
https://doi.org/10.1007/s10601-021-09321-w

Cable tree wiring - benchmarking solvers
on a real-world scheduling problemwith a variety
of precedence constraints

Jana Koehler1,2 · Josef Bürgler3 ·Urs Fontana3 · Etienne Fux3 · Florian Herzog3 ·
Marc Pouly3 · Sophia Saller2 ·Anastasia Salyaeva2 ·Peter Scheiblechner3 ·
Kai Waelti3

Accepted: 30 March 2021 /
© The Author(s) 2021

Abstract
Cable trees are used in industrial products to transmit energy and information between
different product parts. To this date, they are mostly assembled by humans and only
few automated manufacturing solutions exist using complex robotic machines. For these
machines, the wiring plan has to be translated into a wiring sequence of cable plugging
operations to be followed by the machine. In this paper, we study and formalize the problem
of deriving the optimal wiring sequence for a given layout of a cable tree. We summarize
our investigations to model this cable tree wiring problem (CTW) as a traveling sales-
man problem with atomic, soft atomic, and disjunctive precedence constraints as well as
tour-dependent edge costs such that it can be solved by state-of-the-art constraint program-
ming (CP), Optimization Modulo Theories (OMT), and mixed-integer programming (MIP)
solvers. It is further shown, how the CTW problem can be viewed as a soft version of the
coupled tasks scheduling problem. We discuss various modeling variants for the problem,
prove its NP-hardness, and empirically compare CP, OMT, and MIP solvers on a bench-
mark set of 278 instances. The complete benchmark set with all models and instance data is
available on github and was included in the MiniZinc challenge 2020.

Keywords TSP with precedence constraints · Tour-dependent edge costs ·
Soft coupled task scheduling · Constraint optimization · Benchmarking CP-SAT · MIP ·
OMT solvers

� Sophia Saller
sophia.saller@dfki.de

1 Universität des Saarlandes, Saarland Informatics Campus, Saarbrücken, Germany
2 Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI), Saarland Informatics Campus,

Saarbrücken, Germany
3 Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland

Published online: 15 June 2021

Constraints (2021) 26:56–106

http://crossmark.crossref.org/dialog/?doi=10.1007/s10601-021-09321-w&domain=pdf
https://orcid.org/0000-0001-9000-9188
https://orcid.org/0000-0002-6628-4451
https://orcid.org/0000-0002-9520-4799
http://orcid.org/0000-0003-4817-8601
mailto: sophia.saller@dfki.de

1 Introduction

Cable trees are widely used in industrial products to transmit energy and information
between different product parts. For example, cable trees are needed in cars to automate
many previously mechanical functions such as moving seats or opening windows and to add
new functions such as a voice-controlled navigation or an onboard entertainment system. It
is thus not surprising that for example a car like the VW Golf 7 contains 14 cable trees with
a total of 1633 cables.

The manufacturing of cable trees usually relies on cheap manual labor performed in
low-cost countries where humans plug cables into harnesses following a wiring plan. Only
few automated manufacturing solutions exist, which rely on complex robotic machines.
These machines execute a sequence of wiring operations that highly qualified technicians
develop by analyzing the wiring plan. With the continuing tendency towards customer-
specific and resource-efficient just-in-time manufacturing, smaller batch sizes of cable trees
need to be manufactured requiring a frequent change of wiring plans, for which wiring
sequences should be derived instantly. Scaling up human expertise to such frequent changes
is simply impossible, which explains a growing interest in the intelligent automated manu-
facturing of cable trees. This interest is also nourished by a further miniaturization of cable
harnesses, which will make their manual manufacturing impossible.

To wire a cable tree on an automatic cable wiring machine,1 two problems have to be
solved by experienced human technicians today:

1. Layout: At which positions do cable harnesses have to be mounted on the palette such
that the robot arm can insert cables into the designated harness cavities?

2. Insertion order: Given a layout of harnesses on the palette, in which order are the cable
ends to be inserted into harness cavities such that a robot arm of the machine can fast
and safely produce the desired wiring?

This paper presents a solution to the problem of finding an optimal insertion order for
a given and fixed layout, called the problem of cable tree wiring CTW. Figure 1 illustrates
a wiring situation for a given layout. The large rectangle represents the palette surface. On
the palette, we see a number of small rectangles that represent the positions of the cable
harnesses (the specified layout) on the mounting palette. Each rectangle contains several
light and dark gray numbered rectangular fields. These are the harness cavities into which
the cables need to be inserted. Dark gray cavities are filled with cables, whereas light gray
cavities are left unused. These unused cavities might be required for other variants of a
cable tree. Note that the figure shows a 2D-model of the palette, harnesses, and the desired
wiring of cavities abstracting from 3D-geometric information. In reality, cable harnesses
and cavities can occur in many different shapes (rectangular, oval, or round). The wiring of
the cable tree is illustrated by Bezier curves showing the connections between cavities. Note
that these curves do not represent the real geometric dimension nor physical behavior of the
cables—cables can be up to several meters long and can have very different diameters and
physical properties.

1Our problem is motivated by the automatic manufacturing of cable trees on a Zeta machine by Komax AG,
Switzerland. This machine is a highly sophisticated robot that prepares and cuts cables, adds contacts, and
then inserts the cables into cable harnesses mounted on a palette. A video of such a machine wiring a cable
tree can be watched at https://www.youtube.com/watch?v=cvfnb0thjXA.

57Constraints (2021) 26:56–106

https://www.youtube.com/watch?v=cvfnb0thjXA

Fig. 1 Layout of a cable tree on a palette and desired wiring

For a given layout, we are looking for an enumeration of the dark gray cavities—a robust
and fast sequential order (a permutation) of insertion operations that plug all cables into their
designated cavities. Constraints restrict the positions that cavities can take in the permuta-
tion and are derived from an analysis of the cable behavior and properties of the machine.
For example, a constraint can express that a cable end needs to be inserted into a cavity A

after another cable end is inserted into a cavity B as otherwise the robot arm of the machine
might not be able to approach cavity B, which can be occluded by the cable plugged into
A. We distinguish between constraints and soft constraints, where the latter do not neces-
sarily have to be satisfied, but their violation incurs a penalty. The computation of these
constraints is beyond the scope of this paper.

The paper is organized as follows: Section 2 reviews related work. Section 3 formalizes
the CTW problem, proves its NP-hardness and identifies subclasses of the problem that can

58 Constraints (2021) 26:56–106

be solved in polynomial time. Section 4 introduces the CTW benchmark set of 278 real-
world and artificial instances used in the MiniZinc challenge 2020. Section 5 summarizes
modeling variants for the CTW problem and presents a comprehensive tool chain supporting
a benchmarking of constraint, mixed-integer, and optimization modulo theories solvers.
Section 6 summarizes our findings from experiments with the following solvers:

• CP-SAT solvers

– IBM Cplex CP Optimizer 12.10 (C# API) [31]
– Google OR-Tools CP-SAT Solver 7.5.7466 (Windows Executable) [48]
– Chuffed 0.10.3 (Windows Batch File/Executable) [15]

• MIP solvers

– IBM Cplex MIP solver 12.10 (C# API and MiniZinc command line tool)[31]
– Gurobi 9.0.1 (C# API and MiniZinc command line tool) [26]

• OMT solvers

– Microsoft Z3 4.8.7 (Windows Executable) [20]
– OptiMathSAT 1.5.1 (C API) [58]

Section 7 discusses our empirical findings and interesting open research problems.
Section 8 concludes the paper.

2 Related work

Permutations represent an abstract characterization of many manufacturing problems where
an optimal sequential ordering of a given set of manufacturing steps has to be computed.
They have for example been subject to intense research in the context of routing, scheduling,
or assignment problems [5, 23, 36, 57, 66]. Frequently, boundary conditions lead to various
forms of constraints, notably precedence constraints, which can also occur as disjunctions
and which add additional complexity to a problem formulation [1, 4, 50]. To optimally solve
such a problem, a constraint satisfaction or mixed-integer programming approach can be
followed, but also a number of heuristic approaches have been popular in the literature, e.g.,
greedy or tabu search [25, 55], ant colony and swarm particle algorithms [24, 59, 61], or
simulated annealing [49].

In Section 3, we position our problem as a traveling salesperson problem (TSP) with
(disjunctive) precedence constraints (TSPPC) and tour-dependent edge costs. In traditional
TSP variants, only static edge costs occur, which are constant and independent of time. Tour-
dependent edge costs depend on the tour leading to the edge, i.e., which other cities (cavities
for wiring) have or have not been visited before. They are a variant of time-dependent edge
costs, which depend only on the time at which the edge is traversed (TDTSP) [51, 62, 63].
The CTW problem belongs to the TDTSPPC class of TSP problems. A related variant of
such a problem with time windows is for example studied in [22], variants of vehicle routing
problems with time-dependent travel times are studied for example in [21, 28]. Note that
time-dependent edge costs can be considered as soft time window constraints.

Precedence constraints also occur in many other settings. For example in vehicle routing
problems, when customer visits have to happen in a specific order or within a time window

59Constraints (2021) 26:56–106

or when vehicles have to meet. An example for these type of problems is described in [9],
however their constraints are different from ours. We were not able to find work that exactly
addresses the unique combination of precedence constraints and tour-dependent edge costs
as it occurs in the CTW problem.

The CTW problem can also be seen as a variant of the coupled task scheduling problem
where a set of jobs consisting of two operations with processing times is given, which should
be scheduled on a single machine observing a given time-lag [16, 47]. In the CTW problem,
the coupled tasks represent the two operations that insert the ends of a cable. As we discuss
in Section 3, we wish the two ends of a cable to be plugged right after one another. In
contrast to the coupled task scheduling problem, we do not enforce a time-lag smaller than
a given constant for any coupled insertion operations, but we incur two different penalties.
One counts the number of decoupled insertion operations and the other depends on the
amount of lateness by which the two insertion operations are interrupted. This makes our
problem a soft version of the coupled task scheduling problem.

Different approaches to the formulation of permutation problems as CSP problems have
been systematically studied in [30, 65], whose results influenced the modeling approach that
we present in Section 5. The work in [30, 65] also demonstrated that there is no model that
is best suited for all problems, which motivated the comparison of different non-dual and
dual modeling variants, which we present in this paper. Another variant, which we use in the
context of MIP solvers, is based on a so-called big-M reformulation [10, 55] to effectively
rewrite disjunctive constraints. Permutation problems with disjunctive constraints lead to
AND/OR constraint graphs for which first analysis techniques have been discussed in [3,
39]. The impact of very large sets of disjunctive constraints on the difficulty of permutation
problems has not been studied very widely. Our experiments show that in particular modern
constraint solvers handle problems with disjunctive constraints very effectively. An early
study of disjunctive precedence constraints is described in [13].

A similar study to ours that empirically compares different MIP solvers on various mod-
els for the standard job shop scheduling problem is presented in [34]. These models also
contain precedence and disjunctive constraints. Whereas the authors use a well-known prob-
lem to investigate the progress made by MIP solvers, we are introducing a novel benchmark
set that combines two very different and practically relevant TSP variants in an interest-
ing way and which also seems to be the first known representative of the soft coupled task
scheduling problem. Furthermore, our empirical analysis spans over three different classes
of solvers, for which we developed an elaborate tool chain supporting the conversation of
models and data. Cross-approach comparisons of solvers seem to be rather infrequent. The
two solvers that perform best on our benchmark set, the IBM Cplex CP and the Google
OR-Tools CP-SAT solver, are compared in [19] on instances of the job shop scheduling
problem. Another paper, which compares MIP and CP solvers, is [38], but it focuses on the
hospitals/residents problem.

3 Formalization and complexity of the cable tree wiring problem

In the following, we formally define the CTW problem and define valid and optimal solu-
tions of a CTW instance. We investigate the complexity of the problem and prove it to be
NP-hard, but also show that specific subclasses of the problem can be solved in polynomial
time. Finally, we discuss the relationship to the TSP problem more formally.

60 Constraints (2021) 26:56–106

Fig. 2 Labeling of cable ends for
a job pair 〈ci , ci+b〉 and a
one-sided job c2b+j

3.1 Formalization of the cable tree wiring problem

The cable tree wiring problem CTW can be considered as a scheduling problem where an
optimal schedule for inserting each given cable end into its designated cavity needs to be
determined. Note that two different cable ends can never be inserted into the same cavity
and one cable end cannot be inserted into two different cavities. As this matching of cable
ends to cavities is given initially, the insertion of cable end i in its designated cavity hence
uniquely determines a job ci , which we formally define as follows:

Definition 1 (Job) A job ci is defined as the task of inserting a cable end i into its
corresponding cavity.

