
Noname manuscript No.
(will be inserted by the editor)

Constraint-Based
Very Large-Scale Neighborhood Search

Sébastien Mouthuy, Pascal Van Hentenryck and
Yves Deville

the date of receipt and acceptance should be inserted later

Abstract Very Large-Scale Neighborhood (VLSN) search is the idea of using neighbor-
hoods of exponential size to find high-quality solutions to complex optimization problems
efficiently. However, so far, VLSN algorithms are essentially described and implemented in
terms of low-level implementation concepts, preventing code reuse and extensibility which
are trademarks of constraint-programming systems. This paper aims at remedying this lim-
itation and proposes a constraint-based VLSN (CBVLSN) framework to describe VLSNs
declaratively and compositionally. Its main innovations are the concepts of cycle-consistent
MoveGraphs and compositional moves which make it possible to specify an application in
terms of constraints and objectives and to derive a dedicated VLSN algorithm automatically.
The constraint-based VLSN framework has been prototyped in COMET and its efficiency is
shown to be comparable to dedicated implementations.

1 Introduction

This paper is concerned with Very Large-Scale Neighborhood (VLSN) search, a class of
local-search algorithms whose neighborhoods contain a large number of neighbors (usu-
ally exponential). By considering neighborhoods of exponential size, VLSN search often
produces local optima of higher quality than polynomial-sized neighborhoods. These expo-
nential neighborhoods are obtained by considering, as neighbors, configurations that can be
reached by a set or a sequence of moves. The implementation of a VLSN algorithm must
then handle two fundamental issues:

(1) How to search an exponential neighborhood in polynomial time and still obtain a high-
quality neighbor?

(2) How to compute efficiently the impact of a set of moves without actually applying them?

Sébastien Mouthuy, Yves Deville
Université catholique de Louvain, Department of Computing Science and Engineering
Place Sainte-Barbe 2, 1348 Louvain-la-Neuve, Belgium
E-mail: {Sebastien.Mouthuy,Yves.Deville}@uclouvain.be

Pascal Van Hentenryck
Brown University, Box 1910 Providence, RI 02912, USA
E-mail: pvh@cs.brown.edu

Traditionally, the first problem is solved by using dynamic programming or a modified
shortest-path algorithm to explore the neighborhood. The second problem is addressed by
designing dedicated algorithms that exploit the problem structure of specific applications.

VLSN algorithms have been successfully applied to a variety of NP-Hard problems
such as the capacitated minimum spanning tree [1,2], exam timetabling [3,4,5], and block-
to-train assignment [6]. See [7] for a survey of the main applications and VLSN approaches.
Unfortunately, although they often share a common design, VLSN algorithms are almost
always defined in terms of various data structures and specialized to the application at hand.
This does not encourage reuse, extensibility, and experimentation.

This paper aims at remedying this difficulty and proposes a constraint-based VLSN
(CBVLSN) framework that allows VLSN algorithms to be specified in terms of constraints
and objectives, in the same way as local-search algorithms are expressed in constraint-based
local search (CBLS) [8]. As a result, VLSN algorithms can now be specified by high-level
models and support the traditional compositionality, reuse, and extensibility of constraint
programming. The key technical contribution of the CBVLSN framework is to demonstrate
that VLSN algorithms can be synthesized automatically from constraints and objectives:
What is needed is a natural extension of the CBLS interface for constraints and objectives
to specify the input and output variables of every move. Once input/output variables are
specified, VLSN algorithms can be modeled and synthesized automatically by using the
following four ideas:

(1) The model isolates a global constraint which captures the fundamental structure of the
application and would be violated by moves individually.

(2) The synthesis produces a cycle-consistent MoveGraph, that is a graph whose cycles de-
fine the neighbors of the current solution. Each such neighbor preserves the satisfaction
of the isolated global constraint.

(3) The synthesis only considers sequences of compositional moves, which are sequences
such that it is possible to evaluate the effect of applying this sequence from the effects
of its moves.

(4) The concept of input/output variables naturally enables the VLSN algorithm to auto-
matically restrict attention to compositional moves.

The CBVLSN framework has been implemented and experimental results demonstrate the
feasibility and benefits of the approach.

This paper is organized as follows. Section 2 presents some preliminary definitions and
background. Section 3 presents the theoretical framework for constraint-based VLSNs. Sec-
tion 4 introduces the concepts of input and output variables and Section 5 describes how
the generic VLSN can be searched efficiently. Section 6 describes the architecture of the
(Open Source) implementation of our framework in COMET. Section 7 illustrates how real-
life problems can be solved by our constraint-based VLSN framework. Section 8 discusses
the related works and Section 9 concludes the paper.

2 Preliminaries

This section defines some of the main concepts and notations used in the paper. It also
introduces informally some of the concepts that are central to the VLSN framework specified
in subsequent sections.

2

2.1 Combinatorial Optimization Problems

Let X = [X1, X2, . . . , Xn] be a set of n variables taking their values in a domain D. We
define an assignment as a function σ : X → D that assigns a value to each variable. We
denote the set of all possible assignments by Λ. A constraint is a function C : Λ → N
giving the violation of a given assignment. A solution to a constraint C is an assignment
σ satisfying C(σ) = 0. An objective is a function f : Λ → Z giving the evaluation of
the quality of a given assignment. A Combinatorial Optimization Problem (COP) is a tuple
P = 〈f, C,X , D〉 and solving P requires finding a solution to C that minimizes f .

2.2 Constraint-Based Local Search

Constraint-based Local Search (CBLS) [8] is the idea of performing local search on high-
level models. In CBLS, local-search algorithms are expressed in terms of two components:
(1) a model which specifies the constraints and the objective and (2) a search algorithm
which uses the constraints and objective to drive the search towards high-quality solutions.
Hence, CBLS makes it possible to define local-search algorithms compositionally and to
separate the model and the search components as in traditional constraint programming. It
is the goal of this paper to achieve a similar level of abstraction for VLSN algorithms.

In CBLS, each constraint and objective is a differentiable invariant. Constraints incre-
mentally maintain their violations and objectives their values after each iteration. In ad-
dition, each constraint and objective provides a differentiability Application Programming
Interface (API) which evaluates the impact of local moves on these values. A move is a
function m : Λ→ Λ. The set of all possible moves is problem-dependent and is denoted by
M. Given the current assignment σ, ∆C(m,σ) and ∆f (m,σ) denote the changes induced
by performing the move m on the violations of constraint C and on the value of objective f .
These values are defined as follows:

∆C(m,σ) = C(m(σ))− C(σ)

∆f (m,σ) = f(m(σ))− f(σ).

2.3 Permutation Problems

As mentioned in the introduction, our VLSN framework relies on isolating a particular sub-
structure of the application. Permutation constraints is one example of substructure arising
in many applications (e.g., [9]). A permutation problem on the variables X = [X1, . . . , Xn]

over the domain D = {1, . . . , n} seeks an assignment σ of the variables X such that the
values of all the variables are distinct:

σ(Xi) 6= σ(Xj) ⇐⇒ ∀i, j = 1, . . . , n : i 6= j.

Definition 2.1 A permutation constraint on X is the function Cperm : Λ → N such that
Cperm(σ) = 0 if and only if σ assigns a permutation of D to the variables X .

Example 2.1 The Traveling Salesman Problem (TSP) is perhaps the best known permuta-
tion problem. The TSP searches for a tour of a set of n sites D = {1, . . . , n}. A tour can
be represented by a permutation of the variables X = [X1, . . . , Xn], where Xi represents

3

which site is visited at the ith position of the tour. Given a distance matrix cij , the objective
is to minimize the total distance of the tour

fTSP (σ) =

n−1∑
i=1

cσ(Xi),σ(Xi+1) + cσ(Xn),σ(X1) (2.1)

The TSP can thus be represented by the COP 〈fTSP , Cperm, X,D〉. Many moves have been
defined for this problem but we only consider assignment moves in this example. The move
assign(Xj , i) assigns the value i to variable Xj . More precisely, given an assignment σ, the
move assign(Xj , i)(σ) returns the assignment σ′ with

σ′(Xk) =

{
i if k = j

σ(Xk) otherwise

The differentiation of such moves on the TSP is

∆fTSP
(assign(Xj , i), σ) =− cσ(Xj−1),σ(Xj) − cσ(Xj),σ(Xj+1)

+ cσ(Xj−1),σ(Xi)) + cσ(Xi),σ(Xj+1)

(2.2)

where X0 = Xn and Xn+1 = X1. A single assignment move breaks the permutation struc-
ture of an assignment. For this reason, assignment moves are not used in standard local
search approaches for solving the TSP, or permutation problems in general. Some VLSN
algorithms for the TSP consider sequences of assignment moves that preserves the permu-
tation structure. For instance, the sequence of moves

assign(X1, σ(X2)), assign(X2, σ(X3)), assign(X3, σ(X1))

preserves the permutation, although the individual moves break it. A key aspect of our VLSN
framework is to ensure that only sequences of moves preserving the isolated substructure are
considered as neighbors.

2.4 Partitioning Problems

A partition is another widely used substructure in VLSN algorithms. Partitioning problems
are defined over set variables X = [S1, . . . , SK] that represent subsets of D = {1, . . . , n}.

Definition 2.2 A partitioning constraint on X is a function Cpart : Λ → N such that
Cpart(σ) = 0 iff σ represents a partition of D, i.e.,

1. ∀i, j ∈ {1, . . . ,K} : σ(Si) ∩ σ(Sj) = ∅ ⇐⇒ i 6= j

2.
K⋃
k=1

σ(Sk) = D.

Example 2.2 The Generalized Assignment Problem (GAP) is a partitioning problem. Given
a set of tasks D = {1, . . . , n} to be performed, the GAP seeks a partition of D into K

machines. The variables X = [S1, . . . , SK] represent the partition and Sk represents the
set of tasks assigned to machine k. Each task i has a demand bi and the machines have a
capacity B. For each machine k, the sum of its demands cannot exceed its capacity, i.e.,∑

i∈σ(Sk)

bi ≤ B ∀k = 1, . . . ,K

4

The violation of this capacity constraint is specified as follows:

CGAP (σ) =

K∑
k=1

CCAPA(k, σ) (2.3)

where CCAPA(k, σ) = max
(
0,
∑
i∈σ(Sk)

bi −B
)

. There is also a cost cki to assign task i
to machine k and the objective to minimize is

fGAP (σ) =

K∑
k=1

 ∑
i∈σ(Sk)

cki

 (2.4)

The COP 〈fGAP , Cpart + CGAP ,X , 2D〉 specifies the Generalized Assignment Problem.
We consider three types of moves for partitioning problems: replace(Sk, i, j) replaces the
value j in variable Sk by value i, insert(Sk, i) inserts the value i in Sk, and remove(Sk, i)
removes i from Sk. These moves are illustrated here below.

