
Title Invariants for time-series constraints

Authors Arafailova, Ekaterina;Beldiceanu, Nicolas;Simonis, Helmut

Publication date 2020-07-18

Original Citation Arafailova, E., Beldiceanu, N. and Simonis, H. (2020) 'Invariants
for time-series constraints', Constraints, 25(3), pp. 71-120. doi:
10.1007/s10601-020-09308-z

Type of publication Article (peer-reviewed)

Link to publisher's
version

https://link.springer.com/article/10.1007/s10601-020-09308-z -
10.1007/s10601-020-09308-z

Rights © Springer Science+Business Media, LLC, part of Springer
Nature 2020. This is a post-peer-review, pre-copyedit version
of an article published in Constraints The final authenticated
version is available online at: http://dx.doi.org/10.1007/
s10601-020-09308-z

Download date 2024-04-27 15:47:31

Item downloaded
from

https://hdl.handle.net/10468/11023

https://hdl.handle.net/10468/11023

Noname manuscript No.
(will be inserted by the editor)

Invariants for Time-Series Constraints

Ekaterina Arafailova · Nicolas Beldiceanu ·
Helmut Simonis

the date of receipt and acceptance should be inserted later

Abstract Many constraints restricting the result of some computations over an integer sequence can
be compactly represented by counter automata. We improve the propagation of the conjunction of such
constraints on the same sequence by synthesising a database of linear and non-linear invariants using their
counter-automaton representation. The obtained invariants are formulae parameterised by the sequence
length and proven to be true for any long enough sequence. To assess the quality of such linear invariants,
we developed a method to verify whether a generated linear invariant is a facet of the convex hull of the
feasible points. This method, as well as the proof of non-linear invariants, are based on the systematic
generation of constant-size deterministic finite automata that accept all integer sequences whose result
verifies some simple condition. We apply such methodology to a set of 44 time-series constraints and
obtain 1400 linear invariants from which 70% are facet defining, and 600 non-linear invariants, which
were tested on short-term electricity production problems.

1 Introduction

Many combinatorial problems seek for producing a combinatorial object, e.g. a sequence, a permutation, a
tree, having simultaneously several characteristics. In this context identifying invariants that link different
characteristics of an object is crucial since these characteristics often cannot vary independently. For
instance, in a sequence, the maximum absolute difference between the number of peaks and the number
of valleys is bounded by 1.

Although adding invariants is a crucial point in solving combinatorial problems, there is currently
no database of invariants, even in the more restricted cases of CP and MIP. In CP invariants are usually
added by hand after studying the problem. In MIP, invariants are either added by hand or generated

This is an extended version of the CP 2017 article [4]. Ekaterina Arafailova is supported by the EU H2020 pro-
gramme under grant 640954 for project GRACeFUL. Nicolas Beldiceanu is partially supported by the GRACeFUL
project and by the Gaspard Monge Program for Optimisation and Operations Research (PGMO). Helmut Simonis
is supported by Science Foundation Ireland (SFI) under grant SFI/10/IN.1/I3032; the Insight Centre for Data
Analytics is supported by SFI under grant SFI/12/RC/2289.

Ekaterina Arafailova and Nicolas Beldiceanu
TASC (LS2N) IMT Atlantique, FR – 44307 Nantes, France
E-mail: {Ekaterina.Arafailova,Nicolas.Beldiceanu}@imt-atlantique.fr

Helmut Simonis
Insight Centre for Data Analytics, University College Cork, Ireland
E-mail: Helmut.Simonis@insight-centre.org

by the system depending on the instance of the problem being solved. Our hypothesis is that it is very
useful to produce databases of invariants for families of constraints for the following reasons:

– Having a base of invariants can potentially benefit several technologies, for instance linear invariants
benefit both to CP and MIP.

– Having a base of invariants in a computer format allows their diffusion, as well as a critical review,
allowing them to be extended and improved in the long term.

– Even if it is costly, the generation of invariants is done once and for all during pre-treatment. Once
generated, the extraction of invariants to solve a particular problem is immediate.

This article is a first step in this direction for a conjunction of constraints on time series. This work is
motivated by our interest in the generation of electricity production plans based on models learned from
past production data [10]. In this context, a large number of models must be generated according to the
characteristics of the production units, their operational mode, and the time of year. It is impractical
to try and improve all of these models by manually adding invariants as required. Instead we focus on
creating the invariants once and for all, and adding them automatically to each of the generated models.
Experiments confirm that adding invariants to models significantly speeds up the search for solutions.

We present a framework for synthesising necessary conditions for a conjunction of two sequence
constraints that are each represented by a counter automaton [14], and are imposed on the same integer
sequence of length n. Our necessary conditions are in the form of linear inequalities, implications whose
right-hand side is a linear inequality, and disjunctions of inequalities. In addition, they are parameterised
by n and instance-independent, i.e. they are true for any integer sequence of length n greater than some
small constant.

In order to synthesise linear inequalities and implications with linear inequalities we draw full benefit
from counter automata representing the constraints since they do not encode explicitly all potential val-
ues of counters as states, and allow a constant-size representation of many counting constraints imposed
on a sequence of integer variables. Moreover their compositional nature permits representing a con-
junction of two sequence constraints as the intersection of the corresponding counter automata [33,32],
i.e. the intersection of the languages accepted by all counter automata, without representing explicitly
the Cartesian product of all counter values. As a consequence, the size of such an intersection counter
automaton is often quite compact, even if maintaining domain consistency for such constraints is in
general NP-hard [13]; for instance, the intersection of the 22 counter automata for all nb_σ time-series
constraints described in [3] has only 16 states.

To formally analyse the quality of the generated invariants we developed a method allowing us to
verify whether a linear invariant is a facet of the convex hull or not. The method identifies two distinct
points located on the line corresponding to the linear invariant, and shows that these points are always
feasible provided the precondition associated with the invariant holds.

For synthesising disjunctions of inequalities, we use a slightly different approach, comprising three
steps: data generation, mining of invariants, and proof of invariants. The proof part is based on the
idea that, in order to prove that there is no sequence satisfying a conjunction of conditions, we can
represent a set of sequences satisfying each condition by a constant-size automaton without counters.
Then, a sequence satisfying all the conditions must be accepted by the intersection of such automata. If
the intersection is empty, then such a sequence does not exist.
The contributions of this article are:

– First, Section 4 provides the basis of a simple, systematic method to precompute linear inequalities
and conditional linear inequalities for a conjunction of two automaton constraints on the same se-
quence. We call such inequalities and implications linear invariants and conditional linear invariants,
respectively. Each linear invariant and each conditional linear invariant involves the result variables
of the different automaton constraints in a considered conjunction representing the fact that the
result variables cannot vary independently. Such invariants may be parametrised by a function of the
sequence length and are independent of the domains of the sequence variables. Finally, we describe
a systematic method for verifying whether a linear invariant is a facet of the convex hull or not.

2

– Second, Section 5 shows how to obtain disjunctions of inequalities, possibly parameterised by the
sequence length. We call such disjunctions non-linear invariants.

– Third, to mechanise all proofs required in Section 4 for proving that a linear invariant is facet
defining, and in Section 5 for proving non-linear invariants, Section 6 defines a special kind of con-
stant-size automaton without counters, named conditional automata that recognises all (and only
all) sequences satisfying some condition, e.g. all sequences maximising the number of peaks. It shows
how to construct such conditional automata in a systematic way.

– Fourth, within the context of time-series constraints, Section 7 shows the impact of the database of
2000 synthesised invariants on the propagation of time-series constraints on short-term electricity
production problems.

Note that all obtained parameterised invariants are logical formulae involving linear inequalities,
whose variables correspond to time-series characteristics that are always true. Hence they are computed
once and for all in a preprocessing phase, put into a database of parameterised invariants, and consulted
every time when required: there is no need to rerun our methods for synthesising invariants for every
instance. While our methods for generating parameterised invariants are exponential, it turns out that
(1) the generation for all the 35×(35−1)

2 pairs of time series constraints we consider in this article could
be performed (once) overnight, (2) generating invariants for a conjunction of only two constraints had
already a significant impact on our benchmark involving conjunction of 35 time-series constraints.

Adding redundant constraints to a constraint model has been recognised from the very beginning
of Constraint Programming as a major source of improvement [23]. Attempts to generate such implied
constraints in a systematic way were limited (1) by the difficulty to manually prove a large number of
conjectures [29,11], (2) by the limitations of automatic proof systems [27,19], or (3) to special cases for
very few constraints like alldifferent, cardinality, element [31,1,30]. Within the context of counter
automata, linear invariants relating consecutive counter values of the same constraint were obtained [24]
using Farkas’s lemma [16] in a resource-intensive procedure.

2 Background

This section presents the necessary background and notation on regular expressions, counter automata,
and time-series constraints. Two complementary facets of time-series constraints will be presented: first,
their declarative definition, second the transducers used to synthesise an implementation of time-series
constraints. These transducers will be used in Section 6 to generate a constant-size automaton associated
with an upper bound minus a constant shift of a time-series constraint.

2.1 Background on Regular Expressions and Counter Automata

For a regular expression σ, its language [22] is denoted by Lσ. The size [5] of a regular expression σ,
denoted by ωσ, is the number of letters in the shortest word of Lσ.

A counter automaton [8] M with p > 0 counters is a tuple 〈Q,Σ, δ, q0, I, A, α〉, where Q is the set
of states, Σ is the input alphabet, δ : (Q × Zp) × Σ → Q × Zp is the transition function, q0 ∈ Q is
the initial state, I is a sequence of length p of the initial values of the p counters, A ⊆ Q is the set of
accepting states, and α : Zp → Zk is a function, called acceptance function, which maps the counters of
an accepting state into k integers. If, by consuming the symbols of a word w in Σ∗, the automatonM
triggers a sequence of transitions from q0, its initial state, to some accepting state where 〈d1, d2, . . . , dp〉
are the values of the counters at this stage, thenM returns α(d1, d2, . . . , dp), otherwise it fails. In this
article, the input alphabet of the counter automata is {‘<’, ‘=’, ‘>’}.

Within all figures, the acceptance function is depicted by a box connected by dotted lines to each
state. If a counter is left unchanged while triggering a given transition, then we do not mention this
counter update on the corresponding transition.

3

The intersection of two counter automataM1 andM2 is a counter automaton, denoted by I, such
that the following conditions holds:

1. The language of I is the intersection of the languages ofM1 andM2.
2. The number of counters of I is equal to p1 + p2, where p1 (resp. p2) is the number of counters of
M1 (resp.M2).

3. When consuming any input signature S, for every counter Ci,j of I, at every transition its value is
equal to the value of the counter j ofMi when consuming S.

4. For every input signature S, the counter automaton I returns a tuple 〈R1,1, R1,2, . . . , Rk1+k2〉, where
R1, R2, . . . , Rk1 (resp. Rk1+1, Rk1+2, . . . , Rk1+k2) are the values returned byM1 (resp.M2).

2.2 Defining Time-Series Constraints

Given an integer sequence X = 〈X1, X2, . . . , Xn〉, a time-series constraint g_f_σ(X,R), introduced
in [9], restricts a time-series characteristics R to be the result of some computations over an integer
sequence X = 〈X1, X2, . . . , Xn〉, where:

– σ is a regular expression [22] over the alphabet Σ = {‘<’, ‘=’, ‘>’} with which we associate two
integer constants bσ and aσ whole role is explained below; the sequence S = 〈S1, S2, . . . , Sn−1〉,
called the signature and containing signature symbols, is linked to the sequence X via the signature
conditions (Xi < Xi+1 ⇔ Si = ‘<’) ∧ (Xi = Xi+1 ⇔ Si = ‘=’) ∧ (Xi > Xi+1 ⇔ Si = ‘>’) for all
i ∈ [1, n − 1] [8,36]. When

〈
Si, Si+1, . . . , Sj

〉
(with 1 ≤ i ≤ j ≤ n) is a maximal word matching σ,

the sequence
〈
Xi+bσ , Xi+bσ+1, . . . , Xj+1−aσ

〉
is called a σ-pattern;

– f is a function over sequences, called feature, and is used for computing a value for each σ-pattern;
the role of the two constants bσ and aσ is to trim the left and right borders of an occurrence of the
regular expression σ when computing the feature values;

– g is a function over sequences, called aggregator, and is used for aggregating the feature values of the
different σ-patterns.

The result value R of a time-series constraints is restricted to be the result of aggregation, computed
using g, of the list of values of feature f for all σ-patterns in X. In this article, we consider the following
class of time-series constraints.

Definition 1 (value-independent time-series constraints) A time-series constraints g_f_σ(X,R)
is value independent if any two integer sequences with the same signature yield the same value of R.

We denote by S the class of all value independent time-series constraints. In the rest of the article, we
only consider time-series constraints in S, namely the sum_one_σ(X,R) and the sum_width_σ(X,R)
families:

– For sum_one_σ, the feature one denotes the constant function 1, and the aggregator sum is a sum.
Consequently R is the number of σ-patterns of X. In the following we use nb_σ as a shorthand for
sum_one_σ.

– For sum_width_σ, the feature width denotes the number of elements in a σ-pattern. Then R is
the sum of the number of elements of all σ-patterns of X.

If there is no σ-pattern in X, then R is the default value of g, which is 0 in the case of the sum aggregator.
The length of an integer sequence is the number of its elements. In the following, we assume non-empty
integer sequences.

Example 1 Consider the peak = ‘< (< | =)∗(> | =)∗ >’ and the valley = ‘> (> | =)∗(< | =)∗ <’
regular expressions with the values bpeak, apeak, bvalley and avalley all being 1. The signature of X =
〈0, 1, 2, 2, 0, 0, 4, 1〉 is S = 〈<,<,=, >,=, <,>〉. There is one maximal occurrence of the valley regular
expression in S, namely ‘>=<’. There are two maximal occurrences of the peak regular expression

4

in S, namely ‘<<=>’ and ‘<>’. Hence, nb_peak(X, 2) holds. The peak-pattern 〈1, 2, 2〉 (resp. 〈4〉)
corresponds to the first (resp. second) maximal occurrence of peak in S. The width of the first and the
second peak-patterns of X, is, respectively, 3 and 1. The sum of the widths of all peak-patterns of X
is 3 + 1 = 4. Hence, sum_width_peak(X, 4) holds. 4

2.3 Operational View of Time-Series Constraints

Both, to identify all σ-patterns of an integer sequence X and to synthesise a counter automaton comput-
ing the result R of a time-series constraint g_f_σ(X,R), the notion of seed transducer was introduced
in [9]. It was shown in [25] how to generate such seed transducer from a regular expression. For the
purpose of this article, we consider a simplified version of seed transducers of [9,25] that we now present.

A seed transducer of σ is a deterministic transducer where each transition is labelled with two
letters: a letter in the input alphabet Σ = {‘<’, ‘=’, ‘>’}, called the input symbols, and a letter in the
output alphabet Ω = {found, not_found}, called the output symbols. Hence, a transducer consumes the
signature S of an integer sequence X and produces an output sequence T where each element is in Ω.
Every element of Ω is called a phase letter and corresponds to a recognition phase of a new occurrence
of σ in S. Consider different possibilities of the produced symbol Ti when consuming a symbol Si of S:

– Ti is found. A transition labelled by this output symbol corresponds to the discovery of a new
occurrence of σ in S.

– Ti is not_found. Such transitions do not correspond to the discovery of a new occurrence of σ in
S, but rather to some intermediate phases that do not need to be detailed for the purpose of this
article.

A transition labelled with found is called a found-transition. A found-path is any sequence of con-
secutive transitions of the transducer containing at least one found-transition.

Example 2 Consider the peak regular expression introduced in Example 1, and its seed transducer given
in Part (A) of Figure 9:

– the transition from r to t is a single found-transition,
– the sequence of transitions from s to r, from r to t and from t to r is a found-path.

While consuming the signature S = 〈<,<,=, >,=, <,>〉 of the integer sequence 〈0, 1, 2, 2, 0, 0, 4, 1〉, the
seed transducer produces the output sequence 〈not_found, not_found, not_found, found, not_found,

found〉. As shown in Example 1, S contains two maximal occurrences of peak, complying with the two
found letters in t. 4

3 Types of Synthesised Invariants

Consider a conjunction of two time-series constraints γ1(X,R1) and γ2(X,R2) imposed on the same
sequence of integer variables X = 〈X1, X2, . . . , Xn〉. In this section, we present a classification of different
types of invariants that involves R1, R2 and n.

Farkas Linear Invariants for a Single Constraint The method for generating linear invariants based on
the Farkas’s lemma was described in [24], and is used for generating linear invariants linking the counters
of a counter automaton representing a single constraint γi with i in {1, 2}. Such linear invariants involve
k consecutive counter values associated with consecutive prefixes of X. For instance, for the counter
automaton of the nb_peak constraint given in Part (A) of Figure 1, the method described in [24]
generates the linear invariants Pi − Pi−1 ≥ 0 and −Pi − Pi−2 + 1 ≥ 0, where Pi−k corresponds to the
number of peaks (an increase followed by a decrease) in the sequence X1, X2, . . . , Xi−k+1 (k ∈ [0, 2]).

Although, this method is fairly general, the generation of invariants can be time consuming and the
set of generated invariants is too large. This requires an extra step for selecting the tightest generated
invariants.

5

Linear Invariants for a Conjunction of Constraints A contribution of this article is a systematic method
for generating linear invariants of the form a ·R1 + b ·R2 + c · n+ d ≤ 0 (a, b ∈ Z∗ and c, d ∈ Z) linking
the result variables R1 and R2 of two time-series constraints. This method applies for any conjunction
of constraints, where each constraint can be represented by a counter automaton, satisfying a certain
property, named the incremental-automaton property, which will be introduced in Property 1 of Section 4.
The class of automata satisfying the incremental-automaton property is smaller compared to the ones
satisfying the conditions of the method of [24]. However, it still covers 35 constraints of the volume II of
the Global Constraint Catalogue [3]: this covers two classes of constraints, namely constraints counting
the number of occurrences of a pattern, and constraints returning the number of positions belonging to
a pattern occurrence. We further show in a systematic way that many of the generated invariants are
facets of the convex hull of feasible combinations of R1 and R2.

