirings). �

Proof (Proposition 10).
Consider the original preference network C built on 〈L,�,⊗〉, and its set-

based encoding C built on L, i.e., C is the set of valuations c with c(d) = {c(d)}
for any c ∈ C. scores(C) is the set of scores e ∈ L that are reached by some d in
the set-based encoding of the original problem. Notice that, because the original
scores given by the c in C are singletons for L, each e in scores(C) is a singleton
(this follows from the definition of ⊗s in L). Moreover, {a} is in scores(C) iff
a ∈ scores(C). Hence, scores(C) =

⋃
e∈scores(C) e.

Now, recall that because ⊕s is associative and commutative (�c∈Cc)↓∅ =⊕
s e∈scores(C) e. Hence, (�c∈C c)↓∅ = Kernel�(

⋃
e∈scores(C) e) = Kernel�(scores(C)).

�

Proof (Proposition 11).
Let n be the number of variables, m the number of functions and d =

max1≤i≤n{|Di|} be the maximum domain size among the variables in the pref-
erence network.

The number of tuples of any new function computed by variable elimination is
bounded by dtw. The size of any element in L is bounded by w(�). Therefore, the
size of any function is bounded by w(�)×dtw. Since the number of new functions
generated is bounded by the number of variables n, the space complexity clearly
holds.

Let A,B ∈ L. The time complexity of computing A ⊗s B is bounded by
w(�)2. Therefore, the combination of two functions ci, cj ∈ C is bounded by
w(�)2 × |Dscope(ci)∪scope(cj)|. When eliminating variable xi, there are at most
(mi+degi−1) functions to combine, where mi is the number of original functions
mentioning variable xi and degi is the number of new functions resulting from
the elimination of a previous variable and mentioning variable xi. The combined
arity of those functions is bounded by tw+ 1. Therefore, the time complexity to
eliminate variable xi is bounded by (mi+degi−1)×dtw+1. The time complexity of
variable elimination is bounded by

∑n
i=1(mi+degi−1)×dtw+1. Since

∑n
i=1mi =

m and
∑n
i=1 degi = n, then the time complexity holds.

�

Proving Theorem 2

We state and prove a number of auxiliary results in order to prove this theorem.

20 Hélène Fargier, Emma Rollon and Nic Wilson

Definition 9 (ordered group) Let us define (for the purposes of this paper)
that 〈G,⊗,1, P 〉 is ordered group if

– G is a commutative group under ⊗ with identity element 1;
– P ⊆ G
– P 3 1
– a, b ∈ P ⇒ a⊗ b ∈ P (the elements of P are called “positive elements”);
– a, a−1 ∈ P ⇒ a = 1.

It is said to be a totally ordered group if for all a ∈ G we either have a ∈ P or
a−1 ∈ P .

In the usual way, for group (G,⊗,1) and a ∈ G, we define a0 = 1, and for
k = 1, 2, . . . define ak inductively by ak = ak−1 ⊗ a. For k = −1,−2, . . ., define
ak to be (a−1)−k.

Lemma 2. Let 〈G,⊗,1, P 〉 be an ordered group such that for all a ∈ G with
a 6= 1 and all k > 0 we have ak 6= 1. Let a be some element of G with a 6= 1.
Then either (i) for all k > 0, ak /∈ P , or (ii) for all k > 0, (a−1)k /∈ P .

Proof. Suppose that neither (i) holds nor (ii) holds. Let k be minimal > 0 such
that ak ∈ P and let l be minimal > 0 such that a−l ∈ P . We have three cases:

– k = l: then ak ∈ P and a−k ∈ P , i.e., (a−1)k ∈ P , which implies by definition
of an ordered group that ak = 1, which implies a = 1, contradicting our
hypothesis.

– k > l: Then ak−l ∈ P , with 0 < k − l < k, contradicting the definition of k.
– k < l: Then (a−1)l−k ∈ P , with 0 < l− k < l, contradicting the definition of
l.