The CTW problem can be considered as the problem of finding an optimal schedule
for executing these jobs while satisfying certain constraints. The schedule is described by
the permutation sequence of insertions on a single machine executing the jobs as fast as
possible. For each insertion operation, the robot arm has to pick up the cable from a fixed
position in the storage, then travel to the cavity on the palette, plug the cable, and then travel
back to the storage to pick up the other cable end or the next cable. The travel times of the
robot arm are identical for all valid permutation sequences, because the layout is given and
fixed and thus, they do not need to be considered in the problem formalization.2

We consider two types of cables, which we denote as one-sided and two-sided cables.
For two-sided cables, both ends must be inserted into cavities. For one-sided cables only
one of their ends needs to be inserted into a cavity. We define the following convention for
labeling the corresponding jobs, which is illustrated in Fig. 2:

Definition 2 (Labeling of jobs, job pair 〈ci, cj 〉) Let b be the number of two-sided cables
in a CTW instance. We label the two ends of a two-sided cable i and j = b + i, where
i = 1, . . . , b. Every two-sided cable hence defines a job pair 〈ci, cj 〉 where i ∈ {1, . . . , b}
and j = b + i. Let n be the number of one-sided cables in a CTW instance labeled with i =
2b +1, . . . , 2b +n. The one-sided jobs are hence the jobs ci where i = 2b +1, . . . , 2b +n.

2When computing the layout of the harnesses on the palette, we indeed minimize travel costs for the robot
arm using another optimization solution. The layout optimization problem is out of scope for this paper.

61Constraints (2021) 26:56–106

A solution of a CTW instance with k = 2b + n jobs is described by a permutation P of
length k. This permutation sequence is an ordered set in which each job occurs exactly once.

Definition 3 (Solution P) Let p(ci) be the position of a job ci in P . P is a solution of
the CTW problem if p is an invertible function from {ci}i∈{1,...,k} to {1, . . . , k} such that

∀x ∈ {1, . . . , k} ∃ ! i ∈ {1, . . . , k} s.t. p(ci) = x (1a)

∀i, j ∈ {1, . . . , k} with i �= j : p(ci) �= p(cj) , (1b)

where ∃ ! means that there exists a unique one.

As mentioned in the introduction, the position of a job in the permutation sequence
is restricted by the behavior of cables and the machine. To capture these restrictions,
constraints are formulated over the jobs. These constraints occur in three different forms:

Definition 4 (Atomic Precedence Constraint, sets A and As) Let ci and cj be two jobs
in a CTW instance. An atomic precedence constraint ci � cj with i, j ∈ {1, . . . , k} and
i �= j specifies that job ci must be executed before job cj . The set of all atomic precedence
constraints in a CTW instance is denoted by A . We further define another set of soft atomic
precedence constraints As , which do not necessarily have to be satisfied by a valid solution
permutation P , but will lead to a penalty when violated. The two sets are disjoint, i.e.,
A ∩As = ∅. A solution P satisfies a (soft) atomic precedence constraint ci �cj ∈ A ∪As

if and only if P � p(ci) < p(cj).

Given any arbitrary pair of jobs ci and cj , an atomic precedence constraint ci � cj or
cj � ci may or may not occur in a problem instance. Sometimes, even both constraints can
occur, which renders a problem instance unsatisfiable, because for example the layout of
harnesses was chosen in an unfortunate way.

Disjunctive precedence constraints D combine two atomic precedence constraints in a
disjunction and occur in a limited syntactic form in CTW.

Definition 5 (Disjunctive Precedence Constraint, set D) Given a job pair 〈ci, cj 〉 of a two-
sided cable and a job cl from another one-sided or two-sided cable, two syntactic forms of
disjunctive precedence constraints can occur in a CTW instance:

1. D1 : cl � ci ∨ cl � cj

2. D2 : cl � ci ∨ cj � cl or switching i and j : cl � cj ∨ ci � cl

For l ∈ {1, . . . , k} and a job pair 〈ci, cj 〉 with i ∈ {1, . . . , b} and j = i + b, a solution P
satisfies the constraint

– (cl � ci ∨ cl � cj) ∈ D1 if and only if P � p(cl) < p(ci) or P � p(cl) < p(cj)

– (cl � ci ∨ cj � cl) ∈ D2 if and only if P � p(cl) < p(ci) or P � p(cj) < p(cl).

Note that two constraints of the form cl � ci ∨ cl � cj and ci � cl ∨ cl � cj (cl and ci

flipped) can never occur in the set D1 for the same problem instance, because a cable has
at most two ends, i.e., two job pairs 〈ci, cj 〉 and 〈cl, cj 〉 cannot exist together in the same
instance. Furthermore, note that whenever a disjunctive constraint for three jobs ci, cj , cl

occurs in D1 with 〈ci, cj 〉 being a job pair, a constraint in D2 can never be present for the
same three jobs and vice versa. For the set D2, both variants of the constraint with ci and cj

being flipped can occur within the same instance.

62 Constraints (2021) 26:56–106

Direct successor constraints formalize coupled tasks in a CTW instance. A Zeta machine
can insert the end i of one cable into a cavity, put the other end of the same cable j into
storage for later insertion, and continue to work on a new cable. Some cables are too short
for storing and thus require that the wiring of the cable must proceed without interruption.
Note that direct successor constraints are specific to cavities, not cables. Depending on the
position of the cavity on the palette, storage of one end might be possible, but storage of the
other end might be not.

Definition 6 (Direct Successor Constraint, set S) Let 〈ci, cj 〉 be a job pair. A direct suc-
cessor constraint ci � cj (or cj � ci) formulates an atomic precedence constraint, which
requires that the cable end j of a two-sided cable is immediately inserted after i is inserted
or anytime before i (or i to follow immediately after or anytime before j respectively). A
solution P satisfies a direct successor constraint ci � cj for a job pair 〈ci, cj 〉 if and only
if P � p(cj) = p(ci) + 1 or P � p(cj) < p(ci).

Direct successor constraints can also be formulated as atomic precedence constraints
by adding the atomic constraint ci � cj to A and additional disjunctive constraints of the
syntactic form D2 to specify that all other cavities must either come before or after the job
pair 〈ci, cj 〉, however, this formulation is less compact:

p(ci) = p(cj) + 1 ↔ ci � cj ∧ ∀ cl(i �= l �= j) cl � ci ∨ cj � cl (2)

We now define a valid solution of a CTW instance as a solution, which satisfies all
constraints defined for the instance.

Definition 7 (Valid Solution) Let I be a CTW instance with b two-sided and n one-sided
cables, i.e., k = 2b + n jobs, and sets of constraints A , As , D , and S . A permutation P
is a valid solution for I if and only if P satisfies all constraints in A ∪ D ∪ S . Note that
if k = 0, all constraint sets are empty and any permutation of length 0 is a solution for the
instance.

As an illustrating example consider a CTW instance with cables A, B and C, where A

and B are two-sided cables defining the job pairs 〈c1, c3〉 and 〈c2, c4〉 respectively and C is
a one-sided cable defining the job c5. This instance has parameters k = 5 and b = 2 and is
subject to the following constraints:

c3 � c4

c4 � c1

c5 � c4

c2 � c5 ∨ c2 � c1

c4 � c2

Of the 5! = 120 possible job permutations, only 8 are valid solutions satisfying all the
constraints. One example of such a valid solution is the permutation (c5, c3, c4, c2, c1).

3.2 Optimal solutions of CTW instances

In practice, one is not only interested in valid solutions, but in solutions of minimal cost.
Four different cost functions are of interest. The first three cost functions aim to increase the
robustness of the cable wiring actions by introducing penalties when a job pair is interrupted,

63Constraints (2021) 26:56–106

because interrupting the processing of a job pair and storing cables into storage can increase
the risk of the robot arm in getting caught in stored cables. Furthermore, putting a cable end
into storage and working on another cable, which is captured by the first cost function, can
increase production time. The fourth function aims at keeping the violation of soft atomic
constraints at a minimum. On the one hand, violating a soft atomic constraint allows the
machine to make more flexible moves during wiring, but on the other hand, it can impact
robustness negatively.

1. S = Number of interrupted job pairs, i.e., cable ends that are temporally added to the
cable storage by the machine to pick up another cable for insertion.

2. M = Maximum number of cables that are contained in storage simultaneously.
3. L = Longest time a cable end resides in storage expressed in terms of number of jobs.
4. N = Number of violated soft atomic precedence constraints in As .

The formalization of the four criteria S, M , L and N , makes repeated use of the indicator
function I. An indicator function IA(x) for a set A returns 1 when x lies in the set A, and 0
otherwise. More formally, the indicator function IA of a set A is defined as

IA(x) =
{
1 if x ∈ A

0 otherwise
(3)

Criterion S counts how many of the job pairs were interrupted in a solution.

(4)

where and is the indicator function of the set .
To determine the criterion M , i.e., the maximum number of cables that are stored simul-

taneously, we have to count for each job cl in the solution, how many job pairs exist where
one end is plugged before cl , but the other end is plugged after cl , i.e., how many job pairs
are interrupted by a given job cl .

(5)

where and is the
indicator function of the set . Note that in this case, the set depends on j .

The optimization criterion L is determined by measuring the number of jobs between job
ci and job ci+b for each i ∈ {1, . . . , b}, i.e., for each job pair, and takes the maximum value
obtained for all job pairs. Note that if there are no jobs between two cable ends, the cable is
plugged directly without accessing the storage.

L =
⎧⎨
⎩
0 if b = 0

max
i∈{1,...,b} (|p(ci) − p(ci+b)| − 1) otherwise (6)

For criterion N , we count the number of violated soft atomic constraints from the set As ,
so

(7)

where and is the indicator function of the set .

64 Constraints (2021) 26:56–106

Assuming k �= 0, all four criteria are bounded by a lower value of 0 and an upper value
depending on the size of the solution k = 2b + n as follows:

0 � S � b < k

0 � M � b < k

0 � L � k − 1 < k

0 � N � k·(k−1)
2 < k2 as there can be at most k·(k−1)

2 soft atomic precedence con-
straints in a solution, otherwise the constraint graph contains a cycle and the instance is
unsatisfiable.

As our objective function, we define the weighted sum of the four criteria S, M , L and
N . By the weight assigned to each criterion, we want to ensure that their possible values
fall into non-overlapping intervals, in order to ensure that solvers prioritize optimizing for
the criteria based on a fixed ranking order: S before M before L before N . The value of N

for the instances in the benchmark set that we consider is more tightly bound than the worst
possible bound, i.e., in the benchmark set we always have N < k instead of N < k2. It
is thus sufficient to weight the four objectives by powers of k to eliminate the influence of
one to the others. For all experiments in this paper, we therefore use the weighted sum as
defined in (8) below as optimization objective:3

k3 · S + k2 · M + k · L + N (8)

For the example considered above and the solution (c5, c3, c4, c2, c1), this formula
returns costs 161 (S = M = N = 1, L = 2), which makes this solution one of the two
optimal solutions for this instance.

3.3 NP-hardness of the CTW problem

We now prove that the CTW problem is NP-hard by a reduction from the Maximum Acyclic
Subgraph problem. Note that for this reduction, we assume the presence of soft atomic
constraints and one-sided cables.

Theorem 1 (NP-hardness of CTW) The Cable Tree Wiring Problem (CTW) is NP-hard.

Proof of Sketch We prove NP-hardness by a reduction from the Maximum Acyclic Sub-
graph problem (MAS). Let us assume an MAS instance where we are given a directed graph
G = (V ,E), where V = {1, . . . , n} is the set of vertices of G and E is the set of directed
edges of G. A solution to the MAS problem is a maximal set E′ ⊆ E of edges such that
the resulting graph G′ = (V ,E′) is a directed acyclic graph. This problem is known to be
NP-hard [33].

We now construct a CTW instance as follows. Let the set of vertices V correspond to jobs
of one-sided cables c1, . . . , cn. For each of the edges e = (v, w) ∈ E, where v corresponds
to job cj and w to job ck , we introduce a soft precedence constraint cj � ck . The graph G

hence corresponds to the constraint graph of the CTW instance.

3Alternatively, one can use lexicographic optimization [2], but not all solvers considered in this paper support
it.

65Constraints (2021) 26:56–106

The solution to the CTW problem is then a permutation P of the jobs with minimal
cost, so with the fewest violated soft precedence constraints (since we have no pairs of jobs
in this instance). Let E′ be the set of all edges corresponding to soft atomic precedence
constraints that are not violated by the permutation. By the optimality of the solution for the
CTW instance, the set E′ is the largest such set permitting a valid wiring sequence. Note
further that a valid solution is possible if and only if the constraint graph has no cycles.