Conditional Linear Invariants for a Conjunction of Constraints We also generate conditional linear
invariants of one of the following forms R1 > 0 ⇒ `in, R2 > 0 ⇒ `in, R1 > 0 ∧ R2 > 0 ⇒ `in,
n > e⇒ `in with `in corresponding to a ·R1 + b ·R2 + c · n+ d ≤ 0 and a, b ∈ Z∗, c, d ∈ Z and e ∈ N.
Such invariants are useful when, for example, (i) a linear invariant holds only for non-default values of
R1, i.e. when there is no occurrence of the regular expression associated with γ1 in the signature of X,
(ii) a linear invariant is a facet of the convex hull and holds only for long enough sequences. The method
for generating such invariants is based on the method for synthesising linear invariants, and the same
conditions on counter automata apply.

Non-Linear Invariants The non-linear invariants we synthetise are of the form P1 ∨P2 ∨ · · · ∨Pk, where
every Pk is a negation of an atomic relation. We define in Section 5 a set of 8 atomic relations, some of
which are Ri = c, Ri = upRi(n) − c, where c is a natural number, and upRi(n) is the maximum value
of Ri among all time series of length n [5]. Such invariants are required when the envelope of the set
of feasible combinations of R1 and R2 is non-convex and therefore linear invariants are not enough for
fully describing it.

4 Synthesising Linear Invariants

Consider two counter automataM1,M2 over the same alphabet Σ. Let ri denote the number of counters
ofMi, and let Ri designate its returned value. In this section we show how to systematically generate
linear invariants of the form

e + e0 · n+
2∑
i=1

ei ·Ri ≥ 0 with e, e0, e1, e2 ∈ Z, (1)

which hold after the signature of the same input sequence 〈X1, X2, . . . , Xn〉 is completely consumed
by the two counter automata M1, M2. We call such linear invariant general since it holds regardless
of any conditions on the result variables R1, R2. Stronger, but less general, invariants may be obtained
when the initial values of the counters cannot be assigned to the result variables.

Our method for generating invariants is applicable to a restricted class of counter automata that we
now introduce.

Property 1 (incremental-automaton property) A counter automaton M with r counters has the incre-
mental-automaton property if the following four conditions are all satisfied:

1. For every counter Aj ofM, its initial value α0
j is a natural number.

2. For every counter Aj of M and for every transition t of M, the update of Aj upon triggering

transition t is of the form Aj ← αtj,0 +
r∑
i=1

αtj,i ·Ai, with α
t
j,0 ∈ N and αtj,1, α

t
j,2, . . . , α

t
j,r ∈ {0, 1}.

6

s

{
P ← 0

}

treturn PXi = Xi+1

Xi > Xi+1

Xi < Xi+1

Xi = Xi+1

Xi < Xi+1
Xi > Xi+1

{P ← P + 1}

(A)

s

{
V ← 0

}
rreturn VXi = Xi+1

Xi < Xi+1

Xi > Xi+1

Xi = Xi+1

Xi > Xi+1
Xi < Xi+1

{V ← V + 1}(B)

s

{
P ← 0
V ← 0

}

t r

return P, V

Xi = Xi+1

X
i
>
X
i+

1X
i
<
X
i+

1

Xi = Xi+1 Xi > Xi+1Xi < Xi+1 Xi = Xi+1

Xi < Xi+1

{V ← V + 1}

Xi > Xi+1

{P ← P + 1}

(C)

Fig. 1: (A) Counter automaton for nb_peak; (B) Counter automaton for nb_valley; (C) Intersection
of (A) and (B).

3. The counter Ar is called the main counter and verifies all the following three conditions:
(a) the value returned byM is the last value of its main counter Ar,
(b) for every transition t ofM, αtr,r = 1,

(c) for a non-empty subset T of transitions ofM,
r−1∑
i=1

αtr,i > 0, ∀t ∈ T .

4. For all other counters Aj with j < r, on every transition t of M, we have
r∑

i=1,i6=j
αtj,i = 0 and,

if αtr,j > 0, then αtj,j is 0.

The intuition behind the incremental-automaton property is that there is one counter that we name
the main counter, whose last value is the final value, returned by the counter automaton, (see 3a).
At some transitions, the update of the main counter is a linear combination of the other counters,
while on the other transitions its value either does not change or is incremented by a non-negative
constant, (see 3b and 3c). All other counters may only be incremented by a non-negative constant or
assigned to some non-negative integer value, and they may contribute to the final value, (see 4). These
counters are called potential counters. Both counter automata in Parts (A) and (B) of Figure 1 have
the incremental-automaton property, and their single counters are the main counters. Volumes I and II of
the global constraint catalogue contain more than 50 such counter automata. In particular, in Volume II,
the counter automata for all the constraints of the nb_σ and the sum_width_σ families have the
incremental-automaton property. In the rest of this article we assume that all counter automata M1,
M2 have the incremental-automaton property.

Our approach for systematically generating linear invariants of type e + e0 · n +
2∑
i=1

ei · Ri ≥ 0

considers each combination of signs of the coefficients ei (with i ∈ [0, 2]). It consists of two steps:

1. Select the coefficients e0, e1, e2, called the relative coefficients of the linear invariant, so that there

exists a constant C such that e0 · n+
2∑
i=1

ei ·Ri ≥ C (see Section 4.1 and Section 4.2).

2. Compute C and set the coefficient e, called the constant term of the linear invariant, to −C (see Sec-
tion 4.3).

The previous steps are performed as follows:

1. First, we assume a sign for each coefficient ei (with i ∈ [0, 2]), which tells whether we have to
consider or not the contribution of the potential counters; note that each combination of signs of the
coefficients ei (with i ∈ [0, 2]) will lead to a different linear invariant. Then, from the intersection I of
M1,M2, we construct a digraph called the invariant digraph, where each transition t of I is replaced

7

by an arc whose weight represents the lower bound of the variation of the term e0 · n +
2∑
i=1

ei · Ri
while triggering t.

2. Second, we find the coefficients ei (with i ∈ [0, 2]) so that the invariant digraph does not contain any

negative cycles. When the invariant digraph has no negative cycles, the value of e0 · n+
2∑
i=1

ei ·Ri is

bounded from below for any integer sequence.
3. Third, to obtain C we compute the shortest path in the invariant digraph from the node of the

invariant digraph corresponding to the initial state of I, to all nodes corresponding to accepting
states of I.

4.1 Constructing the Invariant Digraph for a Conjunction of automaton Constraints
wrt a Linear Function

First, Definition 2 introduces the notion of invariant digraph GvI of the counter automaton I =M1∩M2

wrt a linear function v involving the values returned by these counter automata. Second, Definition 3
introduces the notion of weight of an accepting sequence X wrt I in GvI , which makes the link between a
path in GvI and the vector of values returned by I after consuming the signature of X. Finally, Theorem 1
shows that the weight of X in GvI is a lower bound on the linear function v.

Definition 2 (invariant digraph) Consider an accepting sequence X = 〈X1, X2, . . . , Xn〉 wrt the

counter automaton I =M1 ∩M2, and a linear function v = e + e0 · n+
2∑
i=1

ei · Ri, where (R1, R2) is

the vector of values returned by I after consuming the signature of X. The invariant digraph of I wrt v,
denoted by GvI , is a weighted digraph defined in the following way:

– The set of nodes of GvI is the set of states of I.
– The set of arcs of GvI is the set of transitions of I, where for every transition t, the corresponding

symbol of the alphabet is replaced by an integer weight, which is e0 +
2∑
i=1

ei · βti , where β
t
i is defined

as follows:

βti =

αti,ri,0 if ei ≥ 0, (2)
ri∑
j=1

αti,j,0 if ei < 0, (3)

where ri denotes the number of counters of Mi, and αti,p,0 (with p ∈ [1, ri]) is the constant in the
update of the counter of I corresponding to the counter p ofMi.

Definition 3 (walk and weight of an accepting sequence) Consider an accepting sequence X of

length n wrt the counter automaton I =M1 ∩M2, and a linear function v = e + e0 · n+
2∑
i=1

ei · Ri,

where (R1, R2) is the vector of values returned by I after consuming the signature of X.

– The walk of X in GvI is a path in GvI whose sequence of arcs is the sequence of the corresponding
transitions of I triggered upon consuming the signature of X.

– The weight of X in GvI is the weight of its path in GvI plus a constant value, which is a lower bound
on v corresponding to the initial values of the counters and is called the initialisation weight in GvI .
It equals e+ e0 · (p− 1)+

∑2
i=1 ei ·β

0
i , where p is the arity of the signature, and where β0

i is defined
as follows:

8

β0
i =

α0
i,ri if ei ≥ 0, (4)
ri∑
j=1

α0
i,j if ei < 0, (5)

where ri denotes the number of counters ofMi, and α0
i,p (with p ∈ [1, ri]) is the initial value of the

counter of I corresponding to the counter p ofMi.

Example 3 Consider the nb_peak(X,P) and the nb_valley(X,V) constraints introduced in Ex-
ample 1 on the same sequence X = 〈X1, X2, . . . , Xn〉. Figure 1 gives the automata for nb_peak,
nb_valley, and their intersection I. We aim to find inequalities of the form e+e0 ·n+e1 ·P+e2 ·V ≥ 0

that hold for every integer sequence X. After con-
suming the signature of X, I returns a pair of
values (P, V), which are the number of peaks
(resp. valleys) in X. The invariant digraph of I
wrt v = e + e0 · n+ e1 · P + e2 · V is given in
the figure on the right. As neither of the two au-
tomata has any potential counters, the weights of
the arcs of GvI do not depend on the signs of e1
and e2. Hence, for every integer sequence X, its
weight in GvI equals e+ e0 ·n+ e1 ·P + e2 ·V . 4

s

t r

e0

e0e0

e0e0

e0 + e2

e0 + e1

Theorem 1 (lower bound on the weight of an accepting sequence) Consider an accepting
sequence X = 〈X1, X2, . . . , Xn〉 wrt the counter automaton I = M1 ∩ M2, and a linear function

v = e + e0 · n+
2∑
i=1

ei ·Ri, where (R1, R2) is the vector of values returned by I. Then, the weight of X

in GvI is less than or equal to e + e0 · n+
2∑
i=1

ei ·Ri.

Proof Since, when doing the intersection of counter automata we do not merge counters, the counters of
I that come from different counter automata do not interact, i.e. their updates are independent, hence
their returned values are also independent. By definition of the invariant digraph, the weight of any of

its arc is e0 +
2∑
i=1

ei · βti , where β
t
i depends on the sign of ei, and where t is the corresponding transition

in I. Then, the weight of X in GvI is the constant e+ e0 · (p− 1)+
2∑
i=1

ei · β0
i (see Definition 3) plus the

weight of the walk of X, which is in total e+e0 ·(p−1)+
2∑
i=1

ei ·β0
i +e0 ·(n−p+1)+

n−p+1∑
j=1

2∑
i=1

ei ·β
tj
i =

e+e0 ·n+
2∑
i=1

ei ·

(
β0
i +

n−p+1∑
j=1

β
tj
i

)
, where p is the arity of the considered signature, and t1, t2, . . . tn−p+1

is the sequence of transitions of I triggered upon consuming the signature of X. We now show that the

value ei ·

(
β0
i +

n−p+1∑
j=1

β
tj
i

)
is not greater than ei ·Ri. This will imply that the weight of the walk of X

in GvI is less than or equal to v = e + e0 · n+
2∑
i=1

ei ·Ri.

Consider the vi = ei · Ri linear function. We show that the weight of X in GviI , which equals ei ·(
β0
i +

n−p+1∑
j=1

β
tj
i

)
, is less than or equal to ei ·Ri. Depending on the sign of ei we consider two cases.

9

Case 1: ei ≥ 0. In this case, the weight of every arc of GviI is ei multiplied by αtri,0, where t is the
corresponding transition in I, and ri is the main counter of Mi (see Case 2 of Definition 2). If, on
transition t, some potential counters ofMi are incremented by a positive constant, the real contribution
of the counter updates on this transition to Ri is at least αtri,0 since ei ≥ 0. The same reasoning applies to
the contribution of the initial values of the potential counters to the final value Ri. Since this contribution

is non-negative, it is ignored, and β0
i = α0

j (see Case 2 of Definition 3). Hence ei ·

(
β0
i +

n−p+1∑
j=1

β
tj
i

)
=

ei ·

(
α0
ri +

n−p+1∑
j=1

αtri,0

)
≤ ei ·Ri.

NEW VERSION:
In this case, the weight of every arc of GviI is ei multiplied by αti,ri,0, where t is the corresponding
transition in I, and ri is the main counter ofMi (see Case 2 of Definition 2). If, on transition t, some
potential counters of Mi are incremented by a positive constant, the real contribution of the counter
updates on this transition to Ri is at least αti,ri,0 since ei ≥ 0. The same reasoning applies to the
contribution of the initial values of the potential counters to the final value Ri. Since this contribution is

non-negative, it is ignored, and β0
i = α0

i,ri (see Case 2 of Definition 3). Hence ei ·

(
β0
i +

n−p+1∑
j=1

β
tj
i

)
=

ei ·

(
α0
i,ri +

n−p+1∑
j=1

α
tj
i,ri,0

)
≤ ei ·Ri.

Case 2: ei < 0. In this case, the weight of every arc of GviI is ei multiplied by the sum of the non-negative
constants, which come from the updates of every counter of Mi (see Case 5 of Definition 2). The
contribution of the potential counters is always taken into account, and since ei < 0, it is always
negative. The same reasoning applies to the contribution of the initial values of the potential counters
to the returned value Ri. To obtain a lower bound on v, observe that the initial values of the potential
counters are non-negative and that ei < 0; therefore we assume that the initial values of the potential

counters always contribute to Ri (see Case 3 of Definition 3). Hence ei · (β0
i +

n−p+1∑
j=1

β
tj
i) ≤ ei ·Ri. ut

Note that, if all the considered counter automataM1,M2 do not have potential counters, then for
every accepting sequence X = 〈X1, X2, . . . , Xn〉 wrt I = M1 ∩M2 and for any linear function v =

e + e0 · n+
2∑
i=1

ei ·Ri, the weight of X in GvI is equal to v. If there is at least one potential counter for

at least one counter automatonMi, then there may exist an accepting sequence X = 〈X1, X2, . . . , Xn〉
wrt I =M1 ∩M2 whose weight in GvI is strictly less than v.

4.2 Finding the Relative Coefficients of the Linear Invariant

We now focus on finding the relative coefficients e0, e1, e2 of the linear invariant v = e + e0 · n +
2∑
i=1

ei · Ri ≥ 0 such that, after consuming the signature of any accepting sequence by the counter

automaton I =M1 ∩M2, the value of v is non-negative.
For any accepting sequence X wrt I, by Theorem 1, we have that the weight w of X in GvI is less

than or equal to v. Recall that w consists of a constant part, and of a part that depends on X, which
involves the coefficients e0, e1, e2; thus, these coefficients must be chosen in a way that there exists a
constant C such that w ≥ C, and C does not depend on X. This is only possible when GvI does not
contain any negative cycles. Let C denote the set of all simple circuits of GvI , and let we denote the
weight of an arc e of GvI . In order to prevent negative cycles in GvI , we solve the following minimisation
problem, parameterised by (s0, s1, s2), the signs of e0, e1, e2, under the convention that the sign −1

10

represents a non-positive number, and the sign +1 corresponds to a non-negative number:

minimise
∑
c∈C

Wc +
2∑
i=1

|ei| (6)

subject toWc =
∑
e∈c

we ∀c ∈ C (7)

Wc ≥ 0 ∀c ∈ C (8)

si · ei ≥ 0 ∀i ∈ [0, 2] (9)

ei 6= 0 ∀i ∈ [1, 2] (10)

In order to obtain the coefficients e0, e1, e2 so that GvI does not contain any negative cycles, it
is enough to find a solution to the satisfaction problem (7)-(10). Minimisation is required to obtain
linear invariants that eliminate as many infeasible values of (R1, R2) as possible. Within the objective

function (6), the term
∑
c∈C

Wc is for minimising the weight of every simple circuit, while the term
2∑
i=1

|ei|

is for obtaining the coefficients with the smallest absolute value. We empirically established that using
the considered objective function for time-series constraints produces linear invariants of good quality.
However, for a different class of constraints a different objective function may be more appropriate. By
changing the sign vector (s0, s1, s2) we obtain different linear invariants.

Example 4 (finding the relative coefficients) Consider nb_peak(X,P) and nb_valley(X, V) with X
being a time series of length n. The invariant digraph of the intersection of the counter automata for
the nb_peak and nb_valley constraints wrt v = e + e0 · n+ e1 · P + e2 · V was given in Example 3.
This digraph has four simple circuits, namely s− s, t− t, r− r, and r− t− r, which are labelled by 1, 2,
3 and 4, respectively. Then, the minimisation problem for finding the relative coefficients of the linear
invariant v ≥ 0, parameterised by (s0, s1, s2), the signs of e0, e1 and e2, is the following:

minimise
4∑
j=1

Wj +
2∑
i=0

|ei|

subject to Wj = e0, ∀j ∈ [1, 3]

W4 = e0 + e1 + e2

Wj ≥ 0 ∀j ∈ [1, 4] (11)

si · ei ≥ 0 ∀i ∈ [0, 2]

ei 6= 0 ∀i ∈ [1, 2]

Note that the value of e0 must be non-negative otherwise (11) cannot be satisfied for j ∈ {1, 2, 3}.
Hence we consider only the combinations of signs of the form (‘+’, s1, s2) with s1 and s2 being either
‘−’ or ‘+’. The following table gives the optimal solution of the minimisation problem for the considered
combinations of signs:

(s0, s1, s2) (+,−,−) (+,−,+) (+,+,−) (+,+,+)
(e0, e1, e2) (1,−1,−1) (0,−1, 1) (0, 1,−1) (0, 1, 1)

4

4.3 Finding the Constant Term of the Linear Invariant

Finally, we focus on finding the constant term e of the linear invariant v = e+e0 ·n+
2∑
i=1

ei ·Ri ≥ 0, when

the coefficients e0, e1, e2 are known, and when the digraph of the counter automaton I = M1 ∩M2

11

s

t r

0

00

00

1

−1

(A)
2 3 4 5 6

2

44

5

6

P

V

Length: 11

P
≤
V
+
1

V
≤
P
+
1

V
+
P
≤
9

V
+
P
≥
0

(B)

110

2
< > < > < > < > = =
¬ ® ¯

4 peaks︷ ︸︸ ︷

< > < > < > < > = =

¬ ®︸ ︷︷ ︸
3 valleys

example of sequence correspon-
ding to the feasible pair (4,3):
0,2,0,2,0,2,0,2,0,0,0

Fig. 2: (A) The invariant digraph of the counter automata for the nb_peak and the nb_valley time-
series constraints; (B) The set of feasible values of the result variables P and V of the nb_peak and
the nb_valley time-series constraints, respectively, for sequences of length 11.

wrt v does not contain any negative cycles. By Theorem 1, the weight of any accepting sequence X
wrt I in GvI is less than or equal to v, then if the weight of X is non-negative, it implies that v is also
non-negative. Since the invariant digraph GvI does not contain any negative cycles, then the weight of X
cannot be smaller than some constant C. Hence it suffices to find this constant and set the constant

term e to −C. The value of C is computed as the constant e0 · (p−1)−
2∑
i=1

β0
i (see Definition 3) plus the

shortest path length from the node of GvI corresponding to the initial state of I to all the nodes of GvI
corresponding to the accepting states of I.

