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Abstract

When implementing a propagator for a constraint, one must decide about vari-
ants: When implementing min, should one also implement max?Should one im-
plement linear constraints both with unit and non-unit coefficients? Constraint
variants are ubiquitous: implementing them requires considerable (if not pro-
hibitive) effort and decreases maintainability, but will deliver better performance
than resorting to constraint decomposition.

This paper shows how to use views to deriveperfectpropagator variants. A
model for views and derived propagators is introduced. Derived propagators are
proved to be indeed perfect in that they inherit essential properties such as correct-
ness and domain and bounds consistency. Techniques for systematically deriving
propagators such as transformation, generalization, specialization, and type con-
version are developed. The paper introduces an implementation architecture for
views that is independent of the underlying constraint programming system. A de-
tailed evaluation of views implemented in Gecode shows thatderived propagators
are efficient and that views often incur no overhead. Withoutviews, Gecode would
either require 180000 rather than 40000 lines of propagatorcode, or would lack
many efficient propagator variants. Compared to 8000 lines of code for views, the
reduction in code for propagators yields a 1750% return on investment.

1 Introduction

When implementing a propagator for a constraint, one typically must also decide
whether to implement some of its variants. When implementing a propagator for
the constraint max{x1, . . . ,xn} = y, should one also implement min{x1, . . . ,xn} = y?
The latter can be implemented using the former as max{−x1, . . . ,−xn} = −y. When
implementing a propagator for the linear equation∑n

i=1aixi = k for integer variables
xi and integersai andk, should one also implement the special case∑n

i=1xi = k for
better performance? When implementing a propagator for thereified linear equation
(∑n

i=1xi = c) ↔ b, should one also implement(∑n
i=1xi 6= c) ↔ b? These two con-

straints only differ by the sign ofb, as the latter is equivalent to(∑n
i=1xi = c)↔¬b.

The two straightforward approaches for implementing constraint variants are to
either implement dedicated propagators for the variants, or to decompose. In the last
example, for instance, the reified constraint could be decomposed into two propagators,
one for(∑n

i=1xi = c)↔ b′, and one forb↔¬b′, introducing an additional variableb′.
Implementing the variants inflates code and documentation and is error prone.

Given the potential code explosion, one may be able to only implement some vari-
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ants (say, min and max). Other variants important for performance (say, ternary min
and max) may be infeasible due to excessive programming and maintenance effort. De-
composing, on the other hand, massively increases memory consumption and runtime.

This paper introduces a third approach:derivingpropagators from already existing
propagators usingviews. This approach combines the efficiency of dedicated propaga-
tor implementations with the simplicity and effortlessness of decomposition.

Example 1 (Deriving a minimum propagator) Consider a propagator for the con-
straint max(x,y) = z. Given three additional propagators forx′ = −x, y′ = −y, and
z′ = −z, we could propagate the constraint min(x′,y′) = z′ using the propagator for
max(x,y) = z. Instead, this paper proposes to derive a propagator using views that
perform the simple transformations corresponding to the three additional propagators.

Views transform input and output of a propagator. For example, a minus view on
a variablex transforms the variable domain ofx by negating each element, passes the
transformed domain to the propagator, and performs the inverse transformation on the
domain returned by the propagator. With views, the implementation of the maximum
propagator can be reused: a propagator for the minimum constraint can be derived from
a propagator for the maximum constraint and a minus view for each variable. ∗

This paper contributes an implementation-independentmodel for views and derived
propagators, techniques for deriving propagators, concrete implementation techniques,
and an evaluation that shows that views are widely applicable, drastically reduce pro-
gramming effort, and yield an efficient implementation.

More specifically, we identify the properties of views that are essential for deriv-
ing perfectpropagators. The paper establishes a formal model that defines a view as a
function and a derived propagator as functional composition of views (mapping values
to values) with a propagator (mapping domains to domains). This model yields all the
desired results: derived propagators are indeed propagators; they faithfully implement
the intended constraints; domain consistency carries overto derived propagators; dif-
ferent forms of bounds consistency over integer variables carry over provided that the
views satisfy additional yet natural properties.

We introduce techniques for deriving propagators that use views for transformation,
generalization, specialization, and type conversion of propagators. We show how to
apply these techniques for different variable domains using various views and how
views can be used for the derivation of dual scheduling propagators.

We present and evaluate different implementation approaches for views and derived
propagators. An implementation using parametric polymorphism (such as templates in
C++) is shown to incur no or very low overhead. The architecture is orthogonal to the
used constraint programming system and has been fully implemented in Gecode [10].
We analyze how successful the use of derived propagators hasbeen for Gecode.

Plan of the paper. Section 2introduces constraints and propagators.Section 3es-
tablishes views and propagator derivation.Section 4presents propagator derivation
techniques.Section 5describes an implementation architecture based on parametric
propagators and range iterators.Section 6discusses limitations of views. The imple-
mentation is evaluated inSection 7, andSection 8concludes.

2 Preliminaries

This section introduces constraints, propagators, and propagation strength.
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Variables, constraints, and domains. Constraint satisfaction problems use afinite
set of variables Xand afinite set of values V. We typically write variables asx,y,z∈ X
and values asv,w∈V.

A solution of a constraint satisfaction problem assigns a single value to each vari-
able. A constraint restricts which assignments of values tovariables are allowed.

Definition 1 (Assignments and constraints) An assignment ais a function mapping
variables to values. The set of all assignments isAsn= X →V. A constraint cis a set
of assignments,c ∈ Con = P(Asn) = P(X → V) (we writeP(S) for the power set
of S). Any assignmenta∈ c is asolutionof c. ∗

Constraints are defined on assignments as total functions onall variables. For a
typical constraintc, only a subset vars(c) of the variables issignificant; the constraint is
the full relation for allx /∈ vars(c). Constraints are either written as sets of assignments
(for example,{a∈ Asn | a(x)< a(y)}) or as expressions with the usual meaning, using
the notationJ·K (for example,Jx< yK).

Example 2 (Sum constraint) Let X = {x,y,z} andV = {1,2,3,4}. The constraint
Jx= y+ zK corresponds to the following set of assignments:

Jx= y+ zK= {(x 7→ a,y 7→ b,z 7→ c) | a,b,c∈V ∧a= b+ c}

= {(x 7→ 2,y 7→ 1,z 7→ 1),(x 7→ 3,y 7→ 1,z 7→ 2),

(x 7→ 3,y 7→ 2,z 7→ 1),(x 7→ 4,y 7→ 2,z 7→ 2)} ∗

Definition 2 (Domains) A domain dis a function mapping variables to sets of values,
such thatd(x) ⊆ V. The set of all domains isDom = X → P(V). The set of values
in d for a particular variablex, d(x), is called thevariable domainof x. A domaind
represents a set of assignments, a constraint, defined as

con(d) = {a∈ Asn | ∀x∈ X : a(x) ∈ d(x)}

An assignmenta∈ con(d) is licensedby d. ∗

Domains thus representCartesiansets of assignments. In this sense, any domain is
also a constraint. For a more uniform representation, we take the liberty to use domains
as constraints. In particular,a ∈ d (instead ofa ∈ con(d)) denotes an assignmenta
licensed byd, andc∩d denotesc∩con(d).

A domaind that maps some variable to the empty value set isfailed, writtend = /0,
as it represents no valid assignments (con(d) = /0). A domaind representing a single
assignment, con(d) = {a}, is assigned, and is written asd = {a}.

Definition 3 (Constraint satisfaction problems) A constraint satisfaction problem
(CSP) is a pair〈d,C〉 of a domaind and a set of constraintsC. The solutionsof a
CSP〈d,C〉 are the assignments licensed byd that satisfy all constraints inC, defined
as sol(〈d,C〉) = {a∈ con(d) | ∀c∈C : a∈ c}. ∗

Propagators. A propagation-based constraint solver employspropagatorsto imple-
ment constraints. A propagator for a constraintc takes a domaind as input and removes
values from the variable domains ind that are in conflict withc.

A domaind is strongerthan a domaind′, writtend ⊆ d′, if and only ifd(x)⊆ d′(x)
for all x ∈ X. A domaind is strictly strongerthan a domaind′, written d ⊂ d′, if and
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only if d is stronger thand′ andd(x)⊂ d′(x) for some variablex. The goal of constraint
propagation is to prune values from variable domains, thus inferring stronger domains,
without removing solutions of the constraints.

A propagator is a functionp that takes a domain as its argument and returns a
stronger domain, it may onlypruneassignments. If the original domain is an assigned
domain{a}, the propagator either accepts (p({a})= {a}) or rejects (p({a})= /0) it, re-
alizing adecision procedurefor its constraint. The pruning and the decision procedure
must be consistent: if the decision procedure accepts an assignment, the pruning pro-
cedure must never remove this assignment from any domain. This property is enforced
by requiring propagators to be monotonic.

Definition 4 (Propagators) A propagatoris a functionp∈ Dom→Dom that is

■ contracting: p(d)⊆ d for any domaind;

■ monotonic: p(d′)⊆ p(d) for any domainsd′ ⊆ d.

