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Abstract

When implementing a propagator for a constraint, one mustideabout vari-
ants: When implementing min, should one also implement n&ix&uld one im-
plement linear constraints both with unit and non-unit fiofnts? Constraint
variants are ubiquitous: implementing them requires amrable (if not pro-
hibitive) effort and decreases maintainability, but widllider better performance
than resorting to constraint decomposition.

This paper shows how to use views to demparfectpropagator variants. A
model for views and derived propagators is introduced. \Rerpropagators are
proved to be indeed perfect in that they inherit essentigb@rties such as correct-
ness and domain and bounds consistency. Techniques fenstitally deriving
propagators such as transformation, generalization,jajmation, and type con-
version are developed. The paper introduces an impleniemtatchitecture for
views that is independent of the underlying constraint @ogning system. A de-
tailed evaluation of views implemented in Gecode showsdbated propagators
are efficient and that views often incur no overhead. Withaews, Gecode would
either require 180000 rather than 40000 lines of propagaide, or would lack
many efficient propagator variants. Compared to 8000 lifiesae for views, the
reduction in code for propagators yields a 1750% return wesiment.

1 Introduction

When implementing a propagator for a constraint, one tyjgicaust also decide
whether to implement some of its variants. When implementinpropagator for
the constraint mafy,...,xn} =y, should one also implement n{ixy, ..., X} = y?
The latter can be implemented using the former as{max,...,—xn} = —y. When
implementing a propagator for the linear equatjth; aix; = k for integer variables
x and integersy andk, should one also implement the special cage; x; = k for
better performance? When implementing a propagator fordtffied linear equation
(SiL1% =c) <> b, should one also implemel(§' ;X # c) <> b? These two con-
straints only differ by the sign dd, as the latter is equivalent{g ' ; xi = c) <> —b.

The two straightforward approaches for implementing a@irst variants are to
either implement dedicated propagators for the variamtty decompose. In the last
example, for instance, the reified constraint could be dgos®d into two propagators,
one for(3{' ;X = c) <+ b/, and one fob «+» =/, introducing an additional variabk.

Implementing the variants inflates code and documentati@his error prone.
Given the potential code explosion, one may be able to onpl@ment some vari-
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ants (say, min and max). Other variants important for peréorce (say, ternary min
and max) may be infeasible due to excessive programming aimtenance effort. De-
composing, on the other hand, massively increases memasgpagption and runtime.

This paper introduces a third approaderiving propagators from already existing
propagators usingiews This approach combines the efficiency of dedicated propaga
tor implementations with the simplicity and effortlessme$ decomposition.

Example 1 (Deriving a minimum propagator) Consider a propagator for the con-
straint maxx,y) = z. Given three additional propagators fdr= —x, y = —y, and
Z = —z, we could propagate the constraint ifxny') = Z using the propagator for
max(x,y) = z. Instead, this paper proposes to derive a propagator usgmgs \that
perform the simple transformations corresponding to theetladditional propagators.
Views transform input and output of a propagator. For exanglminus view on
a variablex transforms the variable domain by negating each element, passes the
transformed domain to the propagator, and performs theseweansformation on the
domain returned by the propagator. With views, the impletat@m of the maximum
propagator can be reused: a propagator for the minimumrmantstan be derived from
a propagator for the maximum constraint and a minus viewdcheariable. X

This paper contributes an implementation-independenetfodviews and derived
propagators, techniques for deriving propagators, coaarglementation techniques,
and an evaluation that shows that views are widely appkgabhbstically reduce pro-
gramming effort, and yield an efficient implementation.

More specifically, we identify the properties of views theg assential for deriv-
ing perfectpropagators. The paper establishes a formal model thaedediniew as a
function and a derived propagator as functional compasifoviews (mapping values
to values) with a propagator (mapping domains to domairisis model yields all the
desired results: derived propagators are indeed propag#iey faithfully implement
the intended constraints; domain consistency carriestoveéerived propagators; dif-
ferent forms of bounds consistency over integer variakdes/over provided that the
views satisfy additional yet natural properties.

We introduce techniques for deriving propagators that ieses/for transformation,
generalization, specialization, and type conversion oppgators. We show how to
apply these techniques for different variable domainsgisarious views and how
views can be used for the derivation of dual scheduling pyapmas.

We present and evaluate differentimplementation appessfcii views and derived
propagators. An implementation using parametric polyrmism (such as templates in
C~) is shown to incur no or very low overhead. The architectarerthogonal to the
used constraint programming system and has been fully mgaiéed in Gecodel[).
We analyze how successful the use of derived propagatotsseasfor Gecode.

Plan of the paper. Section 2introduces constraints and propagatdsction 3es-
tablishes views and propagator derivatioBection 4presents propagator derivation
techniques.Section 5describes an implementation architecture based on paiiamet
propagators and range iteratofection 6discusses limitations of views. The imple-
mentation is evaluated ifection 7 andSection 8concludes.

2 Preliminaries

This section introduces constraints, propagators, angggation strength.



Variables, constraints, and domains. Constraint satisfaction problems uséiradte
set of variables Xand &finite set of values VWe typically write variables ag y,z € X
and values agw e V.

A solution of a constraint satisfaction problem assignshglsivalue to each vari-
able. A constraint restricts which assignments of valuesit@bles are allowed.

Definition 1 (Assignments and constraints) An assignment & a function mapping
variables to values. The set of all assignmentssis= X — V. A constraint cis a set
of assignments; € Con = #(Asn) = Z(X — V) (we write Z(S) for the power set
of S). Any assignmena € cis asolutionof c. «

Constraints are defined on assignments as total functioradl eariables. For a
typical constraint, only a subset va(s) of the variables isignificant the constraint is
the full relation for allx ¢ vargc). Constraints are either written as sets of assignments
(forexample{a € Asn | a(x) < a(y)}) or as expressions with the usual meaning, using
the notatior{-] (for example]x < y]).

Example 2 (Sum constraint) Let X = {x,y,z} andV = {1,2,3,4}. The constraint
[x =y+ Z] corresponds to the following set of assignments:

[x=y+7={(x—ay—b,z—c)|abceVAra=b+c}
={(x—2y—1z—1),(x—3y—1z—2),
(X—=3,y—2,z—1),(x—4y— 2,2~ 2)} «

Definition 2 (Domains) A domain dis a function mapping variables to sets of values,
such thatd(x) C V. The set of all domains iBom = X — (V). The set of values
in d for a particular variable, d(x), is called thevariable domainof x. A domaind
represents a set of assignments, a constraint, defined as

con(d) ={aecAsn|¥xeX:ax) ed(x)}
An assignmena € con(d) is licensedby d. «

Domains thus represe@artesiansets of assignments. In this sense, any domain is
also a constraint. For a more uniform representation, wettadliberty to use domains
as constraints. In particulaa, € d (instead ofa € cond)) denotes an assignmeat
licensed byd, andcNd denotessncon(d).

A domaind that maps some variable to the empty value stgiled, writtend = 0,
as it represents no valid assignments (dor= 0). A domaind representing a single
assignment, cdid) = {a}, is assignedand is written asl = {a}.

Definition 3 (Constraint satisfaction problems) A constraint satisfaction problem
(CSP) is a paird,C) of a domaind and a set of constraint. The solutionsof a
CSP(d,C) are the assignments licenseddyhat satisfy all constraints i€, defined
as so(d,C)) = {aecon(d) | Vce C:aecc}. «

Propagators. A propagation-based constraint solver emplpyapagatorgo imple-
ment constraints. A propagator for a constraitetkes a domaid as input and removes
values from the variable domainsdthat are in conflict wittc.

A domaind is strongerthan a domainl’, writtend C d’, if and only ifd(x) C d’(x)
for all x € X. A domaind is strictly strongerthan a domaiml’, writtend c d’, if and



only if d is stronger than’ andd(x) C d’(x) for some variabla. The goal of constraint
propagation is to prune values from variable domains, thiggiing stronger domains,
without removing solutions of the constraints.

A propagator is a functiomp that takes a domain as its argument and returns a
stronger domain, it may onlgruneassignments. If the original domain is an assigned
domain{a}, the propagator either acceptg{a}) = {a}) or rejects p({a}) = 0) it, re-
alizing adecision proceduréor its constraint. The pruning and the decision procedure
must be consistent: if the decision procedure accepts &mnassnt, the pruning pro-
cedure must never remove this assignment from any domais property is enforced
by requiring propagators to be monotonic.

Definition 4 (Propagators) A propagatoris a functionp € Dom — Dom that is
= contracting: gd) C d for any domaird;
= monotonic: gd") C p(d) for any domaing!’ C d.