Example 5 (obtaining invariants) Consider nb_peak(X,P) and nb_valley(X,V) withX being a time
series of length n such that n ≥ 2. In Example 4, we found four vectors for the relative coefficients e0,
e1, e2 of the linear invariant e + e0 · n + e1 · P + e2 · V ≥ 0. For every found vector for the relative
coefficients (e0, e1, e2), we obtain a weighted digraph, whose weights now are integer numbers. For
example, for the vector (e0, e1, e2) = (0,−1, 1), the obtained digraph is given in Part (A) of Figure 2.
We compute the length of the shortest path from the node s, which corresponds to the initial state
of the counter automaton in Part (C) of Figure 1 to every node corresponding to an accepting state
of the counter automaton in Part (C) of Figure 1. The length of the shortest path from s to s is 0,
from s to t is 0, and from s to r is −1. The minimum of these values is −1, hence the constant term e

equals −(0 + (−1)) = 1. The obtained linear invariant is P ≤ V + 1.
In a similar way, we find the constant terms for the other found vectors of the relative coefficients

(e0, e1, e2), and obtain three other linear invariants: V ≤ P + 1, V + P ≤ n− 2, V + P ≥ 0.
Part (B) of Figure 2 shows the polytope of feasible points (P, V) when n is 11. Observe that three

of the four linear invariants found are facets of the convex hull of this polytope. 4

4.4 Improving the Generated Linear Invariants

When at least one of the counter automataM1,M2 has at least one potential counter, then there may
exist an accepting sequence X = 〈X1, X2, . . . , Xn〉 wrt I =M1 ∩M2 such that the weight of X in the

invariant digraph GvI is strictly less than v = e + e0 · n+
2∑
i=1

ei ·Ri. This may lead to weaker invariants

and Example 6 illustrates such a situation.

Example 6 (weak invariant) Given the proper plateau regular expression ‘>=+<’, consider a conjunction
of nb_proper_plateau(X,R1) and sum_width _proper_plateau(X,R2) imposed on the same
time series X of length n, and a linear function v = e + e0 · n + e1 · R1 + e2 · R2. The intersection of
the counter automata for these two constraints is given in Part (A) of Figure 3. By inspection we can

12

derive the invariant R2 ≥ 2 · R1, which cannot be generated by the method described in Sections 4.1,
4.2 and 4.3, because of the following reason: when e0 = 0, e1 = −2, and e2 = 1, the weights of the arcs
from a to b and from b to c are both e0, and the weight of the arcs from c to a is e0 + e1 + e2, and thus
the weight of the cycle a− b− c− a is 3 · e0 + e1 + e2 = −1.

Just before triggering the transition from c to a, the value of the counter D2 is at least 1 since
the counter automaton had triggered the transition from b to c before, which incremented D2. Let us
modify the intersection I so that the counter D2 is not updated on the transition from b to c, and the
counter R2 is updated as R2+D2+2 on the transition from c to a. The modified counter automaton I∗
recognises the same set of signatures as I, and after consuming any accepting sequence wrt I, the counter
automaton I∗ returns the same tuple of final values as I. In addition, the weight of the cycle a−b−c−a
in I∗ is equal to 3 · e0 + e1 + 2 · e2, which is 0 when e0 = 0, e1 = −2, and e2 = 1. Hence, the invariant
R2 ≥ 2 ·R1 can be generated after some modifications of the intersection I. 4

a
{
R1 ← 0
D2 ← 0, R2 ← 0

}

cb

return R1, R2

≥

<

<

>

=
D2 ← D2 + 1

=
D2 ← D2 + 1

<

D2 ← 0

>

R
1 ←

R
1 +

1

D
2 ←

0

R
2 ←

R
2 +
D
2 +

1

(A)

a
{
R1 ← 0
D2 ← 0, R2 ← 0

}

cb

return R1, R2

≥

<

<

>

=

=
D2 ← D2 + 1

<

D2 ← 0

>

R
1 ←

R
1 +

1

D
2 ←

0

R
2 ←

R
2 +
D
2 +

2

(B)
a

cb

e0

e0

e0

e0

e0

e0

e0

e0 + e1 + 2 · e2

(C)

Fig. 3: (A) Intersection of counter automata for nb_proper_plateau and sum_width_
proper_plateau, for which the method described in Sections 4.1, 4.2 and 4.3 does not generate
facet-defining invariants; (B) Delayed intersection obtained from the intersection in (A); (C) Invariant
digraph obtained from the delayed intersection in (B).

To handle the issue presented in Example 6 we introduce a preprocessing technique of the intersection
of counter automata. The technique relies on the notion of delay of a potential counter A at a state q of
the intersection I, which is a lower bound on the value of A when a sequence of triggered transitions of
the counter automaton ends up in state q. Intuitively, we can change the updates of some counters in a
way that for any accepting sequence wrt I, the returned tuple of values does not change, but the arcs of
the invariant digraph obtained from the modified intersection I∗ will have larger weights. The modified
intersection that we obtain satisfies the three following conditions:

1. The set of accepting sequences wrt I coincides with the set of accepting sequences wrt I∗.

13

2. For every accepting sequence X wrt I, the counter automata I and I∗ return the same tuple of
values.

3. For any accepting sequence X, the weight of X in GvI∗ is greater than or equal to the weight of X

in GvI , where v is e + e0 · n+
2∑
i=1

ei ·Ri.

By Condition 3, since for every X, the weight of X in GvI∗ is greater than or equal to the weight of X
in GvI , the weight of every simple circuit in X may also increase, which may lead to stronger invariants.
To obtain such counter automaton I∗, we first introduce in Definition 4 the notion of list of delays of
a state q of the intersection I, denoted by dq. An element i of dq is an array whose values correspond
to the potential counters ofMi. The value j of this array represents a lower bound on the value of the
counter of I corresponding the potential counter j ofMi when the counter automaton I arrives to the
state q. Further, based on this notion, in Definition 5, we introduce the notion of delayed intersection.
Finally, in Theorem 2 we show that the delayed intersection satisfies Conditions 1, 2, and 3.

Definition 4 (list of delays of a state) Consider a counter automaton I =M1 ∩M2. The list of
delays dq of a state q is a list of arrays, where the size of the i-th array in dq is the number of potential
counters in the counter automatonMi. Let j be the index of a counter ofMi, let Tq denote the set of
transitions entering q, and T ′q denote a subset of transitions of Tq starting from a state different from q,
then the value dq[i][j] is defined as

dq[i][j] =

0 ∃t ∈ Tq, αti,j,j = 0,

min(α0
i,j , min

t∈T ′q
αti,j,0) q is the initial state of I, and ∀t ∈ T ′q, αti,j,j > 0,

min
t∈T ′q

αti,j,0 otherwise,

where αti,j,j (resp. α
t
i,j,0) denotes the coefficient of the counter Aj (resp. the free term) in the update

of Aj in the automatonMi.

Example 7 (list of delays of a state) Consider two counter automataM1 andM2 such that their inter-
section I is given in Part (A) of Figure 3. The counter automatonM1 has one counter R1, andM2 has
two counters D2 and R2. Let us compute the list of delays of every state of I. Since onlyM1 does not
have any potential counters then for any state q of I, the array dq[1] is empty. The following table gives
the list of delays of every potential counter of I.

state a b c

dq [[], [0]] [[], [0]] [[], [1]]

It implies that, when the counter automaton I is either in state a or state b, we only know that its
potential counter D2 is non-negative. However, when I is in the state c, the value of its potential counter
is at least 1. 4

Definition 5 (delayed intersection) Consider the counter automaton I =M1 ∩M2. The delayed
intersection I∗ ofM1,M2 is obtained from I using the following rules:

◦ The set of states and accepting states of I∗ coincide with those of I.
◦ The set of transitions of I∗ coincide with the one of I.
◦ The number of counters of I∗ is the same as for I∗, and is denoted by r.
◦ The initial values of main counters of I∗ are the same as for I∗. For every potential counter A∗i,j

of I∗, its initial value equals α0
i,j − dq[i][j], where q is the initial state of I∗ and α0

i,j is the initial
value of Ai,j of I.

14

◦ For every transition t from a state q1 to a state q2 and for any counterMi,j of I, the update of Ai,j
on t is equal to αti,j,0 +

r∑
k=1

αti,j,k ·Ai,k, while the update of the corresponding counterM∗i,j on the

corresponding transition of I∗ is equal to γti,j,0 +
r∑

k=1

αti,j,k ·A
∗
i,k, where γ

t
i,j,0 is defined as follows:

– If Ai,j is a main counter of I, then γti,j,0 = αti,j,0 +
ri−1∑
k=1

αti,j,k · dq1 [i][k], where ri is the number

of counters of the counter automatonMi.
– If Ai,j is a potential counter of I, then γti,j,0 = αti,j,0 + dq1 [i][j]− dq2 [i][j].

◦ The acceptance function of I∗ is the same as for I.

Example 8 (delayed intersection) Consider two counter automataM1 andM2 such that their intersec-
tion I is given in Part (A) of Figure 3. The delayed intersection I∗ constructed according to Definition 5
is given in Part (B) of Figure 3. The main difference between I∗ and I is that the counter D2 is no
longer updated on the transition from b to c, but its contribution is integrated directly to R2 on the
transition from state c to state a. 4

Theorem 2 (properties of delayed intersection) Consider the counter automaton I =M1 ∩M2

and the corresponding delayed intersection I∗. The three following conditions are satisfied:

1. The set of accepting sequence wrt I coincides with the set of accepting sequence wrt I∗.
2. For every accepting sequence X wrt I, the counter automata I and I∗ return the same tuple of

values.
3. For any accepting sequence X, the weight of X in GvI∗ is greater than or equal to the weight of X

in GvI , where v is e + e0 · n+
2∑
i=1

ei ·Ri.

Proof We prove each of the three statements separately.

[Proof of (1)]. Since I have the same sets of states, transitions and accepting states, and everyMi has
the incremental-automaton property, then the sets of accepting sequences of I and I∗ are the same.

[Proof of (2)]. Since the acceptance function of both I and I∗ returns a tuple of main counters, we will
show that after consuming the signature S of any accepting sequence, the main counters of I and I∗
contain the same values. Let us prove this statement by induction on the length of S.

Base case. Let us consider a sequence S = 〈S1〉 consumed by I∗. The counter automaton I∗ triggered
one transition t from its initial state q to some other state q′. Then, let us consider a main counter A∗i,ri .

By definition, its value equals αti,j,0+A
∗
i,ri,ri+

ri−1∑
k=1

αti,j,k·(A
∗
i,k+dq[i][k]). Since any potential counterA

∗
i,k

has not been updated, its contains the initial value, which equals α0
i,j − dq[i][k]. Furthermore, the value

of A∗i,ri after one transition is equal to αti,j,0 + α0
i,ri +

ri−1∑
k=1

αti,j,k · (α
0
i,j − dq[i][k] + dq[i][k]) = αti,j,0 +

α0
i,ri +

ri−1∑
k=1

αti,j,k · α
0
i,j , which coincides with the value of the corresponding counter Ai,j of I.

Induction step. Assume that after having consumed a sequence S = 〈S1, S2, . . . , Sm−1〉, the main
counters of I∗ contain the same values as the main counter of I after having consumed the same
sequence. Let us show that after consuming one another symbol Sm, which triggers a transition t, the
main counters of I∗ and I will have the same value. The update of A∗i,ri on t is equal to α

t
i,j,0 +A∗i,ri +

ri−1∑
k=1

αti,j,k · (A
∗
i,k + dq[i][k]). By the induction hypothesis the value of A∗i,ri in I and Ai,ri in I

∗ are the

same after consuming S. Hence, we only need to show after having consumed S, that the value of the

15

potential counter Ai,k of I equals A∗i,k + dq[i][k]. This can also be shown by induction, starting from a

state that is a destination of a triggered transition t′ such that αt
′

i,k,k = 0.

[Proof of (3)]. We now prove the last statement. Let us consider the invariant digraphs GvI∗ and GvI ,

where v = e+ e0 ·n+
2∑
i=1

ei ·Ri. We now show that for every accepting sequence X = 〈X1, X2, . . . , Xn〉

wrt I, its weight in GvI∗ is greater than or equal to its weight in GvI . The weight of X in GvI is the

constant e+ e0 · (p− 1)+
2∑
i=1

ei ·β0
i (see Definition 3) plus the weight of the walk of X, which is in total

e+ e0 · (p− 1)+
2∑
i=1

ei ·β0
i + e0 · (n− p+1)+

n−p+1∑
j=1

2∑
i=1

ei ·β
tj
i = e+ e0 ·n+

2∑
i=1

ei ·

(
β0
i +

n−p+1∑
j=1

β
tj
i

)
,

where p is the arity of the considered signature, and t1, t2, . . . tn−p+1 is the sequence of transitions of I
triggered upon consuming the signature of X. Similarly, the weight of X in GvI∗ is equal to e + e0 · n+
2∑
i=1

ei ·

(
δ0i +

n−p+1∑
j=1

δ
tj
i

)
, where δ0i is the initialisation weight in I∗, and every δtji is the weight of an

arc tj in GvI∗ .

We now show that the value ei ·

(
β0
i +

n−p+1∑
j=1

β
tj
i

)
is not greater than ei ·

(
δ0i +

n−p+1∑
j=1

δ
tj
i

)
. This

will imply that the weight of the walk of X in GvI is less than or equal to the weight of the walk of X
in GvI∗ .

By Definition 2, the weight of every arc of GvI (resp. GvI∗), corresponding to a transition t of I, (resp.

I∗) is equal to
2∑
i=1

ei · βti (resp.
2∑
i=1

ei · δti).

As in Theorem 1, we consider the function vi = ei · Ri. Depending on the sign of ei we have two
cases:

Case (1): ei ≥ 0. Then, the weight ofX in GviI (resp. GviI∗) is equal to ei ·α (resp. ei ·γ), where α denotes

β0
i +

n−p+1∑
j=1

β
tj
i =

ri∑
k=1

α0
i,k +

n−p+1∑̀
=1

αt`i,ri,0 (resp. γ denotes δ0i +
n−p+1∑
j=1

δ
tj
i =

ri∑
k=1

γ0i,k +
n−p+1∑̀

=1

γt`i,ri,0).

Since every γt`i,ri,0 = αt`i,ri,0+
ri−1∑
k=1

dq[i][k], it implies that γt`i,ri,0 ≥ α
t`
i,ri,0

. Then, α ≤ γ, and when ei > 0,

we have ei · γ ≥ ei · α.

Case (2): ei < 0. Then, the weight of X in GviI (resp. GviI∗) is equal to ei · α (resp. ei · γ), where α

denotes β0
i +

n−p+1∑
j=1

β
tj
i =

ri∑
k=1

α0
i,k +

n−p+1∑̀
=1

ri∑
k=1

αt`i,k,0 (resp. γ denotes δ0i +
n−p+1∑
j=1

δ
tj
i =

ri∑
k=1

γ0i,k +

n−p+1∑̀
=1

ri∑
k=1

γt`i,k,0). Further, by construction of I∗, every γt`i,k,0 (with i ∈ [1, ri]) is equal to αt`i,k,0 +

dq1 [i][k]− dq2 [i][k], where q1 and q2 are the source and the destination of the transition t`, respectively.
In addition, γt`i,ri,0 = αt`i,ri,0. By replacing every γt`i,k,0 with its expression, and simplifying the sum, we

obtain
ri∑
k=1

α0
i,k+

n−p+1∑̀
=1

ri∑
k=1

(αt`i,k,0−dq′ [i][k]), where q
′ is the last state visited by I upon consuming X.

Since every dq′ [i][k] is non-negative, α
t`
i,k,0−dq′ [i][k] ≤ α

t`
i,k,0. This implies that γ ≤ α, and when ei < 0,

ei · γ ≥ ei · α. ut

Note that in the counter automaton I∗, all the constants γti,j,0 introduced in Definition 5 are
non-negative by definition of the delay (see Definition 4). It means that the reasoning used in the proof of
Theorem 1 requiring the non-negativity of these constants remains valid for the invariant digraph GvI∗ .

16

Example 9 (generating stronger invariants) Consider two counter automataM1 andM2 such that their
intersection I, and their delayed intersection I∗ are respectively given in Parts (A) and (B) of Figure 3.
The invariant digraph GvI∗ is given in Part (C) of Figure 3 when e0 > 0, e1 > 0, and e2 < 0. By stating
the minimisation problem from Section 4.2, we obtain the following coefficients: e0 = 0, e1 = −2,
and e2 = 1. The constant e is found to be 0, and we obtain the invariant 2 · R1 ≤ R2, which could not
be found with the invariant digraph GvI . 4

4.5 Generating Conditional Linear Invariants with the Non-Default Value Condition

Quite often a counter automatonMi (with i ∈ [1, 2]) returns the default value only when the signature
of X does not contain any occurrence of some regular expression σi. For example, for nb_peak(X,R),
the default value of R is 0. The corresponding automaton will return 0 iff X does not contain any peaks.
This may lead to a convex hull of points of coordinates (R1, R2) returned by I containing infeasible
integer points, e.g. see Part (A) of Figure 4. Some of these infeasible points can be eliminated by stronger
invariants subject to a condition, called the non-default value condition, that the final value returned by
the counter automaton is not the default value of the corresponding constraint. We first illustrate the
motivation for such conditional linear invariants.

