
Constraints (2011) 16:148–172
DOI 10.1007/s10601-010-9101-4

Markov constraints: steerable generation
of Markov sequences

François Pachet · Pierre Roy

Published online: 18 September 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Markov chains are a well known tool to model temporal properties of
many phenomena, from text structure to fluctuations in economics. Because they
are easy to generate, Markovian sequences, i.e. temporal sequences having the
Markov property, are also used for content generation applications such as text
or music generation that imitate a given style. However, Markov sequences are
traditionally generated using greedy, left-to-right algorithms. While this approach
is computationally cheap, it is fundamentally unsuited for interactive control. This
paper addresses the issue of generating steerable Markovian sequences. We target
interactive applications such as games, in which users want to control, through simple
input devices, the way the system generates a Markovian sequence, such as a text, a
musical sequence or a drawing. To this aim, we propose to revisit Markov sequence
generation as a branch and bound constraint satisfaction problem (CSP). We pro-
pose a CSP formulation of the basic Markovian hypothesis as elementary Markov
Constraints (EMC). We propose algorithms that achieve domain-consistency for the
propagators of EMCs, in an event-based implementation of CSP. We show how
EMCs can be combined to estimate the global Markovian probability of a whole
sequence, and accommodate for different species of Markov generation such as
fixed order, variable-order, or smoothing. Such a formulation, although more costly
than traditional greedy generation algorithms, yields the immense advantage of
being naturally steerable, since control specifications can be represented by arbitrary
additional constraints, without any modification of the generation algorithm. We
illustrate our approach on simple yet combinatorial chord sequence and melody
generation problems and give some performance results.

F. Pachet (B) · P. Roy
Sony CSL, 6, rue Amyot, Paris, France
e-mail: pachet@csl.sony.fr

P. Roy
e-mail: roy@csl.sony.fr

Constraints (2011) 16:148–172 149

Keywords CSP · Markov chains · Sequence constraints · Global constraints ·
Interactive applications

1 Introduction and motivation

In this section, we describe the context in which the problem of controlling Markov-
ian sequences arises. We then introduce Markovian sequence generation formally.
In a second part, we review the state of the art in using CSP for sequence generation.

1.1 Motivation

Markovian sequence generation is a well known modeling tool used in many content
generation applications, such as text generation, music composition and interaction
and style imitation in general. Since Shannon’s seminal works on information theory,
the Markovian aspects of musical sequences has long been acknowledged, see e.g.
[8]. Many attempts to model musical style have therefore exploited Markov chains in
various ways [21]. In particular, Variable-Length Markov Models (in short, VMMs)
have been used successfully for music analysis and composition [5]. The work
presented here draws from the many experiments conducted with this technique for
music modeling and interaction.

The Continuator [22] was the first system in this species to learn and react interac-
tively to human music input. Its success was largely due to the capacity of the system
to faithfully imitate arbitrary musical styles, at least for relatively short time frames.
This capacity is in turn related to the fact that the “Markovian hypothesis” basically
holds for most of pitch sequences played by users (from children to professionals) in
many styles, notably belonging to tonal music (Classical, Jazz, Pop, etc.).

With the Continuator, a user typically plays a musical phrase using a Midi instru-
ment (e.g. a keyboard). This phrase is then converted into a sequence of symbols,
representing a given dimension or viewpoint of music, such as its pitch, duration,
or velocity. The sequence is then “learnt” by the system by computing a model of
the transition probabilities between successive symbols. When the phrase is finished
(typically after a certain temporal threshold has passed), the system generates a new
phrase using the Markov model built so far. The user can then play another phrase, or
interrupt the phrase being played, depending on the chosen interaction mode. Each
time a new phrase is played, the Markov model is updated. It was shown that such
an incremental learning creates engaging dialogs with users, both with professional
musicians and children [1]. Other systems such as Omax [11] followed the same
principle with similar results.

In such an interactive context, the control problem arises naturally. By construc-
tion, generated phrases are Markovian (in a sense that we define below precisely)
and therefore perceived as stylistically consistent. But the user is not able to specify
additional properties he/she wishes these sequences to satisfy. These control proper-
ties are not artificial, and can be of many kinds. For instance, in a musical context,
the user may want the sequence to be globally ascending, pitch-wise, or to satisfy an
arbitrary pitch contour. This control property can be a consequence of a particular
gesture, detected, e.g. by input sensors. Other properties can be related to musical
knowledge. For instance, it is often interesting in music improvisation to generate

150 Constraints (2011) 16:148–172

a sequence that ends on a specific note. This is particularly visible when observing,
e.g., guitar virtuoso improvisations in the style of Hard-Rock, which often consist of a
frantic sequence of notes ending gracefully on a note of the triad (e.g. the tonic of the
underlying chord). The control problem arises for other dimensions of music, such
as harmony. In the context of (tonal) chord generation, e.g. [14], it is natural to add
additional constraints to sequences generated from a Markov model. For instance,
one can look for chord sequences whose last chord resolves on to the first, in order
to convey a sense of tonality, or avoid too long repetitions of the same chord, or
impose certain chords to be at certain positions in the sequence, to force specific
modulations to occur.

The main problem we face here is that these control properties establish explicit
relationships between items in a sequence that cannot be represented by a local
Markov hypothesis (as described below). A claim of this paper is that the very
issue of controlling a Markovian sequence generator is necessarily combinatorial,
and cannot be satisfactorily addressed by purely greedy algorithms, or by tweaking
Markov models.

Another important point in our context is that real-time performance imposes
limitations on the length of the sequences to generate. In practice, we consider a
sequence generation scheme in which sequences are built chunk by chunk, and with
user control holding only within a chunk. We therefore look for methods that are
as expressive as possible constraint-wise, while possibly not scaling well for long
sequences (e.g. fully-fledged musical pieces).

In the next section we describe formally Markov generation using the traditional
approaches, stressing on the difficulty to satisfy non local properties of the sequence.

1.2 Various species of Markov sequence generation

Markov sequences represent stochastic processes having the “Markov property” [6].
This property says that the future state of the sequence depends only on the last state,
i.e.:

P (si|s1, · · · , si−1) = P (si|si−1)

Markov chains have been extensively studied in probabilities, notably to study
properties of infinites sequences (such as convergence, existence of cycles, etc.). In
practice, order-d Markov chains are often used as a generalization, by considering
d states in the past instead of one. An order-d Markov chain (also known as d-
gram) models the future of a partial sequence from its immediate past of length d,
approximating:

P (si|s1, · · · , si−1) = P (si|si−d, · · · , si−1)

In theory, order d Markov chains can be translated into larger chains of order 1,
by considering a product state space. In practice however, considering orders larger
than 1 yields a better compromise, notably because there are many ways to represent
efficiently the set of continuations for all possible prefixes of a given sequences set
(such as prefix trees or Factor Oracles [2]).

Constraints (2011) 16:148–172 151

In the case of a Markov chain of fixed order 1, one can define the log-probability
of a finite sequence of length N as the product of the logarithm of each probability:

(Log − probability of a f inite sequence) Log (P (S))=
∑

N
k=1 Log (P (sk+1|sk))

This definition extends trivially to orders larger than 1.
A more expressive class of Markov chains is variable-length Markov models

(VMM, [31]). In this model, chains of varying orders are considered, resulting in the
capacity for the model to capture statistical correlations of different length scales in a
single probabilistic model [6]. For many applications it was shown that VMMs offer
a better compromise than Hidden Markov Models (HMMs) in terms of simplicity of
use [25, 31].