Example 2.3 Let the variable S and the assignment σ be such that σ(S) = {1, 2, 3, 4, 5}. The
value assigned to variable S after having applied the move m on σ is denoted by m(σ)(S).
We have insert(S, 6)(σ)(S) = {1, 2, 3, 4, 5, 6}, remove(S, 3)(σ)(S) = {1, 2, 4, 5} and
replace(S, 3, 6)(σ)(S) = {1, 2, 4, 5, 6}.

The differentiation of these moves on the constraint and objective function is

m ∆CCAPA
(m,σ) ∆fGAP

(m,σ)

insert(Sk, i) max
(
0,
∑
e∈σ(Sk)

be + bi −B
)
− CCAPA(k, σ) +ck,i

remove(Sk, i) max
(
0,
∑
e∈σ(Sk)

be − bi −B
)
− CCAPA(k, σ) −ck,i

replace(Sk, i, j) max
(
0,
∑
e∈σ(Sk)

be − bj + bi −B
)
− CCAPA(k, σ) ck,i − ck,j

(2.5)
Applying any of these moves breaks the partition structure of an assignment. A VLSN algo-
rithm considers only sequences of such moves that preserve the partition structure. This is,
for instance, the case of the sequence

remove(S1, 2), replace(S2, 2, 5), insert(S3, 5).

Once again, a key contribution of our VLSN framework is to isolate such sequences auto-
matically and efficiently. Moreover, we are interested in sequences that maintain the feasi-
bility of CGAP and improve the objective fGAP .

2.5 Very Large-Scale Neighborhoods

The core idea of VLSN algorithms is to apply sequences of moves. If M denotes the set
of moves, a VLSN algorithm selects, at each iteration, a sequence of moves [m1, . . . ,mk]

(mi ∈ M). In a first approximation, the neighborhood of an assignment σ for problem P is
defined as

VLSN(P, σ) = {m1 ◦ · · · ◦mk(σ)|[m1, . . . ,mk] is a sequence of moves from M}.

5

The main step of a VLSN algorithm is to find σ′ ∈ V LSN(P, σ) such that C(σ′) = 0 and
f(σ′) is minimal.

Since the size of the neighborhood is 2|M|, a key aspect of VLSN algorithm is to find
a way to explore that neighborhood efficiently. Note however that the richness of the neigh-
borhood means that the local minima of a VLSN algorithm are often better than those of a
pure local-search algorithm.

3 An Abstract Theory of Constraint-Based VLSN

In VLSN algorithms, neighbors of a solution are obtained by applying a sequence of moves
and the size of the neighborhood is exponential. VLSN algorithms thus raise three funda-
mental issues:

(1) how to select several moves that are not interfering with each others?
(2) how to select a sequence of moves preserving the structural constraint?
(3) how to differentiate a sequence of moves effectively?

These issues are solved by imposing restrictions on the move sequences. In particular, a
VLSN algorithm in our framework only selects moves that modify different variables (in-
dependence). It also selects only sequences of moves preserving the structural constraint,
which is achieved through the concept of a MoveGraph. The third issue, efficient differen-
tiation, is achieved by restricting attention to compositional moves. The rest of this section
presents these concepts and progressively refines the definition of the VLSN neighborhood
to address the above issues.

3.1 Sequential Composition of Moves

This research is about designing tools to efficiently compute the effect of applying a se-
quence of moves on an assignment. To achieve this goal, it is important to know exactly
how a single move of this sequence modifies the current assignment. We thus define the
sequential composition of several moves on an assignment. Intuitively, the sequential com-
position of moves m1 and m2 on assignation σ applies both moves on σ. If the resulting two
assignations diverge on the value of a variable, the value resulting from move m1 is chosen
for this variable.

Definition 3.1 Given an assignment σ and two moves m1 and m2, the sequential compo-
sition m1|m2 wrt σ is such that

m1|m2(σ)(Xi) =

{
m1(σ)(Xi) if m1(σ)(Xi) 6= σ(Xi)

m2(σ)(Xi) otherwise.

Example 3.1 We consider assignments on variables X1 and X2 and define two moves m1

and m2 such that m1(σ)(X1) = σ(X1) + 1, m1(σ)(X2) = σ(X2), m2(σ)(X1) = σ(X1)

and m2(σ)(X2) = σ(X1). Consider the assignment σ = {X1 → 2, X2 → 1}. We have
m1(σ) = {X1 → 3, X2 → 1}, m2(σ) = {X1 → 2, X2 → 2} and m1|m2(σ) = {X1 →
3, X2 → 2}. We also have m2|m1(σ) = {X1 → 3, X2 → 2}.

Proposition 3.1 Sequential composition is associative.

6

Proof Given any assignment σ, we prove that (m1|m2)|m3(σ)(Xi) = m1|(m2|m3)(σ)(Xi)

for all variableXi. Let σ be any assignment,Xi be any variable andm1,m2,m3 be any three
moves. We have

(m1|m2)|m3(σ)(Xi) =

{
m1|m2(σ)(Xi) if m1|m2(σ)(Xi) 6= σ(Xi)

m3(σ)Xi otherwise

=


m1(σ)(Xi) if m1(σ)(Xi) 6= σ(Xi)

m2(σ)(Xi) else if m2(σ)(Xi) 6= σ(Xi)

m3(σ)Xi otherwise

On the other hand, we have

m1|(m2)|m3)(σ)(Xi) =

{
m1(σ)(Xi) if m1(σ)(Xi) 6= σ(Xi)

m2|m3(σ)Xi otherwise

=


m1(σ)(Xi) if m1(σ)(Xi) 6= σ(Xi)

m2(σ)(Xi) else if m2(σ)(Xi) 6= σ(Xi)

m3(σ)Xi otherwise

This proves that the sequential composition of any two moves is associative. ut

We can now define the sequential composition of a sequence of moves.

Definition 3.2 Given a sequence of moves M = [m1, . . . ,mk] and an assignment σ, the
sequential composition of M on σ is defined as

M(σ) = m1|m2| . . . |mk(σ).

3.2 Move Independence

VLSN algorithms are often defined on independent moves.

Definition 3.3 A move m1 is independent from a move m2 wrt σ iff

∀Xi ∈ X : m1(σ)(Xi) 6= Xi ⇒ m2(σ)(Xi) = Xi.

A sequence of moves M is independent wrt σ if every move m ∈ M is independent from
every other move in M wrt σ.

Independent moves can be commuted, because the composition order has no effect on the
resulting assignment.

Proposition 3.2 The sequential composition of independent moves is commutative.

7

Proof We prove that, if two movesm1 andm2 are independent, thenm1|m2(σ) = m2|m1(σ)

for any assignment σ. Let σ ∈ Λ,Xi ∈ X ,

m1|m2(σ)(Xi) =

{
m1(σ)(Xi) if m1(σ)(Xi) 6= σ(Xi)

m2(σ) otherwise

=


m1(σ)(Xi) if m1(σ)(Xi) 6= σ(Xi)

m2(σ)(Xi) if m1(σ)(Xi) = σ(Xi)

and m2(σ)(Xi) 6= σ(Xi)

σ(Xi) otherwise

Because by independence, we have

m2(σ)(Xi) 6= σ(Xi)⇒ m1(σ)(Xi) = σ(Xi)

we obtain

m1|m2(σ)(Xi) =


m1(σ)(Xi) if m1(σ)(Xi) 6= σ(Xi)

m2(σ) if m2(σ)(Xi) 6= σ(Xi)

σ(Xi) otherwise

By a similar reasoning, we obtain the same result for m2|m1(σ)(Xi) and hence, for all
variables Xi, we have m1|m2(σ)(Xi) = m2|m1(σ)(Xi) for any assignment σ, i.e.,

∀σ : m1|m2(σ) = m2|m1(σ).

This proves that, in a sequence of independent moves M = [m1, . . . ,mk], the moves
m1, . . . ,mk can be applied in any order. ut

A sequence of independent moves can thus be represented by a set. If M is a set of
independent moves and σ is an assignment, we denote by M(σ) the assignment obtained by
the sequential composition of the moves in M on σ. As a result, we can refine our earlier
definition of the VLSN neighborhood to become

VLSN(P, σ) = {M(σ)|M ⊆M is an independent set of moves wrt σ}.

Example 3.2 Consider the TSP. The move assign(Xi, v) only modifies the value assigned
to the variable Xi and is independent from the move assign(Xk, w) if and only if i 6= k.

Example 3.3 Consider the GAP. The moves replace(Sk, i, j) and replace(Sm, j, i) are in-
dependent if and only if k 6= m. The moves insert(S1, 8) and remove(S1, 8) are indepen-
dent if and only if 8 /∈ S1.

3.3 Maintaining Structural Feasibility

We here address the second difficulty of selecting moves such that a structural constraint is
not violated. We partition the constraints C of a COP into C1 + C2, where C1 is a global con-
straint capturing a core substructure of the COP and C2 are the remaining side-constraints.
Typical examples of core constraints arising in VLSNs are permutation and partition con-
straints and moves are generally designed with these constraints in mind.

8

3.3.1 MoveGraphs

A VLSN algorithm deals with the feasibility of the constraints C1 and C2 differently. In
particular, a VLSN considers atomic moves maintaining C2 but possibly violating C1, pro-
vided that the set of moves ensures that C1 is satisfied after application of the moves. This
is captured by the novel concept of a MoveGraph, which encapsulates the search of move
sets that satisfy C1. Informally speaking, edges in a MoveGraph represent moves and a cy-
cle represents a set of moves maintaining the feasibility of C1 (even if some moves of such
cycles may violate C1). The following definition of a MoveGraph will be instantiated next
for various global constraints and various neighborhoods.

Definition 3.4 Given an assignment σ, a MoveGraph MG(σ) is a labeled graph 〈V,E, η〉
where η is a function E →M. Given E′ ⊆ E, we denote by η(E′) = {η(i, j)|(i, j) ∈ E′}.
A move η(i, j) is also denoted by ηij .

The following definition captures the requirement that cycles maintain the feasibility of the
global constraint C1.

Definition 3.5 Given an assignment σ, a MoveGraph MG(σ) is cycle-consistent wrt the
constraint C1 if

C1(η(O)(σ)) = C1(σ)

for each cycle O in MG(σ) such that η(O) is independent wrt σ.