Example 10 (motivation for conditional invariants) Consider the nb_decreasing_terrace(X,R1)
and the sum_width_ increasing_terrace(X,R2) constraints, where X is a time series of length n,
R1 is restricted to be the number of maximal occurrences of decreasing_terrace = ‘>=+>’ in the
signature of X, and R2 is restricted to be the sum of the number of elements in subseries of X whose
signatures correspond to words of the language of increasing_terrace = ‘<=+<’. In Figure 4,
for n = 12, the squared points represent feasible pairs (R1, R2), while the circled points stand for
infeasible pairs (R1, R2) inside the convex hull. The linear invariant 2 · R1 + R2 ≤ n − 2 is a facet of
the polytope, which does not eliminate the points (1, 8), (2, 6), (3, 4), (4, 2). However, if we assume that
both R1 > 0 and R2 > 0, then we can add a linear invariant eliminating these four infeasible points,
namely 2 · R1 + R2 ≤ n − 3, shown in Part (B) of Figure 4. In addition, the infeasible points on the
straight line R2 = 1 will also be eliminated by the restriction R2 = 0∨R2 ≥ 2 given in [3, p. 2962]. 4

0 1 2 3 4 5

0

1

2

3

4

5

6

7

8

9

10

nb_decreasing_terrace

su
m

_
w

id
th

_
in

cr
ea

si
ng

_
te

rr
ac

e Length: 12

feasible
infeasible

2 ·R
1 +
R
2 ≤

12−
2

(A)
0 1 2 3 4 5

0

1

2

3

4

5

6

7

8

9

10

nb_decreasing_terrace

su
m

_
w

id
th

_
in

cr
ea

si
ng

_
te

rr
ac

e Length: 12

feasible2 ·R
1 +
R
2 ≤

12−
3

R2 ≥ 2

(B)

Fig. 4: Invariants on the result values R1 and R2 of nb_decreasing_terrace and
sum_width_increasing_terrace for a sequence length of 12 (A) with the general linear invari-
ants, and (B) with the Non-Default Value condition.

We now outline how to adapt our method of generating linear invariants in case the result values
of the constraints of interest cannot be the corresponding default values. Consider that each counter
automatonMi (with i ∈ [1, 2]) returns the default value of the corresponding constraint after consuming

17

the signature of an accepting sequence X wrtMi iff the signature of X does not contain any occurrence
of some regular expression σi over the alphabet Σ. LetM′i denote the counter automaton which accepts
the words of the language Σ∗σiΣ∗, where Σ∗ denotes any word over Σ. Then, using the method described
in Sections 4.1, 4.2 and 4.3 we generate the linear invariants forM′1 ∩M′2. These linear invariants hold
when the non-default value condition is satisfied.

4.6 Facet Analysis of Linear Invariants

Consider two time-series constraints γ1(X,R1) and γ2(X,R2) imposed on the same sequence X of
length n. After having generated linear and conditional linear invariants linking R1, R2 and n, an
essential question is whether these invariants are facets of the convex hull of feasible combinations R1

and R2, or not. Given a linear invariant f = e + e0 · n + e1 · R1 + e2 · R2 ≥ 0 and a infinite set A of
values of n such that the set of sequences whose length is in A can be represented by a constant-size
automaton, this section presents a two-step method for answering the question whether this invariant is
a facet of the convex hull when n is in A:

1. Find two distinct integer points P1 and P2, possibly parameterised by n ∈ A, laying on the straight
line f = 0.

2. Prove that P1 and P2 are feasible for any n ∈ A.

The challenge here is the second step, which requires to prove the feasibility of P1 and P2 for an
infinite set of values of n. Let upRi(n) denote the maximum value of Ri among all time series of length n,
let a1, a2 be in {0, 1} and let b1 and b2 be natural numbers. It turns out that for points of the form(
hx,

hy

)
=

(
a1 · upR1

(n) + (1− 2 · a1) · b1,
a2 · upR2

(n) + (1− 2 · a2) · b2

)
we can represent the set of time series corresponding to

such a point as the intersection of three constant-size automata, namely (i) the automaton representing
the assumed condition on n, (ii) the automaton that accepts only and only all time series yielding hx
as the value of R1, and (iii) the automaton that accepts only and only all time series yielding hy as the
value of R2. The constant-size automata representing a condition on R1 and R2 can be synthesised from
the seed transducers for the regular expressions associated with γ1 and γ2, as shown in Section 6. We
now give in Sections 4.6.1, 4.6.2 and 4.6.3 more details for each of the two steps, and also how to pick
the set A.

4.6.1 Choosing the set A of sequence lengths

Some of the invariants we generate are facets of the convex hull only for a subset of values of n, e.g. only
even-length sequences. This requires to assume a condition on n that can be represented by a constant-size
automaton. We start with the less restrictive condition and try to prove that an invariant is a facet, and
then gradually restrict the condition if we cannot prove it in full generality.

4.6.2 Step One: Finding Two Integer Points on a Straight Line

To find two distinct points on the straight line f = 0, we assume a value of R1 as a1 · upR1
(n)+ (1− 2 ·

a1) · b1, which by [5] is equal to a1 · n−c1−(n−c1) mod d1
d1

+ (1− 2 · a1) · b1, with c1 and d1 being integer
constants depending on the regular expression associated with γ1. If the coefficient of R2 in f is 0, then
the value of R2 is not relevant and we can take, for example, 0 or 1 as the value of R2. Otherwise, by
isolating R2 from the equation f = 0 we obtain:

R2 =
(−e0 · d1 − e1 · a1) · n+ (−e · d1 + e1 · a1 · c1 − e1 · (1− 2 · a1) · b1 · d1) + e1 · a1 · (n− c1) mod d1

d1 · e2
(12)

18

Then we verify that the right-hand side of (12) is of the form a2 · n−c2−(n−c2) mod d2
d2

+(1−2 ·a2) ·b2,
with c2 and d2 being integer constants depending on the regular expression associated with γ2, with a2
being in {0, 1}, and with b2 being a natural number. This is done by solving a system of constraints
assuming that n belongs to A. The solutions of such system are the candidate points of the next step.

4.6.3 Step Two: Proving Feasibility of an Integer Point

Once we found two distinct integer points laying on the straight line f = 0, we show that both points
are feasible for any n in A.

For a point of coordinates (hx, hy) we construct two constant-size automataM1 andM2, whereM1

(resp.M2) is an automaton recognising the signatures of all and only time series yielding hx (resp. hy)
as the value of R1 (resp. R2). LetMn be a constant-size automaton representing the n ∈ A condition,
and d denote the smallest difference between two values in A. If, in the intersectionM ofM1,M2, . . . ,
Mn there are cycles of length d, then the point (hx, hy) is feasible for any sequence whose length is in A.
From this intersection we also compute the smallest value of n, for which these two points are feasible.
This is the length of the shortest path from the initial state ofM to an accepting state ofM that goes
through a state belonging to a cycle of length d.

If we cannot prove the feasibility of our two current points, then we try a different combination of a1
and b1, and obtain two other distinct points. Since the set of values of b1 is, potentially, unbounded we
limit ourselves only to the values of b1 belonging to the set {0, 1, 2, 3}.

Example 11 Consider the conjunction of the nb_peak(X,P) and the nb_valley(X,V) time-series
constraints imposed on the same time seriesX = 〈X1, X2, . . . , Xn〉, and the linear invariant P+V ≤ n−2.
Let us now analyse whether this invariant is facet defining or not. By [5], both upP (n) and upV (n) are
equal to n−1−(n−1) mod 2

2 .

– When P is equal to upP (n), then by (12), V is equal to n−3+(n−1) mod 2
2 ; we consider two cases:

i. If (n− 1) mod 2 = 0, then n−3+(n−1) mod 2
2 = (n−1)−2

2 = upV (n)− 1.
ii. If (n− 1) mod 2 = 1, then n−3+(n−1) mod 2

2 = (n−2)−2
2 = upV (n)− 1.

In both cases, we obtain the candidate point P1 = (upP (n), upV (n)− 1).
– When P is equal to upP (n)− 1, then by (12), V is n−1+(n−1) mod 2

2 ; we consider two cases:
i. If (n − 1) mod 2 = 0, then n−1+(n−1) mod 2

2 = n−1
2 = upV (n) and we obtain the candidate

point P2 = (upP (n)− 1, upV (n)).
ii. If (n − 1) mod 2 = 1, then n−1+(n−1) mod 2

2 = (n−2)+2
2 = upV (n) + 1 and we obtain the

candidate (upP (n)− 1, upV (n) + 1). This candidate is not feasible since its second coordinate is
strictly greater than the maximum value of the second coordinate of any feasible point.

Hence, for the case (n − 1) mod 2 = 0, we obtain two distinct candidate points P1 and P2 located
on the straight line P + V = n− 2. To prove that P2 = (upP (n)− 1,upV (n)) is feasible, we construct
and intersect the automata for the R1 = upP (n), R2 = upV (n)− 1, and (n− 1) mod 2 = 0 conditions,
and observe that the intersection has a cycle of length 2, which implied the feasibility of P2 for any odd
sequence size. The same procedure is used for proving the feasibility of P1 for any odd sequence size.

Since both P1 and P2 lay on the straight line R1 +R2 = n− 2, and are feasible for any odd length,
then the straight line R1+R2 = n− 2 is a facet of the convex hull of feasible points, when n is odd. 4

5 Synthesising Non-Linear Invariants

The contribution of this section is a methodology for two families of time-series constraints, namely
the nb_σ and the sum_width_σ families, which both proposes conjectures and proves them automat-
ically by using constant-size automata, i.e. automata whose number of states, and whose input alphabet
size are independent both from an input time-series length and from the values in an input time series.

19

For a conjunction of two time-series constraints γ1(X,R1) and γ2(X,R2) imposed on the same time
series X = 〈X1, X2, . . . , Xn〉, our method describes sets of infeasible result-value pairs for (R1, R2). We
assume that every time-series constraint mentioned in this section belongs either to the nb_σ or to
the sum_width_σ family. Each set of infeasible pairs is described by a formula fi(R1, R2, n) expressed
as a conjunction C1

i ∧ C
2
i ∧ . . . ∧ Ckii of elementary conditions Cji between R1, R2 and n. The learned

Boolean function f1 ∨ f2 ∨ · · · ∨ fm represents the union of sets of infeasible pairs (R1, R2), while its
negation ¬f1 ∧¬f2 ∧ · · · ∧¬fm corresponds to an implied constraint, which is a universally true Boolean
formula, namely

∀X, γ1(X,R1) ∧ γ2(X,R2)⇒
m∧
i=1

¬fi(R1, R2, n) (13)

In order to prove that (13) is universally true we need to show that for every fi(R1, R2, n), there does
not exist a time series of length n yielding R1 (resp. R2) as the result value of γ1 (resp. γ2) and satisfying
fi(R1, R2, n). The key idea of our proof scheme is to represent the infinite set of time series satisfying
each elementary condition Cji of fi(R1, R2, n) as a constant-size automaton Mi,j . Then checking that
the intersection of all automata Mi,1,Mi,2, . . . ,Mi,ki is empty implies that fi(R1, R2, n) is indeed
infeasible. Note that such proof scheme is independent of the time-series length n; moreover, it does not
explore any search space.

As for the linear invariants, the generation process of non-linear invariants is offline: it is done once
and for all to build a reusable database of generic invariants. This section is organised as follows:

– Section 5.1 motivates this work with a running example, which illustrates the need for deriving
non-linear invariants.

– Section 5.2 presents our method for deriving non-linear invariants for a conjunction of time-series
constraints. It starts with an overview of the three phases of our method, and then details each phase:
1. A generating data phase is detailed in the introduction of Section 5.2. Its goal is to generate a

dataset, from which we will extract non-linear invariants.
2. A mining phase is detailed in Section 5.2.2. It extracts, from the data generated in the mining

phase, a hypothesis H consisting of Boolean functions of the form f1 ∨ f2 ∨ · · · ∨ fm.
3. A proof phase is detailed in Section 5.2.3. For every Boolean function fi (with i ∈ [1,m]) in the

extracted hypothesis H, the proof phase either proves its validity for every time-series length, or
refute it by generating a counter example. The counter example is used to modify the current
hypothesis and the process is repeated.

Note that our generated data is noise-free, and that our goal is not to discover statistical properties
of time-series constraints, but rather to extract non-linear invariants, which are always true.

5.1 Motivation for Generating Non-Linear Invariants and Running Example

Consider a conjunction of time-series constraints γ1(X,R1) ∧ γ2(X,R2) imposed on the same time
series X. In Section 4, using the representation of γ1 and γ2 as counter automata, we presented a
method for deriving linear invariants linking the values of R1, R2. Although, in most cases the derived
inequalities were proven to be facet-defining, we observe that in some cases, even when using these
invariants, the solver could still take a lot of time to find a feasible solution or to prove infeasibility.
This happens because of some infeasible combinations of values of the result variables that were located
inside the convex hull of all feasible combinations. The following example illustrates such a situation.

Example 12 (running example) Consider the conjunction of sum_width_decreasing_sequence(
X,R1) and sum_width_zigzag(X,R2) time-series constraints imposed on the same time series X
of length n, where a decreasing sequence and a zigzag respectively correspond to ‘(> (> | =)∗)∗ >’
and ‘(<>)+ < (> |ε) | (><)+ > (< |ε)’. For the values of n in the interval [9, 12], Figure 5 represents

20

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

su
m

_
w

id
th

_
zi

gz
ag

Length: 9

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence
su

m
_

w
id

th
_

zi
gz

ag

Length: 10

0 2 4 6 8 10 12

0

2

4

6

8

10

12

sum_width_decreasing_sequence

su
m

_
w

id
th

_
zi

gz
ag

Length: 11

0 2 4 6 8 10 12

0

5

10

sum_width_decreasing_sequence

su
m

_
w

id
th

_
zi

gz
ag

Length: 12

Fig. 5: Feasible points, shown as blue squares, for the result variables R1, R2 of the conjunction of
sum_width_decreasing_sequence(X,R1) and sum_width_zigzag(X,R2) on the same time se-
ries X = 〈X1, X2, . . . , Xn〉 for the values of n in {9, 10, 11, 12}; red circles represent infeasible points
inside the convex hull of feasible points, while red straight lines depict the facets of the convex hull of
feasible points.

feasible pairs of (R1, R2) as blue squares, and infeasible pairs lying inside the convex hull of feasible
(blue) points as red circles. The convex hull contains a significant number of infeasible (red) points,
which we want to characterise automatically. 4

Next section develops a systematic approach for generating non-linear invariants characterising in-
feasible combinations of R1 and R2 located within the convex hull of feasible combinations.

5.2 Discovering and Proving Invariants

Consider a conjunction of time-series constraints γ1(X,R1) and γ2(X,R2) imposed on the same time
series X. This work focuses on automatically extracting and proving invariants that characterise some
subsets of infeasible combinations of R1 and R2 that are all located inside the convex hull CH of feasible
combinations of R1 and R2. Our approach uses three sequential phases.
• [generating data phase] The first phase is a preparatory work, namely generating data, in which
we generate feasible and infeasible combinations of pair R1 and R2 inside CH.
• [mining phase] The second phase, called the mining phase, consists of extracting a hypothesis H
describing the set I of infeasible combinations of R1 and R2 from the generated data. We represent this
hypothesis as a disjunction of Boolean functions fi(R1, R2, n).
• [proof phase] The third phase, called the proof phase, consists in refining the discovered hypothesis H
by validating some Boolean functions fi and by refuting and eliminating others using constant-size
automata. A refined hypothesis, which is proved to be correct in the general case, i.e. for any time-series
length, is called a description of the set I.

5.2.1 Data Generation Phase

The data generation phase consists of:

1. Generating a set of feasible combinations of the values of R1 and R2 for different time-series lengths.
2. Compute the convex hull of feasible points of R1 and R2 using Graham’s scan [28] for each considered

time series length k.
3. Represent our generated input data set as the union of two sets of triples D+ (resp. D−) called the

set of feasible (resp. possibly infeasible) examples, such that:
(a) For every (k, p1, p2) in D+, there exists at least one time series of length k that yields p1 and p2

as the values of R1 and R2, respectively.
(b) For every (k, p1, p2) in D−,

21

i. We could not find any time series of length k that would yield p1 and p2 as the values of R1

and R2, respectively, even if such time series may exist.
ii. (p1, p2) is located within the convex hull of feasible combinations of R1 and R2.

Note that our method for generating non-linear invariants does not require to identify all infeasible points
located within the convex hull of feasible combinations of R1 and R2. While this may lead to generating
some wrong hypotheses, such incorrect hypotheses would be discarded in the proof phase.

In the context of the 35·(35−1)
2 constraint pairs we consider in this article, we generate all feasible

combinations of the values of R1 and R2 for each time-series length n in [7, 12]. This can be achieved
overnight on a single computer, and only needs to be performed once to generate the invariants.

5.2.2 Mining Phase

Consider a conjunction of two time-series constraints γ1(X,R1) and γ2(X,R2), imposed on the same
time series X. This section shows how to extract a hypothesis in the form of a disjunction of Boolean
functions, describing the infeasible combinations of values of R1 and R2 that are located within the
convex hull of feasible combinations.

There exist a number of works on learning a disjunction of predicates [17], and some special case,
where disjunction corresponds to a geometric concept [18,20]. Usually, the learner interacts with an
oracle through various types of queries or with the user by receiving positive and negative examples; the
learner tries to minimise the number of such interactions to speed up convergence.

In our case, the input data consists of the set of positive, called infeasible, and negative, called
feasible, examples, which is finite and which is completely produced by our generating phase. This allows
exploring all possible inputs without any interaction.

We now present the components of our mining phase:

– First, we define the space of concepts, hypotheses, we can potentially extract from our dataset.
– Second, we outline the target hypothesis for time-series constraints, i.e. what we are searching for.
– Finally, we briefly describe the algorithm used for finding the target hypothesis.