�

Lemma 3. Let 〈G,⊗,1, P 〉 be an ordered group, and let a be an element of G
such that for all k > 0, a−k /∈ P . Then 〈G,⊗,1, P ′〉 is an ordered group where
P ′ = {ak ⊗ p : p ∈ P, k = 0, 1, 2, . . .}.

Proof. We have to show that P ′ satisfies the last three properties in Definition
9.

– P ′ 3 1, by setting k = 0 and p = 1.
– Suppose P ′ contains two elements, which we can write as ak ⊗ p and al ⊗ q

for some p, q ∈ P and k, l ≥ 0. Then (ak ⊗ p)⊗ (al⊗ q) equals ak+l⊗ (p⊗ q)
which is an element of P ′ since p⊗ q ∈ P .

– Let b = ak ⊗ p be an element of P ′ such that b, b−1 ∈ P ′. Since b−1 ∈ P ′ we
can write b−1 as al ⊗ q for some q ∈ P and l ≥ 0. We can also write b−1 as
a−k ⊗ p−1. Hence al ⊗ q = a−k ⊗ p−1 and so (a−1)k+l = p ⊗ q ∈ P , which
implies, by the assumed condition on a, that k + l = 0 and so k = l = 0.
Thus p⊗ q = 1 and so q = p−1 and therefore, p, p−1 ∈ P which implies that
p = 1. We have shown that b = 1, as required.

Enabling Local Computation for Partially Ordered Preferences 21

�

Lemma 4. Let 〈G,⊗,1, P 〉 be an ordered group which is not a totally ordered
group such that for all a ∈ G with a 6= 1 and all k > 0 we have ak 6= 1. Then
there exists a strict superset P ′ of P such that 〈G,⊗,1, P ′〉 is an ordered group.

Proof. Since 〈G,⊗,1, P 〉 is not a totally ordered group there exists some a ∈ G
with a /∈ P and a−1 /∈ P . a 6= 1, so, by Lemma 2, either (i) for all k > 0, ak /∈ P ,
or (ii) for all k > 0, (a−1)k /∈ P . First, suppose (ii) holds. Then by Lemma
3, 〈G,⊗,1, P ′〉 is an ordered group where P ′ = {ak ⊗ p : p ∈ P, k = 0, 1, 2, . . .},
which is a strict superset of P since P ′ 3 a. Case (i) is the same, except replacing
a by a−1. �

Lemma 5. Let 〈G,⊗,1, P 〉 be an ordered group, and let P be the set of supersets
P ′ of P such that 〈G,⊗,1, P ′〉 is an ordered group. Let S be a non-empty subset
of P which is totally ordered by set inclusion, and let

⋃
S be the union of the

sets in S. Then 〈G,⊗,1,
⋃
S〉 is an ordered group.

Proof. We just have to show that
⋃
S satisfies the three last properties in Defi-

nition 9.

– Clearly
⋃
S 3 1 since any element of S contains 1.

– Suppose that a, b ∈
⋃
S. Then there exists P, P ′ ∈ S with a ∈ P and

b ∈ P ′, and so a, b ∈ P ∪P ′. Now, since S is totally ordered by set inclusion,
either P ⊆ P ′ or P ′ ⊆ P , and so P ∪ P ′ equals either P or P ′, and hence
〈G,⊗,1, P ∪ P ′〉 is an ordered group; this implies that a ⊗ b ∈ P ∪ P ′ and
so a⊗ b ∈

⋃
S.

– Suppose that a, a−1 ∈
⋃
S. Applying the previous argument with b = a−1

implies that a, a−1 are both elements of some set in S, and so a = 1, by the
definition of an ordered group.

�

Proposition 12 Let 〈G,⊗,1, P 〉 be an ordered group such that for all a ∈ G
with a 6= 1 and all k > 0 we have ak 6= 1. Then there exists some superset P ∗

of P such that 〈G,⊗,1, P ∗〉 is a totally ordered group.