When considering cycle-consistent MoveGraphs, the neighborhood then becomes:

VLSN(P, σ) = {η(O)(σ)|O is a cycle in MG(σ) ∧ η(O) is independent wrt σ}.

Section 5.3 shows how to search this neighborhood by searching for cycles in MoveGraphs.
Please note that the definition of MoveGraph is independent of any particular COP, so it is a
reusable concept in a constraint-based framework. We now illustrate the concept of a Move-
Graph on two important global constraints in VLSN research: permutation and partitioning
constraints.

3.3.2 Permutation Problems

We now define a MoveGraph for permutation problems that considers moves assign(Xj , i)
that assign value i to a variable Xj . Such move breaks the permutation structure of an
assignment if performed alone, but the MoveGraph allows for the selection of several of
such moves such that the permutation structure is not broken after having applied all of
them.

Definition 3.6 Given a permutation problem on the variables X = [X1, . . . , Xk] and an
assignment σ, the MoveGraphMGperm(X , D, σ) is the label graph 〈V,E, η〉where (1) V =

X , (2) E = {(Xi, Xj) : i 6= j} and (3) η(Xi, Xj) = assign(Xj , σ(Xi)) .

In MGperm, the nodes correspond to variables and the move associated with edge (Xi, Xj)

assigns value σ(Xi) to Xj . MGperm is cycle-consistent with respect to the permutation
constraint.

Proposition 3.3 Given a permutation problem P = 〈f, Cperm+C2,X , D〉, the MoveGraph
MGperm(X , D, σ) is cycle-consistent wrt Cperm.

9

X1 = 6
X2 = 4

X3 = 3

X4 = 2

X5 = 1

X6 = 5

X7 = 7

X1 = 6
X2 = 1

X3 = 3

X4 = 2

X5 = 7

X6 = 5

X7 = 4

Example 3.4 Consider the TSP with n = 7 described in Example 2.1. Given the vari-
ables X = [X1, . . . , X7] on domain D = {1, . . . , 7} and the current assignment σ =

[6, 4, 3, 2, 1, 5, 7], the MoveGraph MGperm(X , D, σ) is
The cycle (X5, X2), (X2, X7), (X7, X5) corresponds to the moves assign(X2, 1), assign(X7, 4)

and assign(X5, 7). These moves are independent and their application yields the new as-
signment σ′ = [6, 1, 3, 2, 7, 5, 4]. The assignment σ′ respects the permutation constraint
although we applied moves that breaks this constraint if performed alone.

3.3.3 Partitioning Problems

We now present a MoveGraph for partitioning problems such as the Generalized Assignment
Problem. The MoveGraph considers three types of moves: replace(Sk, i, j) replaces the
value j in variable Sk by value i, insert(Sk, i) inserts the value i in Sk, and remove(Sk, i)
removes i from Sk. The nodes in the MoveGraph represent both variables and values, which
enables us to encode the three types of moves.

Definition 3.7 The MoveGraph MGpart(X , D, σ) for a partitioning problem and an as-
signment σ is the label graph 〈V,E, η〉 where

(1) V = X ∪D,
(2) E = {(i, j) ∈ V × V |i ∈ D ∨ j ∈ D},
(3) (a) For i, j ∈ D, η(i, j) = replace(Sk, i, j) with j ∈ σ(Sk),

(b) For i ∈ D and Sk ∈ X , η(i, Sk) = insert(Sk, i),
(c) For i ∈ D and Sk ∈ X , η(Sk, i) = remove(Sl, i) with i ∈ σ(Sl).

Note that the semantics of the moves represented by an edge (Sk, i) does not depend on Sk.
Variable Sk only appears to allow the moves to be performed in paths arriving at Sk. This
MoveGraph is very similar to the graphs used in dedicated VLSN approaches for partition-
ing problems. The exact relation will be made clear in Section 3.4.2. This MoveGraph is
cycle-consistent with respect to the partitioning constraint.

Proposition 3.4 Given a partitioning problem 〈f, Cpart+ C2,X , 2D〉 and an assignment σ,
the MoveGraph MGpart(X , D, σ) is cycle-consistent wrt Cpart.

Example 3.5 Consider the GAP introduced in Example 2.2 with n = 8 and K = 5. For
the assignment σ = {S1 = {5}, S2 = {3, 4}, S3 = {1}, S4 = {2, 6}, S5 = {7, 8}}, the
MoveGraph MGpart(X , D, σ) is

10

5

3
4

1

2 6

7

8

S1

S2

S3

S4

S5

The cycle (1, 2), (2, S5), (S5, 3), (3, 1) corresponds to the following moves: replace(S4, 1, 2),
insert(S5, 2), remove(S2, 3) and replace(S3, 3, 1). Notice that the move remove(S2, 3) la-
bels all the arcs {(Sk, 3) : ∀k = 1, . . . ,K}. These four moves are independent and their
application yields the new assignment σ′ = {S1 = {5}, S2 = {4}, S3 = {3}, S4 =

{1, 6}, S5 = {2, 7, 8}}. Notice that the assignment σ′ still respects the partition constraint
although each of the single applied move violates it.

3.4 Ensuring Efficient Differentiation of a Set of Moves

Efficient differentiation of a set of moves is enabled through the concepts of compositional
moves and improvement graph.

3.4.1 Compositionality

Computing the differentiation of a set of moves on the constraints and the objective is com-
plex in general, as it may require simulation. We now define the concept of compositional
moves. When only sets of compositional moves are considered, very good candidates in the
VLSN can be searched efficiently. Informally speaking, moves are compositional if the dif-
ferentiation of a set of moves is the sum of the differentiation of each individual move. In
the following definition, for a set M of independent moves, we use ∆f (M,σ) to denote
f(M(σ))− f(σ) and ∆C2(M,σ) to denote C2(M(σ))− C2(σ).

Definition 3.8 Given a COP 〈f, C1 + C2,X , D〉, a set of independent moves M is compo-
sitional wrt a solution σ if

(1) ∆C2(M,σ) =
∑
m∈M ∆C2(m,σ)

(2) ∆f (M,σ) =
∑
m∈M ∆f (m,σ)

11

It is easy to compute the impact of a set of compositional moves on the constraints or on the
objective. This allows the design of polynomial-time heuristics for searching the following
neighborhood,

V LSN1(P, σ) = {η(O)(σ) | O is a cycle in MG(σ) ∧
η(O) is independent and compositional wrt σ}.

Note that the size of the neighborhood is still exponential. Moreover, if LS(P, σ) denotes
the neighborhood used in standard local search approaches (selecting only one move), we
still have LS(P, σ) ⊆ V LSN1(P, σ)

Example 3.6 Consider the TSP with n = 6 and illustrated below. Let the initial solution be
σ0 = [1, 2, 3, 4, 5, 6] with the cost c12 + c23 + c34 + c45 + c56 + c61.

1 2 3 4 5 6 7

assign(X3, 1) assign(X4, 6)

assign(X5, 7)

Consider the moves m1 = assign(X3, 1), m2 = assign(X4, 6) and m3 = assign(X5, 7).
The following array gives the cost of the assignment resulting from the application of some
combinations of these moves.

M fTSP (M(σ0)) ∆fTSP
(M,σ0)

∅ c12 + c23 + c34 + c45 + c56 + c67 + c61 0

{m1} c12 + c21 + c14 + c45 + c56 + c67 + c61 −c23 − c34 + c21 + c14
{m2} c12 + c23 + c36 + c65 + c56 + c67 + c61 −c34 − c45 + c36 + c65
{m3} c12 + c23 + c34 + c47 + c76 + c67 + c61 −c45 − c56 + c47 + c76

{m1,m2} c12 + c21 + c16 + c65 + c56 + c67 + c61
−c23 − c34 − c45

+c21 + c16 + c65

{m1,m3} c12 + c21 + c14 + c47 + c76 + c67 + c61
−c23 − c34 − c45 − c56

+c21 + c14 + c47 + c76

The third column of this array shows that the moves m1 and m2 are not compositional,
because

∆fTSP
({m1,m2}, σ0) 6= ∆fTSP

(m1, σ0) +∆fTSP
(m2, σ0)

However the moves m1 and m3 are compositional because

∆fTSP
({m1,m3}, σ0) = ∆fTSP

(m1, σ0) +∆fTSP
(m3, σ0)

Example 3.7 Consider the GAP. For this problem, a set M of independent moves is neces-
sarily compositional. Indeed we have

∆CGAP
(M,σ) =

K∑
k=1

∆CCAPA(Sk)(M,σ) (3.1)

and

12

∆CCAPA(Sk)(M,σ) =

{
0 if @m ∈M modifying Sk
∆CCAPA(Sk)(m,σ) if there is a unique m ∈M modifying Sk

(3.2)
Moreover, we have

∆CCAPA(Sk)(m,σ) = ∆CGAP
(m,σ) (3.3)

with Sk being the variable modified by m. Thus

∆CCAPA(Sk)(M,σ) =
∑
m∈M

∆CGAP
(m,σ) (3.4)

The same holds for fGAP by decomposing it as a sum of k terms. We thus have that any set
of independent moves is compositional for the GAP.

3.4.2 Improvement Graph

The neighborhood V LSN1(P, σ) can be searched efficiently through the concept of an im-
provement graph, which is built automatically from the MoveGraph. Improvement graphs
are the core of VLSN algorithms, and in constraint-based VLSN they can be derived auto-
matically from MoveGraphs thanks to the differentiability of the moves. The key idea is to
(1) remove edges (i, j) with ∆C2(ηij , σ) 6= 0 as these moves violate constraint C2 and (2)
add a weight ∆f (ηij , σ) on every edge (i, j).

Definition 3.9 Given a COP 〈f, C1 + C2,X , D〉, a MoveGraph G = 〈V,E, η〉 and a solu-
tion σ, the improvement graph is the weighted graph IG(G, σ) = (V,E′, η, w) such that
(1) E′ = {(i, j) ∈ E|∆C2(ηij , σ) = 0}, (2) wij = ∆f (ηij , σ).

The neighborhood V LSN1(P, σ) can then be explored more efficiently by searching for
cycles in the improvement graph, for the three following reasons:

1. Pruning the set of edges does not restrict the neighborhood. Indeed, the constraint C2
is satisfied by every solution σ. Thus ∆C2(m,σ) ≥ 0, ∀m ∈ M. So a set of com-
positional moves M satisfies C2 if and only if each single move m ∈ M respects it
(
∑
m∈M ∆C2(m,σ) = 0 ⇐⇒ ∆C2(m,σ) = 0,∀m ∈ M). Thus any compositional

cycle O in the MoveGraph G such that ∆C2(η(O), σ) = 0 is also in the corresponding
improvement graph.

