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Abstract. Qualitative modelling is a technique integrating the fields of
theoretical computer science, artificial intelligence and the physical and
biological sciences. The aim is to be able to model the behaviour of sys-
tems without estimating parameter values and fixing the exact quantita-
tive dynamics. Traditional applications are the study of the dynamics of
physical and biological systems at a higher level of abstraction than that
obtained by estimation of numerical parameter values for a fixed quanti-
tative model. Qualitative modelling has been studied and implemented
to varying degrees of sophistication in Petri nets, process calculi and
constraint programming. In this paper we reflect on the strengths and
weaknesses of existing frameworks, we demonstrate how recent advances
in constraint programming can be leveraged to produce high quality qual-
itative models, and we describe the advances in theory and technology
that would be needed to make constraint programming the best option
for scientific investigation in the broadest sense.
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1 Introduction

The standard approach for non-computer scientists when investigating dynamic
scientific systems is to develop a quantitative mathematical model. Differen-
tial equations are chosen in the belief that they best represent (for example)
convection-diffusion-reaction or population change, and parameter values are
estimated from empirical data. This approach suffers from several limitations
which are widely documented, and which we summarise with examples in Section
2. In a standard modelling text [24, Chapter 5], qualitative model formulation
is described as

. . . the conversion of an objective statement and a set of hypotheses and
assumptions into an informal, conceptual model. This form does not con-
tain explicit equations, but its purpose is to provide enough detail and
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structure so that a consistent set of equations can be written. The quali-
tative model does not uniquely determine the equations, but does indicate
the minimal mathematical components needed. The purpose of a quali-
tative model is to provide a conceptual frame-work for the attainment of
the objectives. The framework summarizes the modeler’s current think-
ing concerning the number and identity of necessary system components
(objects) and the relationships among them.

Kuipers (1993) is more succinct: All models are abstractions of the world. Quali-
tative models are related to ordinary differential equations, but are more expres-
sive of incomplete knowledge [33]. We note that our view of qualitative modelling
(QM) is not based on order-sorted logic representations of dynamical systems (as
described in [43]). Instead of running quantitative model simulations within the
system that was used to specify a qualitative model, we explore the QM space
in order to select quantitative models that are most suitable for simulations.

In QM, the dynamics of a system under investigation are described in a for-
mal language, but with no (or few) a priori assumptions made about the specific
mathematical model that may be produced. This means working at a higher level
of abstraction than usual, it requires the formalisation of complex system be-
haviour, and it involves searching a large space of candidate models for those
to be used to generate numerical models. Computer scientists are, in general,
trained to be able to identify and work at the most suitable levels of abstrac-
tion; they also design and use highly formal languages, and routinely develop
algorithms for NP -hard problem classes. Hence the computer scientist is ideally
qualified to undertake qualitative modelling. This is by no means a new observa-
tion, and in Section 3 we give a critical evaluation of existing computer science
approaches to this problem. We focus on three particular approaches, constraint
programming (CP), temporal logics and process calculi. In our view, historic
CP approaches were hindered by both struggles to accommodate temporality
into constraints, and by limitations in the CP languages and tools available at
the time. The process calculus and temporal logic approaches have been more
successful, modelling important systems arising in molecular and cell biology.

The CP approach has been recently revisited, using languages and tools de-
veloped as part of the Constraint Solver Synthesiser research project at St An-
drews. However, fundamental problems remain. In particular, our exploration of
solution spaces is neither truly stochastic nor targeted enough to reduce non-
useful search effort. Nor do we have any organised way to investigate the tradeoff
between realism of qualitative model and computational complexity of quanti-
tative model. We explore these and other limitations in Section 5, and present
them as research opportunities for the CP community. Successful research activ-
ity would be beneficial to the scientific community in the widest sense. A system
under investigation would be described in qualitative terms, such as:

– behaviour A is required and/or behaviour B is forbidden;
– if C happens, it happens after D;
– the second derivative of E has exactly two minima in timescale F;
– the rate of decline of G is less than the rate of change in the increase in H.
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CP technology would then be used to converge iteratively on suitable models
for use by the global scientific community. This would, in our opinion, represent
an important transfer of CP expertise, languages and search to our colleagues
working in other scientific fields.