The set of all propagators isProp. If a propagatorp returns astrictly stronger domain
(p(d) ⊂ d), we say thatp prunes the domain d. The propagatorp inducesthe unique
constraintcp defined by the set of assignments accepted byp:

cp = {a∈ Asn | p({a}) = {a}} ∗

Propagators can also beidempotent(p(p(d)) = p(d) for any domaind). Idempo-
tency is not required to make propagation sound or complete,but it can make prop-
agation more efficient [33]. Like idempotency, monotonicity as defined here is not
necessary for soundness or completeness of a solver [34]. Most definitions and theo-
rems in this paper are independent of whether propagators are monotonic or not. Non-
monotonicity will thus only be discussed where it is relevant.

Propagation strength. Each propagator induces a single constraint, but different
propagators can induce the same constraint, differing instrength. Typical examples
are propagators for theall-different constraint that perform naive pruning when vari-
ables are assigned, or establish bounds consistency [26] or domain consistency [30].

In the literature, propagation strength is usually defined as a property of a domain
in relation to a constraint. For example, a domaind is domain-consistent(also known
as generalized arc-consistent) with respect to a constraint c if d(x) only contains values
that appear in at least one solution ofc for each variablex. As this paper is concerned
with propagators, propagation strength is defined with respect to a propagator.

A propagatorp is domain-completeif any domain it returns is domain-consistent
with respect tocp. For any constraintc, there is exactly one domain-complete prop-
agator forc (as domains form a lattice). It is defined as ˆpc(d) = dom(cp∩d), where
dom(c) is thedomain relaxationof c, the strongest domain that contains all assign-
ments ofc, dom(c) = min{d | c⊆ d}.

For constraints over integer variables (V ⊆ Z), several weaker notions of propaga-
tion strength are known. The most well-known isbounds consistency, which in fact
can mean one of four special cases: range, bounds(D), bounds(Z), and bounds(R)
consistency (as discussed in [7, 28]).

The first three differ in whether holes are ignored in the original domain, in the
resulting domain, or in both, in that order. Holes in a domainare ignored by the func-
tion hull(d)(x) = [min(d(x)) .. max(d(x))], which returns the convex hull of a variable
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domaind(x) in Z. Bounds(R) consistency only requires solutions to be found in the
real-valued relaxation of the constraint (writtencR), and is defined using the real-valued
convex hull and domain relaxation (written hullR and domR). The different notions of
bounds consistency give rise to the respective definitions of bounds completeness.

Definition 5 (Bounds completeness)A propagatorp is

■ range-complete if and only ifp(d)⊆ dom(cp∩hull(d)),

■ bounds(D)-complete if and only ifp(d)⊆ hull(dom(cp∩d)),

■ bounds(Z)-complete if and only ifp(d)⊆ hull(dom(cp∩hull(d))), and

■ bounds(R)-complete if and only ifp(d)⊆ hullR(domR(cpR∩hullR(d)))

for any domaind. ∗

3 Views

This section defines views and proves properties of view-derived propagators.

3.1 Views and Derived Propagators

Given a propagatorp, a view is represented by two functions,ϕ andϕ−, that can be
composed withp such thatϕ− ◦ p◦ ϕ is the desired derived propagator. The func-
tion ϕ transforms the input domain, andϕ− applies the inverse transformation to the
propagator’s output domain.

Definition 6 (Variable views and views) A variable viewϕx ∈V →V ′ for a variable
x is an injective function mapping values to values. The setV ′ may be different from
V, and the corresponding sets of assignments, domains, constraints, and propagators
are calledAsn′, Dom′, Con′, andProp′, respectively.

Given a family of variable viewsϕx for all x ∈ X, we lift them point-wise to as-
signments:ϕAsn(a)(x) = ϕx(a(x)). A view ϕ ∈ Con → Con′ is a family of variable
views, lifted to constraints:ϕ(c) = {ϕAsn(a) | a∈ c}. Theinverseof a view is defined
asϕ−(c) = {a∈ Asn | ϕAsn(a) ∈ c}. ∗

Definition 7 (Derived propagators and constraints) Given a propagatorp ∈ Prop′

and a viewϕ , thederived propagator̂ϕ(p) ∈ Prop is defined aŝϕ(p) = ϕ− ◦ p◦ϕ .
Similarly, aderived constraintis defined to beϕ−(c) ∈ Con for a givenc∈ Con′. ∗

Example 3 (Scale views)Given a propagatorp for the constraintc = Jx = yK, we
want to derive a propagator forc′ = Jx= 2yK using a viewϕ such thatϕ−(c) = c′.

Intuitively, the functionϕ leavesx as it is and scalesy by 2, while ϕ− does the
inverse transformation. We thus defineϕx(v) = v andϕy(v) = 2v. That clarifies the
need for different setsV andV ′, asV ′ must contain all elements ofV multiplied by 2.

The derived propagator iŝϕ(p) = ϕ− ◦ p◦ϕ . We say that̂ϕ(p) “uses a scale view
on” y, meaning thatϕy is the function defined asϕy(v)= 2v. Similarly, using an identity
view onx amounts toϕx being the identity function onV.

Given the assignmenta= (x 7→ 2,y 7→ 1), we first applyϕ and getϕ({a}) = {(x 7→
2,y 7→ 2)}. This is accepted byp and returned unchanged, soϕ− transforms it back
to {a}. Another assignmenta′ = (x 7→ 1,y 7→ 2) is transformed toϕ({a′}) = {(x 7→
1,y 7→ 4)}, rejected (p(ϕ({a′})) = /0), and the empty domain is mapped to the empty
domain byϕ−. The propagator̂ϕ(p) inducesϕ−(c). ∗

5



3.2 Correctness of Derived Propagators

Derived propagators are well-defined and correct: a derivedpropagator̂ϕ(p) is in fact
a propagator, and it induces the desired constraint (cϕ̂(p) = ϕ−(cp)). The proofs of
these statements employ the following direct consequencesof the definitions of views:

P1. ϕ andϕ− are monotonic by construction (asϕ andϕ− are defined point-wise).

P2. ϕ− ◦ϕ = id (the identity function, asϕ is injective).

P3. |ϕ({a})|= 1, ϕ( /0) = /0.

P4. For any viewϕ and domaind ∈ Dom, we haveϕ(d) ∈ Dom′, and for anyd′ ∈
Dom′, we haveϕ−(d′) ∈ Dom (as views are defined point-wise).

Proposition 1 (Correctness) For a propagatorp and viewϕ , ϕ̂(p) is a propagator.∗

Proof. The derived propagator is well-defined because bothϕ(d) andϕ−(d) are do-
mains (seeP4above). We have to show thatϕ− ◦ p◦ϕ is contracting and monotonic.

For contraction, we havep(ϕ(d)) ⊆ ϕ(d) asp is contracting. From monotonicity
of ϕ− (with P1), it follows thatϕ−(p(ϕ(d))) ⊆ ϕ−(ϕ(d)). As ϕ− ◦ϕ = id (with P2),
we haveϕ−(p(ϕ(d)))⊆ d, which proves that̂ϕ(p) is contracting.

Monotonicity is shown as follows for all domainsd′,d with d′ ⊆ d:

ϕ(d′)⊆ ϕ(d) (ϕ monotonic,P1)

=⇒ p(ϕ(d′))⊆ p(ϕ(d)) (p monotonic)

=⇒ ϕ−(p(ϕ(d′)))⊆ ϕ−(p(ϕ(d))) (ϕ− monotonic,P1)

In summary, for any propagatorp, ϕ̂(p) = ϕ− ◦ p◦ϕ is a propagator.

Non-monotonic propagators as defined in [34] must at least beweaklymonotonic,
which means thatp({a})⊆ p(d) for all domainsd and assignmentsa∈ d. The above
proof can be easily adjusted to weakly monotonic propagators by replacingd′ with {a}
and usingP3in the second line of the proof.

Proposition 2 (Induced constraints) Let p be a propagator, and letϕ be a view.
Thenϕ̂(p) induces the constraintϕ−(cp). ∗

Proof. As p inducescp, we know p({a}) = cp ∩ {a} for all assignmentsa. With
|ϕ({a})| = 1 (P3), we havep(ϕ({a})) = cp ∩ ϕ({a}). Furthermore, we know that
cp∩ϕ({a}) is either /0 orϕ({a}).

■ Case /0: We haveϕ−(p(ϕ({a}))) = /0 =
{

a′ ∈ Asn
∣∣ a= a′∧ϕAsn(a) ∈ cp

}
=

ϕ−(cp)∩{a}.

■ Caseϕ({a}): With P2, we haveϕ− ◦ϕ = id and henceϕ−(p(ϕ({a}))) = {a}.
Furthermore,ϕ−(cp)∩{a}=

{
a′ ∈ Asn

∣∣ a= a′∧ϕAsn(a) ∈ cp
}
= {a}.

Together, this shows thatϕ− ◦ p◦ϕ({a}) = {a}∩ϕ−(cp).

Another important property is that views preserve contraction: if a propagatorp
prunes a domain, the pruning will not be lost after transformation byϕ−.

