
ar
X

iv
:1

00
5.

15
67

v2
 [

cs
.A

I]
 3

0
Ju

n
20

10

On The Power of Tree Projections:
Structural Tractability of Enumerating CSP Solutions

Gianluigi Greco1 and Francesco Scarcello2

Dept. of Mathematics1 and DEIS2, University of Calabria, 87036, Rende, Italy
ggreco@mat.unical.it,scarcello@deis.unical.it

Abstract. The problem of deciding whether CSP instances admit solutions has been deeply stud-
ied in the literature, and several structural tractabilityresults have been derived so far. However,
constraint satisfaction comes in practice as a computationproblem where the focus is either on
finding one solution, or on enumerating all solutions, possibly projected to some given set of output
variables. The paper investigates the structural tractability of the problem of enumerating (possi-
bly projected) solutions, where tractability means here computable with polynomial delay (WPD),
since in general exponentially many solutions may be computed. A general framework based on the
notion of tree projection of hypergraphs is considered, which generalizes all known decomposition
methods. Tractability results have been obtained both for classes of structures where output vari-
ables are part of their specification, and for classes of structures where computability WPD must
be ensured for any possible set of output variables. These results are shown to be tight, by exhibit-
ing dichotomies for classes of structures having bounded arity and where the tree decomposition
method is considered.

1 Introduction

1.1 Constraint Satisfaction and Decomposition Methods

Constraint satisfactionis often formalized as a homomorphism problem that takes as input two finite
relational structuresA (modeling variables and scopes of the constraints) andB (modeling the relations
associated with constraints), and asks whether there is a homomorphism fromA toB. Since the general
problem is NP-hard, many restrictions have been consideredin the literature, where the given structures
have to satisfy additional conditions. In this paper, we areinterested in restrictions imposed on the
(usually said) left-hand structure, i.e.,A must be taken from some suitably defined classA of structures,
whileB is any arbitrary structure from the class “−” of all finite structures.1 Thus, we face the so-called
uniformconstraint satisfaction problem, shortly denoted as CSP(A,−), where both structures are part
of the input (nothing is fixed).

The decision problem CSP(A,−) has intensively been studied in the literature, and variousclasses
of structures over which it can be solved in polynomial time have already been singled out (see [6,
11, 18, 1], and the references therein). These approaches, calleddecomposition methods, are based on
properties of the hypergraphHA associated with each structureA ∈ A. In fact, it is well-known that,
for the classAa of all structures whose associated hypergraphs are acyclic, CSP(Aa,−) is efficiently
solvable by just enforcinggeneralized arc consistency(GAC)—roughly, by filtering constraint relations
until every pair of constraints having some variablesX̄ in common agree on̄X (that is, they have
precisely the same set of allowed tuples of values on these variablesX̄).

Larger “islands of tractability” are then identified by generalizing hypergraph acyclicity. To this
end, every decomposition methodDM associates with any hypergraphHA some measurew of its cyclic-
ity, called theDM-width of HA. The tractable classesA of instances (according toDM) are those (with

1 Note that the finite property is a feature of this framework, and not a simplifying assumption. E.g., on structures
with possibly infinite domains, the open question in [10] (just recently answered by [15] on finite structures)
would have been solved in 1993 [23].

http://arxiv.org/abs/1005.1567v2

hypergraphs) having bounded width, that is, whose degree ofcyclicity is below some fixed threshold.
For every instanceA in such a classA and every structureB, the instance(A,B) can be solved in
polynomial-time by exploiting the solutions of a set of suitable subproblems, that we callviews, each
one solvable in polynomial-time (in fact, exponential in the—fixed—width, for all known methods). In
particular, the idea is to arrange some of these views in a tree, called decomposition, in order to ex-
ploit the known algorithms for acyclic instances. In fact, whenever such a tree exists, instances can be
solved by just enforcingGAC on the available views, even without computing explicitly any decomposi-
tion. This very general approach traces back to the seminal database paper [10], and it is based on the
graph-theoretic notion oftree-projectionof the pair of hypergraphs(HA,HV), associated with the input
structureA and with the structureV of the available views, respectively (tree projections areformally
defined in Section 2).

For instance, assume that the fixed threshold on the width isk: in thegeneralized hypertree-width
method [13], the available views are all subproblems involving at mostk constraints from the given CSP
instance; in the case oftreewidth[21], the views are all subproblems involving at mostk variables; for
fractional hypertree-width, the views are all subproblems having fractional cover-width at mostk (in
fact, if we require that they are computable in polynomial-time, we may instead use those subproblems
defined in [19] to compute aO(k3) approximation of this notion).

Note that, for the special case of generalized hypertree-width, the fact that enforcingGAC on all
clusters ofk constraints is sufficient to solve the given instance, without computing a decomposition,
has been re-derived in [5] (with proof techniques differentfrom those in [10]). Moreover, [5] actually
provided a stronger result, as it is proved that this property holds even if there is some homomorphically
equivalent subproblem having generalized hypertree-width at mostk. However, the correspondingonly
if result is missing in that paper, and characterizing the precise power of thisGAC procedure for the views
obtained from all clusters ofk constraints (short:k-GAC) remained an open question. For any classA of
instances having bounded arity (i.e., with a fixed maximum number of variables in any constraint scope
of every instance of the class), the question has been answered in [2]:∀A ∈ A, k-GAC is correct for every
right-hand structureB if, and only if, the core ofA has tree width at mostk (recall that treewidth and
generalized hypertree-width identify the same set of bounded-arity tractable classes). In its full version,
the answer to this open question follows from a recent resultin [15] (see Theorem 2-bis).

In fact, for any recursively enumerable class of bounded-arity structuresA, it is known that this
method is essentially optimal: CSP(A,−) is solvable in polynomial timeif, and only if, the cores of
the structures inA have bounded treewidth (under standard complexity theoretic assumptions) [17].
Note that the latter condition may be equivalently stated asfollows: for everyA ∈ A there is someA′

homomorphically equivalent toA and such that its treewidth is below the required fixed threshold. For
short, we say that such a class has bounded treewidth modulo homomorphic equivalence.

Things with unbounded-arity classes are not that clear. Generalized hypertree-width does not char-
acterize all classes of (arbitrary) structures where CSP(A,−) is solvable in polynomial time [18]. It
seems that a useful characterization may be obtained by relaxing the typical requirement that views are
computable in polynomial time, and by requiring instead that such tasks are fixed-parameter tractable
(FPT) [9]. In fact, towards establishing such characterization, it was recently shown in [20] that (un-
der some reasonable technical assumptions) the problem CSP(H), i.e., CSP(A,−) restricted to the
instances whose associated hypergraphs belong to the classH, is FPTif, and only if,hypergraphs inH
have boundedsubmodularwidth—a new hypergraph measure more general thanfractional hypertree-
width and, hence, than generalized hypertree-width.

It is worthwhile noting that the above mentioned tractability results for classes of instances defined
modulo homomorphically equivalence are actually tractability results for thepromiseversion of the
problem. In fact, unless P= NP, there is no polynomial-time algorithm that may check whether a given
instanceA actually belongs to such a classA. In particular, it has been observed by different authors [24,
4] that there are classes of instances having bounded treewidth modulo homomorphically equivalence

2

for which answers computable in polynomial time cannot be trusted. That is, unless P= NP, there is no
efficient way to distinguish whether a “yes” answer means that there is some solution of the problem,
or thatA 6∈ A.