The set E \ E′ is hence the smallest set of edges that needs to be removed from G to
obtain a directed acyclic graph, and so G′ = (V ,E′) is the maximum acyclic subgraph
of G. The solution to the CTW hence gives a solution to the Maximum Acyclic Subgraph
problem. Since the solution size is clearly polynomial in the size of the MAS instance, it is
a polynomial many-one reduction, proving that CTW is NP-hard.

Since our proof relies on the presence of soft atomic constraints, the complexity of the
CTW problem without soft atomic precedence constraints is still open. Note further, that
NP-completeness of the corresponding CTW decision problem follows from Theorem 1.
For the special case that only (hard) atomic precedence constraints and no two-sided cables
occur in an instance, the CTW problem can be solved in polynomial time.

Lemma 1 (CTW with only hard atomic constraints) A CTW instance with only one-sided
cables and As = D = S = ∅ can be solved in polynomial time.

Proof of Sketch First construct the constraint graph of the CTW instance by creating a ver-
tex i for every job ci and adding a directed edge from i to j to the graph if and only if
the precedence constraint ci � cj exists in A . By applying Kahn’s algorithm [32] to the
constraint graph, we obtain a topological ordering, which is necessarily a valid permutation
satisfying all the precedence constraints. Note that Kahn’s algorithm has time complexity
O(k + e), where k is the number of jobs and e is the number of constraints in the CTW
instance. The CTW instance can thus be solved in polynomial time.

Based on the relationship to the Traveling Salesperson problem that we discuss in the
next subsection, we conjecture that the CTW problem is NP-hard once two-sided cables are
added even if only the set A of atomic precedence constraints is non-empty and all other
constraint sets are empty. We also conjecture that the CTW problem restricted to containing
only disjunctive precedence constraints is NP-hard. Disjunctive precedence constraints can
be compiled away by converting the constraint set of disjunctive precedence constraints into
disjunctive normal form (DNF) where each disjunct only contains atomic constraints. The
compilation can lead to an exponential “blow-up” in the number of disjuncts only containing
atomic precedence constraints [40]. Solution length remains polynomially bounded in this
potentially larger search space, i.e., membership in NP remains unchanged. Proving these
conjectures is not straightforward as the CTW problem is a TSP variant with only tour-
dependent edge costs, but no static edge costs, for which we could not find any formal
complexity proofs.

If we, however, restrict a CTW instance to only contain direct successor constraints, it
can be solved in linear time.

Lemma 2 (CTW with only direct successor constraints) A CTW instance with k = 2b + n

jobs and b two-sided and n one-sided cables where A = As = D = ∅ and S �= ∅ can be
solved in linear time O(k).

66 Constraints (2021) 26:56–106

Proof of Sketch As a direct successor constraint can only be defined for an end of a two-
sided cable, an optimal solution permutation with cost 0 can be constructed by first wiring
all job pairs of the two-sided cables without interruption and then adding the jobs for the
one-sided cables:

P = c1, c1+b, c2, c2+b, . . . , cb, c2b, c2b+1, . . . , c2b+n

This sequence ensures that if a direct successor constraint is defined for some job cj , either
the other cable end is directly following or preceding it.

3.4 Relationship of CTW to TSP

The CTW problem can be considered as a variant of the traveling salesman problem (TSP)
where cavities represent cities that need to be visited. TSP variants with precedence con-
straints have been studied in a number of papers with [35] being one of the first references,
but see also [42, 52] for more recent overviews. The CTW problem can also be consid-
ered as a variant of the pickup and delivery TSP problem, where the pickup and delivery
locations can be exchanged with each other, but the tour should visit them directly. Closely
related variations of the pickup and delivery problem have been studied in [11, 60, 64], but
none of them is identical to the CTW variant.

In the underlying graph, a city (job) is connected with any other city unless a precedence
constraint ci < cj is given, which removes the edge cj �→ ci from the graph and also
excludes all (sub)paths cj · · · �→ · · · ci from the tour. Direct successor constraints remove
even more edges from the graph, enforcing the edge ci �→ cj as the only outgoing edge of
ci in the graph. In the resulting partially connected graph, we need to compute a hamiltonian
path, but not a hamiltonian cycle, because we do not need to return to the starting job after
having visited each job exactly once. Computing a hamiltonian path on general graphs is
NP-complete. On complete graphs, i.e., in the unlikely case that no precedence constraints
are given, the problem can be solved in linear time [56].

Note that the time to complete each wiring operation is independent of the position of a
cavity in the permutation, because the robot arm of the machine begins each wiring opera-
tion from the storage location, where the cables are prepared, moves to the cavity, and back
to the storage. Travel times can only be influenced by choosing a different layout, i.e., mov-
ing a harness on the palette closer to the cable storage, but once the layout is fixed, travel
costs are identical for all permutations. Thus, travel times in a CTW instance are constant
and do not need to be considered in the problem formalization. This makes our problem at
first glance different from routing problems, which usually minimize travel time. However,
we will show now how to encode our storage costs as edge costs.

Recall, that we have defined the underlying graph of this problem as follows: Each node
represents a job and two nodes are connected unless a precedence constraint ci < cj is
given, which removes the edge cj �→ ci . A direct successor constraint between ci and cj

further removes all outgoing edges from ci except the edge ci �→ cj . Given a job pair of
a two-sided cable 〈ci, cj 〉 and a further job cl where l �= i, j , we define the edge costs as
follows:

• Edges ci �→ cj and cj �→ ci have costs 0, because we plug the two ends of the
two-sided cable immediately after one another.

• For an edge ci �→ cl with l �= j , costs are either 0 or 1 depending on whether the other
end of the cable was visited on the tour to ci or not.

67Constraints (2021) 26:56–106

– If cj was visited on the tour to ci , then edge ci �→ cl has cost 0 because ci is
the “second” end of the cable that we take out of storage for plugging.

– If cj was not visited, then edge ci �→ cl has cost 1 because we put cj into
storage to work on the cable for cl .

In the same way, costs are assigned to cj �→ cl . Intuitively, the edge cost is equal to
1 if a “remaining” cable end is put into storage and a new cable is picked for wiring,
otherwise the edge cost is 0.

Let 1, . . . , k be the cable ends in a CTW instance with corresponding jobs c1, . . . , ck .
Suppose further, as before, that b of the cables are two-sided. Let q(x) denote the inverse
of the function p introduced in Definition 3, i.e., for a given position x, the function q

returns the job cj at position x in the permutation sequence P . We define a tour P in
the graph to be a sequence of jobs (which correspond to nodes) q(1), . . . , q(k), where for
each x ∈ {1, . . . , k − 1} an edge between node q(x) and q(x + 1) exists. A solution tour is
Hamiltonian and visits every node in the graph exactly once.

Let c (q(x) �→ q(x + 1)) be the cost of an edge q(x) �→ q(x + 1). S is the total number
of interrupted job pairs, so the number of edges with cost 1 occurring on the path. Hence, S
can be defined as

S =
2b+n−1∑

x=1

c (q(x) �→ q(x + 1)) (9)

We show that this definition of S in (9) is equivalent to our original definition of S in (4).
Equation (9) can be rewritten as

=
2b+n−1∑

x=1

IK(x)

where K = {x | other end of the cable end corresponding to job q(x) is put into storage}.
K is the set of all positions x in the tour such that the edge q(x) �→ q(x + 1) has cost 1. An
edge q(x) �→ q(x +1) has cost 1 if and only if the other end of the cable end plugged in job
q(x) has not been plugged before q(x) and is not plugged right after q(x), which is equal to

=
b∑

j=1

2b+n−1∑
x=1

IK+
j
(x) + IK−

j
(x)

where K+
j = {x | q(x) = j ∧ x + 1 < p(cj+b)} and K−

j = {x | q(x) = j + b ∧ x + 1 <

p(cj−b)}.K+
j is the set of positions in the permutation (tour) where a two-sided cable end j ,

where j is at most b, is plugged and such that the other end of j has not been plugged before
q(x) and is not plugged right after q(x). The set K−

j is defined similarly for j between b+1
and 2b. This can then be further simplified to

=
b∑

j=1

(
2b+n−1∑

x=1

IK+
j
(x)

)
+

(
2b+n−1∑

x=1

IK−
j
(x)

)

which again can be simplified by joining the sets K+
j and K−

j for all x.

=
b∑

j=1

IS+(j) + IS−(j)

68 Constraints (2021) 26:56–106

where S+ = {j | p(cj) + 1 < p(cj+b)} and S− = {j | p(cj+b) + 1 < p(cj)}. With
S+ ∪ S− = S and S = {i | |p(ci) − p(ci+b)| > 1} as defined in (4), we obtain

=
b∑

j=1

IS(j)

as required, which shows that the cable tree wiring problem can indeed be seen as a variant
of the TSP problem combining precedence constraints and time-dependent edge costs.

4 The CTW benchmark set

The CTW benchmark set comprises 205 real-world and 73 artificial instances of cable tree
wiring problems. Each instance is defined by constants k and b and its constraint sets. The
original cable tree, i.e., the geometry of harnesses or cables is not contained in the instance
description. Real-world examples originate from cable trees produced on the machines
mostly for automotive applications. Artificial examples were constructed by industry spe-
cialists to highlight specific challenges when wiring cable trees during the development of
the solution described in this paper. The benchmark set contains the following subsets:

– satisfiable: a set of 71 artificial and 185 real-world instances,
– unsatisfiable: a set of 2 artificial and 20 real-world instances where the layout generates

contradicting constraints,
– challenge: a small subset of 5 artificial and 5 real-world instances from the satisfiable

set where solvers have difficulties finding an optimal solution.

Table 1 shows the number of two-sided cables and the number of atomic, soft atomic, and
disjunctive constraints for each instance in the challenge set. No instance of the challenge
set contains direct successor constraints or one-sided cables, but they occur in 80 of the
other benchmark instances. To give an idea on how many constraints apply when choosing
a position value for a job in a permutation, we developed the notion of constrainedness
(c-ness), which is inspired by the clause/variable ratio used to characterize the hardness
of SAT instances [41]. For each job, we determined the number of atomic or disjunctive

Table 1 Parameters of the 10 challenge set instances

Instance Two-sided Atomic Soft atomic Disjunctive Constraint Average Max

Cables b Constraints Constraints Constraints Sum c-ness c-ness

A033 80 418 74 224 756 8.4 34.0

A060 100 2471 86 339 2,946 29.9 89.5

A066 170 7651 156 842 8,734 52.1 150.0

A069 186 9313 172 971 10,549 57.5 166.0

A073 198 9870 184 1211 11,364 56.8 168.0

R192 104 1270 74 197 1,593 14.7 64.5

R193 104 1056 86 99 1,293 11.9 43.5

R194 112 1471 81 204 1,812 15.5 68.5

R195 110 1525 77 243 1,900 16.7 70.5

R196 110 1416 79 201 1,751 15.3 67.5

69Constraints (2021) 26:56–106

constraints where the job occurs on the left-hand side of the constraint. Occurrence in an
atomic constraint counts as 1, occurrence in one disjunct within a disjunctive constraint
counts as 0.5. We calculated the maximum, and average constrainedness over all jobs of
an instance. The parameter gives a rough indication of the difficulty of an instance when
considered together with the permutation length, i.e., parameter 2b + n.

A better way of predicting the difficulty is to just determine the constraint sum occurring
in an instance, which we define as the sum of the number of two-sided cables, the number
of atomic, soft atomic constraints, disjunctive constraints, and direct successor constraints.
The number of two-sided cables is added to this sum as two-sided cables can also be viewed
as soft direct successor constraints, because a penalty occurs if two ends of a two-sided
cable are not plugged directly after one another. Using the constraint sum, a correlation
with the solving state for each solver can be observed, see Section 7. The constraint sum
in the CTW Benchmark set ranges from 0 to 11,766. It is an interesting question of how
these preliminary measures can be improved to accurately predict the difficulty of a CTW
instance. Note that the numbering of instances in the benchmark set does not reflect their
difficulty in terms of the parameters discussed above.

The CTW benchmark set contains a variety of different instances. 20 instances require
to compute permutations of length smaller than 10, 239 instances have a permutation length
between 10 and 100, and 19 instances have a length of over 100 and up to 198 jobs. Real-
world instances mostly range between 20 and 50 jobs with an average permutation length
of 43. 40 instances contain one-sided cables (k > 2b) and all of them except one (A008) are
real-world instances. The three largest satisfiable instances A071, A072, and A073 contain
around 10,000 atomic, over 1,000 disjunctive, and nearly 200 soft atomic constraints, but
no direct successor constraints. One of them, A073 is also part of the challenge set.