2 Quantitative mathematical models

Successful computer modelling in the physical, biological and economic sciences
is a difficult undertaking. Domains are often poorly measured due to ethical,
technical and/or financial constraints. In extreme instances the collection of
accurate longitudinal data is simply impossible using current techniques. This
adversely affects the production and assessment of hypothetical quantitative
models, since the incompleteness of the domain data necessitates the making
of assumptions that may or may not reflect ground truths. A second category
of assumptions are involved in the choice of quantitative modelling framework.
Hypothetical solutions can be ruled out by restricting the complexity of models,
and unrealistic models can be allowed by over-complex models. For both types
of a priori assumption, mutually exclusive assumptions must be kept separate,
sometimes with no scientific justification.

A motivating example involves the modelling of human cell populations. The
human ovary contains a population of primordial (or non-growing) follicles. Some
of these are recruited towards maturation and start to grow. Many of these die off
through atresia, but some become primary follicles. Again, a proportion of these
die off with the remainder growing into secondary follicles. This continues until a
very small proportion become eggs that are released from the ovary for potential
fertilisation. For the purposes of this study, we consider only the dynamics of
follicle progression (primordial to primary to secondary). There are limitations
to the quantitative, compartmental model approach. Empirical data is scarce
for primordial follicles [46], is calculated by inference for primary follicles [30],
and simply does not exist for secondary follicles [19]. As a direct result of these
limitations, two entirely different and contradictory compartmental models have
been published in the literature [6, 18]. A third research group investigating the
same cell dynamics but with its own empirical data and modelling assumptions
would be highly likely to produce a third quantitative model being fundamentally
different to those already published. So there is an obvious problem: which (if
any) of these models should be used by the wider research community to describe
and account for changes in cell populations over time?

A second example (adapted from a paper by Degasperi and Calder presented
at a workshop on Process Algebra and Stochastically Timed Activities [13])
of the limitations of starting the modelling process by selecting a mathematical
model involves modelling nitric oxide (NO) bioavailability in blood vessels. Mod-
els of this scenario aim to determine the diffusion distance of NO along the radius
of a vessel, where NO is produced in a narrow region on the internal wall of the
vessel. Numerous models have been developed over the last decade and most
share underlying assumptions and use the similar diffusion governing equations.
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In particular, a vessel is modelled as a cylinder with partial differential equations
(PDEs), using Fick’s law of diffusion in cylindrical coordinates. Compartments
define areas such as endothelium (where NO is produced), vascular wall, and
lumen (i.e. where the blood flows). Another common assumption is that the dif-
fusion operates only in the radial direction, while it can be considered negligible
in other directions. A complete review and critical evaluation of these models is
given in [45]. The author concludes: Advances in both the experimental method-
ologies and in the theoretical models are required to further elucidate NO’s
roles in the vasculature [45, our emphases].

We have demonstrated that these compartmental dynamics can be quali-
tatively modelled using finite element constraints [31]. Each of our qualitative
models represents a class of CSPs. In general, there are many more solutions to
the CSPs than realistic models, and many more realistic models than models
that accurately reflect what happens in nature. Moreover, the resulting quanti-
tative models can be graded by their complexity – linear ODE, piecewise-linear
ODE, quadratic ODE, . . . , non-linear PDE, thereby providing insights on the
computational effort needed to obtain solutions [32].

3 Existing approaches to QM

Qualitative modelling is a mature computer scientific technique, with existing
methods and results for qualitative compartmental models [36, 35, 39] and for
the use of CSPs to describe and solve qualitative models [12, 17]. However, these
latter studies either reported incomplete algorithms [12] or described compli-
cated algebras with no associated CSP modelling language or optimised CSP
solver [17]. In 2002, a hybrid approach was presented in which concurrency was
described in terms of CP constraints [5]. Since these studies were published 10–
20 years ago, it appears that the limitations of CP technology at the time were
collectively sufficient to stifle development.