The set of all propagators Brop. If a propagatop returns astrictly stronger domain
(p(d) C d), we say thap prunes the domain.dThe propagatop induceshe unique
constraincy defined by the set of assignments accepteg:by

cp={acAsn|p({a})={a}} ]

Propagators can also empoten{p(p(d)) = p(d) for any domaird). Idempo-
tency is not required to make propagation sound or compteteit can make prop-
agation more efficient33]. Like idempotency, monotonicity as defined here is not
necessary for soundness or completeness of a s@¥kriost definitions and theo-
rems in this paper are independent of whether propagatrsanotonic or not. Non-
monotonicity will thus only be discussed where it is relgvan

Propagation strength. Each propagator induces a single constraint, but different
propagators can induce the same constraint, differingtrength Typical examples
are propagators for thall-different constraint that perform naive pruning when vari-
ables are assigned, or establish bounds consist@gpg{ domain consistencys[).

In the literature, propagation strength is usually definred aroperty of a domain
in relation to a constraint. For example, a domaiis domain-consister(also known
as generalized arc-consistent) with respect to a constréid(x) only contains values
that appear in at least one solutionodbr each variable. As this paper is concerned
with propagators, propagation strength is defined witheesm a propagator.

A propagatorm is domain-completd any domain it returns is domain-consistent
with respect tac,. For any constraint, there is exactly one domain-complete prop-
agator forc (as domains form a lattice). It is defined pgd) = dom(cp N d), where
dom(c) is thedomain relaxatiorof c, the strongest domain that contains all assign-
ments ofc, dom(c) = min{d | c C d}.

For constraints over integer variabl&s € 7), several weaker notions of propaga-
tion strength are known. The most well-knownbisunds consistencwhich in fact
can mean one of four special cases: range, bdinddounds$Z), and boundR)
consistency (as discussed if g)).

The first three differ in whether holes are ignored in the inagdomain, in the
resulting domain, or in both, in that order. Holes in a dormamignored by the func-
tion hull(d)(x) = [min(d(x)) .. max(d(x))], which returns the convex hull of a variable



domaind(x) in Z. BoundsgR) consistency only requires solutions to be found in the
real-valued relaxation of the constraint (writ®y), and is defined using the real-valued
convex hull and domain relaxation (written huknd dong). The different notions of
bounds consistency give rise to the respective definitibb®onds completeness.

Definition 5 (Bounds completeness)A propagatomp is
= range-complete if and only if(d) C dom(cp N hull(d)),
= bound$D)-complete if and only ifp(d) C hull(dom(c,Nd)),
= bounds$Z)-complete if and only ifo(d)  hull(dom(cp, Nhull(d))), and
= bounds$R)-complete if and only ifp(d) € hullg (domg (cpr Nhullr(d)))
for any domaird. X

3 Views

This section defines views and proves properties of vieviveépropagators.

3.1 Views and Derived Propagators

Given a propagatop, a view is represented by two functiorgsand¢ —, that can be
composed withp such thatp~ o po ¢ is the desired derived propagator. The func-
tion ¢ transforms the input domain, agd™ applies the inverse transformation to the
propagator’s output domain.

Definition 6 (Variable views and views) A variable viewgy € V — V' for a variable
x is an injective function mapping values to values. The\Sehay be different from
V, and the corresponding sets of assignments, domains ramtst and propagators
are calledAsn’, Dom’, Con’, andProp’, respectively.

Given a family of variable viewgy for all x € X, we lift them point-wise to as-
signments:Pas,(a)(X) = ¢x(a(x)). A view ¢ € Con — Con’ is a family of variable
views, lifted to constraintsp (c) = {@asn (@) | a € c}. Theinverseof a view is defined
as¢—(c) ={a€ Asn| ¢asn(a) € c}. «

Definition 7 (Derived propagators and constraints) Given a propagatop € Prop’
and a viewg, the derived propagato (p) € Prop is defined agp(p) = ¢ o po ¢.
Similarly, aderived constrainis defined to be ~(c) € Con for a givenc e Con’. .

Example 3 (Scale views) Given a propagatop for the constraint = [x = y], we
want to derive a propagator fof = [x = 2y| using a view$ such thatp—(c) =c'.

Intuitively, the function¢ leavesx as it is and scaleg by 2, while ¢~ does the
inverse transformation. We thus defipg(v) = v and ¢y(v) = 2v. That clarifies the
need for different set¢ andV’, asV’ must contain all elements ®f multiplied by 2.

The derived propagator (p) = ¢~ o po ¢. We say thafh(p) “uses a scale view
on”y, meaning thagy is the function defined afs,(v) = 2v. Similarly, using an identity
view onx amounts tapy being the identity function o¥.

Given the assignment= (x+— 2,y — 1), we first applyp and getp ({a}) = {(x—
2,y— 2)}. This is accepted bp and returned unchanged, ¢o transforms it back
to {a}. Another assignmerd’ = (x+— 1,y — 2) is transformed tap ({a'}) = {(x —
1y— 4)}, rejected p(¢({a'})) = 0), and the empty domain is mapped to the empty
domain byg —. The propagatod (p) inducesp ~(c). X



3.2 Correctness of Derived Propagators

Derived propagators are well-defined and correct: a depvegagato (p) is in fact
a propagator, and it induces the desired constrat,(= ¢ (Cp)). The proofs of
these statements employ the following direct consequesfabg definitions of views:

P1. ¢ and¢— are monotonic by construction (gsand¢ — are defined point-wise).
P2. ¢~ o ¢ =id (the identity function, ag is injective).
P3. [¢({a})|=1.4(0) = 0.

P4. For any viewp and domaird € Dom, we haveg (d) € Dom’, and for anyd’ €
Dom’, we havep ~(d') € Dom (as views are defined point-wise).

Proposition 1 (Correctness) For a propagatop and views, ¢ (p) is a propagator,

Proof. The derived propagator is well-defined because lgqdh) and¢ —(d) are do-
mains (seé4above). We have to show that o po ¢ is contracting and monotonic.
For contraction, we havp(¢(d)) C ¢(d) asp is contracting. From monotonicity
of ¢~ (with P1), it follows thatg — (p(¢(d))) C ¢ (¢(d)). As ¢~ o ¢ =id (with P2),
we havep~(p(¢(d))) C d, which proves tha$ (p) is contracting.
Monotonicity is shown as follows for all domain$, d with d’ C d:

¢(d") C ¢(d) (¢ monotonicP1)
- p(p(d')) C p(p(d)) (p monotonic)
— ¢~ (p(g(d))) S ¢ (p(9(d))) (¢~ monotonic,P1)
In summary, for any propagatpr ¢ (p) = ¢~ o po ¢ is a propagator. "

Non-monotonic propagators as defined3d][must at least baveaklymonotonic,
which means thap({a}) C p(d) for all domainsd and assignmentse d. The above
proof can be easily adjusted to weakly monotonic propagdpreplacingl’ with {a}
and using?3in the second line of the proof.

Proposition 2 (Induced constraints) Let p be a propagator, and Igt be a view.
Thend(p) induces the constraigt™ (cp). «

Proof. As p inducescy, we know p({a}) = c, N {a} for all assignments. With
l¢({a})] = 1 (P3), we havep(¢({a})) =cpn ¢({a}). Furthermore, we know that

cpN¢({a})is either 0 orp ({a}).

» Cased: We havep(p(¢({a}))) =0 = {a € Asn|a=a Adan(d) ECp} =
¢~ (cp)n{a}.

= Case¢({a}): With P2 we havep~ o ¢ =id and hence~ (p(¢({a}))) = {a}.
Furthermore¢ ~(cp) N{a} = {& € Asn |a=a A pasn(a) € Cp} = {a}.

Together, this shows that™ o po ¢ ({a}) = {a} N ¢~ (cp). n

Another important property is that views preserve contoactif a propagatomp
prunes a domain, the pruning will not be lost after transtation by¢ —.

Proposition 3 (Views preserve contraction) Let p be a propagator, lep be a view,
and letd be a domain such that ¢ (d)) C ¢(d). Thend(p)(d) C d. «



Proof. The definition of¢ ~(c) is {a € Asn | ¢asn(@) € c}. Hence ¢~ (c)| < |c|. Sim-
ilarly, we know that|¢(c)| = |c|. From p(¢(d)) C ¢(d), it follows that|p(¢(d))| <
|¢(d)]. Together this yield&p (p)(d)| < |¢(d)| = |d|. We have seen iRroposition 1
thatd(p)(d) C d, so we can concludeth@(p )(d) C d. .

3.3 Completeness of Derived Propagators

Ideally, a propagator derived from a domain- or bounds-detegpropagator should
inherit its completeness. It turns out to not generally be for all notions of complete-
ness and all views. This section first shows how bo(igisompleteness is inherited,
and then generalizes this result to the other notions.