For the applications we target, the Markov model is estimated from a training
set, i.e. a set of sequences deemed representative of the corpus of study. Transition
probabilities are estimated by counting the number of occurrences of the various
states, considering all possible subsequences of length d − 1 in the training set. Initial
probabilities are usually estimated by counting the number of occurrences of each
item. Our goal is to generate a sequence of finite length by exploiting a Markov
model obtained after the analysis of a training set.

In practice, Markovian generation, for all species, is based on a “random walk
approach” [9] in which sequences are generated step-by step, by the following greedy
process. At step i, the generated sequence s is noted s1, s2, · · ·, si. An appropriate
structure (such as a transition matrix, a prefix tree or a graph representing the
possible continuations for all possible subsequences of the training set) yields the set
of all possible continuations for the subsequence (prefix) of s considered. This prefix
can be a subsequence of fixed size (in the case of fixed-order Markov generation), or
variable size in the case of VMMs. In the latter case the prefix considered can be for
instance the longest one for which there exists at least one possible continuation,
starting from the end, i.e. si−p, si−p+1, . . . , si. This is the strategy adopted in the
Continuator [22]. Other strategies can be used, such as the one described in [25]
who propose a combination of the probabilities of continuations of various sizes, a
technique referred to as “smoothing”.

Once a prefix Pref is determined, a continuation Y is chosen by a random draw
in this continuation set, weighted according to the probabilities of each continuation
for this prefix:

(E) P (Y) = P (Y|Pref)

This continuation is then appended to s, and the process is iterated with the expanded
s as a new input sequence. This algorithm is simple to implement, hence its success
for interactive applications as described above.

It is important to note that random walk approaches favor, by definition, the most
probable local continuations, whatever the species of Markov chain considered. As
we will see, adding control constraints necessitates the exploration of sequences built
with possibly very small continuation probabilities. Such sequences are very unlikely
to be generated by a greedy algorithm.

Whatever Markov species is considered (order 1, d or variable) the random
walk approach to Markov generation has two related drawbacks. The first one is
theoretical, and applies mainly to variable-order generation: sequences generated
using random walk variable-order are not the most probable, as emphasized in

152 Constraints (2011) 16:148–172

[9]. This is due to the fact that only local decisions are made at each step. In
our context, this is not necessarily a problem since we do not want to generate
complete sequences, but rather generate them chunk by chunk, as described below.
A more serious limitation of this approach, addressed in this paper, is that sequences
generated by random walk cannot be controlled. By “control” we mean additional,
context-dependent properties that the user wants the generated sequence to satisfy.
Because random walk generates sequences step by step with no backtracking, it is
impossible to specify control properties that would hold beyond the next item to
generate. More generally as we will see, properties holding on arbitrary subsets of
items cannot be taken into account by random walk approaches.

1.3 Controlling Markov chain generation

Controlling a Markov generation algorithm creates indeed a paradox. Imposing a
constraint holding on one or several elements of the sequence to generate implies
that only a subset of the modeled corpus should be considered: the set of sequences
satisfying the constraints. However, this subset is not necessarily Markovian. For
instance, imposing that the first and last elements are equal obviously violates the
Markovian hypothesis of limited temporal dependency (as soon as the length S of the
sequence to generate is greater than d, the maximum order considered). Even simple
anchor constraints, i.e. unary constraints holding on one particular element of the
sequence will in general produce subsets that are not Markovian. So it is meaningless
to consider the “Markov model” of this subset in general. The practical goal we
have is therefore to search for finite-length sequences which (1) satisfy the control
constraints while (2) being optimally Markovian, in the sense of the “original” model.

An attempt to control VMM sequences for a specific case was proposed in
[22]. This method consists in biasing the Markovian probabilities used during the
generation phase by an external function, typically produced by the user. In this
mode the user plays an (arbitrary) melody and the system generates a note-to-note
real-time harmonization of the melody, i.e. plays a chord for each note played. For
each note, a chord is chosen using the random walk approach, in order to build a
Markovian sequence from a previously learnt training set of chord sequences. The
probability is biased to take into account the current note being played, so as to favor
chords that fit harmonically with this note (for instance, chords containing this pitch).
As a result, the system generates real-time harmonisations having a Markovian
quality while fitting with the played melody. However, this approach cannot be used
to satisfy constraints holding on several items at the same time, or holding on an item
at a fixed, future position (e.g. the last note), as it does not involve any backtracking.

More recently [11] proposed to graft a reinforcement learning stage on top
of a VMM generation algorithm, to produce music material exhibiting long-term
structure, in an attempt at better modeling musical composition and improvisation
behavior. In a related domain, [29] use constraint programming to solve guitar
fingering problems, i.e. reconstruct the gesture from a musical score, but they
consider only local constraints (holding on chords).

A more general framework for representing complex signals are Hidden Markov
Models (HMM, [28]). In HMM, hidden (not observable) states are added, as a way
to better represent the context. Observable states can be considered as specific
control properties. For example HMMs were used to generate harmonizations of

Constraints (2011) 16:148–172 153

given melodies (e.g. [15]). In the graphical domain, HMMs are used to improve
line sketchings in [33]. A rough sketch is first drawn by the user (e.g. a cloud). The
sketch is then used to estimate the best possible set of “refined sketches”, previously
learnt and represented as a HMM (e.g. a “cloud HMM”). A new refined curve
is then generated from the rough sketch and the selected HMM using a Viterbi
algorithm.

It is important to note that the HMM approach works thanks to the Bellman
principle. The reason why Bellman holds is that observable states can be used as an
objective function, i.e. an accumulative sum of monotonic, non-decreasing cost func-
tions. As such, this approach cannot be used to model general control constraints,
notably constraints that cannot be estimated a priori. Obviously, constraints holding
on more than one item cannot be satisfied with a greedy algorithm. However, in the
context of Markovian sequence generation, even simple constraints such as anchor
constraints (imposing a fixed value at a specific position) may have implications on
the whole sequence, i.e. influence more than d neighbors of the anchor. Therefore
the Bellman principle behind Viterbi does not hold, and some form of combinatorial
search is required to generate a Markovian sequence that satisfies the constraints.

This paper addresses exactly this problem: how to generate a sequence that is
Markovian while satisfying additional arbitrary constraints. The solution we propose
is to look at Markovian sequence generation from a constraint programming per-
spective. In our approach, arbitrary control constraints are easy to introduce, thanks
to the huge existing constraint library, e.g. the AllDiff constraint [30], sequencing
constraints [35], and more generally global constraints [7]. Before describing our
solution, we review below the existing CSP approaches in sequence generation.

1.4 Sequencing constraints

Constraint programming was extensively used for melody harmonization problems,
see [4]. Constraint programming was so far less considered for interactive, real time
applications. Anders and Miranda [3] proposed a general framework to use CSP for
real time music composition, but addressed essentially the time-out problem to use
CSP in a traditional manner. Sequence generation using CSP was used in [23] to build
interactively music playlists. A Markovian property holding on consecutive titles in a
playlist was considered but only addressed binary contiguity constraints, i.e. order-1
Markov sequences.

On the other hand, sequence generation has been studied in the context of global
constraints for operation research applications such as scheduling or rostering. A
famous constraint dealing with sequence generation is the sequencing constraint [7,
36]. This constraint defines sliding cardinality relations holding on the possible values
of variables. As such it does not address our problem.