Proof. Let P be the set of all supersets P ′ of P such that 〈G,⊗,1, P ′〉 is an or-
dered group. P is partially ordered by set inclusion. Lemma 5 shows that every
totally ordered subset of P has an upper bound (in P), so by Zorn’s Lemma,
P has at least one maximal element; call this element P ∗. We will show that
〈G,⊗,1, P ∗〉 is a totally ordered group. Suppose otherwise. Then by Lemma 4,
there exists a strict superset Q of P ∗ such that 〈G,⊗,1, Q〉 is an ordered group,
and so Q ∈ P, which contradicts the maximality of P ∗. �

22 Hélène Fargier, Emma Rollon and Nic Wilson

Proposition 13 Let (G,⊗) be a commutative group with operation ⊗ and iden-
tity element 1, such that for all a ∈ G with a 6= 1 and all k > 0 we have ak 6= 1.
Let � be a partial order on G satisfying monotonicity with respect to ⊗ (i.e., for
all a, b, c ∈ G, a � b implies a ⊗ c � b ⊗ c). Then there exists a total order �∗
extending � with �∗ satisfying monotonicity with respect to ⊗.

Proof. Define P = {a ∈ G : a � 1}. Then 〈G,⊗,1, P 〉 is an ordered group:

– P 3 1 since 1 � 1.
– Suppose that a, b ∈ P . Then a, b � 1, so by monotonicity a⊗b � 1⊗b = b � 1

and hence, a⊗ b ∈ P .
– Suppose that a, a−1 ∈ P . Then a−1 � 1, so by monotonicity, 1 = a⊗ a−1 �
a⊗ 1 = a implying 1 � a � 1, and hence a = 1, since � is a partial order.

Then, by Proposition 12, there exists some superset P ∗ of P such that
〈G,⊗,1, P ∗〉 is a totally ordered group. Define relation �∗ on G by a �∗ b
if and only if b ⊗ a−1 ∈ P ∗. We will show that �∗ is a total order extending �
satisfying monotonicity.

– Suppose that a � b. Then, by monotonicity, 1 � b ⊗ a−1 so b ⊗ a−1 ∈ P .
Hence b ⊗ a−1 ∈ P ∗ which implies that a �∗ b. We have shown that �∗
extends �.

– Monotonicity: Suppose a �∗ b. Then b⊗a−1 ∈ P ∗. Now, (b⊗c)⊗(a⊗c)−1 =
b⊗c⊗a−1⊗c−1 = b⊗a−1 and so (b⊗c)⊗(a⊗c)−1 ∈ P ∗. Thus a⊗c �∗ b⊗c.

– Reflexivity: a �∗ a since a⊗ a−1 = 1 ∈ P ∗.
– Completeness: Let a, b ∈ G. Since 〈G,⊗,1, P ∗〉 is a totally ordered group,

either (i) b ⊗ a−1 ∈ P ∗ and so a �∗ b, or (ii) (b ⊗ a−1)−1 ∈ P ∗, i.e.,
a⊗ b−1 ∈ P ∗ and so b �∗ a.

– Transitivity: Suppose that a �∗ b and b �∗ c. Then b ⊗ a−1 ∈ P ∗ and
c⊗ b−1 ∈ P ∗ so b⊗a−1⊗ c⊗ b−1 ∈ P ∗ so c⊗a−1 ∈ P ∗ and therefore a �∗ c.

– Anti-symmetric: Suppose that a �∗ b and b �∗ a. This implies that b⊗a−1 ∈
P ∗ and a⊗b−1 ∈ P ∗. Since a⊗b−1 = (b⊗a−1)−1 this implies that a⊗b−1 = 1
and so a = b.