Other approaches include process calculi and temporal logics, which are suc-
cessful at the molecular level [7] and the protein network level [8, 42], but not
as yet at inter- and intra-cellular levels. Despite this, the process calculus and
temporal logic communities are engaging in active current research to improve
techniques and widen access to other scientific areas. Of particular note are
BIOCHAM (temporal logic) and BioPEPA (process calculus).

BIOCHAM [9] consists of two languages (one rule-based, the other based on
either the CTL or LTL temporal logic languages) that allows the iterative devel-
opment of quantitative models from qualitative ones. This answers the obvious
question posed by newcomers to qualitative modelling: “given a good qualitative
model, how do I derive a model that I can use for numeric studies?” BIOCHAM
has sophisticated tool support and is under active current development (version
3.4 released in September 2012).

BioPEPA [11] is a process algebra for the modelling and the analysis of
biochemical networks. It is a modification of PEPA (originally defined for the
performance analysis of computer systems), in order to handle the use of general
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kinetic laws. The Edinburgh-based BioPEPA research group has received sub-
stantial funding to improve the accessibility of their framework by researchers at
all levels of systems biology. A cloud-based architecture is under development, as
is improved translation to and from SBML (System Biology Markup Language)
formats, thereby supporting easier exchange and curation of models.

In summary, from the competing candidates for a computer science basis for
successful qualitative modelling, CP has – as it were – fallen by the wayside,
while temporal logics and process calculi are providing real support, at least to
the biomedical modelling communities. We see no obvious reason for this: clearly
time is a variable in all dynamical modelling, and therefore notions of “liveness”,
“before” and “after” needed to be incorporated into the qualitative modelling
framework. But this is perfectly possible in CP, as demonstrated in [31].

4 Case study: cell dynamics QM using constraints

Our case study is the compartmental modelling of NGFs described in Section 2,
where cell populations grow to a peak of unknown size and location, then decline
with increasing age. We use the Savile Row tool that converts constraint problem
models formulated in the solver-independent modelling language Essence′ [20]
to the input format of the Constraint Satisfaction Problem (CSP) solver Min-
ion [22].

We expect our candidate qualitative models to be implemented as differential
equations or by non-linear curve-fitting. In both case we need to specify the
notions of rate of change and smoothness. Suppose that X[0, . . . , n] is a series
of variables representing a follicle population at different ages. Then we can
approximate first derivatives by X ′[1, . . . , n] where X ′[i] = X[i]−X[i− 1], and
second derivatives by X ′′[1, . . . , n − 1] where X ′′[j] = X ′[j + 1] − X ′[j]. These
definitions allow us to post qualitative constraints about peak populations

∃p ∈ [1, . . . , n] such that ∀i > p,X ′[i] < 0 ∧ ∀i < p,X ′[i] > 0.

We can require or forbid smoothness by restricting the absolute value of the X ′′

variables, and constrain rates of population growth by restrictions on the X ′[i].
By having three sets of variables (one for each cell type) each with up to two
derivative approximations, we can model interactions between the populations at
different ages. To further abstract away from quantitative behaviour, populations
can be defined in terms of proportion of peak rather than absolute numbers of
cells, different time scales can be used for different age ranges (e.g. neonatal vs
post-menopausal), and we can model the qualitative behaviour of values that
are normally log-adjusted in quantitative studies. Table 1 gives an illustrative
example of a model involving one type of follicle.