2. The values ∆f (m,σ) can be pre-computed, which means that the search for composi-
tional cycles does not have to compute them repeatedly thanks to Definition 3.8.

3. The time-complexity of building the improvement graph is the same as scanning the full
neighborhood in a standard local search. Indeed, in order to compute the improvement
graph, we only need to compute ∆C2(m,σ) and ∆f (m,σ) for all moves m considered.
And this must also be done in standard local search algorithms.

3.4.3 Incremental Update of the Improvement Graph

Because the improvement graph depends on the current solution σ, it must be updated at
each iteration. VLSN algorithms update the improvement graph incrementally, but the set of
edges to update is problem-dependent. Fortunately, in CBVLSN, the set of edges to update
can be derived automatically. Indeed, one needs only to consider the edges that are not
compositional with the moves applied at the previous iteration.

13

Proposition 3.5 Given a COP 〈f, C1 + C2,X , D〉, a MoveGraph G = 〈V,E, η〉 and an
assignment σ, let M be a set of compositional moves and ηij be a move compositional with
M . We have

∆f (ηij ,M(σ)) = ∆f (ηij , σ) (3.5)

∆C2(ηij ,M(σ)) = ∆C2(ηij , σ) (3.6)

Proof

∆f (ηij ,M(σ)) = f(ηij(M(σ)))− f(M(σ))

=

(
f(σ) +∆f (ηij , σ) +

∑
m∈M

∆f (m,σ)

)
−

(
f(σ) +

∑
m∈M

∆(m,σ)

)
= ∆f (ηij , σ)

The same reasoning holds with C2.

Proposition 3.5 shows that the presence and the cost of an edge (i, j) in the improvement
graph are constant if for each move ηij compositional with M . After having applied a set
M of moves, an edge (i, j) has to be updated only if ηij is not compositional with M , or if
ηij represents another move (which could be possible as the function η depends on σ).

4 Automatic Derivation of Independent and Compositional Moves

Let us review what we have achieved in the previous section. We have shown that VLSNs
can be formalized abstractly in terms of differentiable constraints and functions, and a par-
titioning of the constraints into a global constraint capturing the important substructure of
the problem and other side-constraints. To ensure feasibility, we introduced the concept of
cyclic-consistent MoveGraph, which guarantees that cycles in the MoveGraph maintain the
feasibility of the distinguished global constraint. Finally, we have indicated that the differen-
tiation on the model of a set of moves, if it is restricted to be independent and compositional,
can be computed very efficiently.

The only remaining issues are how to test compositionality and how to search the cyclic
neighborhood. This section deals with the first issue. The second issue will be tackled in
Section 5.

One possibility to test compositionality is to implement directly Definition 3.8. Such a
“simulation” approach is often orders of magnitude slower than a dedicated implementation.
Our approach however computes compositionality incrementally from a small extension in
the CLBS interface of constraints and functions. Input and output variables are two funda-
mental concepts used to derive a sufficient condition for a set of moves to be compositional
and independent.

First we define the output variables and how they can be used to compute independence
in Section 4.1. We then introduce input variables in Section 4.2 and how they can be com-
puted for a combination of differentiable invariants in Section 4.3. We describe how com-
positionality can be ensured based on the input variables in Section 4.4. We finally slightly
restrict the cyclic VLSN to be search automatically and efficiently in Section 4.5.

14

4.1 Checking Independence Automatically

Independence can be checked by means of output variables.

Definition 4.1 Given a set of variables X and an assignment σ, the output variables of a
move m, denoted by Var 6=(m,σ), is the set of the variables modified by applying the move
m on σ: Var 6=(m,σ) = {Xi ∈ X : m(σ)(Xi) 6= σ(Xi)}.

We can then express independence in terms of output variables.

Definition 4.2 Given two movesm1 andm2 and an assignment σ,m1 andm2 are variable-
independent wrt σ iff Var 6=(m1, σ) ∩Var 6=(m2, σ) = ∅.

Proposition 4.1 Given two movesm1 andm2 and an assignment σ,m1 andm2 are variable-
independent wrt σ iff m1 and m2 are independent.

4.2 Input Variables

Input variables are used to automatically ensure compositionality. We here define them after
two small definitions. The first one captures when two assignments assign the same values
to a subset of the variables.

Definition 4.3 Given a set of variables X and a subset of these variables X ⊆ X , two
assignments σ1, σ2 are X-equivalent if

σ1(Xi) = σ2(Xi) , ∀Xi ∈ X.

The next definition captures whether a set of variables allows to differentiate a function.

Definition 4.4 Given a function g, a move m and an assignment σ, a subset X of variables
is ∆g(m,σ)-complete iff

∆g(m,σ
′) = ∆g(m,σ)

for all assignments σ′ ∈ Λ that are X-equivalent wrt σ.

Now, testing compositionality requires to determine which variables would change the dif-
ferentiation of moves. This intuition is captured by the concept of input variables.

Definition 4.5 Given a set of variables X , a move m, an assignment σ and a function g :

Λ → Z, the input variables V ar<(g,m, σ) is a smallest subset of X that is ∆g(m,σ)-
complete.

Observe that a variable that is not in the expression of ∆g(m,σ) cannot be an input variable.
Thus we can state that the input variables V ar<(g,m, σ) are at most the variables present
in the expression of ∆g(m,σ).

Example 4.1 Consider the TSP and the move m = assign(Xj , i). The input variables
Var<(fTSP ,m, σ) = {Xj−1, Xj , Xj+1}. Indeed, these are the only three variables present
in the expression of the variation of the move on the objective function (Equation (2.2)).
It states that in order to compute the variation of the assign move assign(Xj , i), we must
know the value of the two adjacent cities of visit Xj .

15

Example 4.2 Consider the GAP and the moves replace, insert, or remove. From the array
(2.5), there is only one input variable per move, namely the variable Sk modified by the
move. Thus

Var<(fGAP ,m, σ) = Var<(CGAP ,m, σ) = Var 6=(m,σ) (4.1)

This means that only variable Sk must be considered to differentiate the constraint and the
objective function wrt one move for this problem. Equation (4.1) states that

Var<(fGAP ,m, σ) ∪Var<(CGAP ,m, σ) ⊆ Var 6=(m,σ)

and this explains why a set of independent moves is necessarily compositional for the GAP
(Example 3.7).

Example 4.3 Consider the variables X = [X1, X2, X3], the domain D = {0, 1} and the
function f(σ) = σ(X1) · σ(X2) · σ(X3). Let the assignment σ = {X1 = X2 = X3 = 0}.
Clearly ∆f (assign(X1, 1), σ) = 0. This holds as long as X2 = 0 or X3 = 0. Thus the
input variables Var<(assign(X1, 1), σ) can be either {X2} or {X3}. This shows that the
input variables may not be unique. It is possible to define a unique, but larger, set of input
variables. For reasons that will become clear later, we are interested in having the smallest
set of input variables possible.

4.3 Combinations of Differentiable Invariants

Once the input variables are defined for basic constraints and objectives, the input variables
can also be synthesized for traditional logical and arithmetic operators.

Proposition 4.2 The input variables can be determined for the sum, product or other oper-
ations � between multiple functions:

V ar<(f � g,m, σ) ⊆ V ar<(f,m, σ) ∪ V ar<(g,m, σ)

Example 4.4 Consider the TSP. Let the function

element(X,Y, c) : Λ→ N : element(X,Y, c)(σ) = cσ(X),σ(Y)

where X,Y are two integer variables and c is a two-dimensional matrix. We define

fTSP ′(σ) =

n−1∑
i=1

element(Xi, Xi+1, c) + element(Xn, X1, c) (4.2)

Clearly the function fTSP ′ is equivalent to fTSP although it is modeled using smaller func-
tions. We have

∆element(X,Y,c)(assign(Xj , i), σ) =


−cσ(X),σ(Y) + cσ(X),i if Xj = Y

−cσ(X),σ(Y) + ci,σ(Y) if Xj = X

0 otherwise
(4.3)

Thus

Var<(element(X,Y, c), assign(Xj , i), σ) =


{X,Y } if Xj = Y

{X,Y } if Xj = X

∅ otherwise

(4.4)

16

Let m = assign(Xj , i),

Var<(fTSP ′ ,m, σ) =

n−1⋃
i=1

Var<(element(Xi, Xi+1, c),m, σ) ∪Var<(element(Xn, X1, c),m, σ)

(4.5)

= {Xj−1, Xj} ∪ {Xj , Xj+1} (4.6)

= {Xj−1, Xj , Xj+1} (4.7)

= Var<(fTSP ,m, σ) (4.8)

The decomposition of the objective function has the same input variables than the function
considered globally in the case of the TSP.

This decomposability of functions is a critical benefit of our constraint-based approach.
Indeed, when we model complex constraints and objective functions from a set of reusable
basic constraints and objective functions, the CBVLSN search algorithm acts exactly as a
dedicated implementation of the specific TSP objective. This indicates that complex VLSN
algorithms can be built compositionally from primitive constraints and objectives.

4.4 Ensuring Compositionality Automatically

We now introduce a stricter notion of compositionality, based on the input variables.

Definition 4.6 Given a function g and an assignment σ, a set of moves M = {m1, . . . ,mk}
is variable-compositional wrt g and σ iff

V ar<(g,mi, σ) ∩Var 6=(mj , σ) = ∅ ∀i, j ∈ {1, . . . , k} with i 6= j

We can now define a sufficient condition for a set of moves to be compositional.

Proposition 4.3 Given a COP 〈f, C1+C2,X , D〉, an assignment σ and a set of independent
moves M , if M is variable-compositional wrt f and σ, and variable-compositional wrt C2
and σ, then M is compositional wrt σ.