�

Lemma 6. Suppose that ⊗ is a commutative and associative operation over a
set L, which is monotonic with respect to a partial order � and also satisfies the
property a ⊗ c � b ⊗ c ⇒ a � b. Define H = L × L. Define operation ⊗ on H
by (a, b)⊗ (c, d) = (a⊗ c, b⊗ d). Define relation � on H by (a, b) � (c, d) ⇐⇒
a ⊗ d � b ⊗ c. Define relation ≡ on H to be the symmetric part of �, so that
(a, b) ≡ (c, d) if and only if (a, b) � (c, d) and (a, b) � (c, d). Then:

– � on H is reflexive and transitive;
– ≡ is an equivalence relation;
– ⊗ on H is commutative and associative.
– (a, b) ≡ (a′, b′) if and only if a⊗ b′ = a′ ⊗ b.

Enabling Local Computation for Partially Ordered Preferences 23

– if (a, b) ≡ (a′, b′) and (c, d) ≡ (c′, d′) then (a⊗ c, b⊗ d) ≡ (a′ ⊗ c′, b′ ⊗ d′).
– (a, b) ≡ (c, d) if and only if (b, a) ≡ (d, c).

Proof.

– By commutativity of ⊗ on L and reflexivity of � on L we have a⊗ b � b⊗ a
which implies that (a, b) � (a, b), proving reflexivity of � on H.

– (a, b) � (c, d) and (c, d) � (e, f) implies a⊗d � b⊗c and c⊗f � d⊗e. Hence
a⊗ d⊗ f � b⊗ c⊗ f and b⊗ c⊗ f � b⊗ d⊗ e, and so a⊗ d⊗ f � b⊗ d⊗ e,
which implies that a⊗ f � b⊗ e and so (a, b) � (e, f), proving transitivity.

– � on H is reflexive and transitive implies that ≡ is reflexive, symmetric and
transitive and hence an equivalence relation;

– ⊗ on H is clearly commutative and associative, since ⊗ on L is commutative
and associative;

– (a, b) ≡ (a′, b′) if and only if (a, b) � (a′, b′) and (a′, b′) � (a, b) which is
if and only if a ⊗ b′ � a′ ⊗ b and a′ ⊗ b � a ⊗ b′, which is if and only if
a⊗ b′ = a′ ⊗ b.

– Suppose (a, b) ≡ (a′, b′) and (c, d) ≡ (c′, d′). Then, by the last part, a⊗ b′ =
a′ ⊗ b and c ⊗ d′ = c′ ⊗ d. Hence a ⊗ b′ ⊗ c ⊗ d′ = a′ ⊗ b ⊗ c′ ⊗ d, and so
(a⊗c)⊗(b′⊗d′) = (a′⊗c′)⊗(b⊗d), which implies (a⊗c, b⊗d) ≡ (a′⊗c′, b′⊗d′).

– (b, a) ≡ (d, c) if and only if b⊗ c = a⊗d which is if and only if (a, b) ≡ (c, d).

�

Lemma 7. Suppose that ⊗ is a commutative and associative operation over a
set L, which is monotonic with respect to a partial order � and also satisfies the
property a⊗ c � b⊗ c ⇒ a � b. Define H = L×L and define ≡ and ⊗ on H as
in Lemma 6. Define G = H/ ≡, i.e., the set of equivalence classes of H under
≡. � on H induces relation � on G, which is partial order. For (a, b) ∈ H we
write [(a, b)] ∈ G for the equivalence class containing (a, b). Define ⊗ on G by
[(a, b)]⊗ [(c, d)] = [(a⊗ c, b⊗ d)], (this is well-defined by Lemma 6). Then

– (G,⊗) is a commutative group with identity element 1 being the equivalence
class consisting of all elements of the form (a, a);

– ⊗ on G is monotonic over �, and we also have for e, f, g ∈ G, that e⊗ g �
f ⊗ g ⇒ e � f .