The 22 unsatisfiable instances contain 2 artificial and 20 real-world instances. The largest
of them have a permutation length between 70 and 80, over 1,000 atomic and around
150 disjunctive constraints. Average permutation length is 51 and the smallest unsatisfi-
able instance has permutation length 6. All of them contain direct successor constraints.
An overview of the average parameters and average solution time using CP solvers (across
all models for these solvers) for the unsatisfiable instances is given in Table 2. Besides
unsatisfiable instances, we show the same information for ten of the easiest to solve sat-
isfiable instances. For this easy satisfiable set, we take the ten satisfiable instances with
smallest average solving time across all models on all CP solvers considered in this paper.
The largest of these instances has permutation length 10, 30 atomic and 2 disjunctive con-
straints. Further information on the unsatisfiable and easy satisfiable instances can be found
in Appendix E. The benchmark set also contains a few pathological cases, such as for exam-
ple instance R001 with no cables (k = b = 0) and instance R002 with just a single one-sided
cable (k = 1, b = 0).

The complete benchmark set with all models and instance data can be downloaded
from https://github.com/kw90/ctw toolchain. Furthermore, this site also contains the code

Table 2 Average parameters of easy to solve satisfiable and all unsatisfiable instances

Two-sided Atomic Soft atomic Disjunctive Constraint Average CP

cables b constraints constraints constraints sum solving time

Easy satisfiable 1.80 5.90 2.20 0.40 10.60 0.25s

Unsatisfiable 11.50 136.75 16.83 24.00 198.67 1.75s

70 Constraints (2021) 26:56–106

https://github.com/kw90/ctw_toolchain

and documentation of the tool chain that we developed for the conversion of models and
data into the different formats required by the various solvers, see also Section 5. We also
included an Excel file, which summarizes the parameters of all instances as well as all solver
results that form the basis for Section 6. The CTW benchmark set was also included in the
MiniZinc challenge 2020.

5 Modeling the CTW problem

Our models are original work by the authors and are based on a so-called quadratic per-
mutation representation of the TSP as described in [27]. The models closely follow the
formalization of the problem to provide a base line for an empirical study with various
solvers. This also implies that we represent disjunctive precedence constraints and direct
successor constraints directly without rewriting them as described earlier. Other modeling
variants can be imagined, e.g., exploiting the relation to the TSP problem even more directly,
modeling the problem as a scheduling problem, using a linear permutation representation,
or a convex-hull encoding just to name a few. We focus on two major modeling approaches:
a rather “natural” and “native” model M of the problem and an extension of this native
model to a dual model DM exploiting a dual problem representation. For each solver, vari-
ants of the models M and DM are created as there is no single modeling language, which
all solvers would support. We do not, however, try to achieve the best possible model for a
specific solver, which would allow this solver to perform best on the problem. As such, our
experiments provide a base line for the comparison of different solvers on the CTW prob-
lem, but they do not generalize to wider conclusions about the scalability or performance of
a solver beyond the specific model or CTW problem.

In this section, we describe the constraint models M and DM. The model DM is used
in the cable tree wiring solution with the IBM Cplex CP constraint solver and written in
OPL, the proprietary language of Cplex. Using OPL had the advantage that the model could
be easily reviewed and discussed with domain experts, because of the compact and natural
representation of data structures and constraints provided by OPL. Based on the models M
and DM, a number of further modeling variants in other languages were developed in order
to compare this model and the results obtained with Cplex CP with those from other solvers.
In the following, we summarize the derivation process of all model variants and give a short
overview on their main characteristics. Appendix A provides further details.

5.1 The constraint models M and DM

The modelM uses integer variables to represent cavities and cables. We assign the cable end
numbers to the cavities as there is exactly one cable plugged into each cavity and we speak
of cavities rather than cable ends in the model. For k = 2b + n cable ends/cavities with b

job pairs 〈ci, cj 〉 numbered with i = 1 . . . b and j = i + b we introduce the corresponding
ranges in the model. The number of two-sided cables is captured by the range CavityPairs.

int k = ...; //number of cavities, permutation length

int b = ...; //number of two-sided cables, job pairs

range Cavities = 1..k;

range Cablestarts = 1..b;

range Positions = 1..k;

range CavityPairs = 1..2*b ;

71Constraints (2021) 26:56–106

The three sets of atomic, soft atomic and disjunctive constraints are explicitly introduced
into the model. Cables that are too short for storage and that are subject to direct successor
constraints are represented in a list of integers of cable end numbers.

{Atomic} AtomicConstraints = ...;

{Atomic} SoftAtomicConstraints = ...;

{Disjun} DisjunctiveConstraints = ...;

{int} DirectSuccessors = ...;

Atomic and disjunctive constraints are represented as tuples:

tuple Atomic {int cbefore; int cafter;}

tuple Disjun {int c1before; int c1after; int c2before;

int c2after}

An array decision variable position for cavity (pfc) of length 1, . . . , k = 2b + n is intro-
duced to represented the permutation sequence. This array uses the cavity number as index
and stores the position as value.

dvar int pfc[Cavities] in Positions;

An allDifferent constraint is added for the pfc permutation sequence to implement the
constraint implied by Definition 3.

allDifferent(pfc);

All hard and soft constraints as well as optimization criteria are formulated on the pfc
permutation. Modeling the precedence and direct successor constraints is straightforward:

forall(c in AtomicConstraints)

pfc[c.cbefore] < pfc[c.cafter];

forall(c in DisjunctiveConstraints) {

pfc[c.c1before] < pfc[c.c1after] ||

pfc[c.c2before] < pfc[c.c2after];

if(c.c1before == c.c2before)

{maxl(pfc[c.c1after], pfc[c.c2after]) > pfc[c.c1before];}}

forall(i in DirectSuccessors: i<=b)

(pfc[i] < pfc[i+b]) => (pfc[i+b] - pfc[i] == 1);

forall(i in DirectSuccessors: i>b)

(pfc[i] < pfc[i-b]) => (pfc[i-b] - pfc[i] == 1);

The definitions of the optimization criteria S, M , L and N read as follows:

dexpr int S = (b == 0) ? 0 :

(sum(i in CableStarts) (abs(pfc[i] - pfc[i+b]) > 1));

dexpr int M = (b == 0) ? 0 :

(max(i in CavityPairs) (sum(j in CavityPairs: j<=b)

((pfc[j] < pfc[i] && pfc[i] < pfc[j+b]) ? 1 : 0)

72 Constraints (2021) 26:56–106

+ sum(j in CavityPairs: j>b)

((pfc[j] < pfc[i] && pfc[i] < pfc[j-b]) ? 1 : 0)));

dexpr float L = (b == 0) ? 0 :

max(i in CableStarts) abs(pfc[i] - pfc[i+b]) - 1;

dexpr int N = sum(i in SoftAtomicConstraints)

(pfc[i.cbefore] > pfc[i.cafter]);

The objective function is stated as:

minimize S * pow(k, 3) + M * pow(k, 2) + L * pow(k, 1) + N;

Alternatively, Cplex and some other solvers offer the built-in staticLex function that
defines a multi-criteria policy ordering the different criteria. However, in our experiments
we found that Cplex performs slightly better when not using this function.

The constraint model DM follows the approach from [30] and uses two permutation
sequences cavity for position (cfp) and position for cavity (pfc). Whereas the pfc permuta-
tion uses the cavity number as index and stores the position as value, the cfp permutation
assigns cavity identifiers to positions. An additional array decision variable cfp is thus added
to the model.

dvar int cfp[Positions] in Cavities;

For example, the two permutations cfp= 3,1,2 and pfc=2,3,1 describe the same solu-
tion where cavity 3 is wired first, cavity 1 second, and cavity 2 last. The dual permutation
representations are linked via a channeling constraint

∀j ∈ Cavities, p ∈ Positions : pfc[j] = p ⇔ cfp[p] = j

using the built-in inverse constraint in OPL. Furthermore, a (now) redundant allDifferent
constraint is added for both permutation sequences. Experiments on the influence of the
two redundant allDifferent constraints and the channeling constraint gave no clear picture.
Different combinations of these three constraints increased or reduced solution time and
costs on different instances for Cplex CP. In the end, we decided to keep the three global
constraints in the dual model DM, which makes DM a strict extension of the model M.

allDifferent(pfc); allDifferent(cfp); inverse(cfp, pfc);

Using the dual model DM was key in scaling earlier versions of the Cplex CP solver to
larger CTW instances, which it could not solve using only one of the permutation represen-
tations. All hard and soft constraints as well as optimization criteria remain formulated on
the pfc permutation following the experimental results in [30].4

Benchmark instances are represented in the .DAT format used by Cplex. The .DAT files
used in the experiments with Cplex CP and MIP are directly exported from cable tree data
in the Zeta machines using an XML-based software interface and an exporter written in C#.
Each file provides specific values for the integer parameters k (number of jobs, permutation
length) and b (number of job pairs). Constraints are represented as sets of tuples of integer

4Note that in early experiments we had also worked with another non-dual model using only the cfp permu-
tation and all constraints formulated over cfp. However, on this modeling variant Cplex CP performed much
worse confirming the results in [30]. Thus, this non-dual modeling approach was quickly abandoned and not
pursued further.

73Constraints (2021) 26:56–106

values enumerating the cavities. For example, instance R024 with 6 two-sided and 14 one-
sided cables reads as follows (most constraints replaced by . . .)

k = 26;

b = 6;

AtomicConstraints = {<1,3>, <2,3>, <3,18>, <6,18>, <15,25>,

<17,21>, ...};

SoftAtomicConstraints = {<2,1>, <4,3>, <6,5>, <12,26>, ...};

DisjunctiveConstraints = {<8,15,8,16>, <16,12,6,16>,

<9,17,9,18>,...};

DirectSuccessors = {1,2,8,7,};

Note that direct successor constraints are represented in a list of integers of cable end
numbers, because they are specific to two-sided cables and express that once a cable end is
plugged into a cavity, the other end must be plugged immediately after or must have been
plugged before. The label of the other cable end is obvious from our numbering scheme
using the b parameter. Note that the integer i occurring in the DirectSuccessors list means
that the direct successor constraint ci � cj , where j is the other end of the two-sided cable
(so j = i + b or j = i − b), exists in the problem instance. In the example above, we can
see that both ends of the cables in job pairs 〈c1, c7〉 and 〈c2, c8〉 are too short for storage.

5.2 Overview onmodel variants, instance data formats, and the supporting tool
chain

Based on the two modelsM and DM, we derived different implementations and model/data
representations in order to perform a benchmarking using different solvers. This turned out
to be a very time-consuming and mostly manual process, which also included the necessity
to write software to achieve the desired conversions, because solvers use different modeling
languages and data input formats. Figure 3 summarizes the derivation process for those
solvers, which separate the model from instance data. It shows which model and data format
is fed into which solver.

The model MZ is an implementation of the non-dual model M in the MiniZinc lan-
guage [44]. The model DM′

Z is an implementation of the dual model DM in the MiniZinc
language [44] where we rewrote the definitions of the L and S criteria to eliminate the
absolute functions. In contrast to the Cplex OPL language, the MiniZinc language does not
provide the possibility to represent tuples. Therefore, OPL ranges are translated into sets of
integers in MiniZinc and constraints are represented using arrays. Arguments of the arrays
represent the cavities between which a constraint must hold. For disjunctive constraints, a 2-
dimensional array is used. MiniZinc supports various global constraints, which are included
into the model to express the allDifferent constraint over the elements of an array in a
straightforward way.

The model MGT is another non-dual model created by Guido Tack, Monash Univer-
sity. In this model, disjunctive constraints are rewritten using an array of booleans and an
additional constraint over this array is added. The array captures the truth value of the two

74 Constraints (2021) 26:56–106

disjuncts in a disjunctive constraint and the constraint states that at least one of the disjuncts
must be true for the disjunctive constraint to be satisfied. Furthermore, an array of booleans
is used to capture values of the optimization criteria, which are represented as sums over
these boolean array values.

The models MZ, DM′
Z, and MGT are used in experiments with the Chuffed constraint

solver and the Gurobi and Cplex MIP solvers. Whereas Chuffed can read a MiniZinc model
directly, we used the MiniZinc command line tool and the provided wrappers for Gurobi and
Cplex to feed the models into the MIP solvers. The MiniZinc models work with benchmark
instances represented in the .DZN format. These data files are generated using a Python
script, which replaces the delimiters used in the representation of the constraint sets in the
.DAT files. This is the only required conversion as the .DAT and .DZN file formats are quite
similar.