In this paper, besides promise problems, we also consider the so-calledno-promiseproblems, which
seem more appealing for practical applications. In this case, either certified solutions are computed, or
the promiseA ∈ A is correctly disproved. For instance, the algorithm in [5] solves the no-promise
search-problem of computing a homomorphism for a given CSP instance(A,B). This algorithm either
computes such a homomorphism or concludes thatHA has generalized hypertree-width greater thank.

1.2 Enumeration Problems

While the structural tractability of deciding whether CSP instances admit solutions has been deeply
studied in the literature, the structural tractability of the corresponding computation problem received
considerably less attention so far [4], though this is certainly a more appealing problem for practical
applications. In particular, it is well-known that for classes of CSPs where the decision problem is
tractable and a self-reduction argument applies the enumeration problem is tractable too [8, 7]. Roughly,
these classes have a suitable closure property such that onemay fix values for the variables without going
out of the class, and thus may solve the computation problem by using the (polynomial-time) algorithm
for the decision problem as an oracle. In fact, for the non-uniform CSP problem, the tractability of the
decision problem always entails the tractability of the search problem [7]. As observed above, this is
rather different from what happens in the uniform CSP problem that we study in this paper, where this
property does not hold (see [24, 4], and Proposition 1), and thus a specific study for the computation
problem is meaningful and necessary.

In this paper, we embark on this study, by focusing on the problem ECSP of enumerating (possibly
projected) solutions. Since even easy instances may have anexponential number of solutions, tractability
means here having algorithms that compute solutionswith polynomial delay(WPD): An algorithmM
solves WPD a computation problemP if there is a polynomialp(·) such that, for every instance ofP of
sizen, M discovers if there are no solutions in timeO(p(n)); otherwise, it outputs all solutions in such
a way that a new solution is computed withinO(p(n)) time from the previous one.

Before stating our contribution, it is worthwhile noting that there are different facets of the enumer-
ation problem, and thus different research directions to beexplored:

(Which Decomposition Methods?) We considered the more general framework of the tree projec-
tions, where subproblems (views) may be completely arbitrary, so that our results are smoothly inher-
ited by all (known) decomposition methods. We remark that this choice posed interesting technical
challenges to our analysis, and called for solution approaches that were not explored in the earlier liter-
ature on traditional methods, such as treewidth. For instance, in this general context, we cannot speak
anymore of “the core” of a structure, because different isomorphic cores may have different structural
properties with respect to the available views.

(Only full solutions or possibly projected solutions?) In this paper, an ECSP instance is a triple
(A,B, O), for which we have to compute all solutions (homomorphisms)projected to a set of desired
output variablesO, denoted byAB[O]. We believe this is the more natural approach. Indeed, modeling
real-world applications through CSP instances typically requires the use of “auxiliary” variables, whose
precise values in the solutions are not relevant for the user, and that are (usually) filtered-out from the
output. In these cases, computing all combinations of theirvalues occurring in solutions means wasting
time, possibly exponential time. Of course, this aspect is irrelevant for the problem of computing just
one solution, but is crucial for the enumeration problem.

(Should classes of structures be aware of output variables?) This is an important technical ques-
tion. We are interested in identifying classes of tractableinstances based on properties of their left-hand
structures, while right-hand structures have no restrictions. What about output variables? In principle,

3

structural properties may or may not consider the possible output variables, and in fact both approaches
have been explored in the literature (see, e.g., [17]), and both approaches are dealt with in this paper.
In the former output-aware case, possible output variablesare suitably described in the instance struc-
ture. Unlike previous approaches that considered additional “virtual” constraints covering together all
possible output variables [17], in this paper possible output variables are described as those variables
X having a domain constraintdom(X), that is, a distinguished unary constraint specifying the domain
of this variable. Such variables are said domain restricted. In fact, this choice reflects the classical ap-
proach in constraint satisfaction systems, where variables are typically associated with domains, which
are heavily exploited by constraint propagation algorithms. Note that this approach does not limit the
number of solutions, while in the tractable classes considered in [17] only instances with a polynomial
number of (projected) solutions may be dealt with. As far as the latter case of arbitrary sets of out-
put variables is considered, observe that in general stronger conditions are expected to be needed for
tractability. Intuitively, since we may focus on any desired substructure, no strange situations may occur,
and the full instance should be really tractable.

1.3 Contribution

Output-aware classes ofECSPs:

(1) We define a property for pairs(A, O), whereA is a structure andO ⊆ A is a set of variables,
that allows us to characterize the classes of tractable instances. Roughly, we say that(A, O) is
tp-coveredthrough the decomposition methodDM if variables inO occur in a tree projection of a
certain hypergraph w.r.t. to the (hypergraph associated with the) views defined according toDM.

(2) We describe an algorithm that solves the promise enumeration problem, by computing with poly-
nomial delay all solutions of a given instance(A,B, O), whenever(A, O) is tp-coveredthrough
DM.

(3) For the special case of (generalized hyper)tree width, we show that the above condition is also
necessary for the correctness of the proposed algorithm (for everyB). In fact, for these traditional
decomposition methods we now have a complete characterization of the power of thek-GAC ap-
proach.

(4) For recursively enumerable classes of structures having bounded arity, we exhibit a dichotomy
showing that the above tractability result is tight, forDM = treewidth (and assuming FPT6= W [1]).

ECSPinstances over arbitrary output variables:

(1) We describe an algorithm that, on input(A,B, O), solves the no-promise enumeration problem. In
particular, either all solutions are computed, or it infersthat there exists no tree projection ofHA

w.r.t.HV (the hypergraph associated with the views defined accordingto DM). This algorithm gen-
eralizes to the tree projection framework the enumeration algorithm of projected solutions recently
proposed for the special case of treewidth [4].

(2) Finally, we give some evidence that, for bounded arity classes of instances, we cannot do better
than this. In particular, having bounded width tree-decompositions of the full structure seems a
necessary condition for enumerating WPD. We speak of “evidence,” instead of saying that our
result completely answers the open question in [17, 4], because our dichotomy theorem focuses on
classes of structures satisfying the technical property ofbeing closed under taking minors (in fact,
the same property assumed in the first dichotomy result on thecomplexity of the decision problem
on classes of graphs [16]).

4

2 Preliminaries: Relational Structures and Homomorphisms

A constraint satisfaction problem may be formalized as a relational homomorphism problem. A vocab-
ulary τ is a finite set of relation symbols of specified arities. A relational structureA overτ consists of
a universeA and anr-ary relationRA ⊆ Ar, for each relation symbolR in τ .

If A andA′ are two relational structures over disjoint vocabularies,we denote byA⊎A′ the relational
structure over the (disjoint) union of their vocabularies,whose domain (resp., set of relations) is the
union of those ofA andA′.

A homomorphismfrom a relational structureA to a relational structureB is a mappingh : A 7→ B

such that, for every relation symbolR ∈ A, and for every tuple〈a1, . . . , ar〉 ∈ RA, it holds that
〈h(a1), . . . , h(ar)〉 ∈ RB. For any setX ⊆ A, denote byh[X] the restriction ofh to X . The set
of all possible homomorphisms fromA to B is denoted byAB, while A

B[X] denotes the set of their
restrictions toX .