Any solution of such a model is a candidate for the basis of a quantitative
model of actual cell dynamics, once boundary conditions and scale conditions
are supplied. Using a combination of facts and quantitative information, a range
of quantitative models can be produced for later empirical validation.
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Essence′ statement Qualitative description

find x : [int(0..max)] of int(0..100) percentage of peak population
find y: [int(1..max)] of int(−r · · · r) 1st deriv. variables
find z : int(1..max− 1)] of int(−r · · · r) 2nd deriv. variables
forAll i : int(1..max).y[i] = x[i]− x[i− 1] 1st deriv.definition
forAll j : int(1..max− 1).z[j] = y[j + 1]− y[j] 2st deriv. definition
exists k, j : int(2..birth).

forall i : int(birth..max).
i < k ⇒ y[i] > 0 positive 1st deriv. pre-peak
i > k ⇒ y[i] < 0 negative 1st deriv. post-peak
x[k] = 100 ∧ y[k] = 0 it is a peak
i > birth ⇒ |z[i]| < ⌊√r⌋ smooth post-gestation

Table 1. An example of a simple qualitative model specified in Essence′. When supplied
with values for max, r, and birth, Savile Row will construct a Minion instance, the
solutions of which are all hypothetical models that respect the qualitative description.

5 Future directions for CP

Currently, applying constraint technology to a large, complex problem requires
significant manual tuning by an expert. Such experts are rare, so a natural
aim is to improve dramatically the scalability of constraint technology, while
simultaneously removing its reliance on manual tuning by an expert. It is our
view that here are many techniques in the literature that, although effective
in a limited number of cases, are not suitable for general use. Hence, they are
omitted from current general solvers and remain relatively undeveloped. QM is
an excellent example. There have been many important recent advances in CP
technology. However, we are at the proof-of-concept stage for QM, having shown
the ability in principle to produce useful results, rather than extensive research
output. We now present specific avenues of research that would allow not only
the production of high quality qualitative models, but also a robust schema for
deriving a suitable quantitative model from the space of solutions of a CSP that
represents a QM. The research areas are given in order of realisability: the first
version of Savile Row (Section 5.1) was released in July 2012 and is under current
active development, whereas the systematic search for models that are both
realistic and lead to computationally inexpensive differential equations (Section
5.3) is a completely unexplored research topic.

5.1 Essence′ and Savile Row

Savile Row [44] is a modelling assistant tool that reads the language Essence′

and transforms it into the input format of a number of solvers (currently Min-
ion [23], Gecode [21] and Dominion [2]). It was designed from the start to be
solver-independent and easily extended with new transformation rules. It is also
straightforward to add new output languages supported by an alternate sequence
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of transformations. At present Savile Row is at an early stage of development
compared to other tools such as MiniZinc [38]. However it has some features that
are particularly relevant to qualitative modelling, and its extensibility makes it
suitable for the future work we describe below.

Uniquely Savile Row can produce Minion and Dominion’s logical metacon-
straints for conjunction and disjunction. This is highly relevant to qualitative
modelling because disjunctions arise from exists statements, and conjunctions
from forAll statements (when they are nested inside exists or some logical op-
erator). Exists and forAll will be extensively used in qualitative modelling to
model time. Minion’s logical metaconstraints can be much more efficient than
other methods [29].

Savile Row also implements common subexpression elimination (CSE) [40].
This replaces two or more equivalent expressions in a model with a single aux-
iliary variable. The auxiliary variable is then constrained to be equal to the
common expression. In many cases CSE will strengthen propagation. CSEs tend
to arise when quantifiers are unrolled, so we expect this feature to be relevant
to QM because of the extensive use of quantifiers to model time. To fully ex-
ploit CSE for QM, we would firstly study the types of expressions that arise
in QM for semantic equivalences and eliminate these through active reformula-
tion CSE [40]. Secondly we would investigate sequences of reformulations of the
model (or parts of it) to reveal CSEs and other implied constraints. A particu-
lar sequence of reformulations may hinder CSE with one model and help with
another, therefore there is no generic solution and it is likely QM would benefit
from research in this area.

5.2 Exploring Search Spaces I

With the exception of MDD- and BDD-based solvers [26], current CP solvers are
tailored towards finding a single solution to a problem, or proving no solution
exists. The solution found can be either the first one discovered, or the “best”
solution under a single optimisation condition. For QM, this is insufficient, as
users want to be able to understand and reason about all solutions to their
problem. While current CP technologies allow the exploration of the entire search
space, they provide no facilities to compare and reason about different solutions.
Furthermore, many techniques are specialised for finding only a single solution
and are ineffective when looking for all solutions. We believe CP solvers must
be extended to be able to solve such problems, while maintaining and improving
the efficiency and ease-of-use of existing CP tools.