We also manually implemented variants of the M and DM models leading to models

MMIP and DMMIP in the language OPL for Cplex MIP and models MC#

MIP and DMC#

MIP in
the C# API of Gurobi. In these MIP model implementations, we implemented constraints
as equations without any sophisticated rewriting such as for example described in [53].
Our goal was to keep the models close to the constraint models and to avoid unintuitive
reformulations. The models represent constraints as tuples of integers in the same way as
the M model. The allDifferent constraints are reformulated using pairwise inequalities. All
other constraints rewrite the < condition over permutation values as inequalities. In con-
trast to Cplex OPL, inequalities cannot be directly expressed in the Gurobi API, but must be
rewritten as linear inequality expressions, which required us to introduce additional binary
variables for each inequality constraint. Similarly, disjunctive constraints as well as the
allDifferent constraint are rewritten using binary variables. In addition, we had to introduce
additional variables for the optimization criteria, which capture whether a cable end comes
before or after the other end of this cable in the permutation sequence. Cplex MIP uses the

OPL

MMIP

MiniZinc

MZ

MiniZinc

MGT

OPL

DM

OPL

MB

OPL

DMMIP

C# API

MIMMIP

C# API

MIMB

C# API

MIDMMIP Gurobi

Cplex MIP

Cplex CP

Chuffed

.DAT

.DZN

.DAT file parser
and data genera�on

in C# API

.DAT file parser and
file genera�on in

Python

Exported from
XML interface

of Zeta
Machines in C#OPL

M

MiniZinc

DMZ

C# C# C#

Gurobi

Cplex MIP
MiniZinc command line tool
with solver-specific wrapper

Dual ModelsNon-Dual Models

´

Fig. 3 Models and data formats for the Gurobi, Cplex CP, Cplex MIP, and Chuffed solvers that keep model
and data in separate representations

75Constraints (2021) 26:56–106

OptiMathSAT

Z3

.DZN

MiniZinc to FlatZinc
converter

version 2.3.2

<Plugin>
Op�MathSATsmt2 support lib for global constraints
version 1.0 - only required when genera�ng .FZN
flies for further .SMT2 conversion

Op�MathSAT
version 1.6.4

rev.
d39a648d6bb7

FlatZinc compiler to SMT-
LIBv2 with OMT extensions

and fzn2smt2.py

OR-Tools CP-SAT
FlatZinc

.FZN1

Python script for further
solver- and instance-

specific modifica�ons of
SMT2 files

SMT-LIB

.SMT21-Z3

SMT-LIB

.SMT22-Z3

SMT-LIB

.SMT21-OM

SMT-LIB

.SMT21-OM

.FZN1-GC

FlatZinc

.FZN2-GC

FlatZinc

.DFZN.FZN2

MiniZinc

MZ

MiniZinc

MGT

MiniZinc

DMZ

Dual Model

Non-Dual Models

´

´

´

Fig. 4 Tool chain for the Google OR-Tools, Z3, and OptiMathSAT solvers that use a single integrated model-
data file for each instance

same .DAT files as Cplex CP. To feed the instance data into Gurobi, a .DAT file parser was
implemented in C# such that the data can be directly generated in the C# API of Gurobi.

The models MB for Cplex MIP and MC#

B for Gurobi make use of a big-M reformula-
tion for the disjunctive constraints [55] using additional decision variables and non-integer
(floating point) optimization costs. An upper triangular matrix of booleans is used to rep-
resent that one cavity is plugged before another one. Constraints can be directly expressed
in this matrix representation and the solution can be extracted from the matrix. Additional
decision variables are used to capture the minimum and maximum positions of the cavities
in the permutation. Their values are set by additional constraints.

Figure 4 summarizes the tool chain for the experiments with the Google OR-Tools CP-
SAT solver and the two OMT solvers Z3 and OptiMathSAT, which use a single integrated
model-data file for each instance. The non-dual MiniZinc modelsMZ andMGT were rewrit-
ten into MiniZinc models M′

Z, M
′
GT, because the MiniZinc to Flatzinc converter does not

support the absolute function. The model DM′
Z remained unchanged as the absolute func-

tion had already been removed from this model. Using one of these models and the data
files in Chuffed’s .DZN format, we generated two FlatZinc files .FZN1 and .FZN2 from
the non-dual modelsM′

Z andM′
GT, and one .DFZN file from the dual model DM′

Z in .FZN
format, which provide the input into the Google OR-Tools CP-SAT solver.

In order to generate the .SMT2 files for the OMT solvers, this tool chain needs to
be invoked again, but this time additionally using the OptiMathSATsmt2 support library
marked with dashed lines in Fig. 4. This library generates another variant of the models and
instance data named .FZN1−GC and .FZN1−GC supporting global constraints. We did not
succeed in developing a tool chain for the dual model DM′

Z and therefore had to limit our
experiments with the OMT solvers to the two non-dual model variants.

The .FZN1−GC and .FZN1−GC files can then be further processed with a FlatZinc to
SMT2 compiler using OptiMathSAT, specific syntax support for Z3 and OptiMathSAT, and
OMT extensions [17, 18]. Some information from our models is, however, not translated
correctly to these files requiring postprocessing of the files with our own Python script. First,

76 Constraints (2021) 26:56–106

the lower and upper bounds for the decision variable pfc are missing. Our scripts therefore
need to add functions to the .SMT2 file setting the bounds larger than zero and lower or
equal to the length of the permutation k. For example, for a permutation of length 20, these
functions read as follows:

(define-fun lbound20 () Bool (> @pfc@20 0))

(define-fun ubound20 () Bool (<= @pfc@20 20))

The two functions have to be true in our model:

(assert lbound20)

(assert ubound20)

Second, the extraction of the pfc sequence from the solution model lacks a clear naming
scheme. The sequence to be extracted corresponds to the first k variables starting with the
name X INTRODUCED. A workaround adds the relevant variables as comments to the
output file. These comments are then used by our solution extractor to correctly extract the
permutation values. For example if k = 4, the comments in the beginning of the file read:

;; k=4

;; Extract pfc from

;; X_INTRODUCED_0_

;; X_INTRODUCED_1_

;; X_INTRODUCED_2_

;; X_INTRODUCED_3_

For each model, we obtained two sets .SMT2Z3 and .SMT2OM of files in .SMT2 for-
mat, which are specific to Z3 and OptiMathSAT. A project is available on github to access
this elaborate tool chain for the generation of the .SMT2 formats for the two OMT solvers,
see https://github.com/kw90/ctw toolchain. The repository contains a Docker environment
specified with scripts for installing all dependencies from the OptiMathSAT, Z3, libminiz-
inc, and fzn2omt sources. A Jupyter notebooks automatically iterates over all files in the
specified directory, and applies the translation and the necessary adjustments. For the exper-
iments with OptiMathSAT, we forked a project on github https://github.com/kw90/omt
python timeout wrapper, which implements a Python wrapper to call the OptiMathSAT C
library, such that we were able to run the solver with a given time limit and extract the best
solution found. In contrast to the other solvers, which run directly under Windows 10, Opti-
MathSAT runs on a Linux Ubuntu 20.04 machine within the Windows Subsystem for Linux
WSL.

6 Benchmarkingmodels and solvers on the CTW problem

In the following, we summarize our findings from experiments with the various solvers and
models. All experiments were run on a Windows 10 virtual machine with four 2.30 GHz
processors and 8 GB memory. Solver/model combinations are called from

– our own C# code environment, which performs all necessary data and model conver-
sions and result validation, or

– the MiniZinc command line tool, or
– the specific tool chain for Z3 and OptiMathSat.

77Constraints (2021) 26:56–106

https://github.com/kw90/ctw_toolchain
https://github.com/kw90/omt_python_timeout_wrapper
https://github.com/kw90/omt_python_timeout_wrapper

We tested all solvers in their default configuration settings, which often means that a
solver automatically performs strategy selection. For Chuffed and Google OR-Tools we
used their freesearch option as default configuration. Furthermore, we tested some tuning
options for the constraint solvers. For example, we investigated different settings of propa-
gation levels for Cplex CP and ran some experiments using search annotations in MiniZinc
for Chuffed and OR-Tools. MIP solvers were only tested in their default configuration. For
the OMT solvers, specific strategies have to be selected. For Z3, we used its default solver
for weighted MaxSAT problems called MaxRes [8, 43], but also tested the PD-MaxRes and
WMax strategies of Z3. For OptiMathSat, we used its OMT-based encoding and engine
setting as default strategy.

All solvers were tested on the entire benchmark set in a single run, except Gurobi, which
we tested in chunks of 60 instances due to out-of-memory problems that we could not
resolve otherwise. The numbers we report in the following are all from a single run of a
solver for consistency reasons. We performed up to three runs for each solver and noticed
minimal differences in the number of solved instances, solution costs or runtime, however
felt that selecting numbers from a single (in our case the first) run gives a better impres-
sion than computing the average from 3 runs. For example, some solvers could solve up to
two additional instances in different runs, but given the total subset of 256 instances, this
difference is very small and does not change the overall picture.

The extraction of solution data is specific to each solver or modeling language. We used
their generated logs and/or API to access the solver state and solution. Each solution was
validated for correctness using our own software, which checks that a generated permuta-
tion sequence does satisfy all constraints. The software also recalculates the values of the
optimization criteria and the overall objective. When showing solution costs, we used these
recalculated values to make the solution costs comparable across different solvers as single
cases of deviations occurred for some instances. We discuss these in more detail when we
summarize our findings in Section 7.

For the experiments, we mapped the individual solver states to five possible outcomes of
a solver on a benchmark instance:

– unsatisfiable: the solver has proven the instance to have no solution,
– optimal: the solver has found a solution and proven that no better solution with lower

costs exists,
– suboptimal: the solver has found a solution, but was not able to prove it as optimal,
– unsolved: the solver was not able to find a solution or prove an instance as being

unsatisfiable within a given time limit,
– undefined: any other state returned by a solver not mapped to one of the states above.

Details of the mapping of solver states for each of the tested solvers can be found in
Appendix B. Appendix C summarizes our tests with selected solvers and models to find a
time limit, which allows solvers to find good or even optimal solutions and still keeps the
effort for a single run of a solver/model combination at a reasonable level. We decided for a
5-minute time limit, which satisfies these requirements and keeps a single run under 3 days.

6.1 Constraint solver performance on the CTW benchmark set

Table 3 summarizes the results for the constraint solvers on the non-dual modelM for Cplex
CP and its variantsMZ for Chuffed and .FZN1 for OR-Tools. Furthermore, the table shows
how Chuffed performs on the model MGT and OR-Tools on the corresponding variant
.FZN2.

78 Constraints (2021) 26:56–106

Table 3 Performance of constraint solvers in default configuration on entire benchmark set using non-dual
models

Cplex CP Chuffed OR-Tools Chuffed OR-Tools

Solver State M MZ .FZN1 MGT .FZN2

Optimal 135(+60) 144 224 135 228

Suboptimal 121 85 6 88 5

Unsolved 0 26 24 32 21

Unsatisfiable 22 22 22 22 22

Undefined 0 1 2 1 2

TOTAL Solved 256 229 230 223 233

Only Cplex CP finds solutions for all satisfiable instances, the other constraint solvers
encounter between 21 and 32 unsolvable instances. Besides the 135 instances, for which
Cplex can prove optimality of its solution, it finds 60 solutions of minimal cost, but cannot
prove them as optimal.5 All solvers identify the 22 unsatisfiable instances instantly. For the
6 instances, which OR-Tools using the .FZN1 model cannot solve optimally, no other solver
finds an optimal solution. However, when using the .FZN2 model, OR-Tools solves 3 of
these 6 instances optimally. For all of the 5 instances, which OR-Tools solves suboptimally
using the .FZN2 model, Cplex CP finds suboptimal solutions of lower costs using the M
model. On some instances, Chuffed and OR-Tools end up in an undefined state, which we
discuss in more detail when we summarize our findings in Section 7.

Table 4 summarizes solution costs and runtimes for the constraint solvers using non-dual
models. For a subset of 118 instances, all solvers can find optimal solutions. The largest
instance R197 in this subset has permutation length 49 and constraint sum 432. There is
only one instance R189, for which all solvers only find a suboptimal solution. This instance
has permutation length k = 100 and its constraint sum parameter has value 1544 containing
1305 atomic constraints. Cplex CP finds the lowest cost solution for this instance. For OR-
Tools, solution costs differ significantly between the .FZN1 and .FZN2 models.

There is a minimal deviation in the optimal solution costs for Cplex CP, which we discuss
further in Section 7. It is worth looking at the time solvers need to find the 118 optimal
solutions using their respective models. OR-Tools using the .FZN1 and .FZN2 models is
the fastest solver and needs less than 5 minutes, followed by Cplex CP with a little bit more
than half an hour. Chuffed needs nearly 45 minutes on both models to find optimal solutions
and is thus almost 10 times slower than OR-Tools.