An instance of the constraint satisfaction problem (CSP) isa pair(A,B) whereA is called aleft-
hand structure(short: ℓ-structure) andB is called aright-hand structure(short: r-structure). In the
classical decision problem, we have to decide whether thereis a homomorphism fromA to B, i.e.,
whetherAB 6= ∅. In an instance of the corresponding enumeration problem (denoted by ECSP) we are
additionally given a set ofoutputelementsO ⊆ A; thus, an instance has the form(A,B, O). The goal is
to compute the restrictions toO of all possible homomorphisms fromA toB, i.e.,AB[O]. If O = ∅, the
computation problem degenerates to the decision one. Formally, let hφ : ∅ 7→ true denote (the constant
mapping to) the Boolean valuetrue; then, defineAB[∅] = {hφ} (resp.,AB[∅] = ∅) if there is some
(resp., there is no) homomorphism fromA toB.

In the constraint satisfaction jargon, the elements ofA (the domain of theℓ-structureA) are the
variables, and there is a constraintC = (〈a1 . . . , ar〉, RB) for every tuple〈a1 . . . , ar〉 ∈ RA and every
relation symbolR ∈ τ . The tuple of variables is usually called the scope ofC, while RB is called
the relation ofC. Any homomorphism fromA to B is thus a mapping from the variables inA to the
elements inB (often called domain values) that satisfies all constraints, and it is also called a solution
(or a projected solution, if it is restricted to a subset of the variables).

Two relational structuresA andA′ are homomorphically equivalent if there is a homomorphism
from A to A

′ and vice-versa. A structureA′ is a substructure ofA if A′ ⊆ A andRA
′

⊆ RA, for
each symbolR ∈ τ . Moreover,A′ is a core of A if it is a substructure ofA such that:(1) there is a
homomorphism fromA to A

′, and(2) there is no substructureA′′ of A′, with A
′′ 6= A

′, satisfying(1).

3 Decomposition Methods, Views, and Tree Projections

Throughout the following sections we assume that(A,B) is a given connected CSP instance, and we
shall we shall seek to compute its solutions (possibly restricted to a desired set of output variables) by
combining the solutions of suitable sets of subproblems, available as additional distinguished constraints
calledviews.

Let AV be anℓ-structure with the same domain asA. We say thatAV is a view structure(short:
v-structure) if

– its vocabularyτV is disjoint from the vocabularyτ of A;
– every relationRAV contains a single tuple whose variables will be denoted byvar(RAV). That is,

there is a one-to-one correspondence between views and relation symbols inτV , so that we shall
often use the two terms interchangeably;

– for every relationR ∈ τ and every tuplet ∈ RA, there is some relationRt ∈ τV , calledbase view,
such that{t} = RAV

t , i.e., for every constraint inA there is a corresponding view inAV .

LetBV be anr-structure. We say thatBV is legal (w.r.t.AV and(A,B)) if
– its vocabulary isτV ;

5

Fig. 1. A structureA. A hypergraphHAV
such that(HA,HAV

) has no tree projections. Two hypergraphsHA′ and
HA′′ , whereA′ andA′′ are cores ofA. A tree projectionHa of (HA′ ,HAV

).

– For every viewR ∈ τV , RBV ⊇ A
B[w] holds, wherew = var(RAV). That is, every subproblem is

not more restrictive than the full problem.
– For every base viewRt ∈ τV , RBV

t ⊆ RB. That is, any base view is at least as restrictive as the
“original” constraint associated with it.

The following fact immediately follows from the above properties.

Fact 1 LetBV be anyr-structure that is legal w.r.t.AV and(A,B). Then,∀O ⊆ A, the ECSP instance
(AV ,BV , O) has the same set of solutions as(A,B, O).

In fact, all structural decomposition methods define some way to build the views to be exploited for
solving the given CSP instance. In our framework, we associate with any decomposition methodDM
a pair of polynomial-time computable functionsℓ-DM andr-DM that, given any CSP instance(A,B),
compute the pair(AV ,BV), whereAV = ℓ-DM(A) is a v-structure, andBV = r-DM(A,B) is a legal
r-structure.2

For instance, for any fixed natural numberk, thegeneralized hypertree decomposition method[12]
(short:hwk) is associated with the functionsℓ-hwk andr -hwk that, given a CSP instance(A,B), build
the pair(ℓ-hwk (A), r -hwk (A,B)) where, for each subsetC of at mostk constraints from(A,B), there

is a viewRC such that: (1)var (Rℓ-hwk (A)
C) is the set of all variables occurring inC, and (2) the tuples

in R
r-hwk (A,B)
C are the solutions of the subproblem encoded byC. Similarly, the tree decomposition

method[21] (twk) is defined as above, but we consider each subset of at mostk variables inA instead
of each subset of at mostk constraints.

3.1 Tree Projections for CSP Instances

In this paper we are interested in restrictions imposed on left-hand structures of CSP instances, based
on some decomposition methodDM. To this end, we associate with anyℓ-structureA a hypergraph
HA = (A,H), whose set of nodes is equal to the set of variablesA and where, for each constraint scope
in RA, the setH of hyperedges contains a hyperedge including all its variables (no further hyperedge
is in H). In particular, thev-structureAV = ℓ-DM(A) is associated with a hypergraphHAV

= (A,H),
whose set of nodes is the set of variablesA and where, for each viewR ∈ τV , the setH contains

2 A natural extension of this notion we may be to consider FPT decomposition methods, where functionsℓ-DM
andr-DM are computable in fixed-parameter polynomial-time. For thesake of presentation and of space, we do
not consider FPT decomposition methods in this paper, but our results can be extended to them rather easily.

6

the hyperedgevar(RAV). In the following, for any hypergraphH, we denote its nodes and edges by
nodes(H) andedges(H), respectively.

Example 1.Consider theℓ-structureA whose vocabulary just contains the binary relation symbolR,
and such thatRA = {〈F,E〉, 〈A,E〉, 〈A,C〉, 〈A,B〉, 〈B,C〉, 〈D,B〉, 〈D,C〉}. Such a simple one-
binary-relation structure may be easily represented by thedirected graph in the left part of Figure 1,
where edge orientation reflects the position of the variables inR. In this example, the associated hyper-
graphHA is just the undirected version of this graph. LetDM be a method that, on inputA, builds the
v-structureAV = ℓ-DM(A) consisting of the seven base views of the formRt, for each tuplet ∈ RA,
plus the three relationsR1, R2, andR3 such thatRAV

1 = {〈A,E, F 〉}, RAV

2 = {〈A,B,C, F 〉}, and
RAV

3 = {〈C,D, F 〉}. Figure 1 also reportsHAV
. ⊳

A hypergraphH is acyclic iff it has a join tree [3], i.e., a treeJT (H), whose vertices are the hy-
peredges ofH, such that if a nodeX occurs in two hyperedgesh1 andh2 of H, thenh1 andh2 are
connected inJT (H), andX occurs in each vertex on the unique path linkingh1 andh2 in JT (H).

For two hypergraphsH1 andH2, we writeH1 ≤ H2 iff each hyperedge ofH1 is contained in at
least one hyperedge ofH2. LetH1 ≤ H2. Then, atree projectionof H1 with respect toH2 is an acyclic
hypergraphHa such thatH1 ≤ Ha ≤ H2. Whenever such a hypergraphHa exists, we say that the pair
(H1,H2) has a tree projection (also, we say thatH1 has a tree projection w.r.t.H2). The problem of
deciding whether a pair of hypergraphs has a tree projectionis called thetree projection problem, and it
has recently been proven to be NP-complete [14].