Space of Hypotheses Every element of our hypothesis space is a disjunction of Boolean functions from
a finite predefined set H. Each element of H is a conjunction C1 ∧ C2 ∧ · · · ∧ Cp with every Ci being a
predicate, called an atomic relation, where the main atomic relations are:

(i) n ≥ c,
(ii) n mod c = d,

(iii) Rj mod c = d,
(iv) Rj ≥ d,

(v) Rj ≤ d,
(vi) Rj = c,

(vii) Rj = upRj (n)− c,
(viii) Rj = c ·Rk + d,

with c and d being natural numbers, and upRk(n) being the maximum possible value of Rk given the
constraint γk(〈X1, X2, . . . , Xn〉 , Rk). The intuition of these atomic relations is now explained:

– (i) stems from the fact that many invariants are only valid for long enough time series.
– (ii) is motivated by the fact that the parity of the length of a time series is sometimes relevant.
– (iii) is justified by the fact that the parity of R1 or R2 can come into play.
– (iv) and (v) are related to the fact that infeasible combinations of R1 and R2 can be located on a

ray or an interval.
– (vi) and (vii) are respectively linked to the fact that quite often infeasible combinations of R1

and R2 within the convex hull are very close to the minimum or the maximum values [5] of Rk (with
k ∈ [1, 2]), i.e. c is a very small constant, typically 0 or 1.

– (viii) denotes the fact that some invariants correspond to a linear combination of R1 and R2.

These atomic relations were conceived with two guidelines in mind. First the atomic relations reflect
subsets of infeasible points we could observe in our generated dataset. Second, since we want to do proofs
that do not depend on the sequence size, we focus on atomic relations which could be represented by a
constant size automaton.

22

Target Hypothesis

Definition 6 (Boolean function consistent wrt a dataset) A Boolean function of H is consistent
wrt a dataset D iff it is true for at least one infeasible example of D, and false for every feasible example
of D.

For example, R1 = R2 ∧ R1 mod 2 = 1 is consistent with the dataset of Figure 5, but the two Boolean
functions R1 = 13 and R1 = R2 are not.

Definition 7 (universally true Boolean function) A Boolean function of H is universally true if it
is true for any time series of any length.

Definition 8 (target hypothesis) The target hypothesis H is the disjunction of all Boolean functions
of H consistent with D.

Note that in the target hypothesis some Boolean functions can be subsumed by other Boolean functions.
We cannot do the subsumption analysis at this point since we do not yet know which Boolean functions
are true or not.

Mining Algorithm Our mining algorithm generates possible conjunctions of the atomic relations in a
bottom-up manner, filtering out those Boolean functions not consistent with our dataset. The set of
atomic relations to consider is finite, as we only have to consider small integer values for constants c and
d. The algorithm returns the disjunction of the remaining, consistent Boolean functions. Note that the
mining algorithm ignores Boolean functions involving the atomic relation (i) n > c, which is handled
in the proof phase. Remember that we run the algorithm only on the limited dataset D[7,12], i.e. the
dataset generated from time series of length in [7, 12]. This is because sizes that are too small lead to
degenerate polytopes, while sizes that are too large are too expensive in terms of computation.

5.2.3 Proof Phase

After extracting from D[7,12] the target hypothesis H = f1 ∨ f2 ∨ · · · ∨ fm characterising subsets of
infeasible combinations of R1 and R2 that are all located within the convex hull of feasible combinations
of R1 and R2, we refine this hypothesis, by keeping only universally true Boolean functions fi.

Before presenting our proof technique, we look at the structure of the hypothesis H. Every Boolean
function f in H is of the form f = C1 ∧C2 ∧ · · · ∧Cp and can be classified into one of the two following
categories:

– Independent Boolean Function means that every Ci is an independent atomic relation, i.e. de-
pends either on R1 or R2, but not on both. For instance, R1 = upR1

(n) ∧ R2 mod 2 = 1 is an
independent Boolean function.

– Dependent Boolean Function means that there exists at least one Ci that is a dependent atomic
relation, i.e. mentions both R1 and R2. For instance, R1 mod 2 = 1 ∧ R1 = R2 + 1 is a dependent
Boolean function.

The proof of an invariant depends on its category. We now show how to prove that an independent
(resp. dependent) Boolean function is universally true.

23

Proof of Independent Boolean Functions Since most atomic relations are independent, i.e. cases (i)
to (vii), we first focus on a necessary and sufficient condition for proving that an independent Boolean
function is universally true. Such necessary and sufficient condition is given in the main result of this
section, namely Theorem 3, provided that there exists constant-size automata associated with the atomic
relations in f .

Definition 9 (set of supporting signatures for an atomic relation) For an atomic relation C,
the set of supporting signatures TC is the set of words in Σ∗ such that, for every word in TC there exists
a time series satisfying C, whose signature is this word.

Definition 10 (set of supporting signatures for a Boolean function) For an independent Boolean

function f = C1 ∧ C2 ∧ · · · ∧ Cp, we define the set of supporting signatures Tf as
p⋂
i=1

TCi .

A Boolean function f is universally true iff it describes infeasible combinations of R1 and R2 for any
time-series length, and thus the set Tf is empty.

For any atomic relation C from (i) to (vii), i.e. an independent atomic relation, the corresponding
set of supporting signatures is represented as the language of a constant-size automatonMC . Constant
size means that the number of states of this automaton does not depend on the length of the input time
series. For a Boolean function f = C1∧C2∧· · ·∧Cp, Tf is simply the set of signatures recognised by the
automaton obtained after intersecting allMCi (with i ∈ [1, p]). This provides a necessary and sufficient
condition for proving that a Boolean function f is universally true.

Theorem 3 (necessary and sufficient condition for an independent Boolean function to be
universally true) Consider two time-series constraints γ1(X,R1) and γ2(X,R2) on the same time
series X, and a Boolean function f(R1, R2, n) = C1 ∧ C2 ∧ · · · ∧ Cp such that, for every Ci there exists
a constant-size automaton MCi . The function f is universally true iff the intersection of all automata
forMCi (with i ∈ [1, p]) is empty.

The proof of Theorem 3 follows from Definitions 9 and 10.

For some Boolean function f = C1 ∧ C2 ∧ · · · ∧ Cp, the set Tf =
p⋂
i=1

TCi may not be empty, but

finite. In this case, we compute the length c of the longest signature in Tf , and obtain a new Boolean
function f ′ = f ∧ n ≥ c+ 1. By construction, the set Tf ′ is empty, thus f ′ is universally true.

Section 6 will further show how to generate automata for independent atomic relations. Every such
automaton is called a conditional automaton.

Proof of Dependent Boolean Functions Some dependent Boolean functions, i.e. case (viii), can be handled
by adapting the technique for generating linear invariants described in Section 4.

Consider two time-series constraints γ1(X,R1) and γ2(X,R2) on the same time series X. We present
here a method for verifying that the dependent Boolean function R1 − d ·R2 = 1, with d being either 1
or 2, is universally true. Note that such Boolean function was extracted during the mining phase for 17
pairs of time-series constraints.

We prove by contradiction that the corresponding Boolean function is universally true. Our proof
consists of the following steps:

1. Assumption. Assume that there exists a time series X such that R1 − d ·R2 = 1.
2. Implication for the parity of R1 and d · R2. When R1 − d · R2 = 1, then R1 and d · R2 have

different parity.
3. Obtaining a contradiction. Since R1 and d·R2 must have different parity, there exists a value of b

that is either 0 or 1 such that the conjunction R1−d·R2 = 1 ∧ R1 mod 2 = b ∧ d·R2 mod 2 = 1−b
holds. In order to prove that R1 − d · R2 = 1 is infeasible, for either value of parameter b, we need
to show that, either the obtained conjunction is infeasible, e.g. when d = 2 and b is 0, or the method
of Section 4 produces a linear invariant R1 − d ·R2 ≥ c, with c being strictly greater than 1.

24

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

su
m

_
w

id
th

_
zi

gz
ag

Length: 9

¬ R1 = 1

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

Length: 9

 R2 = 1

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

Length: 9

®
R1 = 3 ∧
R2 ≥ 2

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

Length: 9

¯
R1 = 5 ∧
R2 ≥ 4

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

su
m

_
w

id
th

_
zi

gz
ag

Length: 9

°
R1 = upR1

(n) ∧
R2 mod 2 = 1

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

Length: 9

±
R1 = R2 ∧
R2 mod 2 = 1

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

Length: 10

²

n mod 2 = 0 ∧
R1 = upR1

(n)− 1 ∧
R2 = upR2

(n)

0 2 4 6 8 10 12

0

5

10

sum_width_decreasing_sequence

Length: 12

²

n mod 2 = 0 ∧
R1 = upR1

(n)− 1 ∧
R2 = upR2

(n)

Fig. 6: Seven groups of infeasible combinations of R1 and R2, where R1 and R2 are, respectively,
constrained by sum_width_decreasing_sequence(X,R1) and sum_width_zigzag(X,R2) on the
same sequence X of length 9 (all plots except the two plots at the bottom right) and of lengths 10 and 12
(the two plots at the bottom right).

If at this third step of our proof method the considered conjunction is feasible, and the desired
invariant R1 − d ·R2 ≥ c was not obtained, then we cannot draw any conclusion about the infeasibility
of R1 − d ·R2 = 1.

In practice, for the 17 pairs of time-series constraints, for which we extracted the Boolean function
R1 − d ·R2 = 1, the method of Section 4 did indeed generate the desired linear invariant, which proved
that the considered Boolean function is universally true.

Example 13 (mining, proving and filtering non-linear invariants for the running example) Consider the
conjunction of the sum_width_decreasing_sequence(X,R1) and the sum_width_zigzag(X,R2)
time-series constraints on the same time series X, introduced in Example 12. For this conjunction, we
now describe the result of the mining and the proving phases of our method, as well as the dominance
filtering, i.e. discarding Boolean functions subsumed by some other Boolean function.

– During the mining phase we extracted a disjunction of 156 Boolean functions. Most Boolean func-
tions, even if they are true, are redundant. For example, the Boolean function R1 = 1 ∧ R2 = 1 is
subsumed by R1 = 1, and thus can be discarded. However, at this point we cannot do the dominance
filtering since we do not yet know which Boolean functions are universally true.

– During the proof phase we proved that 95 out of the extracted 156 Boolean functions are universally
true.

– Finally, after the dominance filtering of the 95 proved Boolean functions we obtain the disjunction
of the following seven Boolean functions:
¬ R1 = 1,
¯ R1 = 3 ∧ R2 ≥ 1,

 R2 = 1,
° R1 = upR1

(n) ∧ R2 mod 2 = 1,
® R1 = 5 ∧ R2 ≥ 4,
± R1 mod 2 = 1 ∧ R1 = R2,

² n mod 2 = 0 ∧ R1 = upR1
(n)− 1 ∧ R2 = upR2

(n).

25

All four upper plots and the two lower plots on the left of Figure 6 contain the groups of infeasible
combinations of R1 and R2 corresponding to the Boolean functions from ¬ to ± for n being 9. The two
lower plots on the right of Figure 6 contain the infeasible combinations of R1 and R2 corresponding to
the ² Boolean function for n being 10 and 12, respectively.

The Boolean functions from ¬ to ° and ² were proved by intersecting the automata for the atomic
relations in these Boolean functions, and check that it was empty.

In order to prove the dependent Boolean function ±, we consider the conjunction of three constraints,
namely R1 mod 2 = 1, sum_width_decreasing_sequence, and sum_width_zigzag. Each of the
three constraints can be represented by an automaton or by a counter automaton satisfying the required
properties of the method of Section 4, which generates for this conjunction the invariant R1 ≥ R2 + 2.
This proves that ± is a universally true Boolean function.

We now give an interpretation of five of those Boolean functions:

– ¬ and means that, in the languages of decreasing_sequence and zigzag, respectively, there is
no word consisting of one letter.

– ° means that, when a time series yields upR1
(n) as the value of R1, every occurrence of zigzag in

its signature must start and end with ‘>’, and the length of every word in the language of zigzag
starting and ending with the same letter is even.

– ± is related to the fact that every word in the language of zigzag contains at least one word of the
language of decreasing_sequence as a factor, and every such factor is of even length.

– ² means that, when a time series yields upR2
(n) as the value of R2, then its signature is a word

in the language of zigzag, and every occurrence of decreasing_sequence is of even length, and
thus R1 must be even. At the same time, upR1

(n)− 1 = n− 1 is odd, when n is even. 4

6 Synthesising Conditional Automata

For the time-series constraints considered in this work we need to generate constant-size finite automata
representing a certain condition, e.g. an automaton recognising the signatures of all and only all time
series with the maximum number of peaks. Such automata are required for proving non-linear invariants
parameterised by the time-series length, described in Section 5, and also for the facet analysis of linear
invariants, described in Section 4.6. This section shows how to synthesise a constant-size automaton,
i.e. an automaton whose number of states is independent, both from the input time-series length and
from the values in an input time series, accepting the signatures of all, and only all, time series satisfying
atomic relations of Section 5.2.2. For brevity, we only consider the atomic relation (vii) R = upR(n)−d,
where R is constrained by some time-series constraint γ(〈X1, X2, . . . , Xn〉 , R), with γ being nb_σ or
sum_width_σ, and where upR(n) is the maximum possible value of R yielded by a time series of
length n. This atomic relation is indeed the most difficult case for generating a constant-size automaton.
The construction associated with other atomic relations are described in [2]. We start with an illustrative
example.

Example 14 (automaton for a gap atomic relation) Consider the nb_peak(〈X1, X2, . . . , Xn〉 , R) time-
series constraint and a gap atomic relation C defined by R = upR(n). We showed in [5] that the maximum
value of R for a given time-series length n is max

(
0,
⌊
n−1
2

⌋)
. Hence, the automaton for C must recognise

the signatures of all and only time series yielding max
(
0,
⌊
n−1
2

⌋)
as the value of R.

Part (A) of Figure 7 gives the minimal automaton accepting the set of signatures reaching this upper
bound, while Part (B) lists all words of length 4 and 5 over the alphabet {‘<’, ‘=’, ‘>’} having the
maximum number of peaks, 2 in this case, that can be obtained from the corresponding automaton. 4

The rest of this section is organised as follows:

– [Gap Automaton] In the context of time-series constraints of the form nb_σ or sum_width_σ,
Section 6.1 first introduces the notion of gap of a time series X, which indicates how far apart the

26

t s

t′ s′

<

>

<

>

= > =<

(A) < > < >

< < > < >

< = > < >

< > < < >

< > < = >

< > < > <

(B) < > < > =

< > < > >

< > = < >

< > > < >

= < > < >

> < > < >

< > < < =

(gap=1, loss=3)

< < = = <

(gap=2, loss=5)

(C)

Fig. 7: (A) Automaton achieving the maximum number of peaks in a time series of length n,
i.e. max(0, bn−1

2 c), and (B) all corresponding accepted words for n − 1 ∈ {4, 5}, where each peak
is surrounded by two vertical bars, and is highlighted in yellow. (C) The signatures of time series with
gap 1 and 2, and with loss 3 and 5.

result value of a time-series constraint yielded byX is from the given upper bound; it then presents the
main contribution of this section, namely, the notion of δ-gap automaton for a time-series constraint,
i.e. a constant-size automaton that only accepts integer sequences whose gap is δ. Second, it gives
a sufficient condition on the time-series constraint for the existence of such an automaton. Third, it
describes how to synthesise such δ-gap automaton.
1. Section 6.1.1 introduces an intermediate notion, the loss of a time series wrt a time-series con-

straint, which is the maximum difference between the length of this time series and the length of
the shortest time series yielding the same result value of a time-series constraint. For example,
all words of length 4 (resp. 5) in Part (B) of Figure 7 are the signatures of time series whose gap
is 0 and whose loss is 0 (resp. 1). Part (C) of Figure 7 gives two signatures of time series with
gap (resp. loss) 1 and 2 (resp. 3 and 5).
Finally, it introduces the notion of loss automaton, i.e. a counter automaton used to compute the
loss. How to synthesise a loss automaton will be explained in Section 6.2.

2. Section 6.1.2 introduces a sufficient condition in the form of a conjunction of four conditions on
a time-series constraint, called principal conditions that, when satisfied, guarantee the existence
of the δ-gap automaton.

– When the first three principal conditions hold, describing the set of time series whose gap
is δ is equivalent to describing the set of time series whose loss belongs to a certain interval,
depending on δ.

– When the fourth principal condition holds, there exists a loss automaton whose counters can
either be monotonously increased or reset to a natural number.

3. For a given time-series constraint satisfying the four principal conditions and for any non-negative
integer δ, Section 6.1.3 constructively proves the existence of the δ-gap automaton, i.e. assuming
the loss automaton is known it shows how to construct the δ-gap automaton.

– [Loss Automaton] For space reason Section 6.2 focuses only on the construction of the loss au-
tomaton for the nb_σ family, the construction for the sum_width_σ family being described in [2].
It introduces a sufficient condition on a regular expression σ such that, when σ satisfies this condition,
the nb_σ family satisfies the principal conditions of Section 6.1.2. It also shows how to obtain a loss
automaton for a nb_σ time-series constraint from the seed transducer [9] for σ. The main idea is to
compute the regret of every transition of the seed transducer as a special case of minimax regret [26,
35] from decision theory, which gives the minimum additional cost to pay when one action is chosen
instead of another. In CP, the minimax regret has been used for assessing an extra cost when a
variable is assigned to a given value [15].

27

6.1 Synthesising a δ-gap Automaton for a Time-Series Constraint

We present the main contribution of this section namely a systematic method for deriving a δ-gap
automaton for a time-series constraint, see Definition 12, satisfying certain conditions that will be given
in Definition 16. We first introduce the gap of a ground time series in Definition 11, and the δ-gap
automaton for a time-series constraint in Definition 12. Let S denote the set of time-series constraints
of the nb_σ and sum_width_σ families.

Definition 11 (gap of a ground time series) Consider a time-series constraint γ and a ground time
series X of length n. The gap of X wrt γ, denoted by gapγ(X), is a function that maps an element
of S × Z∗ to N. It is the difference between the maximum value of R that could be yielded by a time
series of length n, and the value of R yielded by X.

Example 16 will illustrate the notion of gap for different time series.

Definition 12 (δ-gap automaton) Consider a time-series constraint γ and a natural number δ. The
δ-gap automaton for γ is a minimal automaton that accepts the signatures of all, and only all, ground
time series whose gap wrt γ is δ.

Definition 16 will further give a sufficient condition on a time-series constraint γ for the existence of
a δ-gap automaton for γ.