Table 5 summarizes the results for the constraint solvers using their respective dual model
variants. Cplex CP and OR-Tools can find slightly more optimal solutions. For Chuffed,
using the non-dual MZ or the dual DMZ models makes no difference at all – it solves
exactly the same instances in the subsets of optimal or suboptimal solutions. Again, only
Cplex CP finds solutions for all 256 solvable instances, and OR-Tools finds the most optimal
solutions. As in the case when using the non-dual model M, Cplex CP finds cost-minimal
solutions, but cannot prove their optimality. Compared to using the dual model, this number

5Google OR-Tools is the solver, which is able to prove optimality for most of its minimal cost solutions in
our experiments. We therefore compare the costs of solutions, which other solvers marked as suboptimal,
to the optimal solutions found by OR-Tools and then add these instances in braces to the optimal solution
counts for the other solvers.

79Constraints (2021) 26:56–106

Table 4 Costs and runtimes for optimal and suboptimal solutions returned by constraint solvers in default
configuration using non-dual models

Non-dual Models Cplex CP Chuffed OR-Tools Chuffed OR-Tools

cost & runtimes M MZ .FZN1 MGT .FZN2

Solved Suboptimally (1)

Total costs 20,158,417 44,327,625 42,227,828 44,287,834 23,178,029

Relative costs (in %) 100 220 209 220 115

Solved Optimally (118)

Total costs 2,862,879 2,862,876 2,862,876 2,862,876 2,862,876

Total runtimes (in s) 2001 2517 267 2554 270

Relative runtimes (in %) 751 944 100 958 101

Percentages are rounded mathematically to the next integer value with setting the best-performing solver to
100%

drops from 60 down to 54, with 4 more solutions now proven as optimal. Two of these
instances remain in the suboptimal subset, but their solution costs increase.

Table 6 summarizes solution costs and runtimes when using dual models. For a subset
of 7 instances, all solvers only find suboptimal solutions. The largest instance in this set is
again R189 with permutation length k = 100 and constraint sum 1544. Cplex returns the
lowest sum of costs for these 7 instances. For 5 of these instances, it finds the lowest cost
solutions. For 2 other instances, OR-Tools finds the lowest cost solutions.

For a subset of 127 instances, all solvers find optimal solutions. The two largest instances
in this subset are A016 with k = 80 and constraint sum 751 and A017 with k = 80 and con-
straint sum 703. OR-Tools is also the fastest solver finding optimal solutions, being 2.5
times faster than Cplex CP and more than 5 times faster than Chuffed on this subset of
instances.

In Table 7, we investigate how sensitive the constraint solvers are to changes from a
non-dual model to a dual model and vice versa. There is some sensitivity in the number of
optimally solved instances, but it is only small for Cplex CP and OR-Tools and not existent
for Chuffed. For example, Cplex CP solves 135 instances optimally using the non-dual
model M. In the dual model DM, 6 of these instances can only be solved suboptimally, but
it solves an additional 10 instances optimally. Google OR-Tools solves 225 instances in the

Table 5 Performance of constraint solvers in default configuration on entire benchmark set using dual
models

Cplex CP Chuffed OR-Tools

Solver State DM DM′
Z .DFZN

Optimal 139 (+54) 144 225

Suboptimal 117 85 19

Unsolved 0 26 10

Unsatisfiable 22 22 22

Undefined 0 1 2

TOTAL Solved 256 225 244

80 Constraints (2021) 26:56–106

Table 6 Costs and runtimes for optimal and suboptimal solutions returned by constraint solvers in default
configuration using dual models

Dual Models Cplex CP Chuffed OR-Tools

Cost & runtimes DM DM′
Z .DFZN

Solved Suboptimally (7)

Total costs 60,285,838 172,558,537 82,715,780

Relative costs (in %) 100 286 137

Solved Optimally (127)

Total costs 4,286,932 4,286,915 4,286,915

Total runtimes (in s) 1710 4006 739

Relative runtimes (in %) 231 542 100

Percentages are rounded mathematically to the next integer value with setting the best-performing solver to
100%

dual model .DFZN, but in the non-dual model .FZN1, 3 of these instances remain unsolved.
The runtimes vary, however, quite significantly. Cplex CP is much faster when using a dual
model, whereas Google and Chuffed slow down.

We ran a few experiments to investigate if the performance of constraint solvers using
the dual model can be further improved by tuning search strategies, because using a dual
model helped Cplex CP significantly and also allowed OR-Tools to find more solutions. For
Cplex CP, we investigated the influence of extended inference level settings, which allow
the constraint solver to control the strength of domain reduction that it can achieve on the
constraint variables by performing more or less constraint propagation. For the Chuffed
solver, we experimented with different search annotations in MiniZinc and selected the best
working one. Google OR-Tools only supports a small subset of search annotations. There-
fore, we invoked it without search annotations, but using 8 workers, which are not active in
the default configuration. For both solvers, we also disabled freesearch, i.e., the additional
option to deviate from the annotated search strategy or the strategy that is used in their
default configuration. Appendix D gives more details on the tested tuning configurations.

Table 8 summarizes the results for Cplex CP with extended inference level settings,
Chuffed using search annotations and without freesearch, and Google OR-Tools using 8
workers and also no freesearch. Cplex CP now finds optimal solutions for 146 instances.
This set contains 138 instances, which Cplex CP could solve optimally using the default

Table 7 Variance in the number of optimally solved instances for the Cplex CP and OR-Tools CP-SAT
constraint solvers when using a dual or non-dual model

Dual vs. Non-Dual Models Cplex CP OR-Tools Chuffed

M DM FZN1 .DFZN MZ DM′
Z

Solved optimally in a model 135 139 224 225 144 144

Solved only suboptimally in other model 6 10 2 0 0 0

Unsolved in other model 0 0 0 3 0 0

Solved optimally in both models 129 222 144

Runtimes per model on common subset (in s) 2,300 1,200 7,530 9,074 4,556 5,516

81Constraints (2021) 26:56–106

Table 8 Performance of constraint solvers with tuned search strategies using a dual model

Cplex CP Chuffed OR-Tools

Tuning Dual Model DM + Dual Model DM′
Z + Dual Model .DFZN +

Extended Inference Search Annotation + 8 Workers +

Level Settings No freesearch No freesearch

Optimal 146 (+56) 116 236

Suboptimal 110 125 17

Unsolved 0 14 1

Unsatisfiable 22 22 22

Undefined 0 1 2

TOTAL Solved 256 241 253

Total costs (240 instances) 1,703,349,373 2,940,107,201 1,575,489,390

Relative costs (in %) 108 187 100

Total runtimes (in s) 31,226 40,998 7,948

Relative runtimes (in %) 393 516 100

Relative cost and runtime comparisons are calculated taking the values of OR-Tools as 100%

inference level settings, but not the instance R009, for which only a suboptimal solution is
found. In addition, Cplex CP finds another 56 solutions of minimal costs, but cannot prove
these solutions as optimal. Without extended inference level settings, Cplex CP found 54
cost-minimal solutions. It can now prove some of these solutions to be optimal. The num-
ber of cost-minimal solutions thus grows from 193 to 202. Total solution costs for the 256
solved instances is reduced by 3%. OR-Tools solves 236 instances optimally and finds sub-
optimal solutions for 17 instances. There is only a single instance, which it cannot solve
when using 8 workers. This instance A072 has permutation length k = 198 and constraint
sum 11766 and is the largest instance in the benchmark set. There is only one other instance
A073 with the same permutation length k = 198, but with lower constraint sum 11346, for
which OR-Tools finds a suboptimal solution.

All three solvers can solve the largest number of instances using the dual model and
some tuning. Only for Chuffed, the number of optimally solved instances decreases from

Table 9 Performance ofMIP solvers with different implementations of non-dual models on entire benchmark
set

Cplex MIP Gurobi

Solver State MMIP MZ MGT MC#

MIP MZ MGT

Optimal 126(+10) 99(+9) 109(+12) 134(+8) 99(+8) 102(+8)

Suboptimal 77 92 79 17 45 42

Unsolved 46 65 68 104 112 112

Unsatisfiable 21 22 22 23 22 22

Undefined 8 0 0 0 0 0

TOTAL Solved 203 191 188 151 144 144

82 Constraints (2021) 26:56–106

Table 10 Costs and runtimes for optimal and suboptimal solutions returned by MIP solvers with different
implementations of non-dual models

Non-Dual Models Cplex MIP Gurobi

Cost & runtimes MMIP MZ MGT MC#

MIP MZ MGT

Solved Suboptimally (5)

Total costs 2,328,362 2,801,932 1,922,460 2,142,257 4,318,355 2,890,439

Relative costs (in %) 121 146 100 111 225 150

Solved Optimally (87)

Total costs 646,261 502,765 502,765 502,765 502,765 502,765

Total runtimes (in s) 279 1350 889 303 1681 1283

Relative runtimes (in %) 100 484 319 109 602 460

Percentages are rounded mathematically to the next integer value with setting the best-performing solver to
100%

144 using the MZ and DM′
Z models to 116 using DM′

Z with tuning. However, its number
of suboptimal solutions grows from 85 and 88 respectively, to 125. In total, it can now solve
241 instances compared to only 223, 225, or 229 instances in previous tests. Table 8 also
compares the cost and runtimes on the subset of 240 instances, which all tuned solvers can
now solve, i.e., they can find a suboptimal or optimal solution. Note that this subset is NOT a
superset of the earlier subsets from Tables 4 and 6. OR-Tools shows the fastest performance,
which is explained by the high number of optimal solutions that it finds for 236 instances
and where it rarely exhausts the 5 minute time limit. Among all three solvers, the cost sum
of the 240 instances for OR-Tools is also the lowest.

6.2 MIP solver performance on the CTW benchmark set

In the following, we summarize the results for tests with the Cplex MIP and Gurobi solvers.
Overall, a significantly higher number of instances remains unsolved by the Cplex and
Gurobi MIP solvers when compared to the constraint solvers.

Table 9 shows the results for Cplex MIP and Gurobi on the three variants of non-dual
mixed-integer models. In all solver/model combinations, solutions of minimal costs are

Table 11 Performance of MIP solvers with different implementations of the dual and Big-M models on
entire benchmark set

Cplex MIP Gurobi

Solver State DMMIP DM′
Z MB DMC#

MIP DM′
Z MC#

B

Optimal 82 107(+10) 126(+14) 103(+3) 96(+13) 134(+5)

Suboptimal 56 86 24 25 49 19

Unsolved 118 63 106 127 111 102

Unsatisfiable 21 22 19 23 22 23

Undefined 1 0 3 0 0 0

TOTAL Solved 138 193 188 128 155 153

83Constraints (2021) 26:56–106

Table 12 Costs and runtimes for optimal and suboptimal solutions returned by MIP solvers with different
implementations of the dual and big-M models

Cplex MIP Gurobi

Dual/big-M Models DMMIP DM′
Z MB DMC#

MIP DM′
Z MC#

B

Solved Suboptimally (3)

Total costs 3,682,181 2,136,996 1,015,795 1,865,705 2,069,799 2,486,636

Relative costs (in %) 362 210 100 184 204 245

Solved Optimally (81)

Total costs 502,758 502,757 502,757 502,757 502,757 502,757

Total runtimes (in s) 2,543 341 230 1,087 1,045 135

Relative runtimes (in %) 1,880 252 170 804 773 100

Percentages are rounded mathematically to the next integer value with setting the best-performing solver to
100%

found, which cannot be proven as optimal. These numbers are shown in braces. Cplex MIP
and Gurobi show a similar performance in the number of optimally solved instances (126

vs. 134) using the MMIP and MC#

MIP model, resp. They differ significantly in the number of
instances, for which they can find suboptimal solutions, where Cplex MIP solves at least
two times more instances than Gurobi. These native implementations of the model M in
Cplex OPL or the Gurobi API allow both solvers to solve more instances, whereas feeding
the models MZ and MGT into the solvers with the help of the MiniZinc command line tool
reduces the number of solved instances. For Cplex MIP, the modelMMIP leads to undefined
solver states on some instances. Furthermore, Cplex MIP can only identify 21 out of the
22 unsatisfiable instances, whereas Gurobi identifies one solvable instance as unsatisfiable.
Furthermore, Cplex MIP ends up in an undefined state on 8 instances. We discuss these
issues in detail in Section 7.

Table 10 shows costs and runtimes when using non-dual models. For a subset of 5
instances, the two solvers only find suboptimal solutions. The largest instance in this set is
R163 with permutation length k = 56 and constraint sum 642. For a subset of 87 instances,
optimal solutions are found. The two largest instances in this set are R003 with k = 36 and
constraint sum 207, and R205 with k = 36 and constraint sum 207. These instances are
much smaller than the largest instances solved optimally by the constraint solvers. Cplex

Table 13 Performance of OMT solvers on entire benchmark set

Z3 MaxRes OptiMathSAT OMT

Solver State SMT21-Z3 SMT22-Z3 SMT21-OM SMT22-OM

Optimal 94 96 26 26

Suboptimal 0 0 0 0

Unsolved 160 158 230 230

Unsatisfiable 22 22 22 22

Undefined 2 2 2 2

TOTAL Solved 94 96 26 26

84 Constraints (2021) 26:56–106

MIP performs slightly better on the optimally solved subset, but the table also shows that
feeding the MiniZinc models using the command line tool wrappers leads to a decline in
performance, which is more dramatic for Gurobi than for Cplex. We discuss the deviation
in the costs of optimal solutions for Cpex MIP in more detail in Section 7.