As described in Section 2, each solution from a class of CSPs that describes a
QM will not only capture the qualitative nature specified in the constraints, but
also return specific information that may form the basis of a quantitative model.
Hence we need to be able to explore the space of all CSP solutions. We currently
have good techniques for recording numbers of solutions, but have only recently
started work on compiling (representations of) solutions into data libraries that
can be used by interested research groups [15, 14, 16]. Our current area of inter-
est is finite algebraic structures; by curating and releasing comprehensive data
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libraries we allow users to search the solution space for “interesting” exemplars,
obviating the need for them to re-solve the original CSPs.

We plan on extending CP so it can generate efficient compact representations
of the solutions to problems, and allow users to explore and understand these
solutions. This will allow CP to be used to tackle many new classes of problems,
of interest to many different types of user.

5.3 Exploring Search Spaces II

In Section 5.2 we described issues to do with the efficient search of large solution
spaces. However, even if efficiency is assured, there are two further problems
to overcome if high quality QM is to be achieved. The first is the organisation
of search in a controlled and stochastic way – i.e. using the mathematical the-
ory of probability to express and utilise the inherent degrees of uncertainty in
which qualitative model solutions are likely to lead to “good” quantitative mod-
els. Existing CP search heuristics allow the user to specify the order in which
the variables and/or values are selected during search. This order can be ran-
domised, but this is far from a fully stochastic exploration of the search space.
Both BIOCHAM and BioPEPA (described in Section 3) fully support iterative
stochastic simulation allowing convergence to preferred numeric models.

The second issue relates to the tradeoff between scientific accuracy and plau-
sibility of a QM (as determined by testing generalisation to empirical data) and
the mathematical and computational complexity of the preferred quantitative
model. Qualitative models can be ranked in terms of realism in a continuum
ranging from highly unrealistic to a highly accurate simulation of what we un-
derstand the system in question to be. The models can also be ranked in terms
of the type of differential equations needed to implement a numeric simula-
tion. Many simple systems of linear ODEs are solvable in polynomial time and
space. Others are not (depending on Lipschitz conditions and whether or not
P = PSPACE [32]). Nonlinear ODEs are strictly harder to solve as a class,
and most PDEs have no closed form solution. The complexity of obtaining ap-
proximate solutions follows the same scale, in general. It is clear that given two
qualitative models that are roughly equivalent in terms of assessed realism, the
one that leads to the differential equations that are easier to solve should nor-
mally be selected. The CP technology needed to make these decisions does not
exist, and its development is a completely unexplored avenue of future research.

It may be the case that instead of exploring the solution space of pre-defined
CSPs, progress could be made by exploring the space of (models of) CSPs that
capture the required qualitative behaviour. This would build on exciting new
developments in this area [4].

5.4 Solver Generation and Automatic Tuning

Our final future direction is not obviously directly associated with QM. However,
we believe that a key component of constraints-based QM is the investigation of
the realism–complexity tradeoff described in Section 5.3. The tradeoff situation
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is clearly improved when constraint solvers are improved in terms of efficiency
and instance size. A major challenge facing constraints research is to deliver
constraint solving that scales easily to problems of practical size. Current con-
straint solvers, such as Choco [34], Eclipse [1], Gecode [21], Ilog Solver [28], and
Minion [23] are monolithic in design, accepting a broad range of models. This
convenience comes at the price of a necessarily complex internal architecture,
resulting in significant overheads and inhibiting efficiency and scalability. Each
solver may thus incorporate a large number of features, many of which will not
be required for most constraint problems. The complexity of current solvers also
means that it is often prohibitively difficult to incorporate new techniques as
they appear in the literature. A further drawback is that current solvers perform
little or no analysis of an input model and the features of an individual model
cannot be exploited to produce a more efficient solving process.