The regular constraint [27] and its various extensions (cost, cost-regular) are
constraints holding on a fixed-length sequence of variables, requiring that the
corresponding sequence of values belong to a regular language, itself defined by a
deterministic finite state automaton (DFA). Regular constraints could be used, as an
ingredient in our solution, but we propose a simpler and more efficient approach, as
discussed in Section 3.4.

Another related constraint is the constraint defined in extension, i.e. by the set of
admissible tuples, such as the IlcTableConstraint [16]. As we will see below, although

154 Constraints (2011) 16:148–172

we define our Markov constraints in extension, the need to cope with variable-orders
imposes additional requirements for the filtering algorithms.

2 Examples

In this section we introduce two typical examples of Markovian music generation:
chord sequences and melodies. We describe shortly the problems and corpuses used
for training, and show some typical examples of control constraints and solutions
obtained by our method.

2.1 Chord sequence generation

The generation of harmonic structures has long been recognized as style-dependent.
The specific case of Blues chord sequences has received a lot of attention in music
modeling, since the works of [34], who emphasized the grammatical structure of 12
bar blues. Grammar-based approaches consist in representing explicitly the corpus
of all sequences as a set of rules, justified by harmonic knowledge. However, this
approach does not allow users to control the generated sequences easily. Moreover,
grammar-based approaches do not naturally cope with transition probabilities, and
all sequences are treated as equally probable.

We propose here to generate 12-bar Blues sequences from a Markovian perspec-
tive, to illustrate the new possibilities offered by controlled Markovian generation.
We consider a corpus of Blues chord sequences taken from Charlie Parker’s Om-
nibook [24]. Each chord is represented by a symbol consisting of (1) the pitch class
(12 possibilities) and (2) the chord type. We restrict this study to three chord types:
Seventh (noted 7), minor (noted min) and half diminished (noted h7). 22 Blues are
taken as representative of Charlie Parker’s “Blues” style. A typical example of a
Blues chord sequence is “Blues for Alice”:

F7|Eh7
/

A7|Dmin
/

G7|Cmin
/

F7|Bb7|Bbmin
/

Eb7|Amin|Abmin
/

Db7|Gmin|
C7|F7|Gmin

/
C7

where vertical lines represent bars, and slashes represent half bars. In this paper, we
systematically consider Blues as sequences of 24 chords with two chords per bar, by
repeating chords when needed. “Blues for Alice” is thus eventually represented as:

F7 F7 Eh7 A7 Dmin G7 Cmin F7 Bb7 Bb7 Bbmin Eb7 Amin Amin Abmin Db7
Gmin Gmin C7 C7 F7 F7 Gmin C7

Another example taken from our corpus is BackHomeBlues, represented as:

C7 C7 C7 C7 C7 C7 C7 C7 F7 F7 F7 F7 C7 C7 Emin A7 Dmin Dmin
G7 G7 C7 C7 Dmin G7

The full corpus is given in [19]. In this example, all sequences have been transposed
into C. The approach we follow here is to train a Markov model on this Blues
sequence corpus, and generate new sequences from this model. Control constraints
are then added in order to bias the generation to particular “species” of Blues.

Constraints (2011) 16:148–172 155

2.1.1 Blues constraints

As an example, the following sequence could be generated from a Markov model of
fixed-order 1 using a traditional greedy algorithm (Table 1).

This sequence is clearly not a “Blues” in the traditional sense. For instance, it
does not end with a chord that resolves on to the first (like in all examples of the
corpus). This is normal, since such a property is not encoded in the Markov model.
The structure of Blues sequences can, however, be defined easily by the following set
of constraints:

(Blues Constraints):

• Start by a given key (say, “C7”).
• End by a chord that resolves on to the first (say, “G7”).
• Play the fourth of the initial key at the beginning of the second “line”, i.e. at

position 9 (here, “F7”).

With these constraints, a generated sequence could be the following (Table 2).

2.1.2 Generating exotic blues

More complex control constraints can be added to generate yet other Blues vari-
ations. For instance, one could generate a Blues in C in which there is exactly
one occurrence of an F#7 chord. This constraint is interesting because F#7 is
relatively “far away” from the tonality of C so such a sequence explores the limits
of “bluesness”.

However, it is impossible to obtain this sequence with the corpus as defined above,
because F#7 does not appear in any of the training Blues transposed in C. To increase
the possibilities of generation, we translate the corpus in all keys. As a result, each
chord has 36 possible values (12 pitch classes and three chord types).

With this transposed corpus, the most probable sequence, with fixed-order 1 given
the Blues constraints is the following (Table 3).

With the additional cardinality constraint (exactly one “F#7”), the most probable
solution is shown in Table 4. This sequence is 106 less probable than the most
probable Blues, which shows that satisfying such a constraint would not be reachable
by a greedy approach.

Another example is a Blues in which all chords are different. The use of the AllDiff
constraint in music generation has been promoted by the developments of “serial”
music. This type of music consists in escaping tonality by treating equally all 12 pitch
classes, and has been illustrated by composers like Schönberg, Berg, Webern and
later Boulez. For this reason, we call this sequence the “Boulez Blues”. This Blues
sequence blends in an interesting way two contradictory constraints: the Markovian
probabilities which tend to generate a sequence that imitate Charlie Parker’s deeply
tonal Blues style, and the AllDif f constraint that tend to dissipate the sense of
tonality. Similarly, its log-probability (−46.74), show that this sequence is particularly
difficult to reach. Such a sequence has never, to our knowledge, been exhibited,
because it requires the exploration of a huge search space (Table 5).

These examples illustrate the power of controlled Markovian generation for
generating harmonic progressions. The same ideas can be used to generate melodies
as shown below.

156 Constraints (2011) 16:148–172

Table 1 A 24 chord sequence generated from a Markov model of fixed order 1, from the Omnibook
corpus

(Sequence starting by “C7”, no control constraints)

C7 (0.4)/C7 (0.65) C7 (0.65)/C7 (0.65) C7 (0.65)/C7 (0.65) C7 (0.65)/A7 (0.05)
Dmin (0.73)/G7 (0.62) G7 (0.5)/G7 (0.5) G7 (0.5)/C7 (0.46) C7 (0.65)/F7 (0.13)
C7 (0.26)/Dmin (0.08) G7 (0.62)/G7 (0.5) G7 (0.5)/C7 (0.46) C7 (0.65)/F7 (0.13)

The probabilities of each chord (given the preceding one) are indicated. The log-probability of the
sequence (as defined in Section 3.2) is −21.74. It can be observed, however, that this sequence does
not satisfy the properties of a Blues. For instance it does not end by a G7

Table 2 A 24 chord sequence generated from the Omnibook corpus, and satisfying the additional
“Blues” constraints

(Blues in “C7”)

C7 (0.4)/C7 (0.65) Bh7 (0.01)/E7 (1) Amin (1)/D7 (1) Gmin (0.6)/C7 (0.9)
F7 (0.13)/F7 (0.69) F7 (0.69)/F7 (0.69) F7 (0.69)/F7 (0.69) F7 (0.69)/Fmin (0.06)
Fmin (0.44)/ Emin (0.29)/ Ebmin (0.43)/ Dmin (0.36)/

Emin (0.33) Ebmin (0.18) Dmin (0.43) G7 (0.62)

The log-probability of the sequence is −21.45. The beginning is similar to “Blues for Alice”, but the
ending is original

Table 3 The most probable “Blues” sequence with a transposed corpus has a log-probability of
−20.55

(Optimal Blues in “C7”)