The key insight is that boun@) completeness of propagators derived using a view
¢ depends on whethgr and¢ — commute with the hull operator, as defined below.

Definition 8 A constraintc is a¢-constraintfor a view ¢ if and only if for alla € c,
there is ab € Asn such thata = @asn(b). A view ¢ is hull-injectiveif and only if
¢~ (hull(dom(c))) = hull(dom(¢—(c))) for all ¢-constraints. It is hull-surjectiveif
and only if¢ (hull(d)) = hull(¢ (d)) for all domaind. It is hull-bijectiveif and only if
it is hull-injective and hull-surjective. «

The proofs rely on the additional fact that views commuténsit intersection.
Lemma 1l Forany viewg, the equatio —(c1Ncz) = ¢ (c1)N@~(cz) holds.
Proof. By definition of¢ —, we have

¢ (c1Ncy) ={a€ Asn | Pasn(a) €CrLA Pasn(a) € Co}
As ¢asn is a function, this is equal to

{a€ Asn| pasn(a) eci}N{acAsn| pasn(@) €2} = ¢ (c1) N (c2) .

Theorem 1 Bound$Z) completeness) Let p be a boundZ)-complete propagator.
For any hull-bijective viewp, the propagatop (p) is bound$Z)-complete. X

Proof. From Proposition 2 we know that (p) induces the constraimh~(cp). By
monotonicity of¢ ~ (with P1) and bound&) completeness gb, we know that

¢~ opo¢(d) C ¢~ (hull(dom(cyNhull((d)))))
We now use the fact that both and¢ commute with hull-) and set intersection:

¢~ (hull(dom(c,Nhull(¢(d)))
= ¢~ (hull(dom(cpN ¢ (hull(d)))
)

)
)
= hull(dom(¢~ (coN ¢ (hull(d))))
= hull(dom(¢ ™~ (cp) N @~ (¢ (hull(d))))) (commute withN)

(
= hull(dom(¢~(cp) Nhull(d))) (PJ

The second step uses hull injectivity, so it requizgs ¢ (hull(d)) to be a¢-constraint.
All assignments in ap-constraint have to be the image of some assignment under

)
) (hull-surjective)
) (hull-injective)



dasn- This is the case here, as the intersection withull(d)) can only contain such
assignments. So in summary, we get

¢~ o pod(d) C hull(dom(¢~ (cp) Nhull(d))

which is the definition ofp (p) being bound&)-complete. .

Stronger notions of completeness. Similar theorems hold for domain completeness,
range and bound&) completeness. The theorems directly follow from the faet th
any view¢ is domain-injectivemeaning thap — (dom(c)) = dom(¢ —(c)) for all con-
straintsc. We split this statement into the following two lemmas.

Lemma 2 Given a constraint, let d = dom(c). Then for allx € X, we havev
d(x) & 3Jacc: a(x)=v. .

Proof. We prove both directions of the equivalence:

=- There must be such an assignmatecause otherwise one can construct a
strictly stronged’ C d with v ¢ d’(x) such that stilic C d’.

< Each domainl’ in the intersectiofi) {d’ € Dom | ¢ C con(d’)} must contain
the valuev € d’(x) asc C d’. So for the result of the intersectidnv € d(x).a

Lemma 3 Any view ¢ is domain-injective. *

Proof. We have to show that— (dom(c)) = dom(¢ —(c)) holds for any constrairtand
any view¢. For clarity, we write the equation including the implicdrg-) operations:
¢~ (con(dom(c))) = conldom(¢ —(c))). By definition of¢ — and cor-), we have

¢~ (con(dom(c))) ={ac Asn | Vxe X : ¢asn(a)(X) € dom(c)(x)}
={acAsn|¥xeX3Ibec: pasn(a)(X) =b(x)} (Lemma3l

As ¢asn is an injective function, we can find suchbahat is in the range afasn, if and
only if there is also &' € ¢ ~(c) such thaias, (b’) = b. Therefore, we get

{acAsn|vxeX 3 edp(c): ax)=b(x)}
={acAsn|vxeX: a(x) € dom¢(c))(x)}
= con(dom(¢ ™ (c))) .
The following three theorems express under which condittbe different notions

of completeness are preserved when deriving propagatbis piioofs for these theo-
rems are analogous to the proofidfeorem JusingLemma 3

Theorem 2 Boundg$D) completeness) Let p be a bound®)-complete propagator.
For any hull-injective viewp, the propagatof (p) is bound¢D)-complete. .

Theorem 3 (Range completeness) et p be a range-complete propagator. For any
hull-surjective viewg, the propagatod (p) is range-complete. ¥

Theorem 4 (Domain completeness)Let p be a domain-complete propagator, and let
@ be a view. Thed(p) is domain-complete. «



A propagator derived from a boun@-complete propagator and a hull-injective
but not hull-surjective view is only boun@®)-complete. This is exactly what we
would expect from a propagator for linear equations, as éx¢éexample demonstrates.

Example 4 (Linear constraints) A propagator for a linear constraioy = [y % =
c] andn scale views (se&xample 3 yield a propagator for a linear constraint with
coefficientscy o = [ aixi = c].

The usual propagator for a linear constraint with coeffitiexchieves boundR)
consistency in linear tim®(n) [15]. However, itis bound$Z)-complete for unit co-
efficients. Hence, the above-mentioned property applidee fropagator focs is
bound$Z)-complete, scale views are only hull-injective, so thedstipropagator for
Cy a is boundgR)-complete. Implementing the simpler propagator witho@ficients
and deriving the variant with coefficients yields propagsteith exactly the same run-
time complexity and propagation strength as manually imgleted propagators. .

3.4 Additional Properties of Derived Propagators

This section discusses how views can be composed, and hovedieropagators be-
have with respect to idempotency and subsumption.

View composition. A derived propagator permits further derivation. Consider
propagatom and two views¢,¢’. Then $’($(p)) is a perfectly acceptable derived
propagator, and properties like correctness and comp@ssecarry over transitively.
For instance, we can derive a propagatoiffor y = c] from a propagator fofx+y =
0], combining aroffset view(¢y(v) = v+c) and aminus view(¢y(v) = —Vv) ony. This
yields a propagator fdix+ (—(y+c¢)) = 0] = [x—y=].

Fixed points. Schulte and StuckeB] show how to optimize the scheduling of prop-
agators that are known to be at a fixed point. Views presered fdoints of propaga-
tors, so the same optimizations apply to derived propagator

Proposition 4 Let p be a propagator, let be a view, and led be a domain. I%(d)
is a fixed point ofp, thend is a fixed point ofp (p). x

Proof. Assumep(p(¢(d))) = p(¢(d)). We have to showp (p)(d) = §(p)(¢(p)(d)).
With the assumption, we can wri®(p)(d) = (¢ o popo¢)(d). We know that

pod—(c)=cif [¢(c)| =|c|. As we first apply, this is the case here, so we can add
¢ o¢~ inthe middle, yieldind¢ o po(¢o¢d~)opo¢)(d). With function composition
being associative, this is equal@p) (@ (p)(d)). .

Subsumption. A propagator isubsumedalso known as entailed) by a domainf
and only if for all stronger domaird’ C d, p(d’) = d’. Subsumed propagators cannot
do any pruning in the remaining subtree of the search, andhearfore be removed.
Deciding subsumption is coNP-complete in general, but fanyrpractically relevant
propagators an approximation can be decided easily (suschas a domain becomes
assigned). The following theorem states that the appraidmas also valid for the
derived propagator.

Proposition 5 Let p be a propagator and gt be a view. The propagatd@(p) is
subsumed by a doma¢hif and only if pis subsumed by (d). «



Proof. With P2 we get thatvd’ Cd: ¢~ (p(¢(d'))) =d is equivalent tovd’ Cd :

& (p(¢p(d))=¢ (¢(d)). As ¢~ is a function, and because it preserves contrac-
tion (seeProposition 3, this is equivalent toyd’ C d: p(¢(d’')) = ¢(d’). This can be
rewritten tovd” C ¢(d) : p(d”) = d” because alp (d') are subsets af (d). .

3.5 Related Work

While the idea to systematically derive propagators usiegs is novel, there are a
few related approaches we can point out. Reusing funcitgr{ike a propagator) by

wrapping it in an adaptor (like a view) is of course a much ngeeeral technique—
think of higher-order functions like fold or map in functi@programming languages;
or chaining command-line tools in Unix operating systemsgipipes.

Propagator derivation. Views that perform arithmetic transformations are related
the concept of indexicals (seB, [36]). An indexical is a propagator that prunes a sin-
gle variable and is defined in terms of range expressionsoritrast to views, range
expressions can involve multiple variables, but on therdthad only operate in one di-
rection. For instance, in an indexical for the constriint y+ 7], the range expression
y+ zwould be used to prune the domaingbut not for pruning the domains gfor z.
Views must work in both directions, which is why they are liedl in expressiveness.