Example 15 (0-gap automaton) The 0-gap automaton for nb_peak was given in Part (A) of Figure 7.
It only recognises the signatures of ground time series containing the maximum number of peaks. 4

To construct the δ-gap automaton for a time-series constraint γ we introduce the notion of loss of a time
series. For a time series of length n, its loss is the difference between n and the length of a shortest time
series yielding the same result value of γ. The main idea of our method for generating δ-gap automata
is that by knowing the loss of a time series, and whether it contains at least one σ-pattern or not, we
can determine its gap.

We now describe how to derive the δ-gap automaton for a time-series constraint γ.

6.1.1 Defining the Loss and the Loss Automaton

Consider a time-series constraint γ and a natural number δ. Definition 13 introduces the loss of a time
series wrt γ, and Definition 14 presents the notion of loss automaton for γ.

Definition 13 (loss of a time series) Consider a time-series constraint γ and a ground time series X
of length n. The loss of X wrt γ, denoted by lossγ(X), is a function that maps an element of S × Z∗
to N. It is the difference between n and the length of a shortest time series that yields the same result
value of γ as X.

Example 16 (gap and loss of a time series) Now we illustrate the computation of the gap and the loss.
Consider the nb_peak time-series constraint. From [5], the maximum number of peaks in a time series
of length n is max

(
0,
⌊
n−1
2

⌋)
.

– The time seriesX1 = 〈1, 2, 1, 2, 1, 2, 1〉 has a gap of 0 since it contains three peaks, which is maximum,
and a loss of 0 since any shorter time series has a smaller number of peaks.

– The time series X2 = 〈1, 2, 1, 2, 1, 1, 1, 1〉 has a gap of 1 since it has only two peaks, when three is
the maximum, and a loss of 3 since a shortest time series with 2 peaks is of length 5.

– The time series X3 = 〈1, 1, 1, 0, 0, 1, 1, 1, 1〉 has a gap of 4 since it has no peaks, when the maximum
is 4, and a loss of 8 since a shortest time series without any peaks is of length 1. 4

28

Definition 14 (loss automaton for a time-series constraint) Consider a time-series constraint γ.
A loss automaton for γ is a counter automaton over the alphabet {<,=, >} with a constant number
of counters such that, for any ground time series X, it returns lossγ(X) after having consumed the
signature of X.

For the nb_σ and sum_width_σ families, a loss automaton can be synthesised from the seed
transducer of the regular expression σ. For the nb_σ family, this will be explained in Section 6.2.

6.1.2 Principal Conditions for Deriving a δ-Gap Automaton

Consider a g_f_σ time-series constraint, denoted by γ, and a natural number δ. Definition 16 formulates
a sufficient condition, consisting of a conjunction of four conditions, named principal conditions, for the
existence of the δ-gap automaton for γ. The first three principal conditions express the idea that, knowing
the loss of a time series and, whether it has at least one σ-pattern or not, fully determines the gap of this
time series. The fourth condition requires the existence of a loss automaton M for γ, whose counters
may either monotonously increase, or be reset to a natural number, and each accepting state of M
either accepts only signatures with at least one occurrence of σ, or accepts only signatures without any
occurrence of σ.

Before formulating the principal conditions, Definition 15 introduces the notions of before-found and
after-found state of a loss automaton.

Definition 15 (before-found and after-found states) Consider a loss automatonM for the g_f_σ
time-series constraint. An accepting state q of M is a before-found (resp. after-found) state, if there
exists a time series X without any σ-patterns (resp. with at least one σ-pattern) such that, after having
consumed the signature of X, q is the final state ofM.

Note that an accepting state of a loss automaton can have both statuses.

Definition 16 (principal conditions) Consider a γ(X,R) time-series constraint. The four principal
conditions on γ are defined as follows:

1. Gap-to-loss condition. There exists a function hγ : S×N×{0, 1}×N→ N, called the gap-to-loss
function, such that for any ground time series X = 〈X1, X2, . . . , Xn〉, we have lossγ(X) being equal
to hγ(gapγ(X), sgn(R), n), where sgn is the signum function. Hence, in order to compute the loss
of a ground time series it is enough to know (i) its gap, (ii) whether it has at least one σ-pattern or
not, and (iii) the length of this time series.

2. Boundedness condition. For given values of gapγ(X) and sgn(R), and for any n in N, the value
of the gap-to-loss function hγ(gapγ(X), sgn(R), n) belongs to a bounded integer interval, called the
loss interval wrt

〈
gapγ(X), sgn(R)

〉
.

3. Disjointedness condition. For a given value of sgn(R), and two different values of gap, δ1 and δ2,
the loss intervals wrt 〈δ1, sgn(R)〉 and wrt 〈δ2, sgn(R)〉 are disjoint.

4. Loss-automaton condition. There exists a loss automaton M for γ satisfying all the following
conditions:
(a) Every counter update ofM has one of the following forms:

i. The counter is incremented by a natural number, or by the value of another counter.
ii. The value of the counter is reset to a natural number.

(b) The initial values of the counters ofM are natural numbers.
(c) The acceptance function of M is a weighted sum with natural number coefficients of the last

values of the counters ofM after having consumed an input signature.
(d) The sets of before-found states and after-found states ofM are disjoint. It means that, by knowing

the final state of M after having consumed the signature of any ground time series X, we also
know the value of sgn(R) yielded by X.

29

Conditions 1., 2., 3. are called the gap-loss-relation conditions, Conditions 4a, 4b, 4c are called the
non-negativity conditions, while Condition 4d is called the separation condition onM.

Example 17 (principal conditions) Consider a γ(X,R) time-series constraint. For the time series X1, X2,
and X3 of Example 16, Figure 8 shows the relation between the gap, the loss, the time-series lengths,
and R when γ is nb_peak. For any time series Xi (with i ∈ [1, 3]) of length ni yielding Ri as the value
of R, its gap (resp. loss) is equal to the length of the violet (resp. blue) dotted line segment starting from
the point Xi of coordinates (ni, Ri). Note that the boundedness and the disjointedness conditions are
satisfied for nb_peak. 4

R = max(0, bn−1
2
c)

X1

X2

X3

lossγ(X3)

g
a
p
γ
(X

3
)

n

R

1 2 3 4 5 6 7 8 9
0

1

2

3

4

Fig. 8: The horizontal (resp. vertical) axis represents the length of
the sequence n (resp. the result value R of γ = nb_peak). The red
curve shows the maximum value of R for a given n; any point Xi

with coordinates (ni, Ri) denotes all time series of length ni yield-
ing Ri as the value of R. The length of the blue (resp. violet) dotted
line-segments starting from Xi equals the loss (resp. gap) of Xi.

6.1.3 Synthesising the δ-Gap Automaton

Consider a γ time-series constraint satisfying all four principal conditions of Section 6.1.2, and a natural
number δ. We prove that the δ-gap automaton for γ exists. First, Lemma 1 states a necessary and
sufficient condition in terms of loss for a ground time series to have its gap being a given constant when
the gap-loss-relation condition is satisfied. This lemma allows one to describe in terms of loss the set of
ground time series whose gap is δ. Then using the result of Lemma 1, Theorem 4 constructively proves
that the δ-gap automaton for γ exists.

Lemma 1 (relation between gap and loss) Consider a γ(X,R) time-series constraint such that the
gap-loss-relation conditions, see Definition 16, are all satisfied, and a natural number δ. Then, for a time
series X, gapγ(X) is δ iff lossγ(X) belongs to the loss interval wrt 〈δ, sgn(R)〉.

Proof The necessity follows from the boundedness condition, see Condition 2, and the sufficiency follows
from the disjointedness condition, see Condition 3 of Definition 16.

Theorem 4 (existence of the δ-gap automaton) Consider a g_f_σ(X,R) time-series constraint,
denoted by γ, such that all four principal conditions, described in Definition 16, are satisfied. Then
the δ-gap automaton for γ exists.

Proof Let us denote by M the loss automaton for γ, satisfying the non-negativity and the separation
conditions. Note that such automaton necessarily exists since the loss-automaton condition, see Con-
dition 4 of Definition 16, is satisfied. We prove the theorem by explicitly constructing a constant-size
automaton AM usingM; after minimising AM we obtain the sought δ-gap automaton.

[Construction of AM] By Lemma 1, there exist a loss interval Lδ,0 wrt 〈δ, 0〉 and a loss interval Lδ,1
wrt 〈δ, 1〉 such that any ground time series X, whose gap is δ, belongs to one of the following types:

– Type 1. The time series X has no σ-patterns and the value of lossγ(X) is in Lδ,0.
– Type 2. The time series X has at least one σ-pattern and the value of lossγ(X) is in Lδ,1.

30

Hence, our goal is to construct a constant-size automaton AM that recognises the signatures of all, and
only all, ground time series that belongs either to Type 1 or to Type 2.

Let 〈A1, A2, . . . , Ap〉 denote the p counters of the loss automaton M, whose initial values are
〈v1, v2, . . . , vp〉, let α(A1, A2, . . . , Ap) denote the acceptance function of M, let δ̂ be the transition
function ofM, and let φ be the maximum element in Lδ,0 ∪Lδ,1. Then, the states, the initial state, the
accepting states, and the transitions of AM are defined as follows:

– States. For every state q of M, there are (φ + 2)p states in AM, each of which is labelled with
qi1,i2,...,ip , with every ij (with j ∈ [1, p]) being in [0, φ+ 1].

– Initial state. If q0 is the initial state ofM, then q0v1,v2,...,vp is the initial state of AM.
– Accepting states. A state qi1,i2,...,ip of AM is accepting iff either

1. q is a before-found state ofM and the value of α(i1, i2, . . . , ip) is within Lδ,0, or
2. q is an after-found state ofM and the value of α(i1, i2, . . . , ip) is within Lδ,1.

– Transitions. There is a transition from state qi1,i2,...,ip (with i1, i2, . . . , ip ∈ [0, φ + 1]) to state
q∗k1,k2,...,kp labelled with s in {‘<’, ‘=’, ‘>’}, if the value of the transition function δ̂(q, 〈i1, i2, . . . , ip〉 ,
s) is equal to (q∗,

〈
i∗1, i
∗
2, . . . , i

∗
p

〉
), where every kj is equal to min(φ+ 1, i∗j), with j in [1, p].

[Interpretation of the states of AM] If after consuming the signature of some ground time series,
the automaton AM arrives in a state qi1,i2,...,ip , then after consuming the same signature, the loss
automatonM arrives in state q; for every j ∈ [1, p], when ij ≤ φ (resp. ij = φ+ 1), the counter Aj has
value ij (resp. is strictly greater than φ). Hence, the states of AM encode the counter values ofM when
consuming the same input signature.
[Size of AM] By construction, the automaton AM has a constant size, i.e. its number of states is
m · (φ+2)p, where m, p and φ are parameters, i.e. independent from the time-series length, respectively
defined as:

– the number of states ofM,
– the number of counters ofM,
– the maximum value of Lδ,0 ∪Lδ,1, where Lδ,0 and Lδ,1 are bounded intervals depending only on the

constraint γ and the gap δ.

We explain why AM needs only m · (φ + 2)p states to recognise the signatures of all, and only
all, ground time series of either Type 1 or Type 2. By the boundedness condition (Condition 2 of
Definition 16) and by definition of φ, for any ground time series whose gap is δ, its loss cannot exceed φ.
We show that if, when consuming the signature of some ground time series, the value of some counter
ofM becomes greater than φ, then we no longer need to know its exact value.

Recall that the acceptance function α of M is a weighted sum with natural coefficients of the last
values of the counters of M. If, for a counter Aj , the corresponding coefficient in α is zero, then it
does not affect the value of α, and the exact value of Aj is irrelevant. Otherwise, once the value of Aj
exceeds φ, the value of α also exceeds φ, and the loss of such a time series is greater than φ. By the
non-negativity conditions, if the value of Aj exceeds φ it can either increase even more, or it can be reset
to a natural constant. In either case, the exact value of Aj is irrelevant, and it is enough to know a lower
bound, φ+ 1 of its value.

[Correctness of AM] We now prove that the constructed automaton AM is sound, i.e. it recognises
the signatures of only ground time series of either Type 1 or Type 2, and complete i.e. it recognises the
signatures of all ground time series of either Type 1 or Type 2.

– Soundness of AM. We prove the soundness of AM by contradiction. Assume there exists a ground
time series X recognised by AM and whose gap is not δ. Let qi1,i2,...,ip be the final state of AM
after consuming the signature S of X. Due to the non-negativity conditions, by construction of AM
this means that, after consuming S, the counter automaton M finishes in the state q of M, and
for every j ∈ [1, p], if ij ≤ φ (resp. ij = φ + 1), then the counter Aj has value ij (resp. is strictly

31

greater than φ). By the separation condition onM, the state q ofM is either a before-found or an
after-found state. Since qi1,i2,...,ip is an accepting state of AM, then either q is a before-found state
and α(i1, i2, . . . , ip) ∈ Lδ,0, or q is an after-found state and α(i1, i2, . . . , ip) ∈ Lδ,1. In the former
(resp. latter) case, X belongs to Type 1 (resp. Type 2), and by Lemma 1, the gap of X is δ, a
contradiction.

– Completeness of AM. We prove the completeness of AM also by contradiction. Assume there
exists a ground time series X whose gap is δ, i.e. it belongs either to Type 1 or to Type 2, but its
signature S is not recognised by AM. Then,
1. either the final state qi1,i2,...,ip of AM after consuming S is not accepting,
2. or the automaton AM cannot consume the full signature S.
We show that both situations are impossible.
– Impossibility of Situation 1. Due to the non-negativity conditions, and by construction

ofAM, after having consumed the signature ofX, the automatonM ends in state q ofM, and the
value of the acceptance function is equal to α(i1, i2, . . . , ip). Since the gap of X is δ, by Lemma 1
and by the separation condition, either q is a before-found state ofM and α(i1, i2, . . . , ip) belongs
to Lδ,0 or q is an after-found state ofM and α(i1, i2, . . . , ip) belongs to Lδ,1. In either case, the
state qi1,i2,...,ip of AM must be accepting by construction, thus Situation 1 is impossible.

– Impossibility of Situation 2. Assume that (1) at a state qi1,i2,...,ip of AM, there does not
exist a transition labelled with some input symbol s, and that (2) AM needs to trigger this
transition when consuming the signature of X. Then, at state q of M, there does not exist a
transition labelled with s. This contradicts the nature of the loss automaton M since it must
compute the loss of any ground time series, and thus accept any time series. Hence, Situation 2
is also impossible.

Therefore, both situations are impossible, which implies that the time series X does not exist, and
thus the automaton AM is complete.

Since AM is sound and complete, the minimisation of AM gives the sought δ-gap automaton. ut

6.2 Synthesising the Loss Automaton for the nb_σ Family

First, for the nb_σ family, we show that, when σ has a property, named the homogeneity property,
the first three principal conditions of Definition 16 are satisfied. Second, based on the homogeneity
property we show how to satisfy the fourth principal condition by constructing from the seed transducer
for σ a loss automaton satisfying the loss-automaton condition. Consequently, the constructive proof of
Theorem 4 can be used to derive the δ-gap automaton.

1. Section 6.2.1 introduces the homogeneity property. Sections 6.2.2 and 6.2.3 both assume the ho-
mogeneity property.

2. Section 6.2.2 proves three theorems stating that, the gap-to-loss, the boundedness, and the disjoint-
edness conditions are satisfied for nb_σ.

3. Section 6.2.3 gives a systematic method for constructing a loss automaton M satisfying the
non-negativity and the separation conditions.

6.2.1 The HOMOGENEITY Property

Property 2 (homogeneity property) A regular expression σ has the homogeneity property if the
following conditions are both satisfied:

1. The pair 〈σ, bσ〉 is a recognisable pattern [25]. This implies that the seed transducer Tσ for σ exists
and can be constructed by the method of [25].

2. For any state q of Tσ that is the destination state of a found-transition, the number of transitions in
the shortest found-path starting from q is a constant that does not depend on q.

32

For a regular expression σ with the homogeneity property, the following lemma gives the maximum
number of σ-patterns in a time series of length n.

Lemma 2 (maximum of the result value) Consider a time-series constraint nb_σ such that σ
has the homogeneity property, and Tσ denotes the seed transducer for σ. Let dσ denote the length of
shortest found-path in Tσ starting from any state that is the destination of a found-transition, and let cσ
denote the difference between dσ and the length of shortest found-path in Tσ starting from the initial
state of Tσ. Then, the maximum number of σ-patterns in a time series of length n is computed as⌊

n− cσ
dσ

⌋
. (14)

Proof For any time series X = 〈X1, X2, . . . , Xn〉, there is a bijection between its set of σ-patterns and
the found symbols in the output sequence of Tσ after consuming the signature of X. Hence, we need to
show that

⌊
n−cσ
dσ

⌋
is the maximum number of the found symbols in the output sequence T of Tσ after

having consumed the signature of any time series of length n. The first found symbol in T cannot occur
before the position `, where ` is the length of the shortest found-path starting from the initial state.
Since Tσ has the homogeneity property then every other found symbol can occur in T with the interval
of dσ. Such an T output sequence has the number of found symbols being equal to

⌊
n−(`−dσ)

dσ

⌋
. We

replace `− dσ with cσ and obtain Formula (14). ut

6.2.2 Verifying the Gap-Loss-Relation Conditions

This section shows that the gap-loss-relation conditions, see Definition 16, for a nb_σ time-series con-
straint are satisfied, assuming σ has the homogeneity property. Theorem 5 proves the gap-to-loss
condition and derives the formula for the gap-to-loss function; Theorem 6 proves the boundedness con-
dition and derives the formula of loss interval for a given gap and sign of the result value, and, finally,
Theorem 7 proves the disjointedness condition.

Theorem 5 (gap-to-loss condition) Consider a γ(X,R) time-series constraint that belongs to the
nb_σ family with σ having the homogeneity property. First, the gap-to-loss condition is satisfied for γ.
Second, for any ground time series X of length n, the gap-to-loss function is defined by:

lossγ(X) = gapγ(X) · dσ + (1− sgn(R)) · (min(n, cσ)− 1) +max(0, n− cσ) mod dσ, (15)

where sgn is the signum function, and cσ and dσ are the constants from the maximum value of R given
in Lemma 2.

Proof We successively consider two disjoint cases wrt sgn(R).