C7 (0.06)/C7 (0.6) C7 (0.6)/C7 (0.6) C7 (0.6)/C7 (0.6) C7 (0.6)/C7 (0.6)
F7 (0.13)/C7 (0.07) C7 (0.6)/C7 (0.6) C7 (0.6)/C7 (0.6) C7 (0.6)/C7 (0.6)
C7 (0.6)/C7 (0.6) C7 (0.6)/C7 (0.6) C7 (0.6)/C7 (0.6) C7 (0.6)/G7 (0.07)

Table 4 A Blues sequence with the additional constraint that it should contain exactly one F# 7
chord

C7 (0.06) C (0.6) C7 (0.6) C7 (0.6) C7 (0.6) C7 (0.6) C7 (0.6) C7 (0.6)
F7 (0.13) Bbmin (0.06) Eb7 (0.57) Eb7 (0.6) Eb7 (0.6) Eb7 (0.6) Abmin (0.06) Db7 (0.57)
F#7 Cmin Cmin Cmin Cmin Cmin Cmin G7

(0.13) (0.01) (0.33) (0.33) (0.33) (0.33) (0.33) (0.01)

The log-probability of the sequence is −34.5, so 106 less probable than the most probable Blues

Table 5 The Boulez Blues: a Blues sequence with all different chords, and, here, optimal Markovian
probability (fixed order 1)

C7 Fmin Bb7 Ebmin Ab7 Db7 Dbmin Cmin
(0.06) (0.06) (0.57) (0.06) (0.57) (0.13) (0.01) (0.08)

F7 Bbmin Eb7 Abmin Gmin Gbmin B7 Gb7
(0.57) (0.06) (0.57) (0.06) (0.08) (0.08) (0.57) (0.07)

Bmin (0.06) E7 (0.57) Amin (0.06) D7 (0.57) Emin (0.04) A7 (0.57) Dmin (0.06) G7 (0.57)

The ending (last row) is interestingly very tonal. The log-probability of the sequence is −46.74, which
is 1011 less likely than the most probable Blues. There is no solution with fixed-order greater than 1

Constraints (2011) 16:148–172 157

Fig. 1 The three melodies of our training database: ascending scale, descending scale, and arpeggio,
all in E minor. The pitch of each note is represented as an integer, with the convention that C4 = 0,
C#4 = Db4 = 1, . . . , G4 = 7, etc. Enharmonically equivalent notes are not distinguished. Durations
are ignored in the problem presented here, only pitches are considered. Although these examples
are in the E minor scale we notate them in the key of C with explicit accidentals

2.2 Melody generation

In this section, we illustrate controlled Markovian generation for melodic impro-
visation. In this example, only specific information about melodies is represented.
The pitch of each note is represented as an integer, with the convention that
C4 = 0, C#4 = Db 4 = 1, . . . , G4 = 7, etc. Enharmonically equivalent notes are
not distinguished. Note durations are ignored. In summary, melodic information is
represented by integer sequences (pitch sequences). Note that other information
could be represented and combined. This aspect, known as the viewpoint problem,
is discussed in Section 3.6.2.

The problem we address is to generate a 16 note sequence representing one
measure of “improvisation” in the style of the famous virtuoso guitarist Al Di Meola.
His style is characterized by the use of specific scales, and transcriptions of his
improvisations can be found in many scores (e.g. [13]). In our example, we consider
a typical “staircase” Al Di Meola scale consisting of the three following melodies
(shown in Fig. 1 using conventional music notation), for a total of 105 notes (15
different notes).

• Melody 1 is an ascending “staircase” scale in the key of E minor and is repre-
sented by the following sequence: 4, 6, 7, 9, 6, 7, 9, 11, 7, 9, 11, 12, etc.

• Melody 2 is the descending scale and is represented by the following sequence:
28, 27, 24, 23, 27, 24, 23, 21, etc.

Fig. 2 A 17 note melody with a variable-order Markov (max-order 4), and additional constraints
(starts and ends by E). A longer prefix was chosen unintentionally by the system

158 Constraints (2011) 16:148–172

Fig. 3 A 17 note melody with a variable-order Markov (max order 4), and order 5 forbidden, and
additional constraints (starts and ends by E). Consequently the melody does not contain any prefix
longer than 4

• Melody 3 is a short scale consisting of 5th intervals, still in E minor, and is
represented by the following sequence: 4, 11, 16, 23, 28, 23, 16, 11, 4. This melody
is added to the corpus to allow intervallic variety.

We now want to generate new melodies in this style. Like in the chord sequence
example above, additional constraints are motivated by the musical context. As an
example, we consider a simple constraint that the melody should start and end by
the same note (E). We give below several examples of such sequences, generated by
variable-length Markov models using our approach (described in the next sections)
(starts and ends by E, variable-order 4) (Fig. 2).

This example shows the varying size of prefixes used for the generation. Note that
a maximum order d (here, 4) corresponds to the size of the learnt Markov model, but
not necessarily to the maximum size of prefixes used in the generation, as prefixes
of larger size can be unintentionally present. This can lead to the presence of long
replicas of the training set, a feature that may be unwanted in some cases. We show
here another example where we have forbidden the use of prefixes of size larger than
4, a possibility offered by our approach, as explained in Section 3.2: (starts and ends
by E, Variable-order 4, with order 5 disallowed) (Fig. 3).

3 A CSP formulation of Markov sequence generation

A naïve solution to find Markovian sequences satisfying arbitrary control properties
is to use generate-and-test. In this approach we define control properties as cost
functions. We then generate many sequences using the random walk algorithm, and
select the one that minimizes this cost. Obviously, this method is costly with no
guarantee to find good, let alone optimal solutions.

The solution we propose consists in doing exactly the opposite. We explore the set
of sequences that satisfy exactly the control constraints, and we define the Markovian
property as a cost function to optimize. More precisely we explore the space of all
sequences of length N belonging to

∑N where
∑

is the alphabet, and N is fixed
and is the maximum length of the sequences to generate. Optimization is performed
by a Branch and Bound resolution strategy that optimizes the cost function on the
sequence to generate. The architecture we propose below can be seen as a way to
estimate the cost function efficiently using a CSP approach.

In the next section we define more precisely how to define the Markovian property
as a cost function, depending on the species of Markov chain considered.

Constraints (2011) 16:148–172 159

3.1 Continuations as Elementary Markov Constraints (EMCs)

We represent the notion of Markovian cost for a sequence as a constrained variable
to optimize. We can observe that Markov sequences are built in an incremental
manner, by considering the continuations of subsequences of a fixed or bounded
size.

To represent this generation scheme as a constraint problem, we introduce
Elementary Markov Constraints (EMCs). An EMC represents a continuation for
a given context, together with its probability. More precisely, an EMC of order
d represents a sequence of length d + 1 that would be produced by a generation
algorithm of order d, i.e. a context (d contiguous variables in the sequence), and its
continuation (the (d + 1)th variable in the sequence). Each EMC maintains another
variable called prob, which represents the estimated probability of the continuation
given the context. So each EMC is defined as a triplet:

EMC = {context, continuation, prob}
The constraint propagators we describe below ensure that P (continuation|context) =
prob, where prob represents the probability of the continuation given the context,
as estimated from the training set. Once EMCs are introduced, various global cost
functions can be defined depending on the applications, and optimized. Additional
constraints can then be posted on arbitrary items of the sequence.

EMCs can be combined in various ways, depending on the type of Markovian
generator we wish to simulate. We propose below examples with fixed- and variable-
order and different generation strategies.