Proof Let M = {m1, . . . ,mk} be a set of moves variable-compositional wrt f and σ, and
variable-compositional wrt C2 and σ. We let Mj = {m1, . . . ,mj} and σj = Mj(σ) for all
j = 1, . . . , k. We have to prove that

(A) ∆f (M,σ) =
∑k
i=1∆f (mi, σ)

(B) ∆C2(M,σ) =
∑k
i=1∆C2(mi, σ)

We prove (A). A similar reasoning proves (B). From Definition 4.6 we have

Var<(f,mj , σ) ∩Var 6=(mi, σ) = ∅ ∀i, j ∈ {1, . . . , k} with i 6= j (4.9)

So for all j = 2, . . . , k, we have σj−1(Xl) = σ(Xl) for all Xl ∈ Var<(f,mj , σ), and
thus σj−1 and σ are Var<(f,mj , σ)-equivalent assignments. From Definition 4.5 we obtain

∆f (mj , σj−1) = ∆f (mj , σ) (4.10)

17

Moreover we have

∆f (Mj , σ) = f(Mj(σ))− f(σ) (4.11)

= f(mj(σj−1))− f(σ) (4.12)

= f(mj(σj−1))− f(σj−1) + f(σj−1)− f(σ) (4.13)

= ∆f (mj , σj−1) + f(Mj−1(σ))− f(σ) (4.14)

= ∆f (mj , σj−1) +∆f (Mj−1, σ) (4.15)

Thus, by (4.10), we obtain

∆f (Mj , σ) = ∆f (Mj−1, σ) +∆f (mj , σ) ∀j = 2, . . . , k (4.16)

This recurrence formula leads to

∆f (Mj , σ) =

j∑
i=1

∆f (mi, σ) ∀j = 1, . . . , k (4.17)

Finally we have ∆f (M,σ) = ∆f (Mk, σ) =
∑k
i=1∆f (mi, σ). ut

Example 4.5 Consider the GAP again. We illustrate variable-compositionality. Let the cur-
rent solution σ be such that

∑
i∈eσ(Sk)

bi = 10 and B = 11, bi = 1, bj = 1 with i, j /∈ Sk.
Then both moves insert(Sk, i) and insert(Sk, j) respect the capacity constraint individu-
ally and their output and input variables are both {Sk}. However, if performed together, the
capacity constraint will be violated. Because some of the output variables of one move is an
input variable of the other move, our framework knows there is a risk that the constraint may
be violated despite the fact that it is respected by both moves individually. So our generic
search algorithm knows these moves are not variable-compositional and will not select such
moves together.

4.5 Searching VLSN Automatically

Input and output variables are two fundamental concepts: given a COP, they allow us to
compute whether a set of moves is compositional and independent, without any additional
knowledge from the user. This enables the implementation of arbitrarily complex VLSNs
with side constraints that can be searched by generic algorithms. It suffices to extend the
CBLS interface for constraints and functions to include, not only violations and differen-
tiation, but also input and output variables which is natural in practice. Then it is natural
to approximate the compositional and independent cyclic neighborhood by the following
neighborhood,

VLSN2(P, σ) = {η(O)(σ) | O is a cycle in MG(σ) ∧
η(O) is variable-independent
and variables-compositional wrt σ}.

How to search V LSN2(P, σ) is described hereafter.

5 Searching the cyclic VLSN

This sections presents how to search the neighborhood V LSN2(P, σ) efficiently.

18

5.1 Global Search Algorithm

Algorithm 1 specifies the generic neighborhood exploration. It starts from a feasible solution
and improves it by searching for a cycle in the improvement graph. This algorithm stops
when no improving neighbors can be found.

Data: A solution σ0, a MoveGraph MG = 〈V,E, η〉 and an objective function f .
Result: A solution σ respecting C1 and improving f wrt σ0.

1 Let σ = σ0;
2 Let ig = IG(MG,σ);
3 while true do
4 Search for a cycle O ∈ ig such that η(O) is a set of variable-independent and

variable-compositional moves;
5 if no such cycle found or

∑
(i,j)∈C ∆f (ηij , σ) ≥ 0 then break;

6 Apply the set of moves: σ = η(O)(σ);
7 update ig = IG(MG,σ);

Algorithm 1: Generic CBVLSN search algorithm. Given the current assignment and
a MoveGraph MG, this algorithm explores the VLSN described by MG and returns
a solution improving the objective function.

The remainder of this section describes the different steps of this algorithm. Namely (1) how
we compute the independence and compositionality of a set of moves (2) how we search for
a cycle in the improvement graph, and (3) how the improvement graph can be incrementally
updated.

5.2 Checking Variable-Compositionality and Variable-Independence:

Checking variable-compositionality and variable-independence is a crucial step in the al-
gorithm. We here describe how this check can be efficiently computed. Let M be a set of
moves and σ be an assignment, checking whether a move m is variable-compositional and
variable-independent wrt M can be done in O(|M | · oV + oV), where oV is an upper bound
on the number of input and output variables per move.

This check is performed in two steps. First the input and output variables of the moves
in M are marked. Let inputMarked and outputMarked be Boolean arrays both indexed
by the variables in X . The cells of these arrays corresponding to all variables in Var<(m,σ)

and Var 6=(m,σ) are set to true. This can be done in O(oV) where oV is an upper bound on
the number of input and output variables per move. Marking all the nodes in M can thus be
done in O(|M | · oV).

Second, once the moves are marked, it is easy to check whether a move m is variable-
independent and variable-compositional with M . It suffices to check whether no output
variable in Var 6=(m,σ) is marked in both arrays, and if no input variables is marked in
outputMarked. This check can be done in O(oV).

5.3 Searching for cycles

This section describes how to search the cyclic neighborhood V LSN2(P, σ). We start with
a negative result.

19

Proposition 5.1 The problem of finding the best candidate in V LSN2(P, σ) is NP-Hard.

Proof In order to prove that the general problem of searching V LSN2(P, σ) is NP-Hard,
we prove that in the particular case of the Generalized Assignment Problem, finding the best
candidate in V LSN2(P, σ) is NP-Hard. This can be proven by showing the equivalence
between this last problem and the Cycle Through Distinct Subpartition Problem (CTDSP),
that has been proven to be NP-Hard [10]. The CTDSP is the usual subproblem to be solved
in cyclic VLSN dedicated to partitioning problems.

First, consider the MoveGraph for partitioning problems described in Section 3.3.3. Note
that any insert, remove or replacemove only modifies one variable. A move modifying the
variable Sk only affects the kth term of the constraint and objective functions of the GAP
specified in Equations (2.3) and (2.4). Thus two moves modifying two different variables,
will affect two different terms in (2.3) and (2.4), and will be compositional. Thus any set of
independent moves is compositional for this particular problem.

Now, given a solution σ of the GAP, we define the collection of sets [V0, . . . , VK−1]
where Vk = σ(Sk) ∪ {Sk} for all k = 0, . . . ,K − 1. Because [σ(S0), . . . , σ(SK−1)] repre-
sents a partition of D, the collection [V0, . . . , VK−1] is a partition of V .

Consider the MoveGraph MGpart(σ) = (V = X ∪ D,E, η) defined in Section 3.3.3.
Because of the definition of η, the variable modified by the move ηij is only function of j:
if j ∈ X , then applying ηij will modify the variable j, and if j ∈ D, then the variable being
modified is the variable Sk containing the element j. Thus finding a cycle in MGpart(σ) is
equivalent to finding a cycle in this same graph that has at most one element of each of the
subpartitions V0, . . . , VK−1. This problem is called the Cycle Through Distinct Subpartition
problem and has been proven to be NP-Hard in [10].

The general problem of searching the best candidate in V LSN2(P, σ) is thus NP-Hard.
ut

The complexity of searching the best candidate in V LSN2(P, σ) contrasts with the
polynomial-time complexity of searching the minimum-cost cycle in a graph. As a result,
traditional VLSN algorithms abandon completeness for polynomial-time behavior: They
typically find a high-quality neighbor by using a heuristic to the Cycle Through Distinct
Subpartition problem [1].

We follow a similar approach and our constraint-based VLSN framework uses a varia-
tion of that algorithm to search V LSN2(P, σ). The algorithm, based on the label-correcting
algorithm [11], is depicted in Algorithm 2 and handles edges with negative weight. The
label-correcting algorithm builds a shortest path tree rooted at a start node s. This tree con-
tains the shortest paths from s to any other node of the graph, except if no such path has been
found. We use P [i] to denote the shortest path from s to i in the shortest path tree (encoded
by the array pred). Algorithm 2 maintains a list containing all nodes whose outgoing edges
may improve this shortest path tree. The algorithm pops the nodes in this list, examines their
outgoing edges and updates the shortest path tree accordingly. We restrict this algorithm to
extend a path (in the shortest path tree) with an edge only if the corresponding moves are
independent and compositional. It is similar to the algorithm presented in [1] except that
here we also check for compositionality.

The complexity of Algorithm 2 depends on the implementation of LIST. If we use a
queue (FIFO), then Algorithm 2 achieves a polynomial-time complexity.

Proposition 5.2 Given a COP 〈f, C1 + C2, X,D〉, an assignment σ and an improvement
graph G = (V,E, η, w), let n = |V |, m = |E|, oV an upper bound on the number of input
and output variables per move, and U be the maximal cardinality of any path in the shortest

20

1 d(s) := 0; pred(s) := 0; d(j) :=∞,∀j 6= s;
2 LIST = {(s, 0)};
3 while LIST 6= ∅ do
4 remove an element (k, i) in LIST ;
5 mark the nodes and edges in P [i];
6 if P [i] is not independent or not compositional, then continue;
7 for (i, j) ∈ E do
8 if j ∈ P [i] then return the subpath from i to j in P [i] ;
9 else if ηij is independent and compositional with all moves in P [i] then

10 d(j) := d(i) + wij ;
11 pred(j) := i;
12 if (j, k) and (j, k + 1) /∈ LIST then add (k + 1, j) in LIST ;

Algorithm 2: The Heuristic Shortest-Path Algorithm to Search for Independent and
Compositional Cycles in an Improvement Graph. The label-correcting algorithm for
searching for paths [11] is represented in non-bold font. The added lines are in bold.
These lines allow to return a cycle only if it represents a set of independent and com-
positional moves.

path tree. The time-complexity of Algorithm 2 isO(nU2oV +mU(U+oV)) if using a FIFO
implementation for LIST.

Proof First note that when popping a couple (k, i) from LIST, only couples of the form
(k + 1, j) are added to LIST. As we use a FIFO, couples (k, i) will thus be considered in
increasing value of k.

After popping (k, i), only couples (k′, i′) with k′ > k are added to LIST. So once (k, i)

is popped, it won’t be added to LIST again, and thus cannot be popped from LIST twice.
Given a couple (k, i) ∈ LIST , k represents the cardinality of the shortest path from s to i
when (k, i) was added into LIST. So U is an upper bound on the value of k. The while loop
3-12 is thus executed at most nU times.

Inside the while loop, marking the nodes (line 5) and edges in P [i] can be done in
O(U · oV) (Section 4 describes how). Checking independence and compositionality of
the corresponding moves is done during the marking. So the complexity of lines 5-6 is
O(nU2oV). Each edge (i, j) can be considered only when a couple (k, i) is popped. Thus
each edge can be considered at most U times. Line 8 takes O(U), checking whether ηij can
be added to P [i] in O(oV) and all operations in lines 10-12 take constant time. Thus the
total complexity of the lines inside the for loop is O(mU(U + oV)).