Proof. � on G is clearly a partial order since � on H is a reflexive and transitive
relation, and ≡, the symmetric part of �, is an equivalence relation, and � on G
is � on H factored by equivalence ≡. (It is anti-symmetric since if h, h′ ∈ H and
[h] is the equivalence class containing h then [h] � [h′] � [h] implies h � h′ � h,
and so h ≡ h′ and therefore [h] = [h′].) ⊗ on G is commutative and associative
because ⊗ on H is commutative and associative. For any c, d ∈ L, (c, c) ≡ (d, d).
For any [(a, b)] ∈ G, [(a, b)]⊗ [(c, c)] = [(a⊗c, b⊗c)] = [(a, b)] since (a⊗c, b⊗c) ≡
(a, b) (e.g., using Lemma 6). Hence [(c, c)] is an identity element, and so is the
unique identity element. Also, if (a, b) ≡ (c, c) then a ⊗ c = b ⊗ c, so a � b and

24 Hélène Fargier, Emma Rollon and Nic Wilson

b � a and therefore, a = b; hence the equivalence class of (c, c) consists of exactly
those elements of the form (a, a) for some a. Define [(a, b)]−1 = [(b, a)] (this is
well-defined by Lemma 6). [(a, b)]⊗ [(b, a)] = [(a⊗b, a⊗b)], which is the identity
element. Hence any element has an inverse, and so (G,⊗) is a commutative group
with identity element 1 being the equivalence class consisting of all elements of
the form (a, a).

Now, [(a, b)] � [(c, d)] holds if and only if a⊗ d � b⊗ c. [(a, b)]⊗ [(e⊗ f)] �
[(c, d)]⊗ [(e⊗f)] holds if and only if [(a⊗e, b⊗f)] � [(c⊗e, d⊗f)] which is if and
only if a⊗e⊗d⊗f � b⊗f⊗c⊗e, which is if and only if a⊗d � b⊗c. Therefore,
[(a, b)] � [(c, d)] holds if and only if [(a, b)]⊗ [(e⊗ f)] � [(c, d)]⊗ [(e⊗ f)]. �

The following result is a rewriting of Theorem 2.

Theorem 3 Suppose that ⊗ is a commutative and associative operation over a
set L with a neutral element 1, where ⊗ is monotonic with respect to a partial
order � and also satisfies the property a⊗ c � b⊗ c ⇒ a � b for all a, b, c ∈ L.
Suppose also that for all a, b ∈ L with a 6= b and all k > 0 we have ak 6= bk. Then
there exists a total order �′ on L extending � and such that for all a, b, c ∈ L,
a⊗ c �′ b⊗ c ⇐⇒ a �′ b.

Proof. Consider group (G,⊗) with identity element 1G, and partial order rela-
tion � on G, as defined in Lemma 7. Consider any g ∈ G, and any k > 0 such
that gk = 1G. g represents an ≡-equivalence class in H. Let (a, b) be an element
in this equivalence class. We have (a, b)k ≡ (a, a), i.e., (ak, bk) ≡ (a, a). By defi-
nition of ≡ we have ak ⊗ a � bk ⊗ a, and ak ⊗ a � bk ⊗ a, and so ak � bk and
ak � bk, and so ak = bk. By our hypothesis this implies that a = b, which implies
that (a, b) = (a, a) which implies that g = 1G. This means that the conditions
of Proposition 13 are satisfied.

Applying Proposition 13, there exists a total order �∗ extending � on G
with �∗ satisfying monotonicity with respect to ⊗. Define relation �′ on L as
follows: for a, b ∈ L, a �′ b ⇐⇒ [(a,1)] �∗ [(b,1)], where [(c, d)] means the
equivalence class containing (c, d). We can show that �′ is a total order on L:

– �′ is reflexive since �∗ is reflexive;
– if a �′ b �′ c then [(a,1)] �∗ [(b,1)] �∗ [(c,1)], and so [(a,1)] �∗ [(c,1)] by

transitivity of �∗, and hence a �′ c, proving transitivity of �′;
– if a �′ b �′ a then [(a,1)] �∗ [(b,1)] �∗ [(a,1)], which implies that [(a,1)] =

[(b,1)], and so (a,1) ≡ (b,1) and hence a � b and b � a, which implies
a = b. This shows that �′ is anti-symmetric.