Proposition 3 (Views preserve contraction) Let p be a propagator, letϕ be a view,
and letd be a domain such thatp(ϕ(d))⊂ ϕ(d). Thenϕ̂(p)(d)⊂ d. ∗
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Proof. The definition ofϕ−(c) is {a∈ Asn | ϕAsn(a) ∈ c}. Hence,|ϕ−(c)| ≤ |c|. Sim-
ilarly, we know that|ϕ(c)| = |c|. From p(ϕ(d)) ⊂ ϕ(d), it follows that |p(ϕ(d))| <
|ϕ(d)|. Together, this yields|ϕ̂(p)(d)| < |ϕ(d)| = |d|. We have seen inProposition 1
thatϕ̂(p)(d)⊆ d, so we can conclude that̂ϕ(p)(d)⊂ d.

3.3 Completeness of Derived Propagators

Ideally, a propagator derived from a domain- or bounds-complete propagator should
inherit its completeness. It turns out to not generally be true for all notions of complete-
ness and all views. This section first shows how bounds(Z) completeness is inherited,
and then generalizes this result to the other notions.

The key insight is that bounds(Z) completeness of propagators derived using a view
ϕ depends on whetherϕ andϕ− commute with the hull operator, as defined below.

Definition 8 A constraintc is aϕ-constraintfor a viewϕ if and only if for all a∈ c,
there is ab ∈ Asn such thata = ϕAsn(b). A view ϕ is hull-injective if and only if
ϕ−(hull(dom(c))) = hull(dom(ϕ−(c))) for all ϕ-constraintsc. It is hull-surjectiveif
and only ifϕ(hull(d)) = hull(ϕ(d)) for all domainsd. It is hull-bijectiveif and only if
it is hull-injective and hull-surjective. ∗

The proofs rely on the additional fact that views commute with set intersection.

Lemma 1 For any viewϕ , the equationϕ−(c1∩c2) = ϕ−(c1)∩ϕ−(c2) holds. ∗

Proof. By definition ofϕ−, we have

ϕ−(c1∩c2) = {a∈ Asn | ϕAsn(a) ∈ c1∧ϕAsn(a) ∈ c2}

As ϕAsn is a function, this is equal to

{a∈ Asn | ϕAsn(a) ∈ c1}∩{a∈ Asn | ϕAsn(a) ∈ c2}= ϕ−(c1)∩ϕ−(c2)

Theorem 1 (Bounds(Z) completeness) Let p be a bounds(Z)-complete propagator.
For any hull-bijective viewϕ , the propagator̂ϕ(p) is bounds(Z)-complete. ∗

Proof. From Proposition 2, we know thatϕ̂(p) induces the constraintϕ−(cp). By
monotonicity ofϕ− (with P1) and bounds(Z) completeness ofp, we know that

ϕ− ◦ p◦ϕ(d)⊆ ϕ−(hull(dom(cp∩hull(ϕ(d)))))

We now use the fact that bothϕ− andϕ commute with hull(·) and set intersection:

ϕ−(hull(dom(cp∩hull(ϕ(d)))))
= ϕ−(hull(dom(cp∩ϕ(hull(d))))) (hull-surjective)

= hull(dom(ϕ−(cp∩ϕ(hull(d))))) (hull-injective)

= hull(dom(ϕ−(cp)∩ϕ−(ϕ(hull(d))))) (commute with∩)

= hull(dom(ϕ−(cp)∩hull(d))) (P2)

The second step uses hull injectivity, so it requirescp∩ϕ(hull(d)) to be aϕ-constraint.
All assignments in aϕ-constraint have to be the image of some assignment under
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ϕAsn. This is the case here, as the intersection withϕ(hull(d)) can only contain such
assignments. So in summary, we get

ϕ− ◦ p◦ϕ(d)⊆ hull(dom(ϕ−(cp)∩hull(d))

which is the definition of̂ϕ(p) being bounds(Z)-complete.

Stronger notions of completeness. Similar theorems hold for domain completeness,
range and bounds(Z) completeness. The theorems directly follow from the fact that
any viewϕ is domain-injective, meaning thatϕ−(dom(c)) = dom(ϕ−(c)) for all con-
straintsc. We split this statement into the following two lemmas.

Lemma 2 Given a constraintc, let d = dom(c). Then for allx ∈ X, we havev ∈
d(x)⇔∃a∈ c : a(x) = v. ∗

Proof. We prove both directions of the equivalence:

⇒ There must be such an assignmenta because otherwise one can construct a
strictly strongerd′ ⊂ d with v /∈ d′(x) such that stillc⊆ d′.

⇐ Each domaind′ in the intersection
⋂
{d′ ∈ Dom | c⊆ con(d′)} must contain

the valuev∈ d′(x) asc⊆ d′. So for the result of the intersectiond, v∈ d(x).

Lemma 3 Any view ϕ is domain-injective. ∗

Proof. We have to show thatϕ−(dom(c)) =dom(ϕ−(c)) holds for any constraintcand
any viewϕ . For clarity, we write the equation including the implicit con(·) operations:
ϕ−(con(dom(c))) = con(dom(ϕ−(c))). By definition ofϕ− and con(·), we have

ϕ−(con(dom(c))) = {a∈ Asn | ∀x∈ X : ϕAsn(a)(x) ∈ dom(c)(x)}

= {a∈ Asn | ∀x∈ X ∃b∈ c : ϕAsn(a)(x) = b(x)} (Lemma 2)

As ϕAsn is an injective function, we can find such ab that is in the range ofϕAsn, if and
only if there is also ab′ ∈ ϕ−(c) such thatϕAsn(b′) = b. Therefore, we get

{
a∈ Asn

∣∣ ∀x∈ X ∃b′ ∈ ϕ−(c) : a(x) = b′(x)
}

=
{

a∈ Asn
∣∣ ∀x∈ X : a(x) ∈ dom(ϕ−(c))(x)

}

=con(dom(ϕ−(c)))

The following three theorems express under which conditions the different notions
of completeness are preserved when deriving propagators. The proofs for these theo-
rems are analogous to the proof ofTheorem 1, usingLemma 3.

Theorem 2 (Bounds(D) completeness) Let p be a bounds(D)-complete propagator.
For any hull-injective viewϕ , the propagator̂ϕ(p) is bounds(D)-complete. ∗

Theorem 3 (Range completeness)Let p be a range-complete propagator. For any
hull-surjective viewϕ , the propagator̂ϕ(p) is range-complete. ∗

Theorem 4 (Domain completeness)Let p be a domain-complete propagator, and let
ϕ be a view. Then̂ϕ(p) is domain-complete. ∗
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A propagator derived from a bounds(Z)-complete propagator and a hull-injective
but not hull-surjective view is only bounds(R)-complete. This is exactly what we
would expect from a propagator for linear equations, as the next example demonstrates.

Example 4 (Linear constraints) A propagator for a linear constraintc∑ = J∑n
i=1xi =

cK andn scale views (seeExample 3) yield a propagator for a linear constraint with
coefficientsc∑a = J∑n

i=1aixi = cK.
The usual propagator for a linear constraint with coefficients achieves bounds(R)

consistency in linear timeO(n) [15]. However, itis bounds(Z)-complete for unit co-
efficients. Hence, the above-mentioned property applies: The propagator forc∑ is
bounds(Z)-complete, scale views are only hull-injective, so the derived propagator for
c∑a is bounds(R)-complete. Implementing the simpler propagator without coefficients
and deriving the variant with coefficients yields propagators with exactly the same run-
time complexity and propagation strength as manually implemented propagators. ∗

3.4 Additional Properties of Derived Propagators

This section discusses how views can be composed, and how derived propagators be-
have with respect to idempotency and subsumption.

View composition. A derived propagator permits further derivation. Considera
propagatorp and two viewsϕ ,ϕ ′. Then ϕ̂ ′(ϕ̂(p)) is a perfectly acceptable derived
propagator, and properties like correctness and completeness carry over transitively.
For instance, we can derive a propagator forJx−y= cK from a propagator forJx+y=
0K, combining anoffset view(ϕy(v) = v+c) and aminus view(ϕ ′

y(v) =−v) ony. This
yields a propagator forJx+(−(y+ c)) = 0K = Jx− y= cK.

Fixed points. Schulte and Stuckey [33] show how to optimize the scheduling of prop-
agators that are known to be at a fixed point. Views preserve fixed points of propaga-
tors, so the same optimizations apply to derived propagators.

Proposition 4 Let p be a propagator, letϕ be a view, and letd be a domain. Ifϕ(d)
is a fixed point ofp, thend is a fixed point ofϕ̂(p). ∗

Proof. Assumep(p(ϕ(d))) = p(ϕ(d)). We have to shoŵϕ(p)(d) = ϕ̂(p)(ϕ̂(p)(d)).
With the assumption, we can writêϕ(p)(d) = (ϕ− ◦ p◦ p◦ ϕ)(d). We know that
ϕ ◦ϕ−(c) = c if |ϕ−(c)|= |c|. As we first applyϕ , this is the case here, so we can add
ϕ ◦ϕ− in the middle, yielding(ϕ−◦p◦(ϕ ◦ϕ−)◦p◦ϕ)(d). With function composition
being associative, this is equal tôϕ(p)(ϕ̂(p)(d)).

Subsumption. A propagator issubsumed(also known as entailed) by a domaind if
and only if for all stronger domainsd′ ⊆ d, p(d′) = d′. Subsumed propagators cannot
do any pruning in the remaining subtree of the search, and cantherefore be removed.
Deciding subsumption is coNP-complete in general, but for many practically relevant
propagators an approximation can be decided easily (such aswhen a domain becomes
assigned). The following theorem states that the approximation is also valid for the
derived propagator.