These considerations lead to a complexity of O(nU2oV +mU(U + oV)). ut

This complexity is considerably lower in practice. For the GAP, each move modifies
one variable, and this variable is also the unique variable in the input variables. This has two
consequences. First no more than K moves can be independent (as each move modifies one
variable). This leads to U = K. Second, oV = O(1). So the complexity of our algorithm 2 is
O(nK2 +mK2). Note that if we stop at the first cycle found, then the complexity becomes
O(nK2 + mK). So our algorithm has the same complexity as the algorithm presented in
[1]. Indeed, for this problem, our algorithm performs exactly the same operations as in [1].

Figure 5.1 illustrates why the algorithm checks for independence and compositionality
twice and why the algorithm is incomplete. Consider Algorithm 2 when a node i has been
popped and the edge (i, j) is considered to be added in the shortest path tree (line 7). In
this example, all paths in this tree were independent and compositional, although the moves
represented by the edges (s, i) and (j, k) are not. The edge (i, j) is added to the shortest path

21

s i

j

k

s i

j

k

Fig. 5.1 Illustrating the Behavior of the Algorithm.

tree because the path [(s, i), (i, j)] is independent and compositional (line 9). This implicitly
change the shortest path from s to k to be [(s, i), (i, j), (j, k)], that is not independent and
compositional. This illustrates why the shortest path tree may contain paths that are not
independent and compositional and why we need to check for it when we pop a node from
the list. After the addition of the edge (i, j), the edge (s, j) is removed from the shortest path
tree. The path [(s, j), (j, k)] is thus forgotten while the current path from s to k is not valid
(not independent and compositional). This illustrates why Algorithm 2 is incomplete, since
it has lost track of the path from s to k going through j.

5.4 Update of the Improvement Graph

Once a setM of moves is selected and applied, the improvement graph must be recomputed.
Section 3.4.3 showed that only moves non-compositional with M have to be reconsidered
during this update. As Proposition 4.3 stated, variable-compositionality is stricter than com-
positionality. We can thus update an improvement graph (V,E′, η, w) by only consider-
ing non-variable-compositional moves wrt M ; only the edges in the set conflict(M,σ) =

{(i, j) ∈ E : Var<(ηij , σ) ∩Var 6=(M,σ) 6= ∅} have to be reconsidered.

6 Implementation

Our CBVLSN framework has been prototyped in COMET. We here present the general ar-
chitecture and the main interfaces. The complete prototype is Open Source and is available
at becool.info.ucl.ac.be.

The CBLS Interface The CBLS interface is extended to include input and output variables.
Listing 1 depicts the CBLS interface for differential invariants in partitioning problems. In
addition to the traditional CBLS interface, which supports the differentiation of replace, in-
sert, and remove moves, the interface also contains methods to collect output variables (line
4) and input variables (lines 6, 8, and 10). The methods receive an object VarCollector
which contains two sets for accumulating input and output variables of a set of moves.
This interface makes VLSN algorithms generic: they do not rely on the semantics of the
constraints, but only rely on their interface. This interface can then be used generically to
compute independence and compositionality.

1 interface PartitionDifferentialInvariant<VLSN> {
2 Solver<VLSN> getLocalSolver();
3 var{int} value();
4 int getReplaceDelta(var{set{int}} S,int i,int j);
5 void getReplaceInputVariables(var{set{int}} S,int i,int j,
6 VarCollector t);
7 void getReplaceOutputVariables(var{set{int}} S,int i,int j,

22

8 VarCollector t);
9 int getInsertDelta(var{set{int}} S,int i);

10 void getInsertInputVariables(var{set{int}} S,int i,
11 VarCollector t);
12 void getInsertOutputVariables(var{set{int}} S,int i,
13 VarCollector t);
14 int getRemoveDelta(var{set{int}} S,int j);
15 void getRemoveInputVariables(var{set{int}} S,int j,
16 VarCollector t);
17 void getRemoveOutputVariables(var{set{int}} S,int j,
18 VarCollector t);
19 }

Listing 1 Interface for Differential Invariants.

Searching for Compositional Cycles To search for compositional cycles, our implementa-
tion uses the enhanced version of the label-correcting algorithm depicted in Algorithm 2.
Note that the algorithm operates on the improvement graph, which is systematically derived
from the MoveGraph. Several MoveGraphs are predefined in our current implementation,
but all MoveGraphs implement the same interface and can be defined by users as we now
discuss.

Defining new MoveGraphs In constraint-based VLSN, a cyclic VLSN is entirely defined
by a MoveGraph. All MoveGraphs implement the interface depicted in Listing 2 which
encodes nodes as integers for simplicity. The interface provides several important meth-
ods. Method isMove(i,j) determines if edge (i, j) corresponds to a move. If m is the
move associated with edge (i, j), method applyMove(i,j) applies m on the current
solution; method isFeasibleMove(i,j) determines if m is feasible and is used for
constructing and updating the improvement graph; method getDeltaMove(i,j) dif-
ferentiates m; method getInputVariables(i,j,t) collects the input variables of m
and getOutputVariables(i,j,t) collects the output variables of m.

1 interface MoveGraph<VLSN> {
2 range getNodes();
3 bool isMove(int i,int j);
4 void applyMove(int i,int j);
5 bool isFeasibleMove(int i,int j);
6 int getMoveDelta(int i,int j);
7 void getInputVariables(int i,int j,VarCollector t);
8 void getOutputVariables(int i,int j,VarCollector t);
9 }

Listing 2 Interface for defining a MoveGraph

7 Models and Experimental Results

This section illustrates how our new concepts allow the direct implementation of sophisti-
cated VLSN search algorithms from the literature and how they are a key tool to improve
them. The experimental results presented here are a proof of concept of our theoretical
framework. The first application is particularly interesting: It illustrates why composition-
ality, which is obtained automatically in constraint-based VLSN, is beneficial in practice.

23

The second application was considered because it is the only problem for which detailed
experimental results of a dedicated VLSN implementation are available.

7.1 The Capacitated Examination Timetabling Problem

The Capacitated Examination Timetabling Problem (CETP) is a real-life problem encoun-
tered in universities. The goal of the CEPT is to partition n exams into K consecutive time
slots S = [S1, . . . , SK], each slot taking place on a specific day, subject to the following
hard constraints: (1) There are no students taking two exams scheduled in the same time slot
(exclusion constraint), (2) For each time slot k, the total number of students having an exam
scheduled at k is less than a total room capacity D. The number of students taking exams
i and j are given by the matrix (cij) ∈ Nn×n. The objective is to minimize the number of
students having two exams the same day in two consecutive time slots. If we denote the day
of time slot k by dayk, the objective function can be formulated as follows:

f =
∑

1≤k<K
dayk=dayk+1

∑
i∈Sk
j∈Sk+1

cij (7.1)

Thus the CEPT can be defined as the COP 〈f, Cpart + C2, S, 2N 〉, where Cpart is the global
partition constraint, C2 is the capacity plus the exclusion constraints, and N = {1, . . . , n}.
This problem can be implemented using our framework as follows.

The model is illustrated in Listing 3. The variable p represents a partition of the elements
{1, . . . , n} into K sets. The differentiable objective SubsetSum(X,Y,c) represents the
function

∑
i∈X,j∈Y cij . The input variables are empty for a move not modifying X nor Y, as

for such moves the differentiation is zero. For a move modifying X or Y, the input variables
are at most {X,Y }. The input variables of a move modifying a variable Sk wrt the aggregate
sum f are thus

Var<(f,m, σ) =
{
Si ∈ S

∣∣|i− k| ≤ 1 and dayk = dayi
}

which would be exactly the input variables if f would have been modeled as a global func-
tion. The constraint system Cs contains all the constraints C2 of the problem: capacity and
exclusion constraints. Posting these constraints for each set variables separately also leads
to the same definition of input variables as using global constraints on the entire partition.

1 Solver<VLSN> m();
2 Partition<VLSN> p(m,1..n,1..K);
3 var{set{int}}[] S = p.getVariables();
4 CETPFunction f =
5 sum(k in 1..K-1 : day[k]==day[k+1]) SubsetSum(S[k],S[k+1],c);
6 PartitionConstraintSystem<VLSN> Cs(m);
7 forall(k in 1..K){
8 Cs.post(CapacityConstraint (S[k],D));
9 Cs.post(ExclusiveConstraint(S[k],c));

10 }
11 vs.close();

Listing 3 Model for the CETP.

24

The Search We used a GRASP (Greedy Randomized Adaptive Search Procedure) proce-
dure such as described in [1]. First an initial solution is computed. Then the search itera-
tively looks for an improving neighbor in the cyclic exchange neighborhood. If such a move
exists, it is applied. Otherwise, a new randomized initial solution is computed and the search
restarts.

The initial solution is computed as in [5], based on the saturation heuristic first described
in [12]. This allows us to compare our approach with [5]. We here describe this heuristic in
terms of the CEPT. The saturation degree heuristic iteratively selects exams and assigns
them to periods. Given an exam i, let CEi be the set of exams conflicting with i: CEi =

{j ∈ {1, . . . , n}|cij > 0} and let pi be the timeslot assigned to an assigned exam i. At each
iteration, the heuristic selects an unassigned exam with the greatest number of different
timeslots assigned to exams in CEi. The ties are broken by selecting the unassigned exam
with the greatest set of exam in CEi that have already been assigned. More formally, the
unassigned exams i are iteratevely selected by decreasing lexicographical value of〈∣∣{pj |j ∈ CEi is assigned}

∣∣ , |{j ∈ CEi|j is assigned}|
〉

In the code, line 1 computes an initial solution. Line 2 constructs the MoveGraph and
line 3 derives its associated improvement graph. In line 5, the best move found by the cyclic
search algorithm is obtained: It encapsulates the actual move and the improvement graph
(and thus the MoveGraph) to update the improvements when applied. It also can be differ-
entiated as shown in line 6. Observe how the search is completely separated from the model
and could thus be used for any other partitioning problems without any modification.