Example 2.Consider again the setting of Example 1. It is immediate to check that the pair of hyper-
graphs(HA,HAV

) does not have any tree projection. Consider instead the (hyper)graphHA′ reported
on the right of Figure 1. The acyclic hypergraphHa is a tree projection ofHA′ w.r.t.HAV

. In particular,
note that the hyperedge{A,B,C} ∈ edges(Ha) “absorbs” the cycle inHA′ , and that{A,B,C} is in
its turn contained in the hyperedge{A,B,C, F} ∈ edges(HAV

). ⊳

Note that all the (known) structural decomposition methodscan be recast as special cases of tree
projections, since they just differ in how they define the setof views to be built for evaluating the CSP
instance. For instance, a hypergraphHA has generalized hypertree width (resp., treewidth) at mostk if
and only if there is a tree projection ofHA w.r.t.Hℓ-hwk (A) (resp., w.r.t.Hℓ-twk (A)).

However, the setting of tree projections is more general than such traditional decomposition ap-
proaches, as it allows us to consider arbitrary sets of views, which often require more care and different
techniques. As an example, we shall illustrate below that inthe setting of tree projections it does not
make sense to talk about “the” core of anℓ-structure, because different isomorphic cores may differ-
ently behave with respect to the available views. This phenomenon does not occur, e.g., for generalized
hypertree decompositions, where all combinations ofk constraints are available as views.

Example 3.Consider the structureA illustrated in Example 1, and the structuresA
′ andA′′ over the

same vocabulary asA, and such thatRA
′

= {〈A,C〉, 〈A,B〉, 〈B,C〉} andRA
′′

= {〈B,C〉, 〈D,B〉,
〈D,C〉}. The hypergraphsHA′ andHA′′ are reported in Figure 1. Note thatA

′ andA′′ are two (isomor-
phic) cores ofA, but they have completely different structural properties. Indeed,(HA′ ,HAV

) admits a
tree projection (recall Example 2), while(HA′′ ,HAV

) does not. ⊳

3.2 CSP Instances and tp-Coverings

We complete the picture of our unifying framework to deal with decomposition methods for constraint
satisfaction problems, by illustrating some recent results in [15], which will be useful to our ends. Let
us start by stating some preliminary definitions.

For a set of variablesO = {X1, . . . , Xr}, let SO denote the structure with a freshr-ary relation
symbolRO and domainO, such thatRAO

O = {〈X1, . . . , Xr〉}.

7

Definition 1. Let AV be av-structure. A set of variablesO ⊆ A is tp-coveredin AV if there exists a
coreA′ of A ⊎ SO such that(HA′ ,HAV

) has a tree projection.3 �

For instance, it is easily seen that the variables{A,B,C} are tp-coveredin the v-structureAV

discussed in Example 1. In particular, note that the structureA ⊎ S{A,B,C} is associated with the same
hypergraphHA′ that has a tree projection w.r.t.HAV

(cf. Example 3). Instead, the variables{B,C,D}
are nottp-coveredin AV .

Given a CSP instance(AV ,BV), we denote byGAC(AV ,BV) the r-structure that is obtained by
enforcing generalized arc consistency on(AV ,BV).

The following result, proved in [15] for a different setting, states the precise relationship between
generalized-arc-consistent views andtp-coveredsets of variables.

Theorem 2. LetA be anℓ-structure, and letAV be av-structure. The following are equivalent:

(1) A set of variablesO ⊆ A is tp-covered inAV ;
(2) For everyr-structureB, for everyr-structureBV that is legal w.r.t.AV and(A,B), and for every

relationR ∈ τV with O ⊆ var(RAV), RGAC(AV ,BV)[O] = A
B[O].

Note that the result answered a long standing open question [10, 23] about the relationship between
the existence of tree projections and (local and global) consistency properties in databases [15]. In
words, the result states that just enforcing generalized arc consistency on the available views is a sound
and complete procedure to solve ECSP instancesif, and only if,we are interested in (projected) solutions
over output variables that aretp-coveredand occur together in some available view. Thus, in these cases,
all solutions can be computed in polynomial time. The more general case where output variables are
arbitrary (i.e., not necessarily included in some available view) is explored in the rest of this paper.

We now leave the section by noticing that as a consequence of Theorem 2, we can characterize
the power of local-consistency for any decomposition method DM such that, for each pair(A,B), each
view in BV = r-DM(A,B) contains the solutions of the subproblem encoded by the constraints over
which it is defined. For the sake of simplicity, we state belowthe result specialized to the well-known
decomposition methodstwk andhwk.

Theorem 2-bis.Let DM be a decomposition method in{twk, hwk}, let A be anℓ-structure, and let
AV = ℓ-DM(A). The following are equivalent:

(1) A set of variablesO ⊆ A is tp-covered inAV ;
(2) For everyr-structureB, and for every relationR ∈ τV with O ⊆ var(RAV), RGAC(AV ,BV)[O] =

A
B[O], whereBV = r-DM(A,B).

Proof (Sketch).Preliminarily, it is easy to see that (2) in Theorem 2 may be equivalently stated as
follows:

(2’) For everyr-structureB, for everyr-structureBV that is legal w.r.t.AV and(A,B) and such that
BV = GAC(AV ,BV), and for every relationR ∈ τV with O ⊆ var (RAV), RBV [O] = A

B[O].

The fact that(1) ⇒ (2) trivially follows from Theorem 2. We have to show that(2) ⇒ (1) holds as
well. To this end, observe that ifO is not tp-coveredin ℓ-DM(A), by Theorem 2 (actually,(1) ⇒ (2′)),
we can conclude the existence of: (1) anr-structureB, (2) anr-structureBV that is legal w.r.t.AV and
(A,B) and such thatBV = GAC(AV ,BV), and (3) a relationR ∈ τV with O ⊆ var(RAV) such that
RBV [O] 6= A

B[O] (of course,RBV [O] ⊃ A
B[O] by the legality ofBV). Consider now ther-structure

3 For the sake of completeness, note that we use here a coreA
′ because we found it more convenient for the

presentation and the proofs. However, it is straightforward to check that this notion can be equivalently stated in
terms of any structure homomorphically equivalent toA ⊎ SO. The same holds for the related Definition 3.

8

B
′
V = r -hwk (A,B). Recall that each view inB′

V containsall the solutions of the subproblem encoded
by the constraints over which it is defined. SinceBV = GAC(AV ,BV), it can be shown that each view
in BV containsonly solutions of the subproblem encoded by the constraints overwhich it is defined.
Thus, for each relationR ∈ τV , RB

′

V ⊇ RBV holds, which impliesRB
′

V [O] ⊃ A
B[O]. The same line of

reasoning applies to the tree decomposition method. ⊳

Note that if we consider decision problem instances (O = ∅) and the treewidth method (AV =
ℓ-twk (A)), from Theorem 2-bis, we (re-)obtain the nice characterization of [2] about the relationship
betweenk-local consistency and treewidth modulo homomorphic equivalence. If we consider gener-
alized hypertree-width (AV = ℓ-hwk (A)), we get the answer to the corresponding open question for
the unbounded arity case, that is, the precise power of the procedure enforcingk-union (of constraints)
consistency (i.e., the power of the algorithm for the decision problem described in [5]).

4 Enumerating Solutions of Output-Aware CSP Instances

The goal of this section is to study the problem of enumerating CSP solutions for classes of instances
where possible output variables are part of the structure ofthe given instance. This is formalized by
assuming that the relational structure containsdomain constraintsthat specify the domains for such
variables.