Proposition 5 Let p be a propagator and letϕ be a view. The propagator̂ϕ(p) is
subsumed by a domaind if and only if p is subsumed byϕ(d). ∗
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Proof. With P2 we get that∀d′ ⊆ d : ϕ−(p(ϕ(d′))) = d′ is equivalent to∀d′ ⊆ d :
ϕ−(p(ϕ(d′))) = ϕ−(ϕ(d′)). As ϕ− is a function, and because it preserves contrac-
tion (seeProposition 3), this is equivalent to∀d′ ⊆ d : p(ϕ(d′)) = ϕ(d′). This can be
rewritten to∀d′′ ⊆ ϕ(d) : p(d′′) = d′′ because allϕ(d′) are subsets ofϕ(d).

3.5 Related Work

While the idea to systematically derive propagators using views is novel, there are a
few related approaches we can point out. Reusing functionality (like a propagator) by
wrapping it in an adaptor (like a view) is of course a much moregeneral technique—
think of higher-order functions like fold or map in functional programming languages;
or chaining command-line tools in Unix operating systems using pipes.

Propagator derivation. Views that perform arithmetic transformations are relatedto
the concept of indexicals (see [5, 36]). An indexical is a propagator that prunes a sin-
gle variable and is defined in terms of range expressions. In contrast to views, range
expressions can involve multiple variables, but on the other hand only operate in one di-
rection. For instance, in an indexical for the constraintJx= y+zK, the range expression
y+zwould be used to prune the domain ofx, but not for pruning the domains ofy or z.
Views must work in both directions, which is why they are limited in expressiveness.

Unit propagation in SAT solvers performs propagation for Boolean clauses, which
are disjunctions ofliterals, which in turn are positive or negated Boolean variables.
In implementations such as MiniSat [9], the Boolean clause propagator is in fact de-
rived from a simplen-ary disjunction propagator andliteral viewsof the variables that
perform negation for the negative literals.

Constraint composition. Instead of regarding a viewϕ astransforminga constraint
c, one can regardϕ asadditionalconstraints, implementing the decomposition. As-
suming vars(c) = x1, . . . ,xn, we use additional variablesx′1, . . . ,x

′
n. Instead ofc, we

usec′ = c[x1/x′1, . . . ,xn/x′n], which is the same relation asc, but onx′1, . . . ,x
′
n. Finally,

n view constraints cϕ,i link the original variables to the new variables, eachcϕ,i be-
ing equivalent to the relationx′i = ϕi(xi). The solutions of the decomposition model,
restricted to thex1, . . . ,xn, are exactly the solutions of the original view-based model.

Every view constraintcϕ,i shares exactly one variable withc and no variable with
any othercϕ,i . Thus, the constraint graph is Berge-acyclic [3], and a fixed point can
be computed by first propagating all thecϕ,i , then propagatingc[x1/x′1, . . . ,xn/x′n],
and then again propagating thecϕ,i . This is exactly whatϕ− ◦ p◦ϕ does. Constraint
solvers typically do not provide any means of specifying thepropagator scheduling in
such a fine-grained way (Lagerkvist and Schulte show how to use propagator groups
to achieve this [20]). Thus, deriving propagators using views is also a technique for
specifying perfect propagator scheduling.

On a more historical level, a derived propagator is related to the notion ofpath
consistency. A domain is path-consistent for a set of constraints, if forany subset
{x,y,z} of its variables,v1 ∈ d(x) andv2 ∈ d(y) implies that there is a valuev3 ∈ d(z)
such that the pair(v1,v2) satisfies all the (binary) constraints betweenx and y, the
pair (v1,v3) satisfies all the (binary) constraints betweenx andz, and the pair(v3,v2)
satisfies all the (binary) constraints betweenz andy [21]. If ϕ̂(p) is domain-complete
for ϕ−(c), then it achieves path consistency for the constraintc[x1/x′1, . . . ,xn/x′n] and
all thecϕ,i in the decomposition model.
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4 Propagator Derivation Techniques

This section introduces techniques for deriving propagators using views. The tech-
niques capture the transformation, generalization, specialization, and type conversion
of propagators and are shown to be widely applicable across variable domains and
application areas.

4.1 Transformation

Boolean connectives. For Boolean variables, whereV = {0,1}, the only view apart
from identity for Boolean variables captures negation. Anegation viewon x defines
ϕx(v)= 1−v for x∈X andv∈V. As already noted inSection 3.5, deriving propagators
using Boolean views thus means to propagate usingliterals rather than variables.

The obvious application of negation views is to derive propagators for all Boolean
connectives from just three propagators. A negation view for x in x= y yields a propa-
gator for¬x= y. From disjunctionx∨y= z one can derive conjunctionx∧y= z with
negation views onx, y, z, and implicationx→ y= z with a negation view onx. From
equivalencex↔ y= zone can derive exclusive orx⊕y= zwith a negation view onz.

As Boolean constraints are widespread, it pays off to optimize frequently occur-
ring cases of propagators for Boolean connectives. One important propagator is for∨n

i=1xi = y with arbitrarily many variables. Again, conjunction can bederived with
negation views on thexi and ony. Another important propagator implements the
constraint

∨n
i=1xi = 1. A dedicated propagator for this constraint is essential as the

constraint occurs frequently and can be implemented efficiently using watched literals,
see for example [12]. With views all implementation work is readily reused for con-
junction. This shows a general advantage of views: effort put into optimizing a single
propagator directly pays off for all other propagators derived from it.

Boolean cardinality. Like the constraint
∨n

i=1xi = 1, the Boolean cardinality con-
straint∑n

i=1xi ≥ c occurs frequently and can be implemented efficiently using watched
literals (requiringc+1 watched literals, Boolean disjunction corresponds to thecase
wherec= 1). But also a propagator for∑n

i=1xi ≤ c can be derived using negation views
on thexi with the following transformation:

∑n
i=1xi ≤ c ⇐⇒ −∑n

i=1xi ≥−c ⇐⇒ n−∑n
i=1xi ≥ n− c

⇐⇒ ∑n
i=11− xi ≥ n− c ⇐⇒ ∑n

i=1¬xi ≥ n− c

Reification. Many reified constraints (such as(∑n
x=1 xi = c) ↔ b) also exist in a

negated version (such as(∑n
x=1xi 6= c) ↔ b). Deriving the negated version is trivial

by using a negation view on the Boolean control variableb. This contrasts nicely with
the effort without views: either the entire code must be duplicated or the parts that
perform checking whether the constraint or its negation is subsumed must be factored
out and combined differently for the two variants.

Transformation using set views. Set constraints deal with variables whose values
are finite sets. Usingcomplement views(analogous to Boolean negation, as sets with
their usual operations also form a Boolean algebra) onx,y,z with a propagator for
x∩y= zyields a propagator forx∪y= z. A complement view ony yieldsx\ y= z.
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Figure 1: Taskt and its dual taskt ′ using a minus view

Transformation using integer views. The obvious integer equivalent to negation
views for Boolean variables areminus views:a minus view on an integer variable
x is defined asϕx(v) = −v. Minus views help to derive propagators following simple
transformations: for example, min(x,y) = zcan be derived from max(x,y) = zby using
minus views forx, y, andz.

Transformations through minus views can improve performance in subtle ways.
Consider a bounds(Z)-complete propagator for multiplicationx× y= z (for example,
[1, Section 6.5] or [32]). Propagation depends on whether zero is still included inthe
domains ofx, y, or z. Testing for inclusion of zero each time the propagator is exe-
cuted is inefficient and leads to a convoluted implementation. Instead, one would like
to rewrite the propagator to special variants wherex, y, andz are either strictly posi-
tive or negative. These variants can propagate more efficiently, in particular because
propagation can easily be made idempotent. Instead of implementing three different
propagators (x,y,zstrictly positive; onlyx or y strictly positive; onlyzstrictly positive),
a single propagator assuming that all views are strictly positive is sufficient. The other
propagators can be derived using minus views.

Again, with views it becomes realistic to optimize a single implementation of a
propagator and derive other, equally optimized, implementations. The effort to imple-
ment all required specialized versions without views is typically unrealistic.

Scheduling propagators. An important application area is constraint-based schedul-
ing, see for example [2]. Many propagation algorithms for constraint-based scheduling
are based on tasks, where a taskt is characterized by its start time, processing time
(how long does the task take to be executed on a resource), andend time. Scheduling
algorithms are typically expressed in terms of earliest start time (est(t)), latest start
time (lst(t)), earliest completion time (ect(t)), and latest completion time (lct(t)).

Another particular aspect of scheduling algorithms is thatthey are often required
in two, mutually dual, variants. Let us consider not-first/not-last propagation as an
example. Assume a set of tasksT and a taskt 6∈T to be scheduled on the same resource.
Thent cannot be scheduled before the tasks inT (t is not-first inT ∪{t}), if ect(t) >
lst(T) (where lst(T) is a conservative estimate of the latest start time of all tasks inT).
Hence, est(t) can be adjusted to leave some room for at least one task fromT. The
dual variant is thatt is not-last: if ect(T) > lst(t) (again, ect(T) estimates the earliest
completion time ofT), then lct(t) can be adjusted.