1 p.initialize();
2 PartitionExchangeMoveGraph<VLSN> mg(vs,p,Obj,Cs);
3 ImprovementGraph<VLSN> ig(mg);
4 while (System.getCPUTime() < timeLimit){
5 Move<VLSN> M = ig.getBestCycle();
6 if (M == null || M.getDelta() > 0) p.initialize();
7 else M.apply();
8 }

Listing 4 Search for the CMST

Computational Comparison Hard instances for this problem are available [13]. Several
works solved this problem by designing a dedicated VLSN approach and obtained the best
known solutions to some of these instances [3,4,5]. They all search for an independent cycle
(i.e., a cycle with no pair of moves modifying the same set variable). Such a neighborhood
does not consider compositionality, leading thus to the possible selection of a negative cycle
in the improvement graph that represents a set of moves degrading the objective function
that must then be rejected. In order to compare both neighborhoods, we made 50 runs of our
COMET program of 10 minutes, with and without the check for compositionality. The time
limit has been chosen such that both algorithms were able to perform enough iterations to
illustrate their behavior. We report the average of the cost of the best solution found after a
given number of iterations (Figure 7.1).

These results indicate that the notion of compositionality may significantly improve
the results of VLSN algorithms. In constraint-based VLSNs, the shortest-path algorithm is
driven towards cycles that improve the current solution. If compositionality is not checked,
some improving cycles do not necessarily reflect the true variation on the objective function.
This may drive the search algorithm towards degrading solutions and reduce the efficiency of

25

(a) car-f-92 (b) kfu-s-93

(c) uta-s-92 (d) car-s-91

(e) tre-s-92

Fig. 7.1 Experimental results for the CEPT, using a saturation degree heuristic to compute the initial solu-
tions. The efficiency of the cyclic neighborhood without the check for compositionality (brighter curve) is
compared to our compositional neighborhood (darker curve). Each curve represents the average of the cost
of the best solution found among the fifty runs, after a given number of iterations. The area around the curve
represents the standard deviation among the fifty runs. These results illustrate that compositionality enhances
the search, by guiding it towards good solutions. Not checking compositionality leads to an unwanted random
behavior (illustrated by the largest error area around the bright curve).

the algorithm. This inequality between the cost of a cycle in the improvement graph and the
true variation of the objective wrt the corresponding moves leads to an unwanted random be-
havior. In constraint-based VLSN, this issue is avoided entirely and compositionality comes
from free since it is derived compositionally from primitive constraints and objectives.

New best solutions Our constraint-based VLSN and the GRASP procedure found new best
solutions to the CETP by only changing how the initial solutions were built. We here de-
scribe this change. In order to assign the exams to the timeslots, we select an exam not
already assigned having the larger number of assigned conflicting exams. We break ties by
choosing the exam with the most conflicting students

∑
j∈CEi

cij , or with the most con-

26

flicting exams. We thus select the exam i with the greater lexicographical value

〈
|{j ∈ CEi|j is assigned}| ,

∑
j∈CEi

cij , |CEi|

〉

We then assign the selected exam to the timeslot minimizing the impact on the objective
function according to the already assigned exams. We repeat this process until all the exams
are assigned. This randomized procedure is not always able to produce a complete partition;
an exam can be impossible to assign to any timeslot. However, after a few repetitions of the
construction process, a good initial solution is typically found.

Instance Merlot et al.[14] AAB[5] CBVLSN
CAR-S-91

Best 31 47 14
Average 47 - 35.05
Time(sec) 125 overnight 20.2
iter - - 3.4
max cycle - - 18
avg cycle - - 6.56

TRE-S-92
Best 0 4 0
Average 0.4 - 0.6
Time(sec) 16 overnight 1.2
iter - - 1.2
max cycle - - 10
avg cycle - - 6.08

UTA-S-92
Best 334 310 288
Average 393.4 - 347.15
Time(sec) 173 overnight 29.4
iter - - 13.85
max cycle - - 19
avg cycle - - 6.47

Table 7.1 Experimental results for the CEPT, using a new procedure to generate initial solutions. Our CB-
VLSN algorithm improves two instances (CAR-S-91, UTA-S-92), and find the optimal solution for a third
one (TRE-S-92: a solution with a zero cost cannot be improved). The maximum and average length of the
improving cycles found by our algorithm are high. This indicates that being able to perform a huge number
of moves at the same iteration is crucial to improve the generated initial solutions. Reported times have not
been converted to account for different computing resources.

Our concise CBVLSN model and search for the CETP improves the best solution found
for two of the data sets considered in [5], and obtain the optimal solution for the data set
TRE-S-92 (Table 7.1). We compared our algorithm to [5] and [14] that are the two algo-
rithms computing the best known solutions on these data sets. Unfortunately our new proce-
dure computing the initial solutions didn’t find a feasible initial partition for the fifth instance
CAR-F-92. This instance has the greatest proportion of conflicting exams, that may explain
why our procedure cannot find initial solution to the exclusion constraint.

Selecting many moves at each iteration is crucial to improve the generated initial so-
lutions. Indeed our algorithm had to explore cycles with many edges in order to identify
some improving cycles (max and avg cycle denotes the maximum and average length of the
improving cycles returned by our algorithm) .

27

7.2 The Capacitated Minimum Spanning Tree

The Capacitated Minimum Spanning Tree (CMST) is a communication problem. We are
given a matrix d ∈ Rn+1×n+1 specifying the distance between all pairs of terminals and
between all the terminals and a particular node R called the root. Each terminal i also re-
quires a given bandwidth bi. The goal of the CMST is to find a partition S = [S1, . . . , SK]

of the n terminals respecting the capacity constraint
∑
i∈Sk

bi ≤ D,∀k = 1, 2, . . . ,K and
minimizing the following objective function

f =

K∑
k=1

(mst(Sk, d) + min
i∈Sk

dR,i)

where mst(Sk, d) computes the cost of the minimum spanning tree over the terminals in Sk
given the cost matrix d. The CMST is modeled as the COP 〈f, Cpart + C2, S, 2N 〉, where
Cpart is the global partition constraint, C2 is the capacity constraint, and N = {1, . . . , n}.
We refer the reader to [1,2] for extensive references about the CMST.

A VLSN for the CMST was proposed in [1,2] and it finds the best known solutions to
this problem. It uses a cyclic neighborhood and searches for cycles passing through any sub-
set at most once. Their neighborhood is equivalent to our compositional cyclic neighborhood
but it is hardcoded in their search algorithm. It is thus easy to implement their algorithm in
our constraint-based framework as follows.

The Model is illustrated in Listing 5 and it is very similar to the model for the CEPT. The
differentiable objective mst computes the cost of the minimum spanning trees for a set of
nodes, and Obj represents the cost of a partition for this problem. The constraint system Cs
contains the capacity constraint of the problem.

1 Solver<VLSN> vs();
2 Partition<VLSN> p(vs,1..n,1..K);
3 var{set{int}}[] S = p.getSubsets();
4 PartitionFunction<VLSN> Obj(
5 sum(k in 1..K) (mst(vs,S[k],d) + min(i in S[k]) d[R,i]));
6 PartitionConstraintSystem<VLSN> Cs(m);
7 forall(k in 1..K)
8 Cs.post(CapacityConstraint (S[k],b,D));
9 vs.close();

Listing 5 Model for the CMST

The search The search component uses the same GRASP approach as the CEPT. The code
in Listing 4 is thus reused for this new problem. We compute the initial solution as in [1]
by using a randomized version of the greedy algorithm proposed in [15]. This algorithm
starts with each subtree containing a singleton node. In each iteration, the algorithm joins
two subtrees into a single subtree so that the new subtree satisfies the capacity constraints
and the savings achieved by the join operation are maximum. We select randomly one of the
three join operations achieving the bests savings exactly as it is done in [1].

New Neighborhood The VLSN algorithm presented above only exchanges single values
between set variables. In [2], a more complex neighborhood is presented, in which subtrees
of the current solution and/or single values can be exchanged among different subsets as

28

R

S1
S2

S3

Fig. 7.2 Composite Cyclic Exchange for the CMST.

illustrated in Figure 7.2. Our abstractions allow to implement this new neighborhood by
simply implementing a new MoveGraph. There is no need to modify the model or the search
algorithm provided that the CBLS API supports the moves.

Computational Comparison The extensive computational study in [1,2] allows us to illus-
trate the advantages and drawbacks in terms of modularity and efficiency of implementing
VLSN search algorithms using our CBVLSN framework. We implemented the same algo-
rithm presented in [1] using our abstractions. We run our algorithm on the same instances
and the initial solutions are computed exactly as in [1]. The GRASP is tuned with the same
parameters (Time limit of 200 seconds, application of the first improving cycle found). The
experimental analysis presented in [1] (denoted Du in Table 7.2) was made on Pentium 1,4
GHz with 512MB of memory. Our experiments (denoted MDVH) were performed on a sin-
gle core of a machine with an Intel Core Quad CPU Q6600 at 2.4GHz with 1GB memory.
The difference of speed between both setups was estimated at a factor 3.3 after running some
tests.

Table 7.2 assesses that we reproduced the same VLSN algorithm as in [1]: both im-
plementations behave similarly. They compute solutions of almost equivalent quality and
perform roughly the same number of iterations per run. The slight differences in solutions
and number of iterations are certainly due to some minor implementation details that were
not described in [1]. The last column shows our implementation is about 4 times slower
than the dedicated implementation of [1] (the difference of computers used is already taken
into account in Table 7.2), which is not surprising since our abstractions are built on top
of COMET which is an interpreted programming language. Any simple algorithm generally
runs four time slower on COMET than if it is implemented in C++. Supporting the abstrac-
tions directly in the core of COMET will remove this gap.

8 Related Work

Many fast dedicated VLSN algorithms exist for solving different problems such as Capac-
itated Minimum Spanning Tree [1,2], exam timetabling [3,4,5], and block-to-train assign-
ment [6]. All these approaches focus on a given problem to define and specify a specific
VLSN. There are two major differences between the algorithm they use to search the cyclic
neighborhood and ours (Algorithm 2): they do not check for compositionality, and the check
for independence is not generic wrt the constraints and objectives of the problem. This makes
their algorithms difficult to extend when considering either the addition of a constraint to the
model or the definition of a new VLSN. Cyclic neighborhoods were first studied in [10] and

29

Instance Q Avg value Nb of iter Time per iter Time
MDVH Du MDVH Du MDVH Du Factor

tc80-1 5 1112 1108 21.25 23 34.15 20 5.63
tc80-3 5 1087 1082 17.94 18.9 34.73 20 5.73
tc80-5 5 1301 1301 18.94 20.2 34.28 20 5.66
tc80-1 10 905 905 12.69 12 49.61 60 2.73
tc80-3 10 898 890 9.77 7 49.53 70 2.33
tc80-5 10 1036 1023 11.06 6.3 49.19 80 2.03
te80-1 5 2556 2555 15.68 11.6 39.01 30 4.29
te80-3 5 2636 2624 17.4 19.7 35.99 30 3.96
te80-5 5 2491 2486 13.89 18 35.98 20 5.94
te80-1 10 1717 1701 11.23 14.7 52.56 60 2.89
te80-3 10 1731 1719 13.54 13.9 51.94 60 2.86
te80-5 10 1662 1651 10.6 13.4 54.43 60 2.99

Table 7.2 Experimental comparison of our implementation with [1]. Q is the maximum allowed number of
terminals in a subset (capacity constraint). Avg value is the average of the values found after each run, Nb
of iter is the average number of iterations per run and Time per iter is the average time in milliseconds to
find a cycle. The last column indicates the time factor between both implementations, with the difference in
computers taken into account.

applied to the vehicle routing problems in [16,17]. The idea of defining VLSN as the compo-
sition of several independent moves emerged in [18]. They solved a vehicle routing problem
and defined the condition two moves have to respect for their variation to be additive for this
specific problem. Then they designed search algorithms to compute a set of moves satisfy-
ing this property, generally based on problem-specific improvement graphs. Ejection chains
[19] can also be considered as compounding moves.