Table 11 summarizes the results for the MIP solvers using the dual model variants or the
big-M model. Depending on the model, Cplex MIP identifies all or only 21 or 19 of the
unsatisfiable 22 instances. Gurobi identifies all 22 unsatisfiable instances, but also returns
unsatisfiable for one of the solvable instances. We discuss this issue in Section 7. The num-
ber of solved instances varies a lot for the different models and no clear favorite is visible.
When using the directly implemented modelsDMMIP andDMC#

MIP, both solvers find signif-
icantly fewer solutions compared to when using the corresponding non-dual models. When
using theMiniZinc command line tool, however, both solvers can solve a fewmore instances
using a dual model as when using a non-dual model. Cplex MIP finds its largest number of
optimal solutions using the big-M model MB. For Gurobi, the big-M model also plays off,
but when using the dual model DM′

Z via the MiniZinc command line tool, the solver can
solve slightly more instances.

Table 12 summarizes costs and runtimes on the subsets of models that both solvers can
solve using either a dual model or the big-M model. It shows how much the subsets of
suboptimally solved instances varies as there is only a small set of 3 instances solved by
both solvers using any of the models. The largest instance in this subset is R049 with k = 45
and constraint sum 287. The costs of suboptimal solutions also vary significantly. For Cplex
MIP, the cost sum is the lowest when using the model MB, whereas for Gurobi, it is the

lowest when using the direct implementation of the dual model in the solver’s API DMC#

MIP.
On the subset of 81 instances, which both solvers solve optimally using either a dual model
or the big-M model, both solvers perform fastest when using the big-M model. The largest
instance in the subset of optimally solved instances is R003 with k = 36 and constraint sum
149. Compared to the size of instances for which the constraint solvers can find optimal or
suboptimal solutions, we can observe a significant decline.

6.3 OMT solver performance on the CTW benchmark set

Table 13 summarizes the results for the OMT solvers Z3 and OptiMathSAT using their
variants of the two different SMT2 models derived from the models M′

Z and M′
GT. Recall

that no SMT2 model could be generated using the model DM′
Z and thus the OMT solvers

are only tested on non-dual models. We show the results for OptiMathSAT using the OMT
strategy and for Z3 using the MaxRes strategy.

Optimally solved instances are determined for Z3 by comparing its solution costs to the
costs of known optimal solutions found by other solvers, see Appendix B for details. Z3
can solve 94 or 96 instances optimally. Interestingly, Z3 always either finds cost-optimal
solutions or leaves an instance unsolved. From the solver state itself, all solutions found
are marked as suboptimal by Z3. OptiMathSAT finds optimal solutions for 26 instances
and cannot solve any other instances. Both solvers identify the 22 unsatisfiable instances
easily, but end up in an undefined state for two more instances, which we discuss further in
Section 7.

The permutation length of the largest instances R003 and R004, which Z3 can solve, is
k = 36 with constraint sums 207 and 198, respectively. The average permutation length over
all solved instances is only 17. On average, these instances contain 38 atomic constraints
and 9 disjunctive constraints only. Only 1 instance solved by Z3 contains more than 222

85Constraints (2021) 26:56–106

Table 14 Comparison of different Z3 strategies on entire benchmark set

Z3 MaxRes Z3 PD-MaxRes Z3 WMax

Solver State SMT21-Z3 SMT22-Z3 SMT21-Z3 SMT22-Z3 SMT21-Z3 SMT22-Z3

Optimal 94 96 94 97 91 97

Suboptimal 0 0 0 0 0 0

Unsolved 160 158 160 157 163 157

Unsatisfiable 22 22 22 22 22 22

Undefined 2 2 2 2 2 2

TOTAL Solved 94 96 94 97 91 97

atomic constraints, only 5 instances contain between 100 and 160 atomic constraints. For
OptiMathSAT, the parameters are significantly lower. The average permutation length of
the 26 solved instances is 7. The 5 largest solved instances have permutation length 12
and their constraint sum ranges between 29 and 56. On average, the instances solved by
OptiMathSAT contain only 20 atomic, 8 soft atomic, and 7 disjunctive constraints, but no
direct successor constraints.

Finally, we tested Z3 on the benchmark set with its other strategies WMax [6, 45] and
PD-MaxRes [7] and compared them to the MaxRes strategy. All strategies compare slightly
better on the SMT21-Z3 model, but there are only small differences between the strategies
as Table 14 shows. As with the MaxRes strategy, Z3 using Wmax or PD-MaxRes either
returns an optimal solution or leaves a problem instance unsolved. We also tried to run
OptiMathSAT with its MaxRes strategy, but returned an error message on all generated
SMT2 files indicating that it had problems extracting the objective function when using this
strategy.

7 Summary of findings and research challenges

Our empirical analysis illustrated a varying performance of the various solvers on the CTW
benchmark set. In particular, modern constraint solvers show impressive results and notably
the IBM Cplex CP and Google OR-Tools CP-SAT solvers excel in the tests. For some
solvers, their performance can be further tuned by setting options in the search strategies,
however, these tunings did not make a significant impact. We believe that the future will
be in automatic, rather than human-provided search strategy selection. In addition, we are
convinced that rewriting models has some more potential, in particular, for improving the
performance of MIP solvers. In the following, we summarize our findings, derive research
challenges for constraint solvers, and discuss some issues for further maturing solvers
towards complex real-world applications.

Simplifying Benchmarking Experiments We invested about one person year into the
empirical testing of the solvers, which turned out be much more complex than expected. In
particular, the semi-automatic generation of SMT2 files, but also the manual rewriting of
models for the MIP solvers were time-consuming and error-prone steps requiring to write
substantial pieces of software. Having a software environment in place, which allowed us
to integrate all solvers and in particular also to automatically write and analyze log files as

86 Constraints (2021) 26:56–106

Table 15 Results of solvers that have problems on one or both of the “borderline” instances R001 and R002

Instance k b Chuffed OR-Tools Z3/OptiMathSAT Gurobi

R001 0 0 Error Empty log Empty log Infeasible model

R002 1 0 Valid solution Empty log Empty log Valid solution

well as to validate all solver solutions, was instrumental to obtain reproducible results. Our
work also emphasizes the need for a unified modeling language as well as standardized data
formats, which would ease the exchange of models and data between different algorithms.
Furthermore, having a standardized output interface in place to extract results and optimiza-
tion costs would lower the benchmarking burden. We believe that following a modeling
approach, which keeps models and instance data separately, provides an easier-to-access
interface to solvers.

Undefined Solver States At the beginning of the experimental series, we defined a map-
ping of individual solver states to a common set of states, see Table 17 in Appendix B.
States, which a solver returned and which were not part of our mapping, are mapped to
a value of undefined. Interestingly, we obtained more such states than expected. Several
solvers have issues with instances R001 and R002, see the summary in Table 15. Instance
R001 contains no cables and no constraints, for which the empty permutation is the solu-
tion. Instance R002 contains one one-sided cable, i.e., a single job, and no constraints, but
it is solvable with the permutation containing this single job.

The Chuffed solver returns an error and no solution for instance R001 on all three of
its models. The OR-Tools CP-SAT solver works on instances R001 and R002 for about 1.5
seconds and then returns empty logs without a solution. The Gurobi MIP solver reports an
infeasible model for instance R001 with all models that are not fed into the solver with
the MiniZinc command line tool and thus reports 23 unsatisfiable instances instead of 22
in these cases. Z3 and OptiMathSAT also fail on these 2 instances. For the instances R001
and R002, the SMT2 tool chain has problems in generating correct files causing an error
returned by both solvers, which we count for the undefined state. However, the problem
here is not with the solver, but with the instance file generation, which cannot deal with the
absence of constraints. For example, the .FZN file for R001 contains an array with bounds
set to 1..0. The generation of the SMT2 files for instances R001 and R002 generates an error
message “error: failed to generate SMT-LIB formula” thrown by the OptiMathSAT binary.

The undefined state of 8 instances for the Cplex MIP solver using the MMIP model as
shown in Table 9 are caused by a state of unbounded or infeasible returned by the solver.
One of these instances is from the set of 22 unsatisfiable instances, the remaining 7 are satis-
fiable. The result was surprising as none of these instances is infeasible and our models are
not unbounded. Upon closer inspection of the behavior of the solver, we located the reasons
for this state by the presolve strategy applied by Cplex MIP. Switching off presolving allows
the solver to either find a suboptimal solution or run into the time-limit without finding a
solution. This behavior is known for problems, which are “borderline infeasible”.6 Further
investigating the borderline infeasibility of some our instances, which is likely caused by the
high number of constraints, would definitely be an interesting avenue for future research.

6See also https://www.ibm.com/support/pages/turning-cplex-presolve-or- gives-inconsistent-results and
https://www.ibm.com/support/knowledgecenter/SSSA5P 12.10.0/ilog.odms.cplex.help/CPLEX/Parameters/
topics/PreInd.html.

87Constraints (2021) 26:56–106

https://www.ibm.com/support/pages/turning-cplex-presolve-or-
gives-inconsistent-results
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/Parameters/topics/PreInd.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.cplex.help/CPLEX/Parameters/topics/PreInd.html

With the DMMIP andMB models, 1 instance or 3 instances result in the state unbounded or
infeasible, recall Table 11. These instances all belong to the set of 22 unsatisfiable instances.

Deviations in Solution Costs Our validation software ensures that all constraints are satis-
fied by a solution returned by a solver and it also recalculates the costs of the criteria S, M ,
L, and N as well as the value of the overall objective. All cost values shown in the figures
are based on these recalculations. In case of the OMT solvers, we added the optimization
criteria S, L, M and N as output variables in addition to the overall value of the optimiza-
tion objective, but still had problems in accessing the value of the criteria S and L. However,
we did not investigate this issue further as our recalculations were available.

The costs returned by the Cplex CP and Cplex MIP solvers for optimal solutions showed
some deviations in Tables 6, 4, and 10. For example, in Table 6 the optimal solutions
for four instances violate more soft atomic constraints (criterion N) than optimal solutions
found by other solvers on the same instances: A001 (+2), R126 (+6), R127 (+3), and R128
(+6). For each instance, Cplex CP shows a best bound of lower value and these solutions
are within the default optimality tolerance, which is 1.0 e−9. Even with a very low relative
tolerance, the absolute deviations can be significant as our objective functions yields high
cost values. For example, for instance R128 an optimal solution of costs 129,729 is com-
puted and the effective tolerance is 12.97. Revalidating solution costs is important when
solutions from different algorithms are compared with each other. Furthermore, the specifi-
cation of optimization objectives is a challenging task and it also heavily depends on how a
problem is modeled. Having good support available in modeling languages to formulate and
test optimization objectives is highly desirable in particular from an application-oriented
perspective.

Algorithmic Insights For Improving Models We presented several modeling variants for
the CTW problem, which were all created manually by applying different modeling
approaches. The development process of a model proceeds over many iterations and is often
an error-prone process. Quite often it can happen that incorrect formulations of constraints
render an instance unsatisfiable. Although constraint solvers can quickly identify minimal
conflict sets of constraints, finding and removing the root cause of an inconsistency caused
by an incorrectly formulated constraint is not straightforward. Tool support to further ana-
lyze inconsistencies would be more than desirable and be another promising avenue for
further research. A first attempt at tackling this is made in [37]. Furthermore, feedback from
solvers, which helps in understanding what parts of a model make it difficult to solve, would
be more than desirable. From a user’s perspective, a model should be as compact and easy to
understand as possible. From a solver’s perspective, the model should, e.g., allow for maxi-
mum constraint propagation. Today’s solvers are able to determine the best possible search
strategy automatically, whereas algorithms for automatic problem reformulation are only in
its beginnings, see for example [14, 29, 46, 54] and we argue that much more can be done
here.