– Consider any a, b ∈ L. By completeness of �∗ we either have [(a,1)] �∗
[(b,1)] or [(a,1)] �∗ [(b,1)] and hence either a �′ b or a �′ b proving that
�′ is complete.

We also have that �′ extends �: suppose a � b; then [(a,1)] � [(b,1)] and
so [(a,1)] �∗ [(b,1)], and hence a �′ b.

For any a, b, c ∈ L, we have a⊗c �′ b⊗c ⇐⇒ [(a⊗c,1)] �∗ [(b⊗c,1)] ⇐⇒
[(a,1)]⊗ [(c,1)] �∗ [(b,1)]⊗ [(c,1)] ⇐⇒ [(a,1)]⊗ [(c,1)]⊗ [(1, c)] �∗ [(b,1)]⊗

Enabling Local Computation for Partially Ordered Preferences 25

[(c,1)]⊗ [(1, c)] if and only if [(a,1)] �∗ [(b,1)] (since e.g., [(a⊗ c, c)] = [(a,1)]).
This is if and only if a �′ b, completing the proof. �

Corollary 1. Suppose that ⊗ is a commutative and associative operation over
a set L with a neutral element 1, where ⊗ is monotonic with respect to a partial
order � and also satisfies the property a ⊗ c � b ⊗ c ⇒ a � b for all a, b, c ∈ L
with c 6= >,⊥, where > and ⊥ satisfy the properties:

– for all a ∈ L, ⊥ � a � >
– for all a ∈ L− {>}, a⊗⊥ = ⊥
– for all a ∈ L− {⊥}, a⊗> = >
– for all a, b ∈ L− {⊥,>}, a⊗ b 6= ⊥,>.

Suppose also that for all a, b ∈ L with a 6= b and all k > 0 we have ak 6= bk.
Then there exists a total order �′ on L extending � where ⊗ is monotonic with
respect to �′, and a⊗ c �′ b⊗ c ⇒ a �′ b for all a, b, c ∈ L with c 6= >,⊥.

Proof. We must have > 6= 1 and ⊥ 6= 1. Then we can apply Theorem 2 to
L− {⊥,>} with ⊗ and � restricted to this set. So there exists a total order �′
on L−{⊥,>} extending � on L−{⊥,>} and such that for all a, b, c ∈ L−{⊥,>},
a⊗ c �′ b⊗ c ⇐⇒ a �′ b. We extend �′ to L by for all a ∈ L, ⊥ � a � >. �′
on L is clearly a total order which extends �.

To prove monotonicity: assume monotonicity fails with respect to �′, so that
there exists a, b, c ∈ L and a �′ b such that a⊗ c 6�′ b⊗ c, so a⊗ c 6= b⊗ c and
a⊗c �′ b⊗c. It must be the case that a 6� b (since a � b implies a⊗c � b⊗c and
so a⊗ c �′ b⊗ c). Thus a, b ∈ L−{⊥,>}. By monotonicity of �′ on L−{⊥,>}
we must have c ∈ {⊥,>}. But then a⊗ c = b⊗ c, which is a contradiction.

To prove the final property by contradiction, suppose that a ⊗ c �′ b ⊗ c
but a 6�′ b for some a, b, c ∈ L with c 6= >,⊥. Since �′ is a total order this
implies b ≺′ a. We have a 6= >, since if a = > then a⊗ c = > which contradicts
a ⊗ c �′ b ⊗ c. Similarly, b 6= ⊥. b ≺′ a then implies that b 6= > and a 6= ⊥.
Then a, b ∈ L − {⊥,>}. We then have a ⊗ c �′ b ⊗ c ⇒ a �′ b which is the
contradiction required. �

Acknowledgements

The work of the third author has been supported by the Science Foundation
Ireland under Grant No. 08/PI/I1912.