Running the dual variant of a scheduling algorithm on taskst ∈ T is the same as
running the original algorithm on thedual tasks t′ ∈ T ′, which are simply mirrored at
the 0-origin of the time scale (seeFigure 1):

est(t ′) =− lct(t) ect(t ′) =− lst(t) lst(t ′) =−ect(t) lct(t ′) =−est(t)

The dual variant of a scheduling propagator can be automatically derived using a minus
view that transforms the time values. In our example, only a propagator for not-first
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needs to be implemented and the propagator for not-last can be derived (or vice versa).
This is in particular beneficial if the algorithms use sophisticated data structures such
asΩ-trees [37]. Here, also the data structure needs to be implemented onlyonce and
the dual data structure for the dual propagator is derived.

4.2 Generalization

Common views for integer variables capture linear transformations of the integer val-
ues: anoffset viewfor o∈ Z onx is defined asϕx(v) = v+o, and ascale viewfor a∈ Z

onx is defined asϕx(v) = av.
Offset and scale views are useful for generalizing propagators. Generalization has

two key advantages: simplicity and efficiency. A more specialized propagator is often
simpler to implement (and simpler to implement correctly) than a generalized version.
The specialized version can save memory and runtime during execution.

We can devise an efficient propagation algorithm for a linearequality constraint
∑n

i=1xi = c for the common case that the linear equation has only unit coefficients.
The more general case∑n

i=1aixi = c can be derived by using scale views forai on
xi (the same technique of course applies to linear inequalities and disequality rather
than equality). Similarly, a propagator forall-different(x1, . . . ,xn) can be generalized
to all-different(c1+ x1, . . . ,cn + xn) by using offset views forci ∈ Z on xi . Likewise,
from a propagator for the element constrainta[x] = y for integersa1, . . . ,an and integer
variablesx andy, we can derive the generalized versiona[x+o]= y with an offset view,
whereo∈ Z provides a useful offset for the index variablex.

These generalizations can be applied to domain- as well as bounds-complete prop-
agators. While most Boolean propagators are domain-complete, bounds completeness
plays an important role for integer propagators.Section 3.3shows that, given appro-
priate hull-surjective and/or hull-injective views, the different notions of bounds con-
sistency are preserved when deriving propagators.

The views for integer variables presented in this section have the following prop-
erties: minus and offset views are hull-bijective, whereasa scale view fora∈ Z on x
is always hull-injective and only hull-surjective ifa= 1 or a= −1 (in which cases it
coincides with the identity view or a minus view, respectively).

4.3 Specialization

We employconstant viewsto specialize propagators. A constant view behaves like
an assigned variable. In practice, specialization has two advantages. Fewer variables
require less memory. And specialized propagators can be compiled to more efficient
code, if the constants are known at compile time.

Examples for specialization are

■ a propagator for binary linear inequalityx+ y≤ c derived from a propagator for
x+ y+ z≤ c by using a constant 0 forz;

■ a reified propagator for(x= c)↔ b from (x= y)↔ b and a constantc for y;

■ propagators for the counting constraints|{i | xi = c}| = z and|{i | xi = y}| = c
from a propagator for|{i | xi = y}|= z;

■ a propagator for set disjointness from a propagator forx∩ y = z and a constant
empty set forz; and many more.
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We have to straightforwardly extend the model for constant views. Propagators may
now be defined with respect to a superset of the variables,X′ ⊇ X. A constant view for
the valuek on a variablez∈ X′ \X translates between the two sets of variables:

ϕ(c) = {a[k/z] | a∈ c} ϕ−(c) =
{

a|X
∣∣ a∈ c

}

Here,a[k/z] means augmenting the assignmenta so that it mapsz to k, anda|X is the
functional restriction ofa to the setX.

It is important that this definition preserves failure. If a propagator returns a failed
domaind that mapsz to the empty set, thenϕ−(d) is the empty set, too (recall that this
is reallyϕ−(con(d)), and con(d) = /0 if d(z) = /0).

4.4 Type Conversion

A type conversion view lets propagators for one type of variable work with a different
type, by translating the underlying representation. Our model already accommodates
for this, as a viewϕx maps elements between different setsV andV ′.

Integer views. Boolean variables are essentially integer variables restricted to the
values{0,1}. Constraint programming systems may choose a more efficientimple-
mentation for Boolean variables and hence the variable types for integer and Boolean
variables differ. By wrapping an efficient Boolean variablein an integer view, all in-
teger propagators can be directly reused with Boolean variables. This can save sub-
stantial effort: for example, an implementation of theregular-constraint for Boolean
variables can be derived which is actually useful in practice [19].

Singleton set views. A singleton set viewon an integer variablex, defined asϕx(v) =
{v}, presents an integer variable as a set variable. Many constraints involve both integer
and set variables, and some of them can be expressed with singleton set views. A
simple constraint isx∈ y, wherex is an integer variable andy a set variable. Singleton
set views derive it as{x} ⊆ y. This extends to{x} ⋄ y for all other set relations⋄.

Singleton set views can also be used to derive pure integer constraints from set
propagators. For example, the constraintsame(x1, . . . ,xn,y1, . . . ,ym) with integer vari-
ablesxi ,yi states that the variablesxi take the same values as the variablesyi . With sin-
gleton set views,

⋃n
i=1{xi}=

⋃m
j=1{y j} implements this constraint (albeit with weaker

propagation than the algorithm presented in [4]).

Set bounds and complete set domain variables.Most systems approximate set
variable domains as set intervals defined by lower and upper bounds [25, 13]. How-
ever, [16] introduces a representation for the complete domains of set variables, using
ROBDDs. Type conversion views can translate between set interval and ROBDD-
based implementations. We can derive a propagator on ROBDD-based variables from
a set interval propagator, and thus reuse set interval propagators for which no efficient
ROBDD representation exists.

4.5 Applicability and Return on Investment

To get an overview of how applicable the presented techniques for propagator deriva-
tion are, let us consider the use of views in Gecode (version 3.1.0). Table 1shows the
number of propagator implementations and the number of propagators derived from the
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Table 1: Number of implemented vs. derived propagators
Variable type Implemented Derived Ratio

Integer 77 400 5.19
Boolean 28 91 3.25
Set 28 122 4.36
Overall 133 613 4.61

class IntVar {

private: int _min, _max;

public: int min(void) { return _min; }

int max(void) { return _max; }

void adjmin(int n) { if (n > _min) _min = n; }

void adjmax(int n) { if (n < _max) _max = n; }

};

class OffsetView {

protected: IntVar* x; int o;

public: OffsetView(IntVar* x0, int o0) : x(x0), o(o0) {}

int min(void) { return x->min()+o; }

int max(void) { return x->max()+o; }

void adjmin(int n) { x->adjmin(n-o); }

void adjmax(int n) { x->adjmax(n-o); }

};

Figure 2: Integer variable and offset view

implementations. On average, every propagator implementation results in 4.6 derived
propagators. Propagator implementations in Gecode account for more than 40000 lines
of code and documentation. As a rough estimate, deriving propagators using views thus
saves around 140000 lines of code and documentation to be written, tested, and main-
tained. On the other hand, the views mentioned in this section are implemented in less
than 8000 lines of code, yielding a 1750% return on investment.

5 Implementation

This section presents an implementation architecture for views and derived propaga-
tors, based on making propagatorsparametric. Deriving a propagator then meansin-
stantiatinga parametric propagator with views. The presented architecture is an or-
thogonal layer of abstraction on top of any solver implementation.

5.1 Views

The model introduced views as functions that transform the input and output of a prop-
agator, which maps domains to domains. In an object-oriented implementation of this
model, a propagator is no longer a function, but an object with apropagate method
thataccessesandmodifiesa domain through the methods of variable objects. Such an
object-oriented model is used for example by ILOG Solver [27] and Choco [18], and
is the basis of most of the current propagation-based constraint solvers.

Figure 2shows C++ classes for a simple integer variable (just representing bounds
information) and a corresponding offset view. The view has the same interface as the
variable, so that it can be used in its place. It contains a pointer to the underlying integer
variable anddelegatesall the operations, performing the necessary transformations.
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template<class VX, class VY>

class Eq : public Propagator {

protected: VX* x; VY* y;

public: Eq(VX* x0, VY* y0) : x(x0), y(y0) {}

virtual void propagate(void) {

x->adjmin(y->min()); x->adjmax(y->max());

y->adjmin(x->min()); y->adjmax(x->max());

}

};

Figure 3: Parametric equality propagator

5.2 Deriving Propagators

In order to derive a propagator using view objects like the above, we useparametricity,
a mechanism provided by the implementation language that supports the instantiation
of the same code (the propagator) with different parameters(the views).

Figure 3shows a simple equality propagator. The propagator is basedon C++ tem-
plates, it isparametricover the types of the two views it uses and can beinstantiated
with any view that provides the necessary operations. This type of parametricity is
calledparametric polymorphism, and is available in other programming languages for
example in the form of Java generics [14] or Standard ML functors [22].

Given two pointers to integer variablesx andy, the propagator can be instantiated
to implementJx= yK as follows (using theIntVar class fromFigure 2):

new Eq<IntVar,IntVar>(x,y);

The following instantiation yields a propagator forJx= y+2K:

new Eq<IntVar,OffsetView>(x,new OffsetView(y,2));

Events. Most constraint solvers schedule the execution of propagators according to
events(see for example [31]). For example, a propagatorp for Jx< yK can only prune
the domain (and thus should only be executed) if either the lower bound ofx or the
upper bound ofy changes, writtenlbc(x) andubc(y). We say thatp subscribesto the
event set{lbc(x),ubc(y)}.