[sgn(R) is zero] We need to prove that lossγ(X) is equal to gapγ(X) ·dσ+min(n, cσ)−1+max(0, n−
cσ) mod dσ. When R is zero, the loss of X is n−1 since a shortest time series without any σ-patterns is
of length 1. Thus, we need to show that gapγ(X) ·dσ+min(n, cσ)−1+max(0, n− cσ) mod dσ is equal
to n − 1. From the maximum value of R, given by the homogeneity property, we have the following
equality:

gapγ(X) = max
(
0,
⌊
n− cσ
dσ

⌋)
−R = max

(
0,
⌊
n− cσ
dσ

⌋)
. (16)

Let us consider two cases wrt the value of gapγ(X), namely:

– gapγ(X) is zero. By (16), n < cσ + dσ, and the value of the right-hand side of (15) is equal to
min(n, cσ)− 1 +max(0, n− cσ), which is n− 1.

– gapγ(X) is positive. Then, by (16), n ≥ cσ + dσ, and we have the following equality:

gapγ(X) =
⌊
n− cσ
dσ

⌋
=
n− cσ − (n− cσ) mod dσ

dσ
(17)

From (17) we obtain the expression for n− 1, which is gapγ(X) · dσ + cσ − 1 + (n− cσ) mod dσ.

33

[sgn(R) is one] We need to prove that lossγ(X) is equal to gapγ(X) · dσ +max(0, n − cσ) mod dσ.
Since R is positive, n is strictly greater than cσ, and thus max(0, n− cσ) is equal to n− cσ. Further, by
definitions of gap and loss, we have:

gapγ(X) =
⌊
n− cσ
dσ

⌋
−R =

n− cσ − (n− cσ) mod dσ
dσ

− (n− lossγ(X))− cσ
dσ

(18)

Since on the right-hand side of (18), both divisions are integer divisions we obtain:

gapγ(X) =
lossγ(X)− (n− cσ) mod dσ

dσ
. (19)

By isolating lossγ(X) from (19) we obtain the formula of the theorem. ut

Example 18 (gap-to-loss condition) Consider a nb_σ(〈X1, X2, . . . , Xn〉 , R) time-series constraint with σ
being the peak regular expression, which has the homogeneity property. Hence, we can apply The-
orem 5 for computing the gap-to-loss function for nb_σ. By Lemma 2, the maximum value of R is
max

(
0,
⌊
n−1
2

⌋)
, and thus cσ and dσ, are 1 and 2, respectively. Then the gap-to-loss function for nb_σ

is
lossγ(X) = 2 · gapγ(X) +max(0, n− 1) mod 2. 4

Theorem 6 (boundedness condition) Consider a γ(X,R) time-series constraint that belongs to the
nb_σ family with σ having the homogeneity property. First, the boundedness condition is satisfied
for γ; second, for any given gap δ and any value of sgn(R), the loss interval [`min , `max] wrt 〈δ, sgn(R)〉
is defined by:

(i) `min = δ · dσ + (1− sgn(R)) · sgn(δ) · (cσ − 1),
(ii) `max = dσ · (δ + 1)− 1 + (1− sgn(R)) · (cσ − 1).

Proof Let X be a ground time series of length n whose gap is δ. From Theorem 5, we have that lossγ(X)
is δ · dσ + (1 − sgn(R)) · (min(n, cσ) − 1) + max(0, n − cσ) mod dσ. By case analysis wrt the value
of sgn(R), i.e. either 0 or 1, we now show that `min ≤ lossγ(X) ≤ `max .

[sgn(R) is zero] In this case, lossγ(X) simplifies to δ · dσ +min(n, cσ)− 1 +max(0, n− cσ) mod dσ.
Since δ · dσ − 1 is a constant, in order to prove that `min (resp. `max) is a lower (resp. upper) bound on
lossγ(X), we need to find the minimum (resp. maximum) of the function z(n) = min(n, cσ)+max(0, n−
cσ) mod dσ.

(i) `min ≤ lossγ(X). We prove that lossγ(X) = δ · dσ + z(n) ≥ `min by case analysis on δ:
(a) [sgn(δ) is zero] As shown in the proof of Theorem 5, n < cσ + dσ and the minimum value of

the function z(n) is 1, and is reached for n being 1.
(b) [sgn(δ) is one] We have n ≥ cσ + dσ, and thus min(n, cσ) is equal to cσ, and the minimum

value of the function z(n) is cσ.
Hence, δ · dσ + sgn(δ) · (cσ − 1) is indeed a lower bound on lossγ(X) when sgn(R) is zero.

(ii) `max ≥ lossγ(X). We prove that lossγ(X) ≤ `max . The maximum value of z(n) is cσ + dσ − 1.
Hence, dσ · (δ + 1)− 1 + cσ − 1 is indeed an upper bound on lossγ(X).

[sgn(R) is one] In this case, lossγ(X) simplifies to δ ·dσ+max(0, n−cσ) mod dσ. A lower (resp. upper)
bound on (n − cσ) mod dσ is zero (resp. dσ − 1). Hence, `min and `max are, respectively, a lower and
an upper bound on lossγ(X). ut

Example 19 (boundedness condition) Consider a nb_σ(X,R) time-series constraint with σ being the
peak regular expression. Since σ has the homogeneity property we can apply Theorem 6 for computing
the loss interval for nb_σ. Recall that the values of cσ and dσ, are respectively, 1 and 2. Then, for any
value δ of gap and any value of sgn(R), the loss interval wrt 〈δ, sgn(R)〉 is [2 · δ, 2 · δ + 1]. 4

34

Theorem 7 (disjointedness condition) Consider a nb_σ(〈X1, X2, . . . , Xn〉 , R) time-series constraint
such that σ has the homogeneity property. Then the disjointedness condition is satisfied for nb_σ.

Proof The disjointedness condition can be proved using the formula of the loss interval of Theorem 6.
For each value of sgn(R), i.e. either 0 or 1, we take two different values of gap, w.l.o.g. δ and δ+ t with
a non-negative integer t, and show that the upper limit of the loss interval wrt 〈δ, sgn(R)〉 is strictly less
than the lower limit of the loss interval wrt 〈δ + t, sgn(R)〉. This implies the disjointedness condition.

ut

6.2.3 Verifying the Loss-Automaton Condition

We focus on the loss-automaton condition for the nb_σ time-series constraints, i.e. we construct a loss
automaton M for nb_σ satisfying the non-negativity and the separation conditions. This is done by
derivingM from a seed transducer for σ, which exists assuming σ has the homogeneity property [25]. In
order to satisfy the separation condition for the loss automaton for nb_σ, we require the seed transducer
for σ to have a specific form that we now introduce in Definition 17.

Definition 17 (separated seed transducer) Given a regular expression σ, a seed transducer Tσ for σ
is separated iff for any state q of Tσ, one of the two following conditions holds:

1. Any path from the initial state of Tσ to q is a found-path.
2. There are no found-paths from the initial state of Tσ to q.

s

r t

> : not_found

= : not_found

< : not_found

> : found
< : not_found

= : not_found

> : not_found

= : not_found< : not_found

(A)

s r

r′ t

= : not_found

> : not_found

< : not_found
= : not_found

< : not_found

> : found

= : not_found

> : not_found

< : not_found

= : not_found

< : not_found

> : not_found

(B)

Fig. 9: (A) Seed transducer and (B) separated seed transducer for the peak regular expression.

Example 20 (separated seed transducer) Part (B) of Figure 9 gives the separated seed transducer for
peak obtained from the seed transducer in Part (A). 4

Note that, even if the seed transducer for σ constructed by the method of [25] is not separated, it can
be easily made so by duplicating some of its states. Subsequently we assume that the seed transducer
for σ is separated, and we derive the loss automatonM in the same way as we generate counter automata
for time-series constraints [9], namely:

1. First, we identify the required counters ofM and their role.
2. Second, to each phase letter of the output alphabet of the seed transducer for σ, we associate a set of

instructions, i.e. counter updates. The loss automatonM is obtained by replacing every phase letter
of the seed transducer for σ by the corresponding set of instructions.

35

Identifying the Required Counters of the Loss Automaton Consider a nb_σ time-series constraint. In-
tuitively, when consuming the signature of a ground time series, every transition triggered by the seed
transducer Tσ for σ has a certain impact on the loss of this time series. To quantify this impact for
the case of nb_σ time-series constraints, Definition 18 introduces the notion of regret of a transition of
a seed transducer for σ. The regret of a transition t gives how many additional transitions Tσ has to
trigger, before it can trigger the next found-transition, if it triggers t rather than the transition on a
shortest found-path.

Definition 18 (regret of a transition) Consider a regular expression σ and its seed transducer Tσ.
For any transition t of Tσ from state q1 to state q2, the regret of t equals one plus the difference between
the lengths of the shortest found-paths from q2, respectively q1.

Example 21 (regret of a transition) Consider the peak regular expression, whose separated seed trans-
ducer is given in Part (B) of Figure 9. We denote by q1

a−→ q2 a transition of the seed transducer from
state q1 to state q2 whose input symbol is a. All transitions in {s <−→ r, r

>−→ t, t
>−→ r′, r′

<−→ t} between
two distinct states have a regret of 0, while all transitions in {s >−→ s, s

=−→ s, r
<−→ r, r

=−→ r, t
>−→ t, t

=−→
t, r′

<−→ r′, r′
=−→ r′} have a regret of 1. 4

Lemma 3 shows the connection between the loss of a ground time series X and the regret of the
transitions triggered by the seed transducer for σ when consuming the signature of X.

Lemma 3 (regret-loss relation) Consider a γ(X,R) time-series constraint with γ being nb_σ such
that σ has the homogeneity property. Let t = 〈t1, t2, . . . , tn−1〉 denote the sequence of transitions
triggered by the seed transducer Tσ for σ upon consuming the signature of X = 〈X1, X2, . . . , Xn〉, and
let t∗ denote the index of the last found-transition in t, if no such transition exists, t∗ is zero. The
following equality holds:

lossγ(X) = n− 1− t∗ +
t∗∑
i=1

ρ(ti), where ρ(ti) denotes the regret of transition ti.

Proof Since 〈tt∗+1, tt∗+2, . . . , tn−1〉 does not contain any found-transition, it implies that the loss of X

is at least n− 1− t∗. Then, the sum
t∗∑
i=1

ρ(ti) shows how many additional transitions were triggered to

achieve the same number of found-transitions in the output sequence. Hence, the loss of X is the sum

of n− 1− t∗ and
t∗∑
i=1

ρ(ti). ut

Example 22 (regret-loss transition) Consider the peak regular expression, whose separated seed trans-
ducer Tpeak is given in Part (B) of Figure 9. Upon consuming the signature of the time series X =
〈1, 1, 2, 1, 2, 1, 1, 2, 1, 2〉, the seed transducer Tpeak triggers the following sequence of transitions 〈s =−→
s, s

<−→ r, r
>−→ t, t

<−→ r′, r′
>−→ t, t

=−→ t, t
<−→ r′, r′

>−→ t, t
<−→ r′〉. The index of the last triggered found-

transition is 8. From Lemma 3, we obtain lossγ(X) = 10−1−8+(1+0+0+0+0+1+0+0+0) = 3. 4

From Lemma 3, three counters are needed for the loss automaton. Given a prefix of a signature
consumed by the seed transducer, let t∗ denote the last triggered found-transition:

– Counter R gives the sum of the regrets of the transitions triggered before t∗. Note that the regret
of t∗ is zero.

– Counter D gives the sum of the regrets of the transitions triggered after t∗.
– Counter C gives the number of transitions triggered after t∗.

The initial value of these three counters is zero. The decoration table, given in the next section,
follows from Lemma 3.

36

Decoration Table of a Loss Automaton As stated before, a loss automaton for nb_σ has three counters C,
D and R. Given a prefix of some signature consumed by the seed transducer Tσ, let t∗ denote the last
triggered found-transition. When Tσ triggers the transition t, we have one of the two following cases:

1. [t is not a found-transition] Then t∗ is still the last triggered found-transition. There is one more
transition triggered after t∗, and the counter C must be increased by 1. Further, the value of D
should be increased by the regret of t. Finally, counter R remains unchanged.

2. [t is a found-transition] Then t becomes the last triggered found-transition. Since there is no transition
triggered after t, counters C and D must both be reset to 0. Counter R must be increased by the
sum of the regrets of all the transitions triggered after t∗ and before t, i.e. the value of D.

By Lemma 3, the loss of a time series is the sum between the sum of the regrets of all the trig-
gered transitions before the last found-transition and the number of transitions triggered after the
last found-transition. This is the sum of the last values of C and R. Part (A) of Figure 10 summarises
how counters are updated.

initial values C ← 0 D ← 0 R← 0
acceptance
function R+ C

phase letters update of C update of D update of R

found C ← 0 D ← 0 R← R+D
not_found C ← C + 1 D ← D + ρ(t)

(A)

s r

r′ t

return R + C

<,={
C ← C + 1
D ← D + 1

}>,={
C ← C + 1
D ← D + 1

} <{
C ← C + 1

}

>

C
←

0
D
←

0
R
←
R

+
D

>,={
C ← C + 1
D ← D + 1

}<,={
C ← C + 1
D ← D + 1

} <{
C ← C + 1

}

>C ← 0
D ← 0
R← R +D

(B)

Fig. 10: (A) Decoration table for the loss automaton for nb_σ time-series constraints, where ρ(t)
denotes the regret of a transition t of the seed transducer for σ; (B) Loss automaton for nb_peak; the
initial value of the counters C, D, and R is zero; as the regret of the not_found transitions s <−→ r

and t <−→ r′ of the seed transducer for σ is zero, the counter D remains unchanged while triggering these
two transitions.

To obtain the loss automaton for a nb_σ time-series constraint, we replace every output letter in
the separated seed transducer for σ with the corresponding set of counter updates according to the
decoration table shown in Part (A) of Figure 10. The initial value of all three counters is zero, and the
acceptance function is C +R.

Example 23 (loss automaton) The loss automaton for nb_peak, obtained from the seed transducer in
Part (B) of Figure 9 and from the decoration table in Part (A) of Figure 10, is given in Part (B) of
Figure 10. 4

6.3 Generalization

We presented a systematic approach for generating δ-gap automata for time-series constraints, and
demonstrated its applicability for the nb_σ family. We used the obtained automata both (i) for proving
that 70% of our synthesised linear invariants were facet defining, and (ii) for proving the correctness of
all non-linear invariants of a database of invariants on conjunctions of time-series constraints.

37

Although, we did this work in the context of time series, the same method can be used for generat-
ing δ-gap automata for any constraint satisfying the four principal conditions. As an example, consider
the nb_group(X,R, P) constraint [21,11], where X is a sequence of n integer variables, R is an integer
variable, and P is a non-empty finite set of integer numbers. This constraint restricts R to be the num-
ber of maximal subsequences of X whose elements are in P . For example, nb_group(〈1, 3, 4, 1, 0, 9, 0〉 ,
3, {0, 1}) holds. Then a sharp upper bound on R is

⌊
n
2

⌋
, and it can be shown that all the four principal

conditions are satisfied for nb_group. Hence by Theorem 4 for any natural δ, the δ-gap automaton for
nb_group exists and can be constructed by the method given in the proof of Theorem 4.

7 Evaluation

To test the generated invariants, we use real-world electricity demand data from an industrial partner.
The dataset contains time series of length 96 (2 days in half-hour resolution) for multiple years. We use
fixed size prefixes of the data to show scaleability of our methods. Before presenting the two experiments
we have done, we first sketch the general scheme used to set up our constraints in all our experiments.
Our base line, depicted in the first point of the next enumeration, is the state of the art before this
article, which uses all the techniques described previously on how to improve the propagation of the
individual time-series constraints [5,6,7]. Our improved version uses, in addition to the base line, the
invariants of this article as explained in the second point of the next enumeration.

1. For each time-series constraint C(X,R) used on a sequence X = X1, X2, . . . , Xn we post two con-
straints: the constraint C(X,R) itself, and the constraint Cr(〈Xn, Xn−1, . . . , X1〉, R) where Cr is
the reverse of the constraint C; a constraint Cr is the reverse constraint of a constraint C if, for any se-
quenceX1, X2, . . . , Xn, we have the equivalence C(〈X1, X2, . . . , Xn〉, R)⇔ Cr(〈Xn, Xn−1, . . . , X1〉, R).
The time-series constraints are encoded as counter automata of SICStus [8] where all intermediate
counters and traversed states are made visible so that they can be used in other constraints. While
stating only two time-series constraints this allows one to get the result variables on all prefixes
and suffixes of X and to enforce lower and upper bounds [5] on these results variables. Finally,
for each prefix X1, X2, . . . Xi and corresponding suffix Xn, Xn−1, . . . , Xi we link the corresponding
exposed intermediate result variables with the result variable on the full sequence X with a glue con-
straint [6]. The intuition behind the glue constraint is to channel information from the prefix to the
suffix given the result variable on the full sequence. We use the optimised versions of the time-series
constraints [7] available in the time-series catalogue [3], i.e. the version using fewer counters, as well
as the corresponding glue matrices also available in the catalogue.

2. For each pair of time-series constraints C1(X,R1), C2(X,R2) used on a same sequence X, we state
all invariant constraints that were derived from the pair C1, C2 on the intermediate results variables
of the different suffixes of the sequence X. For this purpose we used the invariant constraints database
we generate by using the methods of this article and that is available in the time-series catalogue.
Each constraint of the database was expressed as a linear constraint or a logical formula involving
linear constraints, e.g. disjunction of linear constraints.

In a first experiment we consider prefixes of length 25 and test all binary combinations of the
considered constraints both with our baseline implementation of the individual constraints (version
pure) and with the added, generated invariants applied to each suffix (version incremental). From the
dataset, we extract as features the observed values for a pair of constraints for a time-series instance,
and then try to find an assignment that achieves these values. Each problem is feasible, as it is based
on an existing assignment. Any improvement of the propagation is due to detecting failures in partial
assignments more quickly by applying the invariants to suffixes of the complete series. Our default search
strategy labels the signature variables first, followed by the decision variables, always starting with the
smallest values. As all constraints used here operate on the signature variables only, we can always find
an assignment of the decision variables once a feasible assignment of the signatures is found.