Recognizing Hard and Easy Instances The CTW benchmark set comprises instances of
varying difficulty. The constraint sum measure introduced in Section 4 appears to be a good
first indicator of the difficulty of each instance. In Table 16 we give an overview of the first
and third quartile of the constraint sum for each solver and solver state. The entries in the
table correspond to the results of the best model for each solver. Whereas a correlation can
be observed between the constraint sum and the solver state, the constraint sum does not
give any indication of which types of constraints contribute the most to the difficulty of the

88 Constraints (2021) 26:56–106

Table 16 First (Q1) and third (Q3) quartile of the constraint sum for each solver

Chuffed Cplex CP OR Tools Cplex MIP Gurobi Z3 OptiMath-

Tuned 8 Workers PDMaxRes SAT

MZ DM .DFZN MMIP MC#

B SMT22 SMT21

Opt. Q1 49.50 48.5 75.50 42.00 44.50 30.00 7.50

Opt. Q3 203.25 207.00 642.00 158.00 157.75 96.00 23.50

Subopt. Q1 410.00 415.25 5086.00 274.00 292.00

Subopt. Q3 827.00 1533.00 9829.00 682.00 638.50

Unsolv. Q1 1551.75 11766.00 755.25 576.25 320.00 118.75

Unsolv. Q3 9267.25 11766.00 7016.50 1551.50 902.00 751.75

No entry in a row means that no data was available for this solver state as the solver found for example only
optimal, but no suboptimal solutions such as in the case of the OMT solvers

instance. From a theoretical point of view, better understanding the phase transitions [12] of
this benchmark set is an interesting research problem. From a practical point of view, better
understanding the hardness and possible solution quality is desirable. Cplex CP is the only
solver which finds solutions for all instances in the benchmark set, but it reports for example
a gap of over 98 % for the large instances A70 to A73 with permutation length between 190
and 198 and between 7,000 and 10,000 atomic constraints.

Comparison of Solutions found by Humans and Constraint Solvers The current software
makes use of Cplex CP and Google OR-Tools. Solvers are allowed to work on instances
for at most five minutes. Human technicians spend up to several days on working out
good solutions for layout and insertion order by practically testing variants directly on the
machine. The constraint solver-based tool is used to make suggestions for layout and inser-
tion order, with an insertion order computed for a given layout. Technicians often modify
a layout if they cannot find a working insertion order. The solutions computed by the con-
straint solvers differ quite significantly from solutions found by humans, notably for large
and complex cable trees with many housings and cables. When working with the same lay-
out as a human, the solvers find solutions of comparable costs for smaller instances and of
significantly reduced costs for larger instances. Potential cost savings also depend on the
experience of a human technician. Constraint solvers can sometimes reduce costs by up
to 30% compared to solutions found by less experienced technicians. The constraints rep-
resent a very conservative digital twin model for the machine and exclude many insertion
orders, which humans consider. Human solutions often violate various constraints, because
the solutions work when tested on the machine. The constraint solvers use the much stricter
model to ensure that their solutions work and that they do not make suggestions, which fail
when tested on the machine.

8 Conclusion

We discuss the problem of cable tree wiring (CTW), which we position as a variant of a trav-
eling sales person problem with atomic, soft atomic, and disjuntive precedence constraints,
direct successor constraints as well as tour-dependent edge costs. The CTW problem can
also be considered as the first known representative of the coupled task scheduling problem

89Constraints (2021) 26:56–106

with soft constraints and as a new variant of the pickup and delivery TSP. Using the rela-
tionships to these known problems, we prove the NP-hardness of various subclasses of the
CTW problem and also show that certain restrictions of the various constraint sets can make
the problem solvable in polynomial time. In addition, we identify interesting subclasses of
the problem for which the complexity is open. We also discuss the constraint sum parameter
as a promising predictor for the difficulty of solving an instance.

We present a benchmark set of 278 real-world and artificial instances, which was
included in the MiniZinc challenge 2020, and test state-of-the-art constraint, mixed-integer,
optimization modulo theory solvers on this set using also different variants of how the prob-
lem can be modeled. In particular, the IBM Cplex CP and the Google OR-Tools CP-SAT
solver showed impressive results, with Cplex being the only tested solver to find solutions
for each instance in the benchmark set and OR-Tools finding more optimal solutions than
any of the other solvers we tested. Our results demonstrate the remarkable progress made
over recent years, in particular in the field of constraint and CP-SAT solvers, and also raises
several interesting questions for future research.

Appendix A: Details of Models MZ, DMZ, MGT, MMIP, DMMIP, MB

This appendix shows the details of the modelsMZ, DMZ, andMGT written in the MiniZinc
Language. We also provide more details on the models MMIP, DMMIP, and MB written
in the language OPL used with the Cplex MIP solver. All other models, for example those
implemented in C# for Gurobi, are found on github https://github.com/kw90/ctw toolchain.

A.1 The constraint models MZ and DMZ in MiniZinc language

In contrast to the Cplex OPL language, the MiniZinc language does not provide possibilities
to represent tuples, so constraints are represented using arrays. We begin by declaring a
number of integer parameters for our models. OPL ranges are translated into sets of integers
in MiniZinc.

int: k;

set of int: Positions = 1..k;

set of int: Cavities = Positions;

int: b; set of int: CavityPairs = 1..2*b;

set of int: CableStarts = 1..b;

Constraints of the different types are represented using arrays. The arguments of the
arrays are the cavities between which the constraint must hold. For disjunctive constraints,
a 2-dimensional array is used.

array[int,int] of Cavities: AtomicConstraints;

array[int,int] of Cavities: DisjunctiveConstraints;

array[int] of Cavities: DirectSuccessors;

array[int,int] of Cavities: SoftAtomicConstraints;

In the modelMZ, we only introduce the position for cavity (pfc) to represent the desired
permutation sequence. MiniZinc supports various global constraints, which are included

90 Constraints (2021) 26:56–106

https://github.com/kw90/ctw_toolchain

into the model to express the allDifferent constraint over the elements of this array in a
straightforward way.

array[Cavities] of var Positions: pfc;

include "globals.mzn";

constraint all_different(pfc);

Constraints are declared using the keyword constraint and make use of the index set
notation in MiniZinc. The formulation of the disjunctive constraint also makes use of the
special case when the cavity on the left-hand side of the precedence relation is the same in
both disjuncts similar to the OPLM and DM models.

constraint

forall (i in index_set_1of2(AtomicConstraints))

(pfc[AtomicConstraints[i,1]] < pfc[AtomicConstraints[i,2]]);

constraint

forall (i in index_set_1of2(DisjunctiveConstraints))

((pfc[DisjunctiveConstraints[i,1]] <

pfc[DisjunctiveConstraints[i,2]]

\/

pfc[DisjunctiveConstraints[i,3]] <

pfc[DisjunctiveConstraints[i,4]])

/\

if DisjunctiveConstraints[i,1]==DisjunctiveConstraints[i,3] then

max(pfc[DisjunctiveConstraints[i,2]], pfc[DisjunctiveConstraints

[i,4]])> pfc[DisjunctiveConstraints[i,1]]

else true endif);

constraint

forall (i in index_set(DirectSuccessors))

(if DirectSuccessors[i]<= b

then pfc[DirectSuccessors[i]] < pfc[DirectSuccessors[i]+b]

-> pfc[DirectSuccessors[i]] +1 = pfc[DirectSuccessors[i]+b]

else pfc[DirectSuccessors[i]] < pfc[DirectSuccessors[i]-b]

-> pfc[DirectSuccessors[i]] +1 = pfc[DirectSuccessors[i]-b]

endif);

The various decision variables for the optimization criteria as well as the objective
function obj are defined as follows using the abs-function:

var int: S =

if b=0 then 0

else sum(i in CableStarts) (abs(pfc[i]-pfc[i+b]) > 1)

endif;

var int: M =

if b=0 then 0

91Constraints (2021) 26:56–106

else (max(i in CavityPairs)

(sum(j in CavityPairs where j<=b)

(pfc[j] < pfc[i] /\ pfc[i] < pfc[j+b])

+sum(j in CavityPairs where j>b)

(pfc[j] < pfc[i] /\ pfc[i] < pfc[j-b])))

endif;

var int: L =

if b=0 then 0

else max(i in CableStarts) (abs(pfc[i]-pfc[i+b])-1)

endif;

var int: N =

sum(i in index_set_1of2(SoftAtomicConstraints))

(pfc[SoftAtomicConstraints[i,1]] >

pfc[SoftAtomicConstraints[i,2]]);

var int: obj = S*pow(k,3)+M*pow(k,2)+L*pow(k,1)+N;

The dual model DMZ adds the dual representation cfp and the inverse constraint as well
as a redundant allDifferent constraints.

array[Positions] of var Cavities: cfp;

constraint all_different(cfp);

constraint inverse(pfc,cfp);

For the M′
Z and DM′

Z models, the abs-function in the criterion S needs to be rewritten
to avoid the absolute value. To do so, an additional array variable is introduced:

array[int] of var bool:

vio_abs = [pfc[i] - pfc[i+b] > 1 \/ pfc[i+b] - pfc[i] >

1 | i in CableStarts];

var int: S = if b=0 then 0 else sum(vio_abs) endif;

Similarly, the criterionL needs to be rewritten for these models to avoid the abs-function.
To do so, two auxiliary variables are introduced:

var int:

diff1 = if b=0 then 0 else (max(i in CableStarts)

(pfc[i] - pfc[i+b])) endif;

var int:

diff2 = if b=0 then 0 else (max(i in CableStarts)

(pfc[i+b] - pfc[i])) endif;

var int: L = if b=0 then 0 else (max(diff1, diff2) - 1) endif;

92 Constraints (2021) 26:56–106

A.2 The constraint model MGT in MiniZinc language

A different modeling approach is adopted for the MGT model, which was contributed by
Guido Tack, Monash University. The disjunctive constraint can be rewritten using an array
of booleans and an additional constraint over this array can be added. The array captures the
truth value of the two disjuncts in the disjunctive constraint and the constraint states that at
least one of the disjuncts must be true for the disjunctive constraint to be satisfied.

array[int] of var bool: disj =

[pfc[DisjunctiveConstraints[i,2*j+1]]

<pfc[DisjunctiveConstraints[i,2*j+2]]

| i in index_set_1of2(DisjunctiveConstraints), j in 0..1

];

constraint forall (i in 1..length(disj) div 2) (disj[(i-1)*2+1]

\/ disj[(i-1)*2+2]);

An array of booleans is used to capture the values of the decision variables S and N by
introducing two additional variables vio abs and vio and then representing the variables as
sums over these boolean array values. The vio abs array captures whether a cable end must
be stored or not, based on whether the “other end” of the cable is plugged before or after
the “cablestart”. The vio array captures if the positions of two cavities in the permutation
sequence satisfy or violate a given soft atomic constraint over these two cavities.

array[int] of var bool: vio_abs =

[pfc[i]-pfc[i+b] > 1 \/ pfc[i+b]-pfc[i] > 1 |

i in CableStarts];

var int: S = sum(vio_abs);

array[int] of var bool: vio =

[pfc[SoftAtomicConstraints[i,1]] >=

pfc[SoftAtomicConstraints[i,2]]

| i in index_set_1of2(SoftAtomicConstraints)];

var int: N = sum(vio);

A.3 Themixed-integer programmingmodels MMIP and DMMIP

The mixed-integer programming model MMIP was manually rewritten in OPL based on
the model M without any sophisticated reformulation of the constraints as for example dis-
cussed in [53]. In order to keep the model close to the constraint modelM it is based on the
pfc permutation. The allDifferent constraint is replaced by pairwise inequalities over cavity
numbers assigned to pfc positions. All constraints are represented using tuples. Precedence
constraints are reformulated as inequalities and direct successors are formulated in equation
form.

int k = ...; // number of cavities, permutation length

int b = ...; // number of wired cavity pairs

range Cavities = 1..k;

93Constraints (2021) 26:56–106

range Cablestarts = 1 ..b;

tuple Atomic{ int cbefore; int cafter;};

// disjunctive constraints

// tuple Disjun{ int c1before; int c1after; int c2before;

int c2after; };

{Atomic} AtomicConstraints = ...;

{Atomic} SoftAtomicConstraints = ...;

{Disjun} DisjunctiveConstraints = ...;

{int} DirectSuccessors = ...;

range Positions = 1..k;

range CavityPairs = 1..2*b ;

dvar int pfc[Cavities] in Positions;

//alldifferent

forall(i, j in Cavities: i != j) pfc[i] != pfc[j];

//atomic constraints

forall(c in AtomicConstraints)

pfc[c.cbefore] - pfc[c.cafter] <= 0;

//disjunctive constraints

//forall(d in DisjunctiveConstraints)

(pfc[d.c1before] - pfc[d.c1after] <= 0 ||

pfc[d.c2before] - pfc[d.c2after] <= 0);

// direct successor constraints

forall (i in DirectSuccessors: i <= b)

pfc[i] - pfc[i+b] <= 0 => pfc[i+b] == pfc[i] + 1;

forall (i in DirectSuccessors: i > b)

pfc[i] - pfc[i-b] <= 0 => pfc[i-b] == pfc[i] + 1;

The optimization criteria are rewritten similarly and the objective function remains
unchanged. Note that the absolute-function cannot be used for the criterion L as it returns a
float value, which would make the problem unbounded