Now assume thatp′ is derived fromp using minus views onx andy, thus imple-
mentingx> y. Obviously,p′ should subscribe to the dual event set,{ubc(x), lbc(y)}.
In the implementation, views provide all the operations needed for event handling (such
as subscription) and perform the necessary transformations of event sets.

5.3 Parametricity

Independent of the concrete implementation, views form an orthogonal layer of ab-
straction on top of any propagation-based constraint solver. As long as the implemen-
tation language provides some kind of parametricity, and variable domains are accessed
through some form of variable objects, propagators can be derived using views.

In addition to parametric polymorphism, two other forms of parametricity exist,
functionalparametricity anddynamic binding. Functional parametricity means that
in languages such as Standard ML [22] or Haskell [24], a higher-order function is
parametric over its arguments. Dynamic binding is typically coupled with inheritance
in object-oriented languages (virtual function calls in C++, method calls in Java). Even
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in languages that lack direct support for parametricity, parametric behavior can often
be achieved using other mechanisms, such as macros or function pointers in C.

Choice of parametricity. In C++, parametric polymorphism and dynamic binding
have advantages and disadvantages as it comes to deriving propagators.

Templates are compiled bymonomorphization:the code is replicated and special-
ized for each instance. The compiler can generate optimizedcode for each instance,
for example by inlining the transformations that a view implements.

Achieving high efficiency in C++ with templates sacrifices some expressiveness. In-
stantiation canonly happen at compile-time. Hence, either C++ must be used for mod-
eling, or all potentially required propagator variants must be instantiated explicitly.
Thechoicewhich propagator to use can however be made at runtime: for linear equa-
tions, for instance, if all coefficients are units, the optimized original propagator can be
posted.

For n-ary constraints, compile-time instantiation can be a limitation, as all arrays
must be monomorphic (contain only a single kind of view). Forexample, one cannot
mix scale and minus views in linear constraints. For some propagators, we can work
around this restriction using more than a single array of views. For example, a propaga-
tor for a linear constraint can employ two arrays of different view types, one of which
may then be instantiated with identity views and the other with minus views. While
this poses a limitation in principle, our experience from Gecode suggests that there are
only few propagators in practice that suffer from this limitation.

Dynamic binding is more flexible than parametric polymorphism, as instantiation
happens at runtime and arrays can be polymorphic. This flexibility comes at the cost of
reduced efficiency, as the transformations done by view operations typically cannot be
inlined and optimized, but require additional virtual method calls.Section 7evaluates
empirically how these virtual method calls affect performance.

Compile-time versus runtime constants. Some views involve a parameter, such as
the coefficient of a scale view or the constant of a constant view. These parameters
can again be instantiated at compile-time or at runtime. Forinstance, one can regard
a minus view as a compile-time specialization of a scale viewwith coefficient−1,
and a zero view may specialize a constant view. With the constants being known at
compile-time, the compiler can apply more aggressive optimizations.

5.4 Iterators

Typical domain operations involve a single integer value, for instance adjusting the
minimum or maximum of an integer variable. These operationsare not efficient if a
propagator performs full domain reasoning on integer variables or deals with set vari-
ables. Therefore, set-valued operations, like updating a whole integer variable domain
to a new set, or excluding a set of elements from a set variabledomain, are important for
efficiency. Many constraint programming systems provide anabstract set-datatype for
accessing and updating variable domains, as for example in Choco [6], ECLiPSe [8],
SICStus Prolog [35], and Mozart [23]. ILOG Solver [17] only allows access by iterat-
ing over the values of a variable domain.

This section developsiteratorsas one particular abstract datatype for set-valued op-
erations on variables and views. There are two main reasons to discuss iterators in this
paper. First, iterators provide simple, expressive, and efficient set-valued operations on
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variables. Second, and more importantly, iterators transparently perform the transfor-
mations needed for set-valued operations on views, and thusconstitute a perfect fit for
deriving propagators.

Range sequences and range iterators.A range[m .. n] denotes the set of integers
{l ∈ Z | m≤ l ≤ n}. A range sequenceranges(S) for a finite set of integersS⊆ Z

is the shortest sequences= 〈[m1 .. n1] , . . . , [mk .. nk]〉 such thatS=
⋃k

i=1 [mi .. ni ] and
the ranges are ordered by their smallest elements (mi ≤ mi+1 for 1≤ i < k). We thus
define the set covered by a range sequence as set(s) =

⋃k
i=1 [mi .. ni]. The above range

sequence is also written as〈[mi .. ni]〉
k
i=1. Clearly, the range sequence of a set is unique,

none of its ranges is empty, andni +1< mi+1 for 1≤ i < k.
A range iteratorfor a range sequences= 〈[ni .. mi ]〉

k
i=1 is an object that provides

iteration overs: each of the[mi .. ni] can be obtained in sequential order but only one at
a time. A range iteratorr provides the following operations:r.done() tests whether all
ranges have been iterated,r.next() moves to the next range, andr.min() andr.max()
return the minimum and maximum value for the current range. By set(r) we refer to
the set defined by an iteratorr (which must coincide with set(s)).

A range iterator naturally hides its implementation. It caniterate a sequence (for
instance an array) directly by position, but it can just as well traverse a linked list or the
leaves of a balanced tree, or for example iterate over the union of two other iterators.

Iterators are consumed by iteration. Hence, if the same sequence needs to be it-
erated twice, a fresh iterator is needed. If iteration is cheap, an iterator can support
multiple iterations by providing a reset operation. Otherwise, acache iteratortakes an
arbitrary range iterator as input, iterates it completely,and stores the obtained ranges
in an array. Its operations then use the array. The cache iterator implements a reset
operation, so that the possibly costly input iterator is used only once, while the cache
iterator can be used as often as needed.

Iterators for variables. The two basic set-valued operations on integer variables are
domain access and domain update. For an integer variablex, the operationx.getdom()
returns a range iterator for ranges(d(x)). The operationx.setdom(r) updates the vari-
able domain ofx to set(r) given a range iteratorr, provided that set(r) ⊆ d(x). The
responsibility for ensuring that set(r)⊆ d(x) is left to the programmer.

In order to provide safer and richer operations, we can useiterator combinators.
For example, anintersection iterator r= iinter(r1, r2) combines two range iterators
r1 and r2 such that set(r) = set(r1) ∩ set(r2). Similarly, a difference iterator r=
iminus(r1, r2) yields set(r) = set(r1)\ set(r2).

Richer set-valued operations are then effortless. The operationx.adjdom(r) ad-
justs the domaind(x) by set(r), yieldingd(x)∩set(r), whereasx.excdom(r) excludes
set(r) from d(x), yieldingd(x)\ set(r):

x.adjdom(r) = x.setdom(iinter(x.getdom(), r))

x.excdom(r) = x.setdom(iminus(x.getdom(), r))

In contrast to thex.setdom(·) operation, the richer set-valued operations are inher-
ently contracting, and thus safer to use when implementing apropagator.

Iterators also serve as the natural interface for operations on set variables, which are
usually approximated as set intervals defined by a lower and an upper bound [25, 13]:

d(x) = [glb(d(x)) .. lub(d(x))] = {s | glb(d(x))⊆ s,s⊆ lub(d(x))}
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In order to access and update these set bounds, propagators use set-valued op-
erations based on iterators:x.glb() returns a range iterator for ranges(glb(d(x))),
x.lub() returns a range iterator for ranges(lub(d(x))), x.adjglb(r) updates the do-
main ofx to [glb(d(x))∪set(r), lub(d(x))], andx.adjlub(r) updates the domain ofx
to [glb(d(x)), lub(d(x))∩set(r)].

Iterator combinators provide the operations that set propagators need: union, in-
tersection, difference, and complement. Many propagatorscan thus be implemented
directly using iterators and do not require any temporary data structures for storing
set-valued intermediate results.

All set-valued operations are parametric with respect to the iteratorr: any range
iterator can be used. As for parametric propagators, an implementor has to decide
on the kind of parametricity to use. Gecode uses template-based parametric polymor-
phism, with the performance benefits due to monomorphization and consequent code
optimization mentioned previously.

Advantages. Range iterators provide essential advantages over an explicit set rep-
resentation. First, any range iterator regardless of its implementation can be used in
domain operations. This turns out to result in simple, efficient, and expressive domain
updates. Second, no costly memory management is required tomaintain a range iter-
ator as it provides access to only one range at a time. Third, the abstractness of range
iterators makes them compatible with views and derived propagators: the necessary
view transformations can be encapsulated in an iterator, asdiscussed below.

Iterators for views. As iterators hide their implementation, they are perfectlysuited
for implementing the transformations required for set-valued operations on views.

Set-valued operations for constant integer views are straightforward. For a constant
view v on constantk, the operationv.getdom() returns an iterator for the singleton
range sequence〈[k .. k]〉. The operationv.setdom(r) just checks whether the range
sequence ofr is empty (in order to detect failure).