38

Figure 11 shows the results, with the pure baseline above the main diagonal, and the results with
the added invariants (incremental) below the main diagonal. Each box represents the results for 100
time series. The number in the box, if present, shows how many of the 100 experiments timed out
(limit 2 seconds) with the default search strategy. The colour of the cell indicates the average number
of backtracks required for the solved instances, based on the legend below the matrix. All experiments
were run using SICStus Prolog 4.3.5 on a Windows 10 laptop with 64 GB of memory, using a single core
of the Intel i7 processor running at 2.9 GHz base speed.

nb_decreasing

nb
_de

cre
asi

ng

nb_decreasing_sequence

nb
_de

cre
asi

ng
_seq

ue
nc

e

nb_decreasing_terrace

nb
_de

cre
asi

ng
_ter

rac
e

nb_gorge

nb
_go

rge

nb_increasing

nb
_inc

rea
sin

g

nb_increasing_sequence

nb
_inc

rea
sin

g_
seq

ue
nc

e

nb_increasing_terrace

nb
_inc

rea
sin

g_
ter

rac
e

nb_peak

nb
_pe

ak

nb_plain

nb
_pla

in

nb_plateau

nb
_pla

tea
u

nb_proper_plain

nb
_pro

pe
r_

pla
in

nb_proper_plateau

nb
_pro

pe
r_

pla
tea

u

nb_steady

nb
_ste

ad
y

nb_steady_sequence

nb
_ste

ad
y_

seq
ue

nc
e

nb_strictly_decreasing_sequence

nb
_str

ict
ly_

de
cre

asi
ng

_seq
ue

nc
e

nb_strictly_increasing_sequence

nb
_str

ict
ly_

inc
rea

sin
g_

seq
ue

nc
e

nb_summit

nb
_sum

mit

nb_valley

nb
_va

lle
y

nb_zigzag

nb
_zig

zag

sum_width_decreasing_sequence

sum
_widt

h_
de

cre
asi

ng
_seq

ue
nc

e

sum_width_decreasing_terrace

sum
_widt

h_
de

cre
asi

ng
_ter

rac
e

sum_width_gorge

sum
_widt

h_
go

rge

sum_width_increasing_sequence

sum
_widt

h_
inc

rea
sin

g_
seq

ue
nc

e

sum_width_increasing_terrace

sum
_widt

h_
inc

rea
sin

g_
ter

rac
e

sum_width_peak

sum
_widt

h_
pe

ak

sum_width_plain

sum
_widt

h_
pla

in

sum_width_plateau

sum
_widt

h_
pla

tea
u

sum_width_proper_plain

sum
_widt

h_
pro

pe
r_

pla
in

sum_width_proper_plateau

sum
_widt

h_
pro

pe
r_

pla
tea

u

sum_width_steady_sequence

sum
_widt

h_
ste

ad
y_

seq
ue

nc
e

sum_width_strictly_decreasing_sequence

sum
_widt

h_
str

ict
ly_

de
cre

asi
ng

_seq
ue

nc
e

sum_width_strictly_increasing_sequence

sum
_widt

h_
str

ict
ly_

inc
rea

sin
g_

seq
ue

nc
e

sum_width_summit

sum
_widt

h_
sum

mit

sum_width_valley

sum
_widt

h_
va

lle
y

sum_width_zigzag
sum

_widt
h_

zig
zag

17

17

1
97

96
21

12

4

17

1
97

96
22

12

4

3
1

1

1

2
97

96
12

10

16

99

98
71

65

17

99

16

99

98
82

77

1

17

17

22
99

98

16

99

98
68

62

10

10

8
39

40

25

22

33

10

100

100

94

1

93
33

25

9

99

1

38

32

9

1

5

5

5

1

1

2

10

52

2

2

28

2
4

2

3

99

99

21
82

81

98

99

98
50

42

15

16

1

1

1

66

65
1

1

35

11

3
97
4

3
1 38

1 82

1
51

1

17

96

1

20

98

16

3

81
63

4

12 12

14

1

8

1

9
17

14

1

2
2

4

1

1

4

4

3

9

6

52 22

1517

11

11

2 4

3

36

32

18 2 35
62

14 12

1

11

= 0 ≤ 10 ≤ 20 ≤ 50 ≤ 100 ≤ 200 ≤ 500 ≤ 1000 > 1000

Fig. 11: Comparing baseline (top left) and added invariants (bottom right) models on all binary com-
binations of considered constraints; Length 25 variables; 100 feasible samples, Number of timeouts as
numbers, average number of backtracks of solved problems as cell colour.

39

Adding the invariants decreases both the number of timeouts and the number of backtracks for
most, but not all, constraint combinations. While some constraint combinations are easily solved even
without the invariants, there are many cases where the baseline constraints are not able to find a solution
quickly, but the added invariants reduce the backtrack count close to zero. It is interesting to note that
all combinations of the nb_ constraints are solved with less than 20 backtracks when the invariants are
added, while the baseline constraint do not find any solutions for several combinations of such constraints.

We repeat the experiments, but now for time-series length increasing from 20 to 90, to investigate
scaleability of the approach. Figure 12 shows the baseline results on the left, the results with added
invariants on the right. We plot the percentage of instances solved as a function of execution time. For
the baseline, we see that with increasing problem size the percentage of problems solved steadily drops
from 93.9% for size 20 to 75.9% for size 90 with a timeout of 2 seconds. Adding the invariants improves
the percentage to 99.3% for size 20, while still achieving 97.9% for size 90.

0 1,000 2,000

0

20

40

60

80

100

Time (ms)

P
er
ce
nt
ag
e
of

P
ro
bl
em

s
So

lv
ed

Pure Model, Standard Labeling

Size 20
Size 30
Size 40
Size 50
Size 60
Size 70
Size 80
Size 90

0 1,000 2,000

0

20

40

60

80

100

Time (ms)

P
er
ce
nt
ag
e
of

P
ro
bl
em

s
So

lv
ed

Invariants, Standard Labeling

Size 20
Size 30
Size 40
Size 50
Size 60
Size 70
Size 80
Size 90

Fig. 12: Comparing baseline (left) and added invariants (right) models on time series of sizes 20-90;
100 feasible sample; Showing cumulative percentage of problems solved as a function of execution time,
timeout 2 seconds.

To test the method in a realistic setting, we consider the conjunction of all 35 considered time-series
constraints on the dataset. To capture the shape of the time series more accurately, we split the series
into overlapping segments from 00-12, 06-18, and 12-24 hours, each segment containing 24 data points,
overlapping in 12 data points with the previous segment. We then set up the conjunction of the 35
time-series constraints for each segment, using the pure and incremental variants described above. This
leads to 3× 35× 2 = 210 automaton constraints with decision variables. The invariants are created for
every pair of constraints, and every suffix, leading to a large number of inequalities. The search routine
assigns all signature variables from left to right, and then assigns the decision variables, with a timeout
of 120 seconds.

In order to understand the scaleability of the method, we also consider time series of 44 resp. 50 data
points (three segments of length 22 and 25), extracted from the daily data stream covering a four-year
period (1448 samples). In Figure 13 we show the time and backtrack profiles for finding a first solution.

40

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120 140Pe
rc

en
ta

ge
 o

f
In

st
an

ce
s

So
lv

ed

Time [s]

3 Segments, Width 22

pure
incremental

(a) Time, Size 22

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120 140Pe
rc

en
ta

ge
 o

f
In

st
an

ce
s

So
lv

ed

Time [s]

3 Segments, Width 24

pure
incremental

(b) Time, Size 24

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 20 40 60 80 100 120 140Pe
rc

en
ta

ge
 o

f
In

st
an

ce
s

So
lv

ed

Time [s]

3 Segments, Width 25

pure
incremental

(c) Time, Size 25

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25Pe
rc

en
ta

ge
 o

f
In

st
an

ce
s

So
lv

ed

Backtracks [k]

3 Segments, Width 22

pure
incremental

(d) Backtracks, Size 22

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 2 4 6 8 10 12 14 16 18 20Pe
rc

en
ta

ge
 o

f
In

st
an

ce
s

So
lv

ed

Backtracks [k]

3 Segments, Width 24

pure
incremental

(e) Backtracks, Size 24

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 5 10 15 20 25 30Pe
rc

en
ta

ge
 o

f
In

st
an

ce
s

So
lv

ed

Backtracks [k]

3 Segments, Width 25

pure
incremental

(f) Backtracks, Size 25

Fig. 13: Percentage of Problems Solved for 3 Overlapping Segments of Lengths 22, 24, and 25; Execution
time in top row, backtracks required in bottom row.

The top row shows the percentage of instances solved within a given time budget, the bottom row shows
the percentage of problems solved within a backtrack budget. For easy problems, the pure variant finds
solutions more quickly, but the incremental version pays off for more complex problems, as it reduces
the number of backtracks required sufficiently to account for the large overhead of stating and pruning
all invariants. The problems for segment length 20 (not shown) can be solved without timeout for both
variants, as the segment length increases, the number of timeouts increases much more rapidly for the
pure variant.

The results show that adding the generated invariants drastically improves the propagation, even for
feasible problems. The improvement is due to detecting infeasibility of a generated sub-problem for the
remaining suffix of the unassigned variables more rapidly, and therefore avoiding having to explore this
infeasible subtree in the overall search.

8 Conclusion

Using the operational view of time-series constraints, i.e. the seed transducers for each regular expression
and counter automata, we presented systematic methods for synthesising 1) linear and 2) non-linear
invariants linking the result values of several time-series constraints and parameterised by the time-
series length, and 3) conditional automata representing a condition on the result value of a time-series
constraint. Since all these conditional automata have a number of states and an input alphabet that
do not depend on the length of an input sequence, these automata allow us to prove both the fact
that linear invariants are facet defining or not, and the validity of non-linear invariants, for any long
enough sequence length. All the 2000 synthesised parametrised invariants were put in a publicly available
database of invariants [3] linked to the time-series catalogue that was used to automatically enhance
short-term electricity production models that were acquired from real production data.

41

References

1. Gautam Appa, Dimitris Magos, and Ioannis Mourtos. LP relaxations of multiple all_different predicates.
In Jean-Charles Régin and Michel Rueher, editors, Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, First International Conference, CPAIOR 2004,
volume 3011 of LNCS, pages 364–369. Springer, 2004.

2. Ekaterina Arafailova. Functional Description of Sequence Constraints and Synthesis of Combinatorial Ob-
jects. PhD Thesis, IMT Atlantique, LS2N, Sep 2018.

3. Ekaterina Arafailova, Nicolas Beldiceanu, Rémi Douence, Mats Carlsson, Pierre Flener, María Andreína Fran-
cisco Rodríguez, Justin Pearson, and Helmut Simonis. Global Constraint Catalog, Volume ii, Time-Series
Constraints. CoRR, abs/1609.08925, 2018.

4. Ekaterina Arafailova, Nicolas Beldiceanu, and Helmut Simonis. Generating linear invariants for a conjunction
of automata constraints. In Chris Beck, editor, Principles and Practice of Constraint Programming - CP
2017, volume 10416 of LNCS, pages 21–37. Springer, 2017.

5. Ekaterina Arafailova, Nicolas Beldiceanu, and Helmut Simonis. Deriving generic bounds for time-series con-
straints based on regular expressions characteristics. Constraints, 23(1):44–86, 2018.

6. Ekaterina Arafailova, Nicolas Beldiceanu, Mats Carlsson, Pierre Flener, María Andreína Francisco Rodríguez,
Justin Pearson and Helmut Simonis. Systematic derivation of bounds and glue constraints for time-series
constraints. In Michel Rueher, editor, Principles and Practice of Constraint Programming - CP 2016, volume
9892 of LNCS, pages 13–29. Springer, 2016.

7. Ekaterina Arafailova, Nicolas Beldiceanu, Rémi Douence, Pierre Flener, María Andreína Francisco Rodríguez,
Justin Pearson and Helmut Simonis. Time-Series Constraints: Improvements and Application in CP and MIP
Contexts. In Claude-Guy Quimper, editor, Integration of AI and OR Techniques in Constraint Programming
- CPAIOR 2016, volume 9676 of LNCS, pages 18–34. Springer, 2016.

8. Nicolas Beldiceanu, Mats Carlsson, Romuald Debruyne, and Thierry Petit. Reformulation of global constraints
based on constraints checkers. Constraints, 10(4):339–362, 2005.

9. Nicolas Beldiceanu, Mats Carlsson, Rémi Douence, and Helmut Simonis. Using finite transducers for describ-
ing and synthesising structural time-series constraints. Constraints, 21(1):22–40, January 2016. Journal fast
track of CP 2015: summary on p. 723 of LNCS 9255, Springer, 2015.

10. Nicolas Beldiceanu, Georgiana Ifrim, Arnaud Lenoir and Helmut Simonis. Describing and generating solutions
for the EDF unit commitment problem with the ModelSeeker. In Christian Schulte, editor, Principles and
Practice of Constraint Programming - CP 2013, volume 8124 of LNCS, pages 733–748. Springer, 2013.

11. Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, and Charlotte Truchet. Graph invariants as nec-
essary conditions for global constraints. In Peter van Beek, editor, Principles and Practice of Constraint
Programming - CP 2005, volume 3709 of LNCS, pages 92–106. Springer, 2005.

12. Nicolas Beldiceanu and Evelyne Contejean. Introducing global constraints in CHIP. Mathl. Comput. Mod-
elling, 20(12):97–123, 1994.

13. Nicolas Beldiceanu, Pierre Flener, Justin Pearson, and Pascal Van Hentenryck. Propagating regular counting
constraints. In Carla E. Brodley and Peter Stone, editors, AAAI 2014, pages 2616–2622. AAAI Press, 2014.

14. Nicolas Beldiceanu, Carlsson Mats, and Thierry Petit. Deriving filtering algorithms from constraint checkers.
In Mark Wallace, editor, Principles and Practice of Constraint Programming - CP 2004, volume 3258 of
LNCS, pages 107–122. Springer, 2004.

15. Craig Boutilier, Relu Patrascu, Pascal Poupart, and Dale Schuurmans. Constraint-based optimization with
the minimax decision criterion. In Francesca Rossi, editor, Principles and Practice of Constraint Programming
- CP 2003, volume 2833 of LNCS, pages 168–182. Springer, 2003.

16. Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
17. Nader H. Bshouty, Dana Drachsler-Cohen, Martin Vechev, and Eran Yahav. Learning disjunctions of pred-

icates. In Satyen Kale and Ohad Shamir, editors, Proceedings of the 2017 Conference on Learning Theory,
volume 65 of Proceedings of Machine Learning Research, pages 346–369, Amsterdam, Netherlands, Jul 2017.
PMLR.

18. Nader H. Bshouty, Paul W. Goldberg, Sally A. Goldman, and H. David Mathias. Exact learning of discretized
geometric concepts. SIAM J. Comput., 28(2):674–699, feb 1999.

19. John Charnley, Simon Colton, and Ian Miguel. Automatic generation of implied constraints. In ECAI 2006,
volume 141 of Frontiers in AI and Applications, pages 73–77. IOS Press, 2006.

20. Zhixiang Chen and Foued Ameur. The learnability of unions of two rectangles in the two-dimensional dis-
cretized space. Journal of Computer and System Sciences, 59(1):70–83, 1999.

21. COSYTEC. CHIP Reference Manual, release 5.1 edition, 1997.
22. Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on Strings. Cambridge University

Press, 2007.
23. Mehmet Dincbas, Helmut Simonis, and Pascal Van Hentenryck. Solving the car-sequencing problem in

constraint logic programming. In ECAI, pages 290–295, 1988.
24. María Andreína Francisco Rodríguez, Pierre Flener, and Justin Pearson. Implied constraints for Automaton

constraints. In Georg Gottlob, Geoff Sutcliffe, and Andrei Voronkov, editors, Global Conference on Artificial
Intelligence, GCAI 2015, volume 36 of EPiC Series in Computing, pages 113–126. EasyChair, 2015.

42

25. María Andreína Francisco Rodríguez, Pierre Flener, and Justin Pearson. Automatic generation of descriptions
of time-series constraints. In Alexander Brodsky, editor, 29th IEEE International Conference on Tools with
Artificial Intelligence, ICTAI 2017, pages 102–109. IEEE Computer Society, 2017.

26. Simon French, editor. Decision Theory: An Introduction to the Mathematics of Rationality. Halsted Press,
New York, NY, USA, 1986.

27. Alan Frisch, Ian Miguel, and Toby Walsh. Extensions to proof planning for generating implied constraints.
In 9th Symp. on the Integration of Symbolic Computation and Mechanized Reasoning, 2001.

28. Ronald L. Graham. An efficient algorithm for determining the convex hull of a finite planar set. Inf. Process.
Lett., 1(4):132–133, 1972.

29. Pierre Hansen and Gilles Caporossi. Autographix: An automated system for finding conjectures in graph
theory. Electronic Notes in Discrete Mathematics, 5:158–161, 2000.

30. John N. Hooker. Integrated Methods for Optimization. Springer Publishing Company, Incorporated, 2nd
edition, 2011.

31. Jon Lee. All-different polytopes. J. Comb. Optim., 6(3):335–352, 2002.
32. Julien Menana. Automata and Constraint Programming for Personnel Scheduling Problems. PhD Thesis,

Université de Nantes, Oct 2011.
33. Julien Menana and Sophie Demassey. Sequencing and counting with the multicost-regular constraint. In

Willem Jan van Hoeve and John N. Hooker, editors, Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems, 6th International Conference, CPAIOR 2009, volume
5547 of LNCS, pages 178–192. Springer, 2009.

34. Gilles Pesant. A filtering algorithm for the stretch constraint. In Toby Walsh, editor, Principles and Practice
of Constraint Programming - CP 2001, 7th International Conference, CP 2001, volume 2239 of LNCS, pages
183–195. Springer, 2001.

35. Leonard Jimmie Savage. The theory of statistical decision. Journal of the American Statistical Association,
46(253):55–67, 1951.

36. Margus Veanes, Pieter Hooimeijer, Benjamin Livshits, David Molnar, and Nikolaj Bjørner. Symbolic finite
state transducers: algorithms and applications. In John Field and Michael Hicks, editors, Proceedings of the
39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2012, pages
137–150. ACM, 2012.

43

	Introduction
	Background
	Types of Synthesised Invariants
	Synthesising Linear Invariants
	Synthesising Non-Linear Invariants
	Synthesising Conditional Automata
	Evaluation
	Conclusion