Unit propagation in SAT solvers performs propagation fooRBan clauses, which
are disjunctions ofiterals, which in turn are positive or negated Boolean variables.
In implementations such as MiniS&]] the Boolean clause propagator is in fact de-
rived from a simplen-ary disjunction propagator aritieral viewsof the variables that
perform negation for the negative literals.

Constraint composition. Instead of regarding a vie@ astransforminga constraint

C, one can regarg asadditional constraints, implementing the decomposition. As-
suming vargc) = Xy, ..., %), We use additional variableg,...,x,. Instead ofc, we
usec’ = c[x1/X],...,%n/Xy), which is the same relation asbut onx;, ...,x;,. Finally,

n view constraints g; link the original variables to the new variables, eagh be-
ing equivalent to the relatiol = ¢;(x;). The solutions of the decomposition model,
restricted to theq, ..., Xxn, are exactly the solutions of the original view-based model

Every view constrainty j shares exactly one variable withand no variable with
any othercy j. Thus, the constraint graph is Berge-acycht; and a fixed point can
be computed by first propagating all teg;, then propagating(xi/x},...,Xn/x'n],
and then again propagating thg;. This is exactly whaty~ o po ¢ does. Constraint
solvers typically do not provide any means of specifyingghgpagator scheduling in
such a fine-grained way (Lagerkvist and Schulte show how ¢opuspagator groups
to achieve thisZ0]). Thus, deriving propagators using views is also a tealmmifpr
specifying perfect propagator scheduling.

On a more historical level, a derived propagator is relatethé notion ofpath
consistency A domain is path-consistent for a set of constraints, ifday subset
{x,y,z} of its variablesy; € d(x) andv, € d(y) implies that there is a valug € d(z)
such that the paifvy,v,) satisfies all the (binary) constraints betweeandy, the
pair (v1,v3) satisfies all the (binary) constraints betweeandz, and the paifvs,v,)
satisfies all the (binary) constraints betwesandy [21]. If ¢(p) is domain-complete
for ¢~ (c), then it achieves path consistency for the constreiay/x;, ..., X,/X;] and
all thecy ; in the decomposition model.
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4 Propagator Derivation Techniques

This section introduces techniques for deriving propagatising views. The tech-
nigues capture the transformation, generalization, sfization, and type conversion
of propagators and are shown to be widely applicable acragable domains and
application areas.

4.1 Transformation

Boolean connectives. For Boolean variables, wheke= {0,1}, the only view apart
from identity for Boolean variables captures negationnggation viewon x defines
dx(v) =1—vforxe X andveV. As already noted iSection 3.5deriving propagators
using Boolean views thus means to propagate ugigrgls rather than variables.

The obvious application of negation views is to derive pgaiars for all Boolean
connectives from just three propagators. A negation view fo x =y yields a propa-
gator for-x =y. From disjunctiorx Vy = z one can derive conjunctiot\y = zwith
negation views o, y, z, and implicationx — y = z with a negation view ox. From
equivalence + y = zone can derive exclusive @by = zwith a negation view oz

As Boolean constraints are widespread, it pays off to ogénfiequently occur-
ring cases of propagators for Boolean connectives. Onerilapiopropagator is for
ViL1X =y with arbitrarily many variables. Again, conjunction can derived with
negation views on the and ony. Another important propagator implements the
constraint\/]' ;x; = 1. A dedicated propagator for this constraint is essentigha
constraint occurs frequently and can be implemented dffigi@sing watched literals,
see for examplelZ]. With views all implementation work is readily reused famn
junction. This shows a general advantage of views: effarimo optimizing a single
propagator directly pays off for all other propagatorskifrom it.

Boolean cardinality. Like the constraint/{_ ;X = 1, the Boolean cardinality con-
strainty ;X > c occurs frequently and can be implemented efficiently usiatched
literals (requiringc+ 1 watched literals, Boolean disjunction corresponds toctse
wherec = 1). But also a propagator gt ; X < c can be derived using negation views
on thex; with the following transformation:

Shixi<c <«— -—3;x>-c <~ n-3';x>n-c
— S,1-x>n-c < 3YL;-x>n-c

Reification. Many reified constraints (such 4§ ;X =c) < b) also exist in a
negated version (such 45} ;% # c) <> b). Deriving the negated version is trivial
by using a negation view on the Boolean control varidbl&his contrasts nicely with
the effort without views: either the entire code must be waped or the parts that
perform checking whether the constraint or its negatiomissamed must be factored
out and combined differently for the two variants.

Transformation using set views. Set constraints deal with variables whose values
are finite sets. Usingomplement view&nalogous to Boolean negation, as sets with
their usual operations also form a Boolean algebrakgz with a propagator for
XNy = zyields a propagator fatUy = z. A complement view oy yieldsx\y =z
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Figure 1: Task and its dual task’ using a minus view

Transformation using integer views. The obvious integer equivalent to negation
views for Boolean variables aminus views:a minus view on an integer variable
x is defined agx(v) = —v. Minus views help to derive propagators following simple
transformations: for example, n{iny) = zcan be derived from mdx, y) = zby using
minus views forx, y, andz.

Transformations through minus views can improve perforreain subtle ways.
Consider a bound&)-complete propagator for multiplicationx y = z (for example,
[1, Section 6.5] or327]). Propagation depends on whether zero is still includetthén
domains ofx, y, or z. Testing for inclusion of zero each time the propagator is-ex
cuted is inefficient and leads to a convoluted implementatinstead, one would like
to rewrite the propagator to special variants wherg, andz are either strictly posi-
tive or negative. These variants can propagate more effigiém particular because
propagation can easily be made idempotent. Instead of mguiéing three different
propagatorsy;y,z strictly positive; onlyx ory strictly positive; onlyz strictly positive),

a single propagator assuming that all views are strictlytpess sufficient. The other
propagators can be derived using minus views.

Again, with views it becomes realistic to optimize a singilgplementation of a
propagator and derive other, equally optimized, implemgons. The effort to imple-
ment all required specialized versions without views isdgifly unrealistic.

Scheduling propagators. Animportant application area is constraint-based schedul
ing, see for example?]. Many propagation algorithms for constraint-based salied

are based on tasks, where a task characterized by its start time, processing time
(how long does the task take to be executed on a resourcegnahiime. Scheduling
algorithms are typically expressed in terms of earliestt $bme (esft)), latest start
time (Ist(t)), earliest completion time (gt}), and latest completion time (i¢}).

Another particular aspect of scheduling algorithms is thay are often required
in two, mutually dual, variants. Let us consider not-firstitast propagation as an
example. Assume a set of taskand a task ¢ T to be scheduled on the same resource.
Thent cannot be scheduled before the taskd it is not-first inT U {t}), if ect(t) >
Ist(T) (where IS{T) is a conservative estimate of the latest start time of aligasT).
Hence, est) can be adjusted to leave some room for at least one task Troffhe
dual variant is that is not-last: if ec{T) > Ist(t) (again, edfT) estimates the earliest
completion time ofT), then Ict) can be adjusted.

Running the dual variant of a scheduling algorithm on tasksT is the same as
running the original algorithm on thdual taskst€ T’, which are simply mirrored at
the 0-origin of the time scale (s&égure 1):

estt’) = —lct(t) ectt’)=—Ist(t) Ist(t')=—ectt) Ict(t')=—esft)

The dual variant of a scheduling propagator can be autoailgtiterived using a minus
view that transforms the time values. In our example, onlyapagator for not-first
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needs to be implemented and the propagator for not-lastedefived (or vice versa).
This is in particular beneficial if the algorithms use sofibéted data structures such
asQ-trees B7]. Here, also the data structure needs to be implementedomualy and
the dual data structure for the dual propagator is derived.

4.2 Generalization

Common views for integer variables capture linear tramsdions of the integer val-
ues: aroffset viewfor o € Z onxis defined a®x(v) = v+ 0, and ascale viewfor a € Z
onxis defined agx(v) = av.

Offset and scale views are useful for generalizing propagaGeneralization has
two key advantages: simplicity and efficiency. A more splemd propagator is often
simpler to implement (and simpler to implement correcthgrt a generalized version.
The specialized version can save memory and runtime duxieguéion.