3.2 The Markovian property as a cost function

We define the cost of a sequence s as the sum of Markovian cost for each si making
up the sequence:

cost(s) =
∑

si∈scost(si).

By definition, random walk approaches consider individual cost(si) at each step, but
not cost(s). The approach we propose optimizes cost(s) by searching the sequences
that satisfy the control constraints in

∑N . The important issue is how to define
cost(si). We propose below 4 cost functions, representing the most used strategies
in Markov chain generation.

3.2.1 Fixed-order

Given a sequence s = s1, s2, · · ·, sN , and a fixed order d, the fixed-order Markovian
cost of s is the product of the probability of each item in the sequence. Technically
it is more convenient to consider the log-probability to convert multiplications into
sums:

Cost f ixed (si) = log
(
P fixed (si)

) = log (p (si|si−d, . . . , si−1))

When there is no continuation at fixed order d, the corresponding EMC is considered
as violated.

160 Constraints (2011) 16:148–172

In the context of variable-order Markov generation, contexts of varying lengths
are considered. There are several ways to define a variable-order cost function,
depending on the strategy used.

3.2.2 Smoothing

The smoothing technique was introduced originally to cope with the cases when some
items in the sequence have no context of order d. The probability of those items is
0, which is known as the zero-frequency problem [37]. To solve the zero-frequency
problem, the probability of a given item is computed by combining the probability
of the item with respect to contexts of different orders. There is no general rule
to define the smoothing function, and different functions were introduced [25]. In
our examples, we use the following smoothing function, which simply averages the
probability of an item over all the orders, from 1 to d:

Costsmooth (si) = log

(∑ d
l=1 p (si|si−l, . . . , si−1)

d

)

3.2.3 Max-order

Another technique referred to here as “Max-order” consists in choosing always the
maximum order possible. This corresponds to the strategy used for the Continuator.

Costmax (si) = log (p (si|si−l max, . . . , si−1))

where lmax is the maximum order for which P (si|si−l max, . . . , si−1) �= 0

3.2.4 Algebraic

Another interesting cost function consists in considering only the lengths of the
prefixes, in a purely algebraic view of Markov chain generation. Such a cost favours
the longest but not necessarily the most probable prefixes. This cost function can be
defined as follows. The use of square is arbitrary, and favors longer continuations,
other polynomials could be used instead:

Costalg (si) = lmax2

In the next sections we define more precisely how these cost functions can be
represented as constraints holding on the problem variables, and on variables specific
to each EMC.

3.3 Problem statement

The generation of sequences is represented as a constraint optimization problem as
follows. Let S be a set of training sequences over �. We wish to generate sequences
of length N that optimize a Markovian cost function while satisfying the control
constraints.

Let d be the maximum order of the Markovian constraints. Items of the sequence
are represented by finite domain item variables v1, . . . , vn whose domain is �. Each
item variable is constrained by one or several EMCs. Each EMC of order l represents
the Markov property for a given item variable considered as a continuation of a prefix
of length l and is noted Ci,l .

Constraints (2011) 16:148–172 161

The probability variable of Ci,l is noted Pi,l . This variable is represented as a
finite domain variable (and not as an interval variable), whose domain is the set of
probabilities of each continuation at position i given all prefixes of length l:

D
(
Pi,l

) = {P (xi|xi−l, . . . , xi−1) |xk ∈ D (vk) , k = i − l, . . . , i}
These probabilities are computed once during initialization, by estimating the likeli-
hood of each continuation in the training set. Additionally, each EMC is reified [32],
and the associated control variable is noted Bi,l . When the control variable is set to
true, the corresponding EMC is satisfied by n-tuples such that:

Pi,l = P (vi|vi−l, . . . , vi−1)

Control variables may also be used to forbid the use of specific orders (as illustrated
in Section 4.1).

In the case of fixed order d, only one EMC of order d is posted on each item
variable vi. In the case of variable order, several EMCs are posted on each item
variable v, for each order l ≤ d (see Fig. 4). Note that for the first variables vi with
i ≤ d only EMCs of order i are posted.

The cost function is defined by a Sum constraint on the individual cost(vi) for each
item variable. Individual costs are themselves defined by constraints holding on the
probability variables of each EMC holding on vi as follows:

Fixed-order: cost f ixed (vi) = Pi,d

Variable-order/smoothing: costsmooth (vi) = log
(∑ d

l=1 pi,l

d

)

This cost is represented by a combination of Log, Sum and Divide constraints
holding on the probability variables.

Variable-order/max-order: costmax (vi) = log
(
Pi,lmax

)

This cost is represented by an ad hoc constraint holding on the probability vari-
ables Pi,1, . . . , Pi,d and the control variables Bi,1, . . . , Bi,d. This constraint maintains
the value lmax in a constrained variable lmaxi whose domain is {1, . . . , d}.

Variable-order/algebraic: costalg (vi) = lmax2

This cost is represented by a Square constraint holding on the same lmaxi.
Arbitrary control constraints can be added to the problem definition. Generated

sequences are solutions of the CSP optimizing the cost function. Section 4.1 illustrates
how the choice of a given cost function impacts the solutions on a concrete example.

3.4 Propagators for elementary Markov constraints

A solution to implement EMCs could be to use regular constraints as defined
in [27]. This would necessitate the construction of the deterministic finite-state
automaton corresponding to the language consisting of all subsequences of fixed

Fig. 4 A stack of EMCs of
orders 1 to 3 with variable v4
as continuation. Each EMC
Ci,l maintains its probability
variable Pi,l and control
variable Bi,l

162 Constraints (2011) 16:148–172

length generated from the training set. Such an automaton can be produced for
instance with tools borrowed from string matching, such as the Factor Oracle [2].
Note that such an automaton has been used for building music interactive systems
using a random walk approach in the spirit of the Continuator [11].

However, this solution is costly because regular constraints maintain a layered di-
rected multi-graph representation of the underlying automaton. This graph contains
support information for each couple variable/value, and is updated after each domain
modification. It is consequently also saved and restored at each backtrack. The size
of this support graph is linearly dependent on the size of the underlying automaton.
The complexity of the regular constraint is also directly dependent on the size of
this graph. This makes this approach well-suited for regular languages yielding a
compact automaton (small number of states). In our case, however, the automaton
corresponding to the “language” of fixed order subsequences of the training data can
be as large as |�| × d.

The cost-regular constraint [12] as well as multi-cost [20] extend regular by
maintaining a cost variable. However, these costs are set on the variable/value pairs,
whereas we need to represent the probabilities of a continuation given all contexts.
More precisely, the costs in a cost-regular constraint with d + 1 decision variables
are represented by a matrix of dimension (d + 1) × |�|. For each EMC, we need to
consider |�|d+1 probabilities, i.e. one for each tuple.

We propose here a simpler implementation of EMCs, also based on the main-
tenance of a support list for each variable/value pair. However, we exploit two
important observations. Firstly, we know explicitly the set of all sequences (the
training set), and therefore all subsequences of interest. Secondly, there is a one-to-
one mapping between the tuples that satisfy the constraint and the set of admissible
subsequences for the constraint. This mapping can be exploited to represent supports
efficiently as explained below.

Following Pesant [27], each EMC maintains a structure that stores, for each item
variable vi and for each value x ∈ �, the set of all supports, i.e. the subsequences
supporting the variable-value pair (vi, x). Additionally, each EMC maintains the list
of supports for the probability variable prob, i.e. for each p ∈ D (prob) the support
of (prob, p) is the set:

supports (prob , p) = {(s1, . . . , sd+1) |P (sd+1|s1, . . . , sd) = p}

During the resolution, each variable v can undergo two domain reduction events:
(1) the domain is reduced to a single value, i.e. the variable is instantiated (val-
ueChanged), and (2) a value is removed from the domain of v (valueRemoved).
After these events, two main tasks must be performed: (1) maintaining domain
consistency for each EMC, and (2) maintaining the support lists.