Set-valued operations for an offset view are provided by anoffset iterator. For a
range sequencer = 〈[mi .. ni ]〉

k
i=1 and offsetc, ioffset(r,c) iterates〈[mi + c .. ni + c]〉k

i=1.
An offset view onx with offsetc then implementsgetdom as ioffset(x.getdom(),c)
andsetdom(r) asx.setdom(ioffset(r,−c)).

For minus views we just give the range sequence, iteration isobvious. For a given
range sequence〈[mi .. ni ]〉

k
i=1, the negative sequence is obtained by reversal and sign

change as〈[−nk−i+1 .. −mk−i+1]〉
k
i=1. The same iterator for this sequence can be used

both forsetdom andgetdom operations. Note that implementing the iterator is in-
volved as it changes direction of the range sequence. There are two different options
for changing direction: either the set-valued operations accept iterators in both direc-
tions or a cache iterator is used to reverse the direction. Gecode uses the latter and
Section 7.2evaluates the overhead introduced by cache iterators.

A scale iterator provides the necessary transformations for scale views. Assume
a scale view on a variablex with a coefficienta > 0, and let〈[mi .. ni]〉

k
i=1 be a range

sequence ford(x). If a= 1, the scale iterator does not change the range sequence. Oth-
erwise, the corresponding scaled range sequence is〈{a×m1},{a×(m1+1)}, . . . ,{a×
n1}, . . . ,{a×mk}, {a× (mk+ 1)}, . . . ,{a× nk}〉. For the other direction, assume we
want to update the domain using a setSthrough a scale view. Assume that〈[mi .. ni]〉

k
i=1

is a range sequence forS. Then for 1≤ i ≤ k the ranges[⌈mi/a⌉ .. ⌊ni/a⌋] correspond
to the required variable domain forx, however they do not necessarily form a range

19



sequence as the ranges might be empty, overlapping, or adjacent. Iterating the range
sequence is however simple by skipping empty ranges and merging overlapping or ad-
jacent ranges. Scale views for a variablex and a coefficienta in Gecode are restricted
to be strictly positive so as to not change the direction of the scaled range sequence. A
negative coefficient can be obtained by using a scale view together with a minus view.

A complement view of a set variablex uses acomplement iterator, which given a
range iteratorr iterates overset(r).

6 Limitations

Although views are widely applicable, they are no silver bullet. This section explores
some limitations of the presented model.

Beyond injective views. Views are required to be injective, as otherwiseϕ− ◦ϕ is
no longer the identity function, and derived propagators would not necessarily be con-
tracting. An example for this behavior is a view for the absolute value of an integer
variable. Assuming a variable domaind(x) = {1}, an absolute value viewϕ would
leave the domain as it is,ϕ(d)(x) = {1}, but the inverse would “invent” the negative
value, ϕ−(ϕ(d))(x) = {−1,1}. With an adapted definition of derived propagators,
such asϕ̂(p)(d) = ϕ−(p(ϕ(d)))∩ d, non-injective views could be used – however,
many of the proofs in this paper rely on injectivity (though some of the theorems pos-
sibly still hold for non-injective views).

Multi-variable views. Some multi-variable views that seem interesting for practical
applications do not preserve contraction, for instance a view on the sum or product of
two variables. The reason is that removing a value through the view would have to
result in removing atupleof values from the domain. As domains can only represent
Cartesian products, this is not possible in general. Such a view would have two main
disadvantages. First, if propagation of the original constraint is strong but does not lead
to an actual domain pruning through the views, then the potentially high computational
cost for the pruning does not pay off. A cheaper but weaker, dedicated propagation
algorithm or a different modeling with stronger pruning is then a better choice. Second,
if views do not preserve contraction, thenProposition 5does not hold. That means that
a propagatorp cannot easily detect subsumption any longer, as it would have to detect
it for ϕ̂(p) instead of just for itself,p. Systems such as Gecode that disable subsumed
propagators (as described in [33]) then lose this potential for optimization.

For contraction-preserving views on multiple variables, all the theorems still hold.
Two such views we could identify are a set view of Boolean variables[b1, . . . ,bn],
behaving like{i | bi = 1}; and an integer view of Boolean variables[b1, . . . ,bn], where
bi is 1 if and only if the integer has valuei; as well as the inverse views of these two.

Propagator invariants. Propagators typically rely on certain invariants of a variable
domain implementation. If idempotency or completeness of apropagator depend on
these invariants, type conversion views lead to problems, as the actual variable imple-
mentation behind the view may not respect the same invariants.

For example, a propagator for set variables based on the set interval approximation
can assume that adjusting the lower bound of a variable does not affect its upper bound.
If this propagator is instantiated with a type conversion view for an ROBDD-based set
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Table 2: Results for Gecode 3.1.0, the baseline for the experiments

Benchmark time (ms) mem. (KByte) failures propagations

All-Interval (50) 183.21 148 0 6685
All-Interval (100) 3904.21 516 0 25866
Alpha (naive) 100.00 23 7435 136179
BIBD (7-3-60) 1762.85 4516 1306 921686
Eq-20 1.52 14 54 3460
Golomb Rulers (Bnd, 10) 423.39 67 8890 1181704
Golomb Rulers (Dom, 10) 607.86 419 8890 1181770
Graph Coloring 324.46 3910 1100 125264
Magic Sequence (Smart, 500) 251.50 4484 251 84302
Magic Sequence (GCC, 500) 305.15 330 251 3908
Partition (32) 5928.04 265 160258 12107504
Perfect Square 185.54 3972 150 305391
Queens (10) 36.88 27 4992 43448
Queens (Dom, 10) 103.38 99 3940 59508
Queens (100) 1.54 235 22 455
Queens (Dom, 100) 31.83 2056 8 693
Sorting (400) 1400.01 151413 0 459501
Social Golfers (8-4-9) 193.37 10254 32 181290
Social Golfers (5-3-7) 1199.51 2117 1174 852391
Hamming Codes (20-3-32) 1140.98 24746 2296 753751
Steiner Triples (9) 120.11 901 1067 297501
Sudoku (Set, 1) 3.48 83 0 1820
Sudoku (Set, 4) 7.30 148 1 3752
Sudoku (Set, 5) 55.14 514 25 28038

variable (seeSection 4.4), this invariant is violated: if, for instance, the currentdomain
is {{1,2},{3}}, and 1 is added to the lower bound, then 3 is removed from the upper
bound (in addition to 2 being added to the lower bound). If a propagator reports that it
has computed a fixed point based on the assumption that the upper bound cannot have
changed, it may actually not be at a fixed point. This potentially results in incorrect
propagation, for instance if the propagator could detect failure if it were run again.

7 Evaluation

While Section 3proved that derived propagators are perfect with respect tothe mathe-
matical model, this section shows that in most cases one can also obtain perfect imple-
mentations of derived propagators, not incurring any performance penalties compared
to dedicated, handwritten propagators.

Experimental setup. The experiments are based on Gecode 3.1.0, compiled using
the GNU C++ compiler gcc 4.3.2, on an Intel Pentium IV at 2.8 GHz running Linux.
Runtimes are the average of 25 runs, with a coefficient of deviation less than 2.5% for
all benchmarks. All example programs are available in the Gecode distribution.Table 2
shows the figures for the unmodified Gecode 3.1.0 (pure integer models above, mod-
els with integer and set variables below the horizontal line), and results will be given
relative to these numbers. For example, a runtime of 130% means that the example
needs 30% more time, while 50% means that it is twice as fast asin Gecode 3.1.0. The
columntimeshows the runtime,mem.the peak allocated memory,failuresthe number
of failures during search, andpropagationsthe number of propagator invocations.
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Table 3: Relative performance of decomposition, compared to views

Benchmark time % mem. % propagations %

Alpha (naive) 412.88 360.87 673.83
BIBD (7-3-60) 308.80 211.94 256.12
Eq-20 590.35 700.00 704.57
Partition (32) 135.61 113.58 136.40
Perfect Square 114.46 109.67 104.42
Queens (Dom, 10) 173.32 100.00 519.68
Queens (Dom, 100) 140.60 103.11 2371.86
Social Golfers (8-4-9) 335.89 234.82 160.22
Social Golfers (5-3-7) 217.28 190.69 150.58
Hamming Codes (20-3-32) 113.81 104.66 99.65
Steiner Triples (9) 132.79 100.00 101.76
Sudoku (Set, 1) 166.18 100.00 110.38
Sudoku (Set, 4) 152.82 110.81 107.06
Sudoku (Set, 5) 143.63 100.00 105.47

As many of the experimental results rely on the optimizationcapabilities of the used
C++ compiler, we verified that all experiments yield similar results with the Microsoft
Visual Studio 2008 C++ compiler.

7.1 Views Versus Decomposition

In order to evaluate whether deriving propagators is worth the effort in the first place,
this set of experiments compares derived propagators with their decompositions, re-
vealing a significant overhead of the latter.

Table 3shows the results of these experiments. ForAlphaandEq-20, linear equa-
tions with coefficients are decomposed. ForQueens 100, we replace the specialall-
different-with-offsets by its decomposition into anall-differentpropagator and binary
equality-with-offset propagators. InBIBD andPerfect Square, we decompose ternary
Boolean propagators, implementingx∧y↔ zas¬x∨¬y↔¬z in BIBD, andx∨y↔ z
as¬x∧¬y ↔ ¬z in Perfect Square. In the remaining examples, we decompose a set
intersection into complement and union propagators.