Definition 2. A variableX ∈ A is domain restrictedin theℓ-structureA if there exists a unary distin-
guished (domain) relation symboldom(X) ∈ τ such that{〈X〉} = dom(X)

A. The set of all domain
restricted variables is denoted bydrv(A). �

We say that an ECSP instance(A,B, O) is domain restricted ifO ⊆ drv (A). Of course, if it is
not, then one may easily build in linear time an equivalent domain-restricted ECSP instance where
an additional fresh unary constraint is added for every output variable, whose values are taken from
any constraint relation where that variable occurs. We say that such an instance is a domain-restricted
version of(A,B, O).

Figure 2 shows an algorithm, namedComputeAllSolutionsDM, that computes the solutions of
a given ECSP instance. The algorithm is parametric w.r.t. any chosen decomposition methodDM, and
works as follows. Firstly,ComputeAllSolutionsDM starts by transforming the instance(A,B, O) into a
domain restricted one, and by constructing the views in(AV ,BV) viaDM. Then, it invokes the procedure
Propagate. This procedure backtracks over the output variables{X1, . . . , Xm}: At each stepi, it tries
to assign a value toXi from its domain view,4 and defines this value as the unique one available in
that domain, in order to “propagate” such an assignment overall other views. This is accomplished
by enforcing generalized arc-consistency each time the procedure is invoked. Eventually, whenever an
assignment is computed for all the variables inO, this solution is returned in output, and the algorithm
proceeds by backtracking again trying different values.

4.1 Tight Characterizations for the Correctness ofComputeAllSolutionsDM

To characterize the correctness ofComputeAllSolutionsDM, we need to define a structural property
that is related to the one stated in Definition 1. Below, differently from Definition 1 where the set of
output variablesO is treated as a whole, each variable inO has to be tp-covered as a singleton set.

Definition 3. Let (A,B, O) be an ECSP instance. We say that(A, O) is tp-coveredthroughDM if there
is a coreA′ of A ⊎

⊎

X∈O S{X} such that(HA′ ,Hℓ-DM(A)) has a tree projection. �

4 With an abuse of notation, in the algorithm we denote bydom(X) the base view inτV associated with the input
constraintdom(X) ∈ τ (in fact, no confusion may arise because the algorithm only works on views).

9

Input : An ECSP instance(A,B, O), whereO = {X1, . . . , Xm};
Output : AB[O];
Method: update(A,B,O) with any of its domain-restricted versions;

letAV := ℓ-DM(A), BV := r-DM(A,B);
invokePropagate(1, (AV ,BV),m, 〈〉);

ProcedurePropagate(i: integer,(AV ,BV): pair of structures,m: integer,
〈a1, ..., ai−1〉: tuple of values inAi);

begin
1. letB′

V := GAC(AV ,BV);

2. letactiveValues := dom(Xi)
B
′
V ;

3. for each element〈ai〉 ∈ activeValues do
4. | if i = m then
5. | | output 〈a1, ..., am−1, am〉;
6. | else
7. | | updatedom(Xi)

B
′
V with {〈ai〉}; /∗Xi is fixed to valueai ∗/

8. ⌊ ⌊ Propagate(i+ 1, (AV ,B
′

V),m, 〈a1, ..., ai−1, ai〉);
end.

Fig. 2. Algorithm ComputeAllSolutionsDM.

Note that the above definition is purely structural, because(the right-hand structure)B plays
no role there. In fact, we next show that this definition captures classes of instances where
ComputeAllSolutionsDM is correct.

Theorem 3. Let DM be a decomposition method, letA be an ℓ-structure, and letO ⊆ A be
a set of variables. Assume that(A, O) is tp-covered throughDM. Then, for everyr-structure B,
ComputeAllSolutionsDM computes the setAB[O].

Proof (Sketch).LetBin be anyr-structure. Preliminarily observe that if the original input instance, say
Iin = (Ain,Bin, O), is tp-coveredthroughDM, the same property is enjoyed by its equivalent domain-
restricted version, sayI0 = (A,B0, O), computed in the starting phase of the algorithm. Thus, there is
a coreA′ of A ⊎

⊎

X∈O S{X} such that(HA′ ,HAV
) has a tree projection, whereAV = ℓ-DM(A). This

entails that,∀X ∈ O, {X} is tp-coveredin HAV
. It is sufficient to show that, ifAB

0 6= ∅, at the generic
call of Propagate with i as its first argument,activeValues is initialized at Step 2 with a non-empty
set that contains all those values thatXi ∈ O may take, in any solution of(A,B0) extending the current
partial solution〈a1, ..., ai−1〉; otherwise (AB0 = ∅), activeValues = ∅, and the algorithm correctly
terminates with an empty output without ever entering thefor cycle. For the sake of presentation, we
just prove what happens in the first call.The generalizationto the generic case is then straightforward.

Let i = 1 and assume thatB′
V := GAC(AV ,BV) has been computed. From thetp-coveredproperty

of variables inO and Theorem 2, it follows that∀X ∈ O, its domain viewdom(X) is such that
dom(X)B

′

V = A
B0 [{X}]. Thus, all values in the domain views associated with outputvariables occur

in some solutions. This holds in particular fordom(X1) that is empty if, and only if,AB0 = ∅, in which
case the cycle is skipped and the algorithm immediately halts with an empty output. Assume now that
this is not the case, so thatactiveValues = A

B0 [{X1}] 6= ∅, and leta1 be the chosen value at Step 3.
Consider a new instanceI1 = (A,B1, O) where the domain constraint forX1 contains the one valuea1.
From the above discussion it follows thatA

B1 6= ∅, and clearly the solutions ofI1 are all and only those
of I0 that extend the partial solution〈a1〉. Moreover, it is easy to check that ther-structureB′

V obtained
after the execution of Step 7 is legal w.r.t.(A,B1), and recall that nothing is changed in the pair(A, O),
which is (still) tp-coveredthroughDM. Therefore, when we call recursively callPropagate at Step 8
with i = 2, we are in the same situation as in the first call, but going to enumerate the solutions ofI1.

10

At the end of this call, we just repeat this procedure with thenext available value forX1, saya2, until
all elements inactiveValues = A

B
0 [{X1}] have been considered (and propagated). ⊳

We now complete the picture by observing that Definition 3 also provides the necessary conditions
for the correctness ofComputeAllSolutionsDM. As in Theorem 2-bis, we state below the result spe-
cialized to the methodstwk andhwk.

Theorem 4. LetDM be a decomposition method in{twk, hwk}, letA be anℓ-structure, and letO ⊆ A

be a set of variables. Assume that, for everyr-structureB, ComputeAllSolutionsDM computesAB[O].
Then,(A, O) is tp-covered throughDM.