To mitigate these drawbacks, constraint solvers often allow manual tuning
of the solving process. However, this requires considerable expertise, preventing
the widespread adoption of constraints as a technique for solving the most chal-
lenging combinatorial problems. The components of a constraint solver are also
usually tightly coupled, with complex restrictions on how they may be linked
together, making automated generation of different solvers difficult.

Initial results from comparing solvers generated by Dominion with an existing
solver are positive and indicate this approach is promising [3]. Dominion is in fact
expected to make bigger gains in the cases where there are many interdependent
decisions to be made from a large number of components, where traditional
solvers are limited by having to cater for the generic problem.

A number of avenues are open for further work. In particular learning how
to automatically create high quality solvers quickly is a major open problem.
This is essentially an instance of the Algorithm Selection Problem [41]. A lot of
research has investigated ways of tackling this problem, but veritable challenges
remain. A prime example for new challenges in Algorithm Selection are the issues
related to contemporary machine architectures with a large number of computing
elements with diverse capabilities (e.g. multiple CPU and GPU cores in modern
laptops). Research to date has largely focussed on using a single processor, with
some research into parallelisation on homogeneous hardware. Being able to run
several algorithms at once has a significant impact on how algorithms should be
selected. In particular, constraints on the type of algorithms that be run at the
same time, for example because only one of them can use the GPU, as well as
collaboration between the algorithms pose promising directions for research.

Existing monolithic constraint solvers can be very successful on the bench-
marks that are commonly used in the research community, however QM prob-
lems are quite different to the existing benchmarks, and require new approaches
(described in Sections 5.2 and 5.3). Rather than add the required functionality
to a monolithic solver and then tuning the added components manually (con-
strained by architectural decisions made for other problem classes), we would
add components to the solver synthesiser and tune automatically for QM. Au-
tomatic tuning can produce much better results than manual tuning [27], and
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solver synthesis gives a much larger scope for tuning than a monolithic solver [3].
Hence advances in both these fields are highly relevant to QM and would, in our
opinion, accelerate QM research.

6 Conclusions

In this paper we describe an area of use for CP technologies that has fallen into
neglect, for no apparent good reason. The temporal logic and process calculus re-
search communities are achieving success in qualitative modelling by publishing
papers, being awarded grants, and by having the fruits of their research efforts
used to solve real problems in systems biology. But dynamic systems can be
perfectly well described in terms of finite difference relationships that obviate
the need for temporal and process components in the underlying system descrip-
tion language. All finite difference methods rely on discretising a function on a
grid, and the discretisation can be readily expressed in terms of CP variables
and values with simple arithmetic constraints: in [31] we described the stan-
dard backward-difference approximation of a derivative, using unit step-length
in order to maintain integer value domains. Forward and central differences can
be approximated using the same technique, as can derivatives to any required
higher order. (It should be noted this approach is therefore limited to linear
dynamics, and will fail to capture chaotic dynamics of a system.) Our integer
domain requirement could be relaxed, since CP can solve problems over the reals
using interval methods [25]. The fact that time is the dependent variable in our
models is unimportant: the discretisation works for arbitrary choice of variable
representation. In addition, it is our view that the CP framework is inherently
more attractive than temporal and process frameworks, since the ability to for-
mally reason about a timeline in terms of “until”, “since”, etc. is not needed,
and, if present, makes searching for solutions harder than necessary due to well-
documented problems with state-space explosion. Moreover, recent advances in
temporal CP tools and techniques [10] are specifically addressing these issues.

However, current CP technology is not well enough developed to compete
with (and ideally replace) the areas of computer science that have dedicated
more research effort and resource to this area of study. CP research effort into
qualitative modelling faltered in the early years of this century, and has not yet
recovered. The specific areas identified in Section 5 are a non-exhaustive set of
future research directions for the CP community that, if successful, would allow
our languages and tools to be routinely used by researchers from the physical,
biological and economic sciences.
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