Some papers also design a generic methodology using dynamic programming or gram-
mars to define new VLSN [20,21,22]. This allows to quickly define a VLSN for permuta-
tion problems and use a generic algorithm to search it. However, this approach operates at a
much lower level of abstraction and the VLSN has to be cleverly designed in order to ensure
that all the neighbors satisfy the constraint and have the expected cost; the VLSN defined
with such approach cannot self-adapt in function of the model to ensure independence and
compositionality.

Recent work also relies on the variables to select moves that may be applied together
[23]. They model combinatorial problems with boolean variables. Constraints are expressed
as equality between sums of such variables. They consider moves flipping the values of
several boolean variables. There are two main differences between their approach and ours.
First, they allow to select two moves together only if they do not modify variables that are in
the scope of a common constraint. This disallows the use of global constraints, a cornerstone
of constraint-based approaches, because the scope of such constraint is generally a large
subset of the decision variables. Second, they assume that a given move always modifies
the same variables. This restricts their approach to moves that always modify a small fixed
subset of variables. The moves presented in Section 3 do not satisfy these severe restrictions.

Large Neighborhood Search (LNS) can also be considered as VLSN. In LNS, at each
iteration, a subset of the variables are unassigned and the neighborhoods are defined as the
set of solution that can be obtained by reassigning these free variables. The neighbors are
searched by using a problem-generic solver such as a Constraint Programming or a Mixed
Integer Programming solver. The set of solutions that can be reached may be very big, and
LNS can thus be categorized as VLSN.

In this work, we focused on VLSN that are defined as solutions that can be reached by
performing a set of simple moves. The differences between the VLSN studied in this paper
and LNS are twofold. First, in this paper, we apply a set of independent and compositional

30

moves. These moves modify variables that are not related. This is the key to be able to
differentiate a set of moves. In LNS, generally, the stategy is the opposite: we select variables
that are in some way linked. This leads to better results [24].

Second, the VLSN studied in this paper have more structure than the neighborhoods
defined in LNS. This enables to modify polynomial-time algorithms to search VLSN very
efficiently. In LNS, the neighborhoods are searched by problem-generic solvers. The algo-
rithm selecting the neighbors may thus be less time-efficient. However they can handle any
type of constraints or objective functions, which can lead to a generic LNS implementation
[25].

9 Conclusion

This paper showed that the key idea behind CBLS can be naturally extended to VLSN
search, a class of local search algorithms using neighborhoods of exponential size but whose
good neighbors can be computed in polynomial time. By enhancing the CBLS interface with
the simple concepts of input and output variables, we showed that a VLSN search can be
systematically derived from a MoveGraph defining the moves to consider. The edges of
the MoveGraph represent moves and its cycles capture a set of moves that maintain the
feasibility of a global constraint representing the core structure of the application (e.g., a
permutation or a partitioning). Moreover, by restricting attention to compositional moves,
good neighbors in the VLSN can be found in polynomial time and the concepts of input and
output variables provide the tool to detect if a set of moves is compositional. Note also that
a variety of MoveGraphs can be provided to modelers, while implementers can implement
their own through a well-defined interface.

This theoretical framework for constraint-based VLSNs transfers the benefits of CBLS,
e.g., high-level modeling, separation of model and search, extensibility, and reuse, to VL-
SNs. A constraint-based VLSN framework will then provide a library of MoveGraphs, dif-
ferential invariants that can be extended by users if necessary and generic VLSN search
algorithms. These contributions make it possible to define VLSN models at a high level of
abstraction and to include idiosyncratic constraints naturally.

The paper described the architecture of the implementation of the framework in COMET

and presented experimental results demonstrating the feasibility of the approach on two sig-
nificant problems. The complete prototype is Open Source and is available at becool.info.ucl.ac.be.

Our current work is focused on complex vehicle routing applications, where VLSNs
bring significant benefits, and the integration of this framework into the core of COMET. We
also investigate VLSN search algorithms that differentiate the model on-the-fly instead of
using improvement graphs.

Acknowledgements

The first author is supported by the belgian FNRS (’Aspirant’). This research is partially sup-
ported by the Interuniversity Attraction Poles Programme (Belgian State, Belgian Science
Policy) and the FRFC project 2.4504.10 of the Belgian FNRS (National Fund for Scientific
Research).

31

References

1. R. K. Ahuja, J. B. Orlin, and D. Sharma, “Multi-exchange neighborhood structures for the capacitated
minimum spanning tree problem,” Mathematical Programming, vol. 91, pp. 71–97, Oct. 2001.

2. R. K. Ahuja, J. B. Orlin, and D. Sharma, “A composite very large-scale neighborhood structure for the
capacitated minimum spanning tree problem,” Operations Research Letters, vol. 31, pp. 185–194, May
2003.

3. S. Abdullah, S. Ahmadi, E. Burke, M. Dror, and B. McCollum, “A tabu-based large neighbourhood
search methodology for the capacitated examination timetabling problem,” Journal of the Operational
Research Society, vol. 58, pp. 1494–1502, Nov. 2007.

4. S. Abdullah, S. Ahmadi, E. Burke, and M. Dror, “Applying ahuja-orlin’s large neighborhood for con-
structing examination timetabling solution,” in Proceedings of the Fifth International Conference on
the Practice and Theory of Automated Timetabling, no. 3616 in Lecture Notes in Computer Science,
pp. 413–420, Springer, 2004.

5. S. Abdullah, S. Ahmadi, E. Burke, and M. Dror, “Investigating ahuja-orlin’s large neighbourhood search
approach for examination timetabling,” OR Spectrum, vol. 29, pp. 351–372, Apr. 2007.

6. K. C. Jha, R. K. Ahuja, and G. Şahin, “New approaches for solving the block-to-train assignment prob-
lem,” Networks, vol. 51, no. 1, pp. 48–62, 2008.

7. R. K. Ahuja, Özlem Ergun, J. B. Orlin, and A. P. Punnen, “A survey of very large-scale neighborhood
search techniques,” Discrete Appl. Math., vol. 123, no. 1-3, pp. 75–102, 2002.

8. P. V. Hentenryck and L. Michel, Constraint-Based Local Search. MIT Press, Oct. 2005.
9. C. Solnon, “Solving permutation constraint satisfaction problems with artificial ants,” in Proceedings

of the 14th European Conference on Artificial Intelligence (ECAI’2000), (Berlin), pp. 118–122, August
2000.

10. P. M. Thompson and J. B. Orlin, “The theory of cyclic transfers,” Tech. Rep. OR 200-89, Massachusetts
Institute of Technology, Operations Research Center, 1989.

11. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and Applications.
Prentice Hall, united states ed ed., Feb. 1993.

12. D. Brélaz, “New methods to color the vertices of a graph,” Communications of the ACM, vol. 22, pp. 251–
256, Apr. 1979. ACM ID: 359101.

13. M. Carter and G. Laporte, “Recent developments in practical examination timetabling,” Practice and
Theory of Automated Timetabling, pp. 1–21, 1996.

14. L. Merlot, N. Boland, B. Hughes, and P. Stuckey, “A hybrid algorithm for the examination timetabling
problem,” Practice and Theory of Automated Timetabling IV, pp. 207–231, 2003.

15. L. R. Esau and K. C. Williams, “On teleprocessing system design: part II a method for approximating
the optimal network,” IBM Systems Journal, vol. 5, no. 3, pp. 142–147, 1966.

16. P. M. Thompson, Local search algorithms for vehicle routing and other combinatorial problems. PhD
thesis, Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science,
1988.

17. P. M. Thompson and H. N. Psaraftis, “Cyclic transfer algorithms for multivehicle routing and scheduling
problems,” Operations Research, vol. 41, pp. 935–946, sep 1993.

18. O. Ergun, J. B. Orlin, and A. Steele-Feldman, “Creating very large scale neighborhoods out of smaller
ones by compounding moves: A study on the vehicle routing problem,” Tech. Rep. 4393-02, MIT Sloan
School of Management, oct 2002.

19. F. Glover, “Ejection chains with combinatorial leverage for the tsp,” Discrete Applied Mathematics,
vol. 65, pp. 223–253, 1996.

20. O. Ergun and J. B. Orlin, “A dynamic programming methodology in very large scale neighborhood
search applied to the traveling salesman problem,” Discrete Optimization, vol. 3, pp. 78–85, Mar. 2006.

21. Bompadre and Orlin, “Using grammars to generate very large scale neighborhoods for the traveling sales-
man problem and other sequencing problems,” Integer Programming and Combinatorial Optimization,
vol. 3509/2005, pp. 437–451, 2005.

22. R. E. Burkard, V. G. Deineko, and G. J. Woeginger, “The travelling salesman and the pq-tree,” Mathe-
matics of Operations Research, vol. 23, pp. 613–623, 1998.

23. T. Benoist, “Characterization and automation of matching-based neigborhood,” in CPAIOR’10, 2010.
24. L. Perron, P. Shaw, and V. Furnon, “Propagation guided large neighborhood search,” in Principles and

Practice of Constraint Programming – CP 2004 (M. Wallace, ed.), vol. 3258, pp. 468–481, Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2004.

25. R. Cipriano, L. Gaspero, and A. Dovier, “A hybrid solver for large neighborhood search: Mixing gecode
and easylocal++,” in Hybrid Metaheuristics (M. J. Blesa, C. Blum, L. Gaspero, A. Roli, M. Sampels,
and A. Schaerf, eds.), vol. 5818, pp. 141–155, Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.

32