Proof (Sketch).Assume that(A, O) is not tp-coveredthroughDM, and letO′ ⊆ O be a maximal set of
output variables such that(A, O′) is tp-coveredthroughDM. In the case whereO′ = ∅, there is no coreA′

of A such that(HA′ ,Hℓ-DM(A)) has a tree projection. Thus, we can apply Theorem 2-bis and conclude

that there are anr-structureB, and a relationR ∈ τV such thatAB has a solution whileRGAC(ℓ-DM(A),BV)
is empty, withBV = r-DM(A,B). It follows thatComputeAllSolutionsDM will not produce any output.
Consider now the case whereO′ 6= ∅, and where anyX ∈ O \O′ is a variable such that(A, O′ ∪ {X})
is not tp-coveredthroughDM. Let Ā be the relational structureA ⊎

⊎

Y ∈O′ S{Y }, which is such that
(HĀ,Hℓ-DM(A)) has a tree projection. Then,{X} is not tp-covered inℓ-DM(Ā). By Theorem 2-bis, there

are anr-structureB, and a relationR ∈ τV with {X} ⊆ var (RĀV) such thatRGAC(ĀV ,BV)[{X}] ⊃
Ā

B[{X}], whereBV = r-DM(Ā,B). In fact, we can show that such a “counterexample” structureB can
be chosen in such a way that there are (full) solutionsh for the problem having the following property:
some values inRGAC(ĀV ,BV)[{X}] \ Ā

B[{X}] belongs to the generalized arc consistent structureB
′

where variables inO′ are fixed according toh[O′]. Thus while enumerating such a solutionh[O′],
ComputeAllSolutionsDM generates wrong extensions of this solution to the variableX . ⊳

4.2 Tight Characterizations for Enumerating Solutions with Polynomial Delay

We next analyze the complexity ofComputeAllSolutionsDM.

Theorem 5. LetA be anℓ-structure, andO ⊆ A be a set of variables. If(A, O) is tp-covered through
DM, thenComputeAllSolutionsDM runs WPD.

Proof. Assume that (A, O) is tp-covered through DM. By Theorem 3, we know that
ComputeAllSolutionsDM computes the setAB[O]. Thus, if the algorithm does not output any
tuple, we can immediately conclude that the ECSP instance does not have solutions. Concerning the
running time, we preliminary notice that the initialization steps are feasible in polynomial time. In
particular, computingAV andBV is feasible in polynomial time, by the properties of the decomposition
methodDM (see Section 3). To characterize the complexity of the recursive invocations ofPropagate,
we have to consider instead two cases.

In the case where there is no solution, we claim that ther-structureB′
V obtained by enforcing

generalized arc consistency in the first invocation ofPropagate (i.e., for i = 1) is empty. Indeed,
since(A, O) is tp-coveredthroughDM, then{X1} is tp-coveredin AV—just compare Definition 1 and
Definition 3. It follows that we can apply Theorem 2 on the set{X1} in order to conclude that, for
every relationR ∈ τV with X1 ∈ var(RAV), RGAC(AV ,BV)[{X1}] = A

B[{X1}]. Since,AB[O] is empty,
the above implies thatGAC(AV ,BV) is empty too. Thus,ComputeAllSolutionsDM invokes just once
Propagate, where the only operation carried out is to enforce generalized arc consistency, which is
feasible in polynomial time.

Consider now the case whereAB[O] is not empty. Then, the first solution is computed afterm

recursive calls of the procedurePropagate, where the dominant operation is to enforce generalized arc

11

consistency on the current pair(AV ,BV). In particular, by the arguments in the proof of Theorem 3, it
follows thatPropagate does not have to backtrack to find this solution: after enforcing generalized arc
consistency at stepi, any active value forXi is guaranteed to occur in a solution with the current fixed
values for the previous variablesXj, 1 ≤ j < i. SinceGAC can be enforced in polynomial time, this
solution can be computed in polynomial time as well.

To complete the proof, observe now that any solution is provided in output whenPropagate is
invoked fori = m. After returning a tuple of values〈a1, ..., am〉, Propagate may need to backtrack to
a certain indexi′ ≥ 1 having some further (different) valueai′ to be processed, fixXi′ with this value,
propagate this assignment, and continue by processing variableXi′+1. Thus, at mostm invocations of
Propagate are needed to compute the next solution, and no backtrackingstep may occur before we
found it. Therefore,ComputeAllSolutionsDM runs WPD. ⊳

By the above theorem and the definition of domain restricted variables, the following can easily be
established.

Corollary 1. LetA be any class ofℓ-structures such that, for eachA ∈ A, (A, drv (A)) is tp-covered
throughDM. Then, for everyr-structureB, and for every set of variablesO ⊆ drv(A), the ECSP
instance(A,B, O) is solvable WPD.

In the case of bounded arity structures and if the (hyper)tree width is the chosen decomposition
method, it is not hard to see that the result in Corollary 1 is essentially tight. Indeed, the implication
(2) ⇒ (1) in the theorem below easily follows from the well-known dichotomy for the decision ver-
sion [17], which is obtained in the special case of ECSP instances without output variables (O = ∅).

Theorem 6. AssumeFPT 6= W [1]. Let A be any class ofℓ-structures of bounded arity. Then, the
following are equivalent:

(1) A has bounded treewdith modulo homomorphic equivalence;
(2) For everyA ∈ A, for everyr-structureB, and for every set of variablesO ⊆ drv(A), theECSP

instance(A,B, O) is solvable WPD.

Actually, from an application perspective of this result, we observe that there is no efficient algo-
rithm for the no-promise problem for such classes. In fact, the following proposition formalizes and
generalizes previous observations from different authorsabout the impossibility of actually trusting
positive answers in the (promise) decision problem [24, 4].

We say that a pair(h, c) is a certified projected solution of(A,B, O) if, by using the certificatec, one
may check in polynomial-time (w.r.t. the size of(A,B, O)) whetherh ∈ A

B[O]. E.g., any full solution
extendingh is clearly such a certificate. IfO = ∅, h is also empty, andc is intended to be a certificate
that(A,B) is a “Yes” instance of the decision CSP. Finally, we assume that the empty output is always
a certified answer, in that it entails that the input is a “No” instance, without the need for an explicit
certificate of this property.

Proposition 1. The following problem isNP-hard: Given anyECSPinstance(A,B, O), compute a
certified solution inAB[O], whenever(A, O) is tp-covered throughDM; otherwise, there are no require-
ments and any output is acceptable. Hardness holds even ifDM is the treewidth method withk = 2, the
vocabulary contains just one binary relation symbol, andO = ∅.

Proof. We show a polynomial-time Turing reduction from the NP-hard3-colorability problem. LetM
be a Turing transducer that solves the problem, that is, whenever(A, O) is tp-coveredthroughDM, at the
end of a computation on a given input(A,B, O) its output tape contains a certified solution inAB[O],
otherwise, everything is acceptable. In particular, we do not pretend thatM recognizes whether the
above condition is fulfilled.

12

Then, we useM as an oracle procedure within a polynomial time algorithm that solves the 3-
colorability problem. LetG = (N,E) be any given graph, and assume w.l.o.g. that it contains a triangle
{n1, n2}, {n2, n3}, and{n3, n1}. (Otherwise, select any arbitrary vertexn1 of G and connect it to
two fresh verticesn2 andn3, also connected to each other. It is easy to check that this new graph
is 3-colorable if, and only if, the original graphG is 3-colorable, as the two fresh vertices have no
connections with the rest of the graph.) Build the (classical) binary CSP(AG,B3c) where the vocabulary
contains one relation symbolRE , and the set of variables isAG = N . Moreover,RAG

E = {〈ni, nj〉 |

{ni, nj} ∈ E}, andRB3c

E = {〈c, c′〉 | c 6= c′, {c, c′} ⊆ {1, 2, 3}}. Consider the treewidth method
for k = 2, and compute in polynomial time the pair(AV ,BV) whereAV = ℓ-tw2 (AG) andBV =
r -tw2 (B3c). In particular, observe that the hypergraphHAV

contains a hyperedge{ni, nj, nl} for every
triple of vertices ofG.