We can devise an efficient propagation algorithm for a lireggrality constraint
yiL1% = c for the common case that the linear equation has only unificieats.
The more general casg]! ; aix; = ¢ can be derived by using scale views fgron
X (the same technique of course applies to linear inequalitiel disequality rather
than equality). Similarly, a propagator fall-different(xy, ..., x,) can be generalized
to all-different{c; + x1,...,Cn + Xn) by using offset views foc; € Z onx;. Likewise,
from a propagator for the element constraipd =y for integersay, ..., a, and integer
variables<andy, we can derive the generalized versajr+ o] = y with an offset view,
whereo € Z provides a useful offset for the index variakile

These generalizations can be applied to domain- as well@sdsecomplete prop-
agators. While most Boolean propagators are domain-cda)fileunds completeness
plays an important role for integer propagatoggction 3.3shows that, given appro-
priate hull-surjective and/or hull-injective views, thi#ferent notions of bounds con-
sistency are preserved when deriving propagators.

The views for integer variables presented in this sectiom lthae following prop-
erties: minus and offset views are hull-bijective, wheraasale view fola € Z onx
is always hull-injective and only hull-surjectiveaf= 1 ora= —1 (in which cases it
coincides with the identity view or a minus view, respediiye

4.3 Specialization

We employconstant viewdo specialize propagators. A constant view behaves like
an assigned variable. In practice, specialization has tivartages. Fewer variables
require less memory. And specialized propagators can b@itehto more efficient
code, if the constants are known at compile time.

Examples for specialization are

= a propagator for binary linear inequality+ y < ¢ derived from a propagator for
X+Yy+z< chy using a constant O far

= areified propagator foix = c¢) <> b from (x=Yy) + b and a constart for y;

= propagators for the counting constraif{s| x, =c}| =zand|{i | x =y}|=c¢
from a propagator fof{i | xi =y} | =z

= a propagator for set disjointness from a propagatoxfoy = z and a constant
empty set forz; and many more.
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We have to straightforwardly extend the model for constaws. Propagators may
now be defined with respect to a superset of the variakles, X. A constant view for
the valuek on a variable € X'\ X translates between the two sets of variables:

¢(c)={ak/g|acct ¢ (c)={ax|acc}

Here,alk/z] means augmenting the assignmasb that it mapzto k, anday is the
functional restriction of to the sefX.

It is important that this definition preserves failure. Ifpagator returns a failed
domaind that map< to the empty set, thepr— (d) is the empty set, too (recall that this
is really ¢ —(con(d)), and corid) = 0 if d(z) = 0).

4.4 Type Conversion

A type conversion view lets propagators for one type of \deavork with a different
type, by translating the underlying representation. Oudehalready accommodates
for this, as a viewpx maps elements between different sétandVv’.

Integer views. Boolean variables are essentially integer variablesictstk to the
values{0,1}. Constraint programming systems may choose a more effirigie-
mentation for Boolean variables and hence the variablestjgeinteger and Boolean
variables differ. By wrapping an efficient Boolean variali@ninteger view all in-
teger propagators can be directly reused with Boolean hiasa This can save sub-
stantial effort: for example, an implementation of tlegular-constraint for Boolean
variables can be derived which is actually useful in practi®)].

Singleton set views. A singleton set viewn an integer variabbe defined agx(v) =
{v}, presents an integer variable as a set variable. Many @mistinvolve both integer
and set variables, and some of them can be expressed witletsimget views. A
simple constraint ig € y, wherex is an integer variable anda set variable. Singleton
set views derive it agx} C y. This extends tdx} oy for all other set relations.

Singleton set views can also be used to derive pure integestraints from set
propagators. For example, the constraigmex, ..., Xn, Y1, . ..,Ym) With integer vari-
ablesx;,y; states that the variablestake the same values as the varialyle§Vith sin-
gleton set views JiL1{x } = UL1{y;} implements this constraint (albeit with weaker
propagation than the algorithm presented4).[

Set bounds and complete set domain variables.Most systems approximate set
variable domains as set intervals defined by lower and uppends P5, 13]. How-
ever, [L6] introduces a representation for the complete domainstofes@bles, using
ROBDDs. Type conversion views can translate between setvialt and ROBDD-
based implementations. We can derive a propagator on ROB&¥ed variables from
a set interval propagator, and thus reuse set interval gedpes for which no efficient
ROBDD representation exists.

4.5 Applicability and Return on Investment

To get an overview of how applicable the presented techsiéprepropagator deriva-
tion are, let us consider the use of views in Gecode (versib®p Table 1shows the
number of propagator implementations and the number ofggators derived from the
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Table 1: Number of implemented vs. derived propagators
Variable type [| Implemented] Derived | Ratio |

Integer 77 400 5.19
Boolean 28 91 3.25
Set 28 122 4.36
Overall 133 613 4.61
class IntVar {
private: int _min, _max;
public: int min(void) { return _min; }
int max(void) { return _max; }
void adjmin(int n) { if (n > _min) _min = n; }
void adjmax(int n) { if (n < _max) _max = n; }

}i

class OffsetView {
protected: IntVarx x; int o;
public: OffsetView (IntVar+ x0, int o0) : x(x0), o(o0) {}
int min(void) { return x->min()+o; }
int max(void) { return x->max()+o; }
void adjmin(int n) { x->adjmin(n-o); }
void adjmax(int n) { x->adjmax(n-o); }

}i

Figure 2: Integer variable and offset view

implementations. On average, every propagator implertienteesults in 4.6 derived
propagators. Propagator implementations in Gecode atfmumnore than 40000 lines
of code and documentation. As a rough estimate, derivinggayators using views thus
saves around 140000 lines of code and documentation to ktenyiiested, and main-
tained. On the other hand, the views mentioned in this seetie implemented in less
than 8000 lines of code, yielding a 1750% return on investmen

5 Implementation

This section presents an implementation architecture ifwy and derived propaga-
tors, based on making propagatpesametric Deriving a propagator then meains
stantiatinga parametric propagator with views. The presented arc¢hiteds an or-
thogonal layer of abstraction on top of any solver impleratah.

5.1 Views

The model introduced views as functions that transformripet and output of a prop-
agator, which maps domains to domains. In an object-orieimplementation of this
model, a propagator is no longer a function, but an objedt aiiropagate method
thataccesseandmodifiesa domain through the methods of variable objects. Such an
object-oriented model is used for example by ILOG Sol#ai pind Choco 18], and

is the basis of most of the current propagation-based @inssolvers.

Figure 2shows G- classes for a simple integer variable (just representingie
information) and a corresponding offset view. The view lreesdame interface as the
variable, so that it can be used in its place. It contains atpoio the underlying integer
variable andlelegatesll the operations, performing the necessary transfoonati
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template<class VX, class VY>
class Eq : public Propagator {
protected: VXx x; V¥« y;

public: Eq(VXx x0, VY* y0) : x(x0), y(y0) {}
virtual void propagate (void) {
x—>adjmin (y->min()); x->adjmax(y->max());
y—>adjmin (x->min()); y->adjmax(x->max());

}
}i

Figure 3: Parametric equality propagator

5.2 Deriving Propagators

In order to derive a propagator using view objects like thevabwe us@arametricity
a mechanism provided by the implementation language thosts the instantiation
of the same code (the propagator) with different paramétieesviews).

Figure 3shows a simple equality propagator. The propagator is baisé€zt tem-
plates, it isparametricover the types of the two views it uses and carinstantiated
with any view that provides the necessary operations. Te bf parametricity is
calledparametric polymorphisgrand is available in other programming languages for
example in the form of Java generid¥] or Standard ML functorsq2].

Given two pointers to integer variablesandy, the propagator can be instantiated
to implement]x = y] as follows (using thentvar class fromFigure J:

new Eg<IntVar,IntVar>(x,y);
The following instantiation yields a propagator for=y-+ 2]:

new Eg<IntVar,OffsetView> (x,new OffsetView(y,2));

Events. Most constraint solvers schedule the execution of propagatccording to
eventgsee for exampled1]). For example, a propagaterfor [x < y] can only prune
the domain (and thus should only be executed) if either theildoound ofx or the
upper bound of changes, writtefbc(x) andubc(y). We say thap subscribego the
event seflbc(x),ubc(y)}.

Now assume thap' is derived fromp using minus views o andy, thus imple-
mentingx > y. Obviously,p’ should subscribe to the dual event dethc(x), Ibc(y)}.
In the implementation, views provide all the operationsdeefor event handling (such
as subscription) and perform the necessary transfornsatibevent sets.

5.3 Parametricity

Independent of the concrete implementation, views form rimogonal layer of ab-
straction on top of any propagation-based constraint soh®long as the implemen-
tation language provides some kind of parametricity, amidisée domains are accessed
through some form of variable objects, propagators can bieedkusing views.

In addition to parametric polymorphism, two other forms afgmetricity exist,
functional parametricity andlynamic binding Functional parametricity means that
in languages such as Standard M22] or Haskell 4], a higher-order function is
parametric over its arguments. Dynamic binding is typicaiupled with inheritance
in object-oriented languages (virtual function calls in, Gethod calls in Java). Even
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in languages that lack direct support for parametricityapeetric behavior can often
be achieved using other mechanisms, such as macros ordapatinters in C.