References

1. S. Benferhat, S. Lagrue, and O. Papini. Revision of partially ordered information:
Axiomatization, semantics and iteration. In IJCAI-05, Proceedings of the Nine-
teenth International Joint Conference on Artificial Intelligence, pages 376–381,
2005.

26 Hélène Fargier, Emma Rollon and Nic Wilson

2. S. Bistarelli, U. Montanari, and F. Rossi. Constraint solving over semirings. In
IJCAI’95, pages 624–630, 1995.

3. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint satisfaction
and optimization. J. ACM, 44(2):201–236, 1997.

4. C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, and D. Poole. CP-nets: a tool
for representing and reasoning with conditional ceteris paribus statements. JAIR,
21:135–191, 2004.

5. G. Brewka. Preferred subtheories: An extended logical framework for default rea-
soning. In IJCAI’89, pages 1043–1048, 1989.

6. D. Dubois and H. Fargier. Qualitative decision making with bipolar information.
In KR’06, pages 175–186, 2006.

7. D. Dubois, J. Lang, and H. Prade. Timed possibilistic logic. Fundam. Inform.,
15(3-4):211–234, 1991.

8. Jean-Philippe Dubus, Christophe Gonzales, and Patrice Perny. Multiobjective
optimization using GAI models. In IJCAI, pages 1902–1907, 2009.

9. H. Fargier and N. Wilson. Local computation schemes with partially ordered
preferences. In ECSQARU, pages 34–45, 2009.

10. E. Freuder and R. Wallace. Partial constraint satisfaction. Artificial Intelligence,
58(1-3):21–70, 1992.

11. N. Friedman and J. Halpern. Plausibility measures and default reasoning. In
AAAI’96, pages 1297–1304, 1996.

12. E. Giunchiglia and M. Maratea. Planning as satisfiability with preferences. In Pro-
ceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, pages
987–992, 2007.

13. M.I. Henig. The shortest path problem with two objective functions. EJOR,
25:281–291, 1985.

14. J. Kohlas. Information Algebras: Generic Structures for Inference. Springer-Verlag,
2003.

15. J. Kohlas and N. Wilson. Semiring induced valuation algebras: Exact and approx-
imate local computation algorithms. Artificial Intelligence, 172:1360–1399, 2008.

16. S. Lindström and W. Rabinowicz. Epistemic entrenchment with incomparabilities
and relational belief revision. In The Logic of Theory Change, Workshop, Konstanz,
FRG, October 13-15, 1989, Proceedings, pages 93–126, 1989.

17. Christos H. Papadimitriou and Mihalis Yannakakis. On the approximability of
trade-offs and optimal access of web sources (extended abstract). In Proceedings
41st Annual Symposium on Foundations of Computer Science, pages 86–92, 2000.

18. E. Rollon. Multi-Objective Optimization for Graphical Models. PhD thesis, Uni-
versitat Politècnica de Catalunya, Barcelona, Spain, 2008.

19. E. Rollon and J. Larrosa. Bucket elimination for multiobjective optimization prob-
lems. J. Heuristics, 12(4-5):307–328, 2006.

20. B. Roy. The outranking approach and the foundations of ELECTRE methods.
Theory and Decision, 31(1):49–73, 1991.

21. T. Schiex, H. Fargier, and G. Verfaillie. Valued constraint satisfaction problems:
Hard and easy problems. In IJCAI’95, pages 631–637, Montreal, 1995.

22. P. P. Shenoy. Valuation-based systems for discrete optimisation. In UAI’90, pages
385–400, 1990.

23. P. P. Shenoy and G. Shafer. Axioms for probability and belief-function proagation.
In UAI, pages 169–198, 1988.

24. N. Wilson. An order of magnitude calculus. In UAI’95, pages 548–555, 1995.
25. N. Wilson. A logic of soft constraints based on partially ordered preferences.

Journal of Heuristics, 12(4-5):241–262, 2006.