It is well-known and easy to see thatG is 3-colorable if, and only if,AB3c

G 6= ∅, that is, if there is
a homomorphism fromAG to a triangle (indeed,B3c is a triangle). Therefore, ifG is 3-colorable, the
triangle substructureA′ such thatRA

′

E = {〈ni, nj〉 | {i, j} ⊂ {1, 2, 3} | i 6= j} is homomorphically
equivalent toAG. Moreover, in this case the hypergraph consisting of the single hyperedge{n1, n2, n3}
is a tree projection ofHA′ w.r.t.HAV

, or, equivalently, the treewidth ofA′ is 2.
Now, run M on input (AG,B3c, ∅) and consider its first output certificatec—say, for the sake

of presentation, a full solution for the problem. Then checkin polynomial time whetherc is a legal
certificate—in our exemplification, whether it encodes a solution of the given instance. If this is the
case, we know thatG is 3-colorable; otherwise, we conclude thatG is not 3-colorable. Indeed,M must
be correct on 3-colorable graphs, because there exists a tree projection ofHA′ (and thus of any core
of AG—note thatO = ∅ and thus there is no further requirement) w.r.t.HAV

. Since all these steps are
feasible in polynomial-time, we are done. ⊳

5 Enumerating Solutions over Arbitrary Output Variables

In this section we consider structural properties that are independent of output variables, so that tractabil-
ity must hold for any desired sets of output variables. For this case, we are able to provide certified
solutions WPD, which seems the more interesting notion of tractability for actual applications.

Figure 3 shows theComputeCertifiedSolutionsDM algorithm computing all solutions of an
ECSP instance, with a certificate for each of them. The algorithm is parametric w.r.t. any chosen
decomposition methodDM, and resembles in its structure theComputeAllSolutionsDM algorithm.
The main difference is that, after having found an assignment 〈a1, ..., am〉 for the variables inO,
ComputeCertifiedSolutionsDM still iterates over the remaining variables in order to find acertificate
for that projected solution. Of course,ComputeCertifiedSolutionsDM does not backtrack over the
possible values to be assigned to the variables in{Xm+1, ..., Xn}, since just one extension suffices to
certify that this partial solution can be extended to a full one. Thus, we break the cycle after an element
〈ai〉 is picked from its domain and correctly propagated, for eachi > m, so that in these cases we
eventually backtrack directly toi = m (to look for a new projected solution).

Note thatComputeCertifiedSolutionsDM incrementally outputs various solutions, but it halts
the computation if the currentr-structureB′

V becomes empty. As an important property of the algo-
rithm, even when this abnormal exit condition occurs, we areguaranteed that all the elements provided
as output until this event are indeed solutions. Moreover, if no abnormal termination occurs, then we
are guaranteed that all solutions will actually be computed. Correctness follows easily from the same
arguments used forComputeAllSolutionsDM, by observing that, whenever(HA,Hℓ-DM(A)) has a tree
projection, the full set of variablesA is tp-coveredthroughDM.

Theorem 7. LetA be anℓ-structure, andO ⊆ A be a set of variables. Then, for everyr-structureB,
ComputeCertifiedSolutionsDM computes WPD a subset of the solutions inA

B[O], with a certificate
for each of them. Moreover,

13

Input : An ECSP instance(A,B, O), whereO = {X1, . . . , Xm};
Output : for each solutionh ∈ A

B[O], a certified solution(h, h′);
Method: letA = {X1, ..., Xm, Xm+1, ..., Xn} be the variables ofA;

update(A,B, A) with any of its domain restricted versions;
letAV := ℓ-DM(A), BV := r-DM(A,B);
invokeCPropagate(1, (AV ,BV),m, 〈〉);

ProcedureCPropagate(i: integer,(AV ,BV): pair of structures,m: integer,
〈a1, ..., ai−1〉: tuple of values inAi);

begin
1. letB′

V := GAC(AV ,BV);
2. if i > 1 andB′

V is emptythen output “DM failure” and HALT ;

3. letactiveValues := dom(Xi)
B
′
V ;

4. for each element〈ai〉 ∈ activeValues do
5. | if i = n then
6. | | output the certified solution(〈a1, ..., am〉, 〈am+1, ..., an〉);
7. | else
8. | | updatedom(Xi)

B
′
V with {〈ai〉}; /∗Xi is fixed to valueai ∗/

9. | | CPropagate(i+ 1, (AV ,B
′

V),m, 〈a1, ..., ai−1, ai〉);
10.⌊ ⌊ if i > m then BREAK;
end.

Fig. 3. Algorithm ComputeCertifiedSolutionsDM.

Fig. 4. The undirected-grid structureAu, and a mapping to one of its cores.

– If ComputeCertifiedSolutionsDM outputs “DM failure”, then (HA,Hℓ-DM(A)) does not have a
tree projection;

– otherwise,ComputeCertifiedSolutionsDM computes WPDAB[O].

Moreover, we next give some evidence that, for bounded arityclasses of instances, we cannot do
better than this. In particular, having bounded width tree-decompositions of the full structure seems a
necessary condition for the tractability of the enumeration problem WPD w.r.t. arbitrary sets of output
variables (and for everyr-structure).

The main gadget of the proof that tree-decompositions are necessary for tractability is based on a
nice feature of grids. Figure 4 shows the basic idea for the simplest case of a relational structureAu

with only one relation symbolRu such thatRAu
u is (the edge set of) an undirected grid. Then, any

substructureA1 of Au whereRA1

u contains just one tuple is a core ofAu. However, if we consider the
variant ofAu where there is a domain constraintdom(X) for every cornerX of the grid (depicted with
the circles in the figure), then the unique core is the whole structure. In fact, we next prove that this
property holds for any relational structure whose Gaifman graph is a grid.

Lemma 1. LetA be anℓ-structure whose Gaifman graph is a gridG. Moreover, letO ⊆ A be the set
of its four corners, and assume they are domain restricted, i.e.,O ⊆ drv(A). Then,A is a core.

Proof. Let G be such ak1 × k2 grid, and consider any homomorphismh that mapsA to any of its
substructuresA′. Since the four cornersv1,1, v1,k2

, vk1,1, vk1,k2
are domain restricted,h(X) = X must

hold for each of them (as〈X〉 is the one tuple of its domain constraintdom(X)A). We say that such
elements are fixed.

14

Consider the first rowr1 = (v1,1, v1,2, . . . , v1,k2
) of G. We have seen that its endpoints, which are

grid-corners, are fixed. It is easy to check thath cannot map the pathr1 to any path that is longer than
r1. However,r1 is the shortest path connecting the fixed endpointsv1,1 andv1,k2

, and hence it must
be mapped to itself. That is,h(X) = X for every elementX occurring inr1, and thus, by the same
reasoning, for every elementX occurring in the last row, and in the first and the last columnsof the grid.
It follows that the endpointsv2,1 andv2,k2

of the second rowr2 are fixed as well, and we may apply the
same argument to show that all elements occurring inr2 are fixed, too. Eventually, row after row, we
get that all elements ofA are fixed, and thus the identity mapping is the only possible endomorphism
for A, which entails thatA is a core. ⊳

We also exploit the grid-based construction from [17], whose properties relevant to this paper may
be summarized as follows.

Proposition 2 ([17]).Let k ≥ 2 andK =
(

k
2

)

, and letA be anyτ -structure such that the(k × K)-
grid is a minor of the Gaifman graph of a core ofA. For any given graphG, one can compute in
polynomial time (w.r.t.‖G‖) a τ -structureBA,G such thatG contains ak-clique if, and only if, there is
a homomorphism fromA toBA,G.