Choice of parametricity. In C~, parametric polymorphism and dynamic binding
have advantages and disadvantages as it comes to derioipagators.

Templates are compiled byonomorphizationthe code is replicated and special-
ized for each instance. The compiler can generate optintzdé for each instance,
for example by inlining the transformations that a view ierpkents.

Achieving high efficiency in € with templates sacrifices some expressiveness. In-
stantiation caronly happen at compile-time. Hence, either @ust be used for mod-
eling, or all potentially required propagator variants e instantiated explicitly.
The choicewhich propagator to use can however be made at runtime:rfeatiequa-
tions, for instance, if all coefficients are units, the optiea original propagator can be
posted.

For n-ary constraints, compile-time instantiation can be athtion, as all arrays
must be monomorphic (contain only a single kind of view). Erample, one cannot
mix scale and minus views in linear constraints. For som@agators, we can work
around this restriction using more than a single array of/gig-or example, a propaga-
tor for a linear constraint can employ two arrays of différeiBw types, one of which
may then be instantiated with identity views and the othaéhwiinus views. While
this poses a limitation in principle, our experience frontGae suggests that there are
only few propagators in practice that suffer from this liatiibn.

Dynamic binding is more flexible than parametric polymosgphj as instantiation
happens at runtime and arrays can be polymorphic. This fliéxibomes at the cost of
reduced efficiency, as the transformations done by viewaijmers typically cannot be
inlined and optimized, but require additional virtual madtcalls. Section 7evaluates
empirically how these virtual method calls affect perforroe.

Compile-time versus runtime constants. Some views involve a parameter, such as
the coefficient of a scale view or the constant of a constaw.viThese parameters
can again be instantiated at compile-time or at runtime. if&tance, one can regard
a minus view as a compile-time specialization of a scale width coefficient—1,
and a zero view may specialize a constant view. With the emtstbeing known at
compile-time, the compiler can apply more aggressive dpétions.

5.4 Ilterators

Typical domain operations involve a single integer valuwg, ifstance adjusting the
minimum or maximum of an integer variable. These operatamesnot efficient if a
propagator performs full domain reasoning on integer e or deals with set vari-
ables. Therefore, set-valued operations, like updating@evinteger variable domain
to a new set, or excluding a set of elements from a set variftein, are important for
efficiency. Many constraint programming systems providealastract set-datatype for
accessing and updating variable domains, as for examplédaeCp], ECL'PS [8],
SICStus Prolog35], and Mozart P3]. ILOG Solver [L7] only allows access by iterat-
ing over the values of a variable domain.

This section develogteratorsas one particular abstract datatype for set-valued op-
erations on variables and views. There are two main reasatisduss iterators in this
paper. First, iterators provide simple, expressive, aficiefit set-valued operations on
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variables. Second, and more importantly, iterators traresgly perform the transfor-
mations needed for set-valued operations on views, ancctingitute a perfect fit for
deriving propagators.

Range sequences and range iterators.A range[m.. n] denotes the set of integers
{leZ|m<I1<n}. A range sequenceanges$S) for a finite set of integer$ C Z

is the shortest sequense= ([my .. y],...,[M .. n]) such thaS= (< ; [m .. ;] and

the ranges are ordered by their smallest elements{(m,; for 1 <i < k). We thus
define the set covered by a range sequence &) set_; [m .. nj]. The above range
sequence is also written gsn .. ni]>ik:l. Clearly, the range sequence of a set is unique,
none of its ranges is empty, ang+ 1 < my 1 for 1 <i < k.

A range iteratorfor a range sequence= ([n; .. m]>ik:1 is an object that provides
iteration overs: each of thgm .. nj] can be obtained in sequential order but only one at
atime. Arange iteratar provides the following operations:done() tests whether all
ranges have been iteratechext () moves to the next range, anchin() andr.max()
return the minimum and maximum value for the current ranges&(r) we refer to
the set defined by an iteratofwhich must coincide with séd)).

A range iterator naturally hides its implementation. It dgmnate a sequence (for
instance an array) directly by position, but it can just a8 tkeverse a linked list or the
leaves of a balanced tree, or for example iterate over trenwfitwo other iterators.

Iterators are consumed by iteration. Hence, if the sameeseguneeds to be it-
erated twice, a fresh iterator is needed. If iteration isaghen iterator can support
multiple iterations by providing a reset operation. Othiseyacache iteratortakes an
arbitrary range iterator as input, iterates it completahd stores the obtained ranges
in an array. Its operations then use the array. The cachadteimplements a reset
operation, so that the possibly costly input iterator isdusely once, while the cache
iterator can be used as often as needed.

Iterators for variables. The two basic set-valued operations on integer variabkes ar
domain access and domain update. For an integer variatble operatiox.get dom()
returns a range iterator for rangdéx)). The operatiox.set dom(r) updates the vari-
able domain ok to sefr) given a range iteratar, provided that sét) C d(x). The
responsibility for ensuring that ge} C d(x) is left to the programmer.

In order to provide safer and richer operations, we canitasator combinators
For example, anntersection iterator r= iinter(ry,r2) combines two range iterators
ri andry such that sét) = se{r;) Nse(r,). Similarly, adifference iterator r=
iminug(ry,ry) yields sefr) = se{ry) \ setrs).

Richer set-valued operations are then effortless. Theatiparx.adjdom(r) ad-
justs the domain(x) by setr), yieldingd(x) Nsefr), whereax.excdom(r) excludes
sef{r) from d(x), yieldingd(x) \ se{r):

X.adjdom(r) = X.setdom(iinter(x.getdom(),r))
x.excdom(r) = X.setdom(iminugx.getdom(),r))

In contrast to thex.setdom(-) operation, the richer set-valued operations are inher-
ently contracting, and thus safer to use when implementiprgppagator.

Iterators also serve as the natural interface for operatiarset variables, which are
usually approximated as set intervals defined by a lower angper bound?5, 13]:

d(x) = [gIb(d(x)) .. lub(d(x))] = {s | glb(d(x)) C 5,5 C lub(d(x))}
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In order to access and update these set bounds, propagstosetivalued op-
erations based on iterators.glb() returns a range iterator for ranggth(d(x))),
x.1lub() returns a range iterator for rangkeh(d(X))), X.adjglb(r) updates the do-
main ofx to [glb(d(x)) Use{r),lub(d(x))], andx.adj1lub(r) updates the domain of
to [glb(d(x)),lub(d(x)) Nselr)].

Iterator combinators provide the operations that set pyafms need: union, in-
tersection, difference, and complement. Many propaga&ansthus be implemented
directly using iterators and do not require any temporata d&ructures for storing
set-valued intermediate results.

All set-valued operations are parametric with respect &itieratorr: any range
iterator can be used. As for parametric propagators, aneimghtor has to decide
on the kind of parametricity to use. Gecode uses templadeebparametric polymor-
phism, with the performance benefits due to monomorphiratial consequent code
optimization mentioned previously.

Advantages. Range iterators provide essential advantages over arciqet rep-
resentation. First, any range iterator regardless of iflémentation can be used in
domain operations. This turns out to result in simple, effitiand expressive domain
updates. Second, no costly memory management is requiraditdain a range iter-
ator as it provides access to only one range at a time. Tiiedabstractness of range
iterators makes them compatible with views and derived ggajors: the necessary
view transformations can be encapsulated in an iteratalisasssed below.

Iterators for views. As iterators hide their implementation, they are perfestlifed
for implementing the transformations required for setieal operations on views.

Set-valued operations for constant integer views aregsttfmirward. For a constant
view v on constank, the operation.getdom() returns an iterator for the singleton
range sequencgk .. k]). The operatiorn.setdom(r) just checks whether the range
sequence af is empty (in order to detect failure).

Set-valued operations for an offset view are provided byffset iterator For a
range sequenae= ([m .. ni])!‘:1 and offset, ioffsef(r,c) iterates([my +c .. n; + c])!‘:1
An offset view onx with offsetc then implementget dom as ioffsefx.get dom(), c)
andsetdom(r) asx.setdom(ioffsef(r, —c)).

For minus views we just give the range sequence, iteratiobvsus. For a given
range sequencgm .. ni]>ik:1, the negative sequence is obtained by reversal and sign
change ag[—nk_j+1.. — mk,iﬂ])!‘:l. The same iterator for this sequence can be used
both for setdom andgetdom operations. Note that implementing the iterator is in-
volved as it changes direction of the range sequence. Thersva different options
for changing direction: either the set-valued operaticatept iterators in both direc-
tions or a cache iterator is used to reverse the directiorcote uses the latter and
Section 7.Zvaluates the overhead introduced by cache iterators.