3.4.1 Management of supports and domain-consistency

For a given EMC C of order d on item variables (v1, v2, . . . , vd, vd + 1) and on proba-
bility variable prob, a support for (vi, x) is any subsequence s = s1, . . . si, . . . , sd, sd+1

with si = x. A support for (prob, p) is any subsequence s = s1, . . . , sd, sd+1 such that
p = P (sd+1|s1, . . . , sd)

Constraints (2011) 16:148–172 163

We show that an EMC is domain consistent if, and only if, the following property
P holds for all i, j = 1, . . . , d + 1:

(P) ∪x∈D(vi) supports (vi, x)=∪x∈D(v j)supports
(
v j, x

)=∪p∈D(prob)supports (prob , p)

(P) means that every support for a given variable/value pair is also a support for every
other variable, including prob, for some value. Domain-consistency of C implies
trivially (P). Conversely, (P) entails domain consistency, since:

∀x ∈ D = (vi) such that supports (vi, x) �= ∅
→ ∃s = (s1, . . . , sd+1) ∈ supports (vi, x) , i.e. si = x

→ ∀ j; s ∈ supports
(
v j, s j

)
and ∃p ∈ D (prob) such that s ∈ supports (prob, p)

i.e. p (sd+1|s1, . . . , dd) = p

→ s satisf ies C

→ x is consistent with vi

The supports are represented as unique indices in the initial sequences. This light-
weight representation is efficient in practice as: (1) the propagators are implemented
with constant-time elementary remove operations; and (2) the save and restore
operations, performed upon backtracking, can be implemented efficiently (instead
of saving/restoring the whole graph).

Ad hoc structures like factor oracles could lead to more compact and efficient
representations of the sequences than our explicit representation. However, our
representation has a number of advantages. First, it allows to implement efficient
propagators for “value changed” and “value removed” events as described below.
Additionally, individual sequence lookup is required only once to initialize the
problem.

3.4.2 Propagators

The propagators presented here achieve domain consistency as they restore (P) after
domain reduction events and do not remove any consistent supports or values.

The support lists, as well as the domains of probability variables are initialized
once before the resolution, by procedure init, computed for each EMC. Supports
lists are updated during computation and are saved and restored upon backtracking.

init (Ci,l)

 l+1 // The subsequences of length l+1

164 Constraints (2011) 16:148–172

The propagators are the following:

valueChanged(,) // was instantiated with

 // keep only supports also supporting value for

 if
 // domain-consistency: unsupported values are removed

valueRemoved(,) // was removed from the domain of

 // remove supports of /

 if
 // domain-consistency: unsupported values are removed

The worst-case complexity of these two methods is O(N × |�|× σ), where σ is
the maximum size of support lists. This is not directly comparable to that of Pesant,
which is expressed in terms of a multi-graph structure. It is, however, also linear in
the size of the sequence. The initialisation algorithm (init) requires an exhaustive
exploration of the training set S but is done only once.

3.5 Entailment of control variables

In the case of variable-order, we introduce approximately N × d control variables.
These variables increase the size of the search space. However, they are not inde-
pendent since all EMCs with the same continuation are logically related as follows:

Bi,l → Bi,l−1

and conversely
not Bi,l → not Bi,l+1.

We represent these entailment relations as ad hoc entailment constraints, posted on
all pairs of related control variables. This entailment reduces the number of propa-
gated EMCs at any moment, hence the number of filtering operations. Moreover,
this entailment speeds up the estimation of the Markovian cost function by the
branch and bound process, as it propagates probability variables without any filtering
operations.

3.6 Putting it all together

3.6.1 Chunkwise generation

Although the methods we have proposed for filtering Markov constraints are rela-
tively efficient, the process we have described here does not scale up well with the

Constraints (2011) 16:148–172 165

size of the sequence or the maximum order. However, in our context, this is not
necessarily an issue. Because we target interactive applications, the sequence length
is typically kept small, since the generated sequence is rendered within small time
frames. In the music generation example, a reasonable window size is one beat, that is
500 ms at 120 bpm, containing typically between one (quarter note) and eight (32th)
notes.

We therefore target a chunk-by chunk generation process, in which each chunk is
generated using a CSP as defined in Section 3.3. The generated chunk is rendered,
and the process starts again with a new chunk, appended to the preceding one (see
Fig. 5). Tiling between chunks is obtained by considering the last chunk as a series of
instantiated constrained variables. Chunk size can be determined dynamically with
no incidence on the process.

3.6.2 Viewpoints

Another important aspect when dealing with the practical use of Markov models is
the viewpoint issue. In our examples, we have considered a single pitch or chord
viewpoint. In practice, items to generate are often more complex. In the case of
music, notes have several attributes, including the pitch, but also the duration,
velocity, as well as so-called “derived” viewpoints such as intervals, harmonic degrees
or intervals thereof, etc. In the case of a graphical application, a line object may
be defined by its length, color, width, angle, etc. To represent the Markovian
structure of sequences, a choice must be made concerning the dimensions that are
taken into account in the Markov model. These dimensions, often referred to as
viewpoints [10] play a crucial role, and also raise issues, notably concerning the
combination of viewpoints. Our approach does not make any assumption concerning
the identification and management of viewpoints, and is compatible with any of these
strategies, e.g.:

1. Consider a unique, cross-alphabet viewpoint. The size is roughly that of the
Cartesian product of the viewpoint spaces. In this approach, a single viewpoint is
considered, like in our example. This approach is likely to produce high-quality
solutions but requires a huge training set, so a good compromise must be found
concerning the various dimensions considered.

2. Consider each viewpoint separately and define a cost function for each. Then
solve the multi-criterion optimization problem by optimizing, e.g. a linear com-
bination of the cost functions.

Fig. 5 A chunkwise scenario
for infinite sequence
generation

166 Constraints (2011) 16:148–172

Additionally, it is important to note that control constraints may be of different
types, depending on the nature of the viewpoint. We can roughly distinguish control
constraints that are:

– Viewpoint dependent. Typically, equality or difference constraints are posted on
sequence variables as we have defined here, i.e. whose domains contain the
viewpoint values. For instance, first pitch = last pitch in our example.

– Viewpoint independent. Consider the generation of a musical sequence in which
notes have also, say duration attributes. A constraint could be imposed on the
total sum of the durations, to ensure that the resulting sequence has a given total
duration. If duration is not used as a viewpoint for individual notes (which is the
case in our working example), it is impossible to post such a constraint. However,
this situation can be simply handled by adding a series of item-variables whose
domains are the actual items to be generated (and not their viewpoints), and link
these variables to the viewpoint variables as introduced here, through functional
constraints. These functional constraints implement a projection from the item
domain to the viewpoint domains at a low filtering cost.

4 Validation

In this section we validate our approach in terms of expressiveness (cost functions)
and scalability.