We can now prove the necessity of bounded treewidth for tractability WPD.

Theorem 8. AssumeFPT 6= W[1]. Let A be any bounded-arity recursively-enumerable class ofℓ-
structures closed under taking minors. Then, the followingare equivalent:

(1) A has bounded treewdith;
(2) For everyA ∈ A, for everyr-structureB, and for every set of variablesO ⊆ A, theECSPinstance

(A,B, O) is solvable WPD.

Proof. The fact that(1) ⇒ (2) holds follows by specializing Theorem 7 to the tree decomposition
method. We next focus on showing that(2) ⇒ (1) also holds.

Let A be such a bounded-arity class ofℓ-structures closed under taking minors, and having un-
bounded treewidth. From this latter property, by the Excluded Grid Theorem [22] it follows that every
grid is a minor of the Gaifman graph of someℓ-structure inA. Moreover, because this class is closed
under taking minors, every grid is actually the Gaifman graph of someℓ-structure inA.

Assume there is a deterministic Turing machineM that is able to solve with polynomial delay any
ECSPinstance(A,B, O) such thatA ∈ A. We show that this entails the existence of an FPT algorithm
to solve theW[1]-hard problemp-CLIQUE, which of course implies FPT= W[1].

Let G be a graph instance of thep-CLIQUE problem, with the fixed parameterk ≥ 2. We have
to decide whetherG has a clique of cardinalityk. We enumerate the recursively enumerable class
A until we eventually find anℓ-structureA whose Gaifman graph is the(k × K)-grid. Let τ be its
vocabulary. Note that searching for this structureA depends on the fixed parameterk only (in particular,
it is independent ofG).

LetO ⊆ A be the variables at the four corners of this grid, and letA
′ be the extension ofA such that,

for every variableX ∈ O, the vocabularyτ ′ of A′ contains the domain relation-symboldom(X). Thus,
the Gaifman graph ofA′ is the same(k×K)-grid as forA, but its four corners are domain-restricted in
A

′ (O ⊆ drv (A′)). From Lemma 1,A′ is a core.
Recall now the grid-based construction in Proposition 2: Wecan build in polynomial time (w.r.t.

‖G‖) a structureB′
A′,G such that there is a homomorphism fromA′ to B

′
A′,G if, and only if, G has a

clique of cardinalityk.
Consider the ECSP instance(A,B, O) whereA ∈ A by construction, andB is the restriction of

B
′
A′,G to the vocabularyτ . Thus, compared withB′

A′,G, ther-structureB may miss the domain constraint
dom(X) for some output variableX ∈ O. It is easy to see thath is a homomorphism fromA′ toB

′
A′,G

15

if, and only if,h is a homomorphism fromA to B such that, for everyX ∈ O, h(X) ∈ dom(X)B
′

A′,G .
Therefore, to decide whether such a homomorphism exists (and hence to solve the clique problem), we
can just enumerate WPD the set of solutionsA

B[O] and check whether the four domain constraints on
the corners ofA′ are satisfied by any of these solutions. Now, recall thatB

′
A′,G is built in polynomial

time fromG, and thus every variable may take only a polynomial number ofvalues, and of course
all combinations of four values fromdom(X)B

′

A′,G , X ∈ O, are polynomially many. It follows that
M actually takes polynomial time for computingAB[O], and one may then check in polynomial time
whether the additional domain constraints inA

′ are satisfied or not by some solution inAB[O].
By combining the above ingredients, we got an FPT algorithm to decide whetherG has a clique of

cardinalityk. ⊳

References

1. I. Adler. Tree-Related Widths of Graphs and Hypergraphs.SIAM Journal Discrete Mathematics, 22(1), pp.
102–123, 2008.

2. A. Atserias, A. Bulatov, and V. Dalmau. On the Power of k-Consistency, InProc. of ICALP’07, pp. 279–290,
2007.

3. P.A. Bernstein and N. Goodman. The power of natural semijoins. SIAM Journal on Computing, 10(4), pp.
751–771, 1981.

4. A. Bulatov, V. Dalmau, M. Grohe, and D. Marx. Enumerating Homomorphism. InProc. of STACS’09, pp.
231–242, 2009.

5. H. Chen and V. Dalmau. Beyond Hypertree Width: Decomposition Methods Without Decompositions. In
Proc. of CP’05, pp. 167–181, 2005.

6. D. Cohen, P. Jeavons, and M. Gyssens. A unified theory of structural tractability for constraint satisfaction
problems.Journal of Computer and System Sciences, 74(5): 721-743, 2008.

7. D.A. Cohen. Tractable Decision for a Constraint LanguageImplies Tractable Search.Constraints, 9(3), 219–
229, 2004.

8. R. Dechter and A. Itai. Finding All Solutions if You can Find One. In Proc. ofAAAI-92 Workshop on Tractable
Reasoning, pp. 35–39, 1992.

9. R.G. Downey and M.R. Fellows.Parameterized Complexity. Springer, New York, 1999.
10. N. Goodman and O. Shmueli. The tree projection theorem and relational query processing.Journal of Com-

puter and System Sciences, 29(3), pp. 767–786, 1984.
11. G. Gottlob, N. Leone, and F. Scarcello. A Comparison of Structural CSP Decomposition Methods.Artificial

Intelligence, 124(2): 243–282, 2000.
12. G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable queries.Journal of Computer

and System Sciences, 64(3), pp. 579–627, 2002.
13. G. Gottlob, N. Leone, and F. Scarcello. Robbers, marshals, and guards: game theoretic and logical characteri-

zations of hypertree width.J. of Computer and System Sciences, 66(4), pp. 775–808, 2003.
14. G. Gottlob, Z. Miklós, and T. Schwentick. Generalized hypertree decompositions: NP-hardness and tractable

variants.Journal of the ACM, 56(6), 2009.
15. G. Greco and F. Scarcello. The Power of Tree Projections:Local Consistency, Greedy Algorithms, and Larger

Islands of Tractability. To appear inProc. of PODS’10.
16. M. Grohe, T. Schwentick, and L. Segoufin. When is the evaluation of conjunctive queries tractable? InProc.

of STOC’01, pp. 657–666, 2001.
17. M. Grohe. The complexity of homomorphism and constraintsatisfaction problems seen from the other side.

Journal of the ACM, 54(1), 2007.
18. M. Grohe and D. Marx. Constraint solving via fractional edge covers. InProc. of SODA’06, pp. 289–298, 2006.
19. D. Marx. Approximating fractional hypertree width. InProc. of SODA’09, pp. 902–911, 2008.
20. D. Marx. Tractable Hypergraph Properties for Constraint Satisfaction and Conjunctive Queries. To appear in

Proc. of STOC’10.
21. N. Robertson and P.D. Seymour. Graph minors III: Planar tree-width.Journal of Combinatorial Theory, Series

B, 36, pp. 49-64, 1984.

16

22. N. Robertson and P.D. Seymour. Graph minors V: Excludinga planar graph.Journal of Combinatorial Theory,
Series B, 41, pp. 92-114, 1986.

23. Y. Sagiv and O Shmueli. Solving Queries by Tree Projections. ACM Transaction on Database Systems, 18(3),
pp. 487–511, 1993.

24. F. Scarcello, G. Gottlob, and G. Greco. Uniform Constraint Satisfaction Problems and Database Theory. In
Complexity of Constraints, LNCS 5250, pp. 156–195, Springer-Verlag, 2008.

17