A scale iterator provides the necessary transformationsdale views. Assume
a scale view on a variabbewith a coefficienta > 0, and let([m; .. ni]>ik:l be a range
sequence fod(x). If a= 1, the scale iterator does not change the range sequence. Oth
erwise, the corresponding scaled range sequeri¢aism },{ax (mi+1)},...,{ax
ni},....,{axm}, {ax (mg+1)},....,{ax ng}). Forthe other direction, assume we
want to update the domain using a S¢tirough a scale view. Assume thaty .. ni])ik:l
is a range sequence f8r Then for 1<i < k the range$[m;/a] .. | ni/a|] correspond
to the required variable domain far however they do not necessarily form a range
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sequence as the ranges might be empty, overlapping, oresdjalterating the range
sequence is however simple by skipping empty ranges andmgevgerlapping or ad-
jacent ranges. Scale views for a variablend a coefficien& in Gecode are restricted
to be strictly positive so as to not change the direction efdbaled range sequence. A
negative coefficient can be obtained by using a scale vieetiag with a minus view.

A complement view of a set variableuses acomplement iteratgmwhich given a
range iterator iterates ovese(r).

6 Limitations

Although views are widely applicable, they are no silverdétulThis section explores
some limitations of the presented model.

Beyond injective views. Views are required to be injective, as otherwgseo ¢ is

no longer the identity function, and derived propagatorsidmot necessarily be con-
tracting. An example for this behavior is a view for the abselvalue of an integer
variable. Assuming a variable domadiix) = {1}, an absolute value viey would
leave the domain as it igy(d)(x) = {1}, but the inverse would “invent” the negative
value, ¢ (¢(d))(x) = {—1,1}. With an adapted definition of derived propagators,
such asp(p)(d) = ¢~ (p(¢(d))) Nd, non-injective views could be used — however,
many of the proofs in this paper rely on injectivity (thougimee of the theorems pos-
sibly still hold for non-injective views).

Multi-variable views. Some multi-variable views that seem interesting for pcadti
applications do not preserve contraction, for instancesev\an the sum or product of
two variables. The reason is that removing a value throughview would have to
result in removing duple of values from the domain. As domains can only represent
Cartesian products, this is not possible in general. Sudbvawould have two main
disadvantages. First, if propagation of the original caist is strong but does not lead
to an actual domain pruning through the views, then the piaignhigh computational
cost for the pruning does not pay off. A cheaper but weakeaticdéed propagation
algorithm or a different modeling with stronger pruninghien a better choice. Second,

if views do not preserve contraction, theroposition sdoes not hold. That means that
a propagatop cannot easily detect subsumption any longer, as it would tadetect

it for §(p) instead of just for itselfp. Systems such as Gecode that disable subsumed
propagators (as described Bf]) then lose this potential for optimization.

For contraction-preserving views on multiple variabldkthe theorems still hold.
Two such views we could identify are a set view of Boolean afalgs|by,...,bn],
behaving like{i | b; = 1}; and an integer view of Boolean variablés, .. ., bn], where
b; is 1 if and only if the integer has valugas well as the inverse views of these two.

Propagator invariants. Propagators typically rely on certain invariants of a Vialea
domain implementation. If idempotency or completeness pifagagator depend on
these invariants, type conversion views lead to problesith@actual variable imple-
mentation behind the view may not respect the same invatiant

For example, a propagator for set variables based on thetsetal approximation
can assume that adjusting the lower bound of a variable duesfect its upper bound.
If this propagator is instantiated with a type conversi@wfor an ROBDD-based set
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Table 2: Results for Gecode 3.1.0, the baseline for the @rpets

[ Benchmark [[ time (ms) [ mem. (KByte)| failures | propagations |
All-Interval (50) 18321 148 0 6685
All-Interval (100) 390421 516 0 25866
Alpha (naive) 10000 23 7435 136179
BIBD (7-3-60) 176285 4516 1306 921686
Eg-20 152 14 54 3460
Golomb Rulers (Bnd, 10) 42339 67 8890 1181704
Golomb Rulers (Dom, 10) 607.86 419 8890 1181770
Graph Coloring 32446 3910 1100 125264
Magic Sequence (Smart, 500 25150 4484 251 84302
Magic Sequence (GCC, 500 30515 330 251 3908
Partition (32) 592804 265 160258 12107504
Perfect Square 18554 3972 150 305391
Queens (10) 36.88 27 4992 43448
Queens (Dom, 10) 10338 99 3940 59508
Queens (100) 154 235 22 455
Queens (Dom, 100) 3183 2056 8 693
Sorting (400) 140001 151413 0 459501
Social Golfers (8-4-9) 19337 10254 32 181290
Social Golfers (5-3-7) 119951 2117 1174 852391
Hamming Codes (20-3-32) 114098 24746 2296 753751
Steiner Triples (9) 12011 901 1067 297501
Sudoku (Set, 1) 3.48 83 0 1820
Sudoku (Set, 4) 7.30 148 1 3752
Sudoku (Set, 5) 55.14 514 25 28038

variable (seé&ection 4.3, this invariant is violated: if, for instance, the curreioimain
is {{1,2},{3}}, and 1 is added to the lower bound, then 3 is removed from tperup
bound (in addition to 2 being added to the lower bound). If@ppgator reports that it
has computed a fixed point based on the assumption that the bppnd cannot have
changed, it may actually not be at a fixed point. This potéptiasults in incorrect
propagation, for instance if the propagator could detektr&if it were run again.

7 Evaluation

While Section 3proved that derived propagators are perfect with respeabetmathe-
matical model, this section shows that in most cases onelsamwhtain perfect imple-
mentations of derived propagators, not incurring any parémce penalties compared
to dedicated, handwritten propagators.

Experimental setup. The experiments are based on Gecode 3.1.0, compiled using
the GNU C+ compiler gcc 4.3.2, on an Intel Pentium IV at 2.8 GHz runniriguix.
Runtimes are the average of 25 runs, with a coefficient ofadi®ri less than 2.5% for
allbenchmarks. All example programs are available in theo@e distributionTable 2
shows the figures for the unmodified Gecode 3.1.0 (pure integeels above, mod-

els with integer and set variables below the horizontal)liaed results will be given
relative to these numbers. For example, a runtime of 130%mteat the example
needs 30% more time, while 50% means that it is twice as fast@escode 3.1.0. The
columntime shows the runtimenem.the peak allocated memorfgiluresthe number

of failures during search, amtopagationghe number of propagator invocations.
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Table 3: Relative performance of decomposition, comparet:ivs

[ Benchmark || time % [ mem. %[ propagations %]
Alpha (naive) 41288 36087 67383
BIBD (7-3-60) 30880 21194 25612
Eg-20 59035 70000 70457
Partition (32) 13561 11358 13640
Perfect Square 11446 10967 10442
Queens (Dom, 10) 17332 10000 51968
Queens (Dom, 100) 14060 10311 237186
Social Golfers (8-4-9) 33589 23482 16022
Social Golfers (5-3-7) 217.28 19069 15058
Hamming Codes (20-3-32)| 11381 104.66 99.65
Steiner Triples (9) 13279 10000 10176
Sudoku (Set, 1) 16618 10000 11038
Sudoku (Set, 4) 15282 | 11081 107.06
Sudoku (Set, 5) 14363 10000 10547

As many of the experimental results rely on the optimizatiapabilities of the used
C~ compiler, we verified that all experiments yield similaruks with the Microsoft
Visual Studio 2008 € compiler.

7.1 Views Versus Decomposition

In order to evaluate whether deriving propagators is wdréhdffort in the first place,
this set of experiments compares derived propagators witln lecompositions, re-
vealing a significant overhead of the latter.

Table 3shows the results of these experiments. AphaandEqg-2Q linear equa-
tions with coefficients are decomposed. Eaueens 100we replace the speciall-
differentwith-offsets by its decomposition into aidl-different propagator and binary
equality-with-offset propagators. BIBD andPerfect Squarewe decompose ternary
Boolean propagators, implementirg y <» zas—xV =y <» —zin BIBD, andxVvy <> z
as—x A~y «» =z in Perfect Squareln the remaining examples, we decompose a set
intersection into complement and union propagators.

Some integer examples show a significant overhead of araurtares the run-
time and memory when decomposed. The overhead of most sapesas well as
Perfect Squarés moderate, partly because no additional variable wasdoired if the
model already contained its complement or negation. As texpected, decomposi-
tion often needs significantly more propagation steps, buha additional steps are
performed by cheap propagators (like- y+i or x = —y), the runtime effect is less
drastic. Queens 100Gs an extreme case, where 23 times the propagation steps only
cause 40% more runtime. The reason is that the schedulieg dogs not take advan-
tage of the fact that the decompositions are Berge-acysldiscussed isection 3.5
Partition 32has a single linear equation with coefficients, severablimguations with
unit coefficients, multiplications, and a sing#-different Replacing the linear equa-
tion by its decomposition has little effect on the runtimé¥3overhead).