4.1 Cost functions

The approach we propose can accommodate for different cost functions, correspond-
ing to the various generation strategies used in practice. Since there is no general rule
concerning the choice of the cost function, we illustrate here on a simple problem
the possibilities offered by each of them. We consider the problem described in
Section 2.2, i.e. the generation of a 17 note melody, given the Al Di Meola training
set, and with two anchor constraints (first and last notes equal to E4, represented
here as 4). We show four different optimal solutions for each cost function (note
that examples given in Section 2.2 were not optimal solutions). Table 6 shows the
respective costs for each solution, and for each cost function. It can be seen that
these optima are indeed different (in this case), which emphasizes the importance of
the cost function. Section 5.1 shows an application with yet another cost function that
takes into account user actions.

Table 6 Costs for each solution (in column), and for each cost function (row)

Fixed order Smoothed Max order Algebraic

Cost fixed order −13.9 −18.4 −24.7 −22
Cost smoothed −12.3 −11.3 −11.8 −12.7
Cost max order −11.1 −6.9 −3.5 −8
Cost algebraic 38 90 120 133

It can be seen that optimum costs are indeed different in this case (i.e. diagonal figures are always
strictly maximum in each row)

Constraints (2011) 16:148–172 167

Fixed-order 1:

Note that there is no solution to this problem with a fixed-order greater than 1.
Variable-order 4 with the smoothing cost function, and order 5 disallowed:

Variable-order 4 with the Max-Order cost function, and order 5 disallowed:

Variable-order 4 with the Algebraic cost function, and order 5 disallowed:

4.2 Scalability

In this section we evaluate the scalability of our approach on an interactive melody
generation application. We consider the problem described in Section 2.2: generation
of a melody considering the training set of Al Di Meola scales. The control con-
straints are that the first and last notes are set to E3. We give here the performance
of the approach for finding the optimal solution and the proof of optimality, as a
function of the melody length. Domain size for item variables is 15.

168 Constraints (2011) 16:148–172

Number of Backtracks (×1,000) Time in milliseconds

Optimal
solution

0

1

2

3

6 8 10 12 14 16 18 20 22

0

5

10

15

20

6 8 10 12 14 16 18 20 22

Proof of
optimality

0

1

2

3

4

6 8 10 12 14 16 18 20 22

0

5

10

15

20

6 8 10 12 14 16 18 20 22

Fig. 6 The performance of our approach on a melody generation problem, compared to the real-
time requirements. The straight line represents the resolution time (in milliseconds) and the dotted
line represents the available time in an interaction context, with a tempo of 120 bpm

We compare this performance with a realistic “real-time” requirement. Figure 6
shows that melodies of length up to 14 can be generated within these real-time
requirements, on a non-optimized Java prototype.

This experiment shows that our initial real-time requirements can be met in a
reasonable context, notwithstanding the various optimizations that can be added to
our approach.

5 Applications

5.1 Gesture-based melody composition

5.1.1 Pitch contour as control constraints

In this section we show how our approach can be used to implement a simple
gesture-controlled melody generation system. In this case, the task is to generate a
melody using the training base described in Section 2. The sampling of a user gesture
determines a pitch contour for the sequence noted gi, i = 1, . . . N.

From a CSP viewpoint, the system generates a sequence of 17 notes (representing
one full measure of 16th notes plus a full note), which minimizes the distance to the
gesture. This distance is itself defined as the sum of the squares of the pitch difference
at each position (see Fig. 7). Consequently the cost function is defined as a linear
combination of this pitch contour distance with and a “smoothing” Markovian cost:

cost (s) = a × costsmooth(s) + (1 − a) ×
∑

N
i=1 (si − gi)

2 , with 0 ≤ α ≤ 1

Constraints (2011) 16:148–172 169

Fig. 7 A user gesture is
sampled (top) to yield a pitch
contour as control constraints.
Depending on the value of α

solutions are more or less
Markovian/close to the pitch
contour

The value of α can be in turn controlled by a slider to put more emphasis on the
Markovian dimension or the pitch contour. The database is the one presented in
Section 2.

5.2 Other applications

Constrained Markov generation has been used for two other interactive applications.
The first one is a controllable music improvisation system called Virtuoso. It is basi-
cally an extension of the melody generation system, incorporating musical knowledge
of Bebop Jazz and Hard-Rock solo improvisation. The user can control in real time
an improvisation generated by the system, which fits both with the user gesture and
harmonic constraints defined by an arbitrary chord sequence [19].

The second system is a graphical equivalent of the Continuator, called the
Doodler. In the Doodler, the user draws freely shapes using the mouse. The Doodler
learns a Markov model from user shapes, using information such as the angle
between two consecutive lines. The system can then continue an arbitrary line draw
by the user. Using our approach, the user can also use the mouse as a control
constraint to produce a continuation that is as close as possible to the location of
the mouse. More complex constraints, such as a predefined image can also be used
as “contour constraints” to force the generation to remain in specific regions of the
drawing (see Fig. 8).

Fig. 8 An application to interactive doodling. First, a shape is drawn by the user (left), and the system
builds a Markov model from this shape. The user can then click on the screen, and the generator will
continue the initial shape with a line sequence that is both Markovian (here, this means the shape is
somehow “curly”) and whose end point is as close as possible to the clicked point (red cross). On the
right, a given picture (Marilyn Monroe) is used as a “contour constraint” to force the lines to remain
within certain regions

170 Constraints (2011) 16:148–172

6 Discussion

We have proposed a formulation of Markov sequence generation as a Branch and
Bound constraint optimization problem. The Markovian property is represented as
a cost function, estimated from a stack of elementary Markov constraints. Such a
formulation allows the designer of an interactive Markovian system to post arbitrary
additional constraints representing user control criteria, a feature which is impossible
with random walk generation. This approach can find sequences whose global
probability is very low, therefore which would not be generated, in practice, by
greedy approaches.

Our approach can accommodate for arbitrary cost functions, including the cost
functions used in practice. As such, our approach solves the problem of steerable
Markovian sequence generation in its full generality. We have illustrated our ap-
proach on a realistic interactive melody generation system, and on chord sequence
generation, two subjects that are traditionally addressed with Markov models.

The scalability of our approach has been shown to be sufficient for real time appli-
cations, in which Markov constraints are used chunk-wise in an interactive context.
Consequently typical chunk sizes are small, compared to the size of sequences used,
e.g. in traditional rostering problems.

However, other optimizations are possible to further reduce the cost of filtering,
such as parallel implementation of the Markov constraint, or using more efficient
structures to implement the basic filtering operations. Another possibility is to
use problem decomposition techniques, such as AND/OR Branch and Bound [18]:
because of the local nature of Markov constraints, the problem is not decomposable
at creation time, but may become so when adjacent variables are instantiated (unless
global constraints are added as control constraints, such as AllDiff or cardinality).
Studies of the behavior of cost functions can be conducted to fine-tune variable
ordering and value choice heuristics. The purely algebraic approach, which consists
in considering only prefixes lengths (and not their probabilities), is also interesting
to investigate, notably in relation with variable-length code theory, following [26].
Finally, a promising approach is to use approximation algorithms [17], which produce
solutions of cost opt/α, where opt is the cost of an optimal solution, and α a fixed ratio.
This approach requires the study of the approximability of our problem, which could
be done given reasonable limitations on the control constraints (such as anchors and
binary constraints).

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

References

1. Addessi, A.-R., & Pachet, F. (2005). Experiments with a musical machine: Musical style replica-
tion in 3/5 year old children. British Journal of Music Education, 22(1), 21–46.

2. Allauzen, C., Crochemore, M., & Raffinot, M. (1999). Factor oracle: A new structure for pattern
matching. In J. Pavelka, G. Tel, & M. Bartosek (Eds.), Proceedings of the 26th conference on
current trends in theory and practice of informatics (November 27–Dec. 4), LNCS (Vol. 1725, pp.
295–310). London: Springer.