Some integer examples show a significant overhead of around six times the run-
time and memory when decomposed. The overhead of most set examples as well as
Perfect Squareis moderate, partly because no additional variable was introduced if the
model already contained its complement or negation. As to beexpected, decomposi-
tion often needs significantly more propagation steps, but as the additional steps are
performed by cheap propagators (likex = y+ i or x = ¬y), the runtime effect is less
drastic. Queens 100is an extreme case, where 23 times the propagation steps only
cause 40% more runtime. The reason is that the scheduling order does not take advan-
tage of the fact that the decompositions are Berge-acyclic as discussed inSection 3.5.
Partition 32has a single linear equation with coefficients, several linear equations with
unit coefficients, multiplications, and a singleall-different. Replacing the linear equa-
tion by its decomposition has little effect on the runtime (35% overhead).

7.2 Impact of Derivation Techniques

The techniques presented inSection 4have different impacts on the performance of the
derived propagators.
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Table 4: Relative performance of minus views

Benchmark time % prop. %

All-Interval (50) 100.00 100.00
All-Interval (100) 100.52 100.00
Alpha (naive) 101.81 100.00
Golomb Rulers (Bnd, 10) 99.36 100.01
Golomb Rulers (Dom, 10) 107.77 100.18
Graph Coloring 107.19 99.84

Benchmark time % prop. %

Partition (32) 131.83 135.95
Queens (10) 98.32 100.00
Queens (Dom, 10) 107.63 100.00
Queens (100) 97.83 100.00
Queens (Dom, 100) 95.62 100.00
Sorting (400) 105.13 100.00

Generalization and specialization. These techniques can be implemented without
any performance overhead compared to a handwritten propagator. This is not sur-
prising as the only potential overhead could be that a function call is not resolved at
compile time. For example, a thorough inspection of the codegenerated by the GNU
C++ compiler and the Microsoft Visual Studio C++ compiler shows that they are able to
fully inline the operations of offset and scale views.

Transformation and type conversion. These techniques can incur an overhead com-
pared to a dedicated implementation, as the transformations performed by the views
can sometimes not be removed by compiler optimizations, andtype conversions may
be costly if the data structures for the variable domains differ significantly.

For example, a propagator instantiated with two minus viewsof variablesx andy
may include a comparison,(−x) < (−y). Due to the invariants guaranteed by views,
this is equivalent toy< x, saving two negations. However, the asymmetry in the two’s
complement representation of integers prevents the compiler from performing this op-
timization. As an experiment to evaluate this effect, we instantiated anall-different
propagator with minus views. The resulting derived propagator of course implements
the same constraint, but incurs the overhead of negation. Similarly, we replaced the
max propagator in theSort example with a min (where the propagator for min is de-
rived from the propagator for max) and negated all parameters. According to the results
in Table 4, the overhead is often negligible, and only exceeds 5% in examples that use
the domain-completeall-different propagator (Graph Coloring, Golomb Rulers Dom
andQueens Dom) or predominantly min propagators (Sort). Queens Dom 100does
not show the effect as the runtime is dominated by search. Using minus views can
result in different propagator scheduling. ThePartition example shows this behavior,
where the increase in propagation steps results in increased runtime.

It is interesting to note that the domain-completeall-different propagator, when
instantiated with minus views, requires a cache iterator for sequence reversal (as dis-
cussed inSection 5.4). Surprisingly, the overhead of minus views is largely indepen-
dent of the use of cache iterators which is confirmed inSection 7.4.

Other transformations are translated optimally, such as turning (−x)− (−y) into
y− x. Boolean negation views also lead to optimal code, as they donot compute 1− x
for a Boolean variablex, but instead swap the positive and negative operations.

Set-valued transformations can result in non-optimal code. For example, a propa-
gator for ternary intersection,x= y∩z, will include an inferencex.adjglb(y.glb()∩
z.glb()). To derive a propagator forx= y∪z, we instantiate the intersection propaga-
tor with complement views forx, y, andz, yielding the following inference:

x.adjglb(y.glb()∩z.glb())
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Table 5: Relative performance of views compared to dedicated set propagators

Benchmark time %

Social Golfers (8-4-9) 166.31
Social Golfers (5-3-7) 148.83
Hamming Codes (20-3-32) 129.11
Steiner Triples (9) 127.85

Benchmark time %

Sudoku (Set, 1) 167.44
Sudoku (Set, 4) 151.74
Sudoku (Set, 5) 142.83

Table 6: Relative performance of virtual method calls

Benchmark time %

All-Interval (50) 182.63
All-Interval (100) 113.20
Alpha (naive) 153.59
BIBD (7-3-60) 138.50
Eq-20 211.69
Golomb Rulers (Bnd, 10) 220.01
Golomb Rulers (Dom, 10) 170.13
Graph Coloring 104.29
Magic Sequence (Smart, 500) 136.58
Magic Sequence (GCC, 500) 226.64
Partition (32) 187.89
Perfect Square 130.64
Queens (10) 133.81
Queens (100) 160.79

Benchmark time %

Social Golfers (8-4-9) 148.37
Social Golfers (5-3-7) 138.95
Hamming Codes (20-3-32) 131.37
Steiner Triples (9) 149.08
Sudoku (Set, 1) 119.56
Sudoku (Set, 4) 118.78
Sudoku (Set, 5) 119.17

which amounts to computing

x.adjlub(y.lub()∩z.lub())

It would be more efficient to implement the equivalentx.adjlub(y.lub()∪z.lub())
because this requires three set operations less. Unfortunately, no compiler will find
this equivalence automatically, as it requires knowledge about the semantics of the set
operations.Table 5compares a dedicated propagator for the constraintx∩y= zwith a
version using complement views and a propagator forx∪y= z. The overhead of 27%
to 67% does not render views useless for set variables, but itis nevertheless significant.

7.3 Templates Versus Virtual Methods

As suggested inSection 5, in C++, compile-time polymorphism using templates is far
more efficient than virtual method calls. To evaluate this, we changed the basic oper-
ations of integer variables to be virtual methods, such thatview operations need one
virtual method call. In addition, all operations that use templates (and can therefore not
be made virtual in C++) have been changed so that they cannot be inlined, to simulate
virtual method calls. This is a conservative approximationof the actual cost of fully
virtual views. The results of these experiments appear inTable 6. Virtual method calls
cause a runtime overhead between 4% and 127% for the integer examples (left table),
and 18% to 49% for the set examples (right table). The runtimeoverhead for set exam-
ples is lower as the basic operations on set variables are considerably more expensive
than the basic operations on integer variables.
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Table 7: Relative performance of cache iterators

Benchmark time %

All-Interval (50) 102.48
All-Interval (100) 101.17
Golomb Rulers (Bnd, 10) 100.51
Golomb Rulers (Dom, 10) 128.98
Graph Coloring 144.58
Magic Sequence (GCC, 500) 103.56
Queens (Dom, 10) 187.36
Queens (Dom, 100) 155.62

Benchmark time %

Social Golfers (8-4-9) 522.62
Social Golfers (5-3-7) 450.15
Hamming Codes (20-3-32) 297.38
Steiner Triples (9) 304.97
Sudoku (Set, 1) 459.85
Sudoku (Set, 4) 483.27
Sudoku (Set, 5) 436.92

7.4 Iterators Versus Temporary Data Structures

The following experiments show that using range iterators improves the efficiency of
propagators, compared to the use of explicit set data structures for temporary results.

For the experiments, temporary data structures have been emulated by wrapping all
iterators in a cache iterator as described inSection 5.4. Table 7shows the results. For
integer propagators that perform the safe iterator-based domain operations introduced
in Section 5.4, computing with temporary data structures results in 28% to87% over-
head (Golomb Rulers Dom, Graph Coloring, Queens Dom). For set propagators, which
make much more use of iterators than integer propagators, the overhead becomes pro-
hibitive, resulting in up to 4.8 times the runtime. The memory consumption does not
increase, because iterators are not stored, and only few iterators are active at a time.

8 Conclusion

The paper has developed views for deriving propagator variants. Such variants are
ubiquitous, and the paper has shown how to systematically derive propagators using
different types of views, corresponding to techniques suchas transformation, general-
ization, specialization, and type conversion.

Based on a formal, implementation independent model of propagators and views,
the paper has identified fundamental properties of views that result inperfectderived
propagators. The paper has shown that a derived propagator inherits correctness and
domain completeness from its original propagator, and bounds completeness given ad-
ditional properties of the used views.

The paper has presented an implementation architecture forviews based onpara-
metricity. The propagator implementation is kept parametric over thetype of view that
is used, so that deriving a propagator amounts to instantiating a parametric propaga-
tor with the proper views. This implementation architecture is an orthogonal layer of
abstraction that can be implemented on top of any constraintsolver.

An empirical evaluation has shown that views have proven invaluable for the im-
plementation of Gecode, saving huge amounts of code to be written and maintained.
Furthermore, deriving propagators using templates in C++ has been shown to yield com-
petitive (in most cases optimal) performance compared to dedicated handwritten prop-
agators. The experiments have also clarified that deriving propagators is vastly superior
to decomposing the constraints into additional variables and simple propagators.
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