7.2 Impact of Derivation Techniques

The techniques presentedSection 4have differentimpacts on the performance of the
derived propagators.
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Table 4: Relative performance of minus views

[ Benchmark [[ time % [ prop. % || Benchmark [[ time % [ prop. % |
All-Interval (50) 100.00 10000 || Partition (32) 13183 13595
All-Interval (100) 10052 10000 || Queens (10) 9832 10000
Alpha (naive) 10181 10000 || Queens (Dom, 10) || 107.63 10000
Golomb Rulers (Bnd, 10) 99.36 10001 || Queens (100) 97.83 10000
Golomb Rulers (Dom, 10)|| 107.77 10018 || Queens (Dom, 100 95.62 10000
Graph Coloring 107.19 99.84 || Sorting (400) 10513 10000

Generalization and specialization. These techniques can be implemented without
any performance overhead compared to a handwritten progag@his is not sur-
prising as the only potential overhead could be that a fonatall is not resolved at
compile time. For example, a thorough inspection of the ayeteerated by the GNU
C+~ compiler and the Microsoft Visual Studio*@ompiler shows that they are able to
fully inline the operations of offset and scale views.

Transformation and type conversion. These technigues can incur an overhead com-
pared to a dedicated implementation, as the transformeaperformed by the views
can sometimes not be removed by compiler optimizations tyme conversions may
be costly if the data structures for the variable domainfedsgignificantly.

For example, a propagator instantiated with two minus viefwariablesx andy
may include a comparisofi-x) < (—y). Due to the invariants guaranteed by views,
this is equivalent ty < X, saving two negations. However, the asymmetry in the two’s
complement representation of integers prevents the cenfpilm performing this op-
timization. As an experiment to evaluate this effect, wednsated arall-different
propagator with minus views. The resulting derived propaigaf course implements
the same constraint, but incurs the overhead of negatianila8ly, we replaced the
max propagator in th8ortexample with a min (where the propagator for min is de-
rived from the propagator for max) and negated all pararaefarcording to the results
in Table 4 the overhead is often negligible, and only exceeds 5% imgkas that use
the domain-completall-different propagator Graph Coloring Golomb Rulers Dom
and Queens Domor predominantly min propagatorS¢r). Queens Dom 10@oes
not show the effect as the runtime is dominated by searchngJsiinus views can
result in different propagator scheduling. TRartition example shows this behavior,
where the increase in propagation steps results in inaleas¢éime.

It is interesting to note that the domain-complatkedifferent propagator, when
instantiated with minus views, requires a cache iteratosémuence reversal (as dis-
cussed inSection 5.4 Surprisingly, the overhead of minus views is largely ipelie-
dent of the use of cache iterators which is confirme8éation 7.4

Other transformations are translated optimally, such esirtg (—x) — (—y) into
y — X. Boolean negation views also lead to optimal code, as theyotloompute 1- x
for a Boolean variablg, but instead swap the positive and negative operations.

Set-valued transformations can result in non-optimal céae example, a propa-
gator for ternary intersectior,= yNz, willinclude an inference.ad jglb(y.glb()N
zglb()). To derive a propagator for= yUz, we instantiate the intersection propaga-
tor with complement views fax, y, andz, yielding the following inference:

X.adjglb(y.glb()NZglb())
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Table 5: Relative performance of views compared to dedicsge propagators

[ Benchmark [[ time % || Benchmark [ time % |
Social Golfers (8-4-9) 166.31 || Sudoku (Set, 1)|| 16744
Social Golfers (5-3-7) 14883 || Sudoku (Set, 4)|| 15174
Hamming Codes (20-3-32)| 12911 || Sudoku (Set, 5)|| 14283
Steiner Triples (9) 127.85

Table 6: Relative performance of virtual method calls

[ Benchmark [[ time % || Benchmark [ time % |
All-Interval (50) 18263 || Social Golfers (8-4-9) 14837
All-Interval (100) 11320 || Social Golfers (5-3-7) 13895
Alpha (naive) 15359 || Hamming Codes (20-3-32)| 13137
BIBD (7-3-60) 13850 || Steiner Triples (9) 14908
Eq-20 21169 || Sudoku (Set, 1) 11956
Golomb Rulers (Bnd, 10) 22001 || Sudoku (Set, 4) 11878
Golomb Rulers (Dom, 10) 17013 || Sudoku (Set, 5) 11917
Graph Coloring 104.29

Magic Sequence (Smart, 500) 13658
Magic Sequence (GCC, 500)| 22664

Partition (32) 187.89
Perfect Square 13064
Queens (10) 13381
Queens (100) 16079

which amounts to computing

X.adjlub(y.lub()Nz1lub())

It would be more efficient to implement the equivalgrtdj1ub(y.1ub() Uz 1ub())
because this requires three set operations less. Unfeetynao compiler will find
this equivalence automatically, as it requires knowledgmiithe semantics of the set
operationsTable 5compares a dedicated propagator for the constxaiiryt= z with a
version using complement views and a propagatokfoy = z. The overhead of 27%
to 67% does not render views useless for set variables, isutévertheless significant.

7.3 Templates Versus Virtual Methods

As suggested iiBection 5 in C+, compile-time polymorphism using templates is far
more efficient than virtual method calls. To evaluate this,alanged the basic oper-
ations of integer variables to be virtual methods, such ¥ieat operations need one
virtual method call. In addition, all operations that usapates (and can therefore not
be made virtual in €) have been changed so that they cannot be inlined, to sienulat
virtual method calls. This is a conservative approximatibithe actual cost of fully
virtual views. The results of these experiments appeaebie 6 Virtual method calls
cause a runtime overhead between 4% and 127% for the integepdées (left table),
and 18% to 49% for the set examples (right table). The runtweehead for set exam-
ples is lower as the basic operations on set variables asdsyably more expensive
than the basic operations on integer variables.
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Table 7: Relative performance of cache iterators

[ Benchmark || time % ]| Benchmark [[ time % |
All-Interval (50) 10248 || Social Golfers (8-4-9) 52262
All-Interval (100) 10117 || Social Golfers (5-3-7) 45015
Golomb Rulers (Bnd, 10) 10051 || Hamming Codes (20-3-32)| 297.38
Golomb Rulers (Dom, 10) 12898 || Steiner Triples (9) 30497
Graph Coloring 14458 || Sudoku (Set, 1) 45985
Magic Sequence (GCC, 500) 10356 || Sudoku (Set, 4) 48327
Queens (Dom, 10) 187.36 || Sudoku (Set, 5) 43692
Queens (Dom, 100) 15562

7.4 lterators Versus Temporary Data Structures

The following experiments show that using range iteratomgroves the efficiency of
propagators, compared to the use of explicit set data stesfor temporary results.
For the experiments, temporary data structures have beelata by wrapping all
iterators in a cache iterator as describeattion 5.4 Table 7shows the results. For
integer propagators that perform the safe iterator-basethth operations introduced
in Section 5.4computing with temporary data structures results in 28%7A% over-
head Golomb Rulers Dom, Graph Coloring, Queens DoFor set propagators, which
make much more use of iterators than integer propagat@swverhead becomes pro-
hibitive, resulting in up to 4.8 times the runtime. The meyoconsumption does not
increase, because iterators are not stored, and only featdts are active at a time.

8 Conclusion

The paper has developed views for deriving propagator newiaSuch variants are
ubiquitous, and the paper has shown how to systematicatlyedpropagators using
different types of views, corresponding to techniques agtransformation, general-
ization, specialization, and type conversion.

Based on a formal, implementation independent model ofgars and views,
the paper has identified fundamental properties of viewsrtwllt inperfectderived
propagators. The paper has shown that a derived propagamits correctness and
domain completeness from its original propagator, and bsgnmpleteness given ad-
ditional properties of the used views.

The paper has presented an implementation architecturesios based opara-
metricity. The propagator implementation is kept parametric ovetytpe of view that
is used, so that deriving a propagator amounts to instargiat parametric propaga-
tor with the proper views. This implementation architeetigran orthogonal layer of
abstraction that can be implemented on top of any constalaér.

An empirical evaluation has shown that views have provealirable for the im-
plementation of Gecode, saving huge amounts of code to leewand maintained.
Furthermore, deriving propagators using templates-it&s been shown to yield com-
petitive (in most cases optimal) performance compareddicdéed handwritten prop-
agators. The experiments have also clarified that deriviogggators is vastly superior
to decomposing the constraints into additional variabtessample propagators.
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