Constraints (2011) 16:148–172 171

3. Anders, T., & Miranda, E. R. (2008). Constraint-based composition in real time. In Proc. of int.
computer music conference, Belfast, UK.

4. Anders, T., & Miranda, E. R. (2010). Constraint programming systems for modeling music
theories and composition. ACM Computing Surveys (in press).

5. Assayag, G., Dubnov, S., & Delerue, O. (1999). Guessing the composer’s mind: Applying univer-
sal prediction to musical style. In Proc. of int. computer music conference, Bejing, China, ICMA.

6. Bejerano, G. (2004). Algorithms for variable length Markov chain modeling. Bioinformatics,
20(5), 788–789.

7. Beldiceanu, N., Carlsson, M., & Demassey, S. (2007). Global constraint catalogue: Past, present
and future. Constraints, 12(1), 32–62

8. Brooks, F. P., Hopkins, A. L., Neumann, P. G., & Wright, W. V. (1993). An experiment in musical
composition. In S. M. Schwanauer & D. A. Levitt (Eds.), Machine models of music (pp. 23–40).
Cambridge: MIT.

9. Conklin, D. (2003). Music generation from statistical models. In Proc. of AISB 2003 symposium
on artif icial intelligence and creativity in the arts and sciences (pp. 30–35).

10. Conklin, D., & Witten, I. H. (1995). Multiple viewpoint systems for music prediction. Journal of
New Music Research, 24(1), 51–73.

11. Cont, A., Dubnov, S., & Assayag, G. (2007). Anticipatory model of musical style imitation
using collaborative and competitive reinforcement learning. In Anticipatory behavior in adaptive
learning systems. LNCS (Vol. 4520/2007, pp. 285–306). Berlin: Springer.

12. Demassey, S., Pesant, G., & Rousseau, L.-M. (2006). A cost-regular based hybrid column gener-
ation approach. Constraints, 11(4), 315–333.

13. Di Meola, A., McLaughlin, J., & De Lucia, P. (1992). Friday night in San Francisco. Milwaukee:
Hal Leonard Corporation.

14. Eigenfield, A., & Pasquier, P. (2010). Realtime generation of harmonic progressions using con-
trolled markov selection. In Proc. of the 1st international conference on computational creativity
(ICCCX) (pp. 16–25). Lisbon: ACM.

15. Farbood, M., & Schoner, B. (2001). Analysis and synthesis of palestrina-style counterpoint using
Markov chains. In Proc. of international computer music conference, Cuba (pp. 471–474).

16. Ilog (2001) Ilog solver 5.2 reference manual. Available online at https://www.enseignement.
polytechnique.fr/local/documentation/ilog/solver52/doc/refman/html/IlcTableConstraint.html.

17. Johnson, D. S. (1974). Approximation algorithms for combinatorial problems. Journal of Com-
puter and System Sciences, 9(3), 256–278.

18. Marinescu, R., & Dechter, R. (2005). Advances in AND/OR branch-and-bound search for
constraint optimization. In The 7th international workshop on preferences and soft constraints
of the eleventh international conference on principles and practice of constraint programming,
CP’2005.

19. Markov Constraints (2010). Available online at http://www.csl.sony.fr/MarkovCt. Accessed
September 2010.

20. Menana, J., & Demassey, S. (2009). Sequencing and counting with the multicost-regular con-
straint. In Lecture notes in computer science, 6th international conference on integration of
AI and OR techniques in constraint programming for combinatorial optimization problems
(CPAIOR’09), Pittsburgh, USA.

21. Nierhaus, G. (2009). Algorithmic composition—paradigms of automated music generation.
Berlin: Springer.

22. Pachet, F. (2002). The continuator: Musical interaction with style. In Proc. of international
computer music conference (pp. 211–218). Goteborg, Sweden. September, Best Paper Award.

23. Pachet, F., Roy, P., & Cazaly, D. (2000). A combinatorial approach to content-based music
selection. IEEE Multimedia, 7(1), 44–51.

24. Parker, C. (2001). Charlie Parker omnibook: For C instruments. Van Nuys: Alfred Publishing.
25. Pearce, M., & Wiggins, G. (2004). Improved methods for statistical modeling of monophonic

music. Journal of New Music Research, 33(4), 367–385.
26. Perrot, J.-F. (1977). Informatique et Algèbre, La théorie des codes à longueur variable. In

Theoretical computer science, G. I. conference, lecture notes in computer science (3rd Ed., no.
48, pp. 27–44).

27. Pesant, G. (2004). A regular language membership constraint for finite sequences of variables.
Lecture Notes in Computer Science, 32(58), 482–495.

28. Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2), 257–286.

https://www.enseignement.polytechnique.fr/local/documentation/ilog/solver52/doc/refman/html/IlcTableConstraint.html
https://www.enseignement.polytechnique.fr/local/documentation/ilog/solver52/doc/refman/html/IlcTableConstraint.html
http://www.csl.sony.fr/MarkovCt

172 Constraints (2011) 16:148–172

29. Radicioni, D. P., & Lombardo, V. (2007). A constraint-based approach for annotating music
scores with gestural information. Constraints, 12(4), 405–428.

30. Régin, J.-C. (1994). A filtering algorithm for constraints of difference in CSPs. In Proc. of the
12th national conference on artif icial intelligence. AAAI 1994 (pp. 362–367).

31. Ron, D., Singer, Y., & Tishby, N. (1996). The power of amnesia: Learning probabilistic automata
with variable memory length. Machine Learning, 25(2–3), 117–149.

32. Rossi, F., van Beek, P., & Walsh, T. (Eds.) (2006). Handbook of constraint programming. New
York: Elsevier.

33. Simhon, S., & Dudek, G. (2004). Sketch interpretation and refinement using statistical models.
In H. W. Jensen, & A. Keller (Eds.), Eurographics symposium on rendering.

34. Steedman, M. J. (1984). A generative grammar for jazz chord sequences. Music Perception, 2(1),
52–77.

35. van Hoeve, W. J., & Katriel, I. (2006). Global constraints. Handbook of constraint programming
(chap. 6). New York: Elsevier Science Inc.

36. van Hoeve, W.-J., Pesant, G., Rousseau, L.-M., & Sabharwal, A. (2006). Revisiting the sequence
constraint. In Proc. of the 12th international conference on principles and practice of constraint
programming (CP 2006). LNCS 4204 (pp. 620–634).

37. Witten, I. H., & Bell, T. C. (1991). The zero-frequency problem: Estimating the probabilities
of novel events in adaptive text compression. IEEE Transaction on Information Theory, 37(4),
1085–1094.

	Markov constraints: steerable generation of Markov sequences
	Abstract
	Introduction and motivation
	Motivation
	Various species of Markov sequence generation
	Controlling Markov chain generation
	Sequencing constraints

	Examples
	Chord sequence generation
	Blues constraints
	Generating exotic blues

	Melody generation

	A CSP formulation of Markov sequence generation
	Continuations as Elementary Markov Constraints (EMCs)
	The Markovian property as a cost function
	Fixed-order
	Smoothing
	Max-order
	Algebraic

	Problem statement
	Propagators for elementary Markov constraints
	Management of supports and domain-consistency
	Propagators

	Entailment of control variables
	Putting it all together
	Chunkwise generation
	Viewpoints

	Validation
	Cost functions
	Scalability

	Applications
	Gesture-based melody composition
	Pitch contour as control constraints

	Other applications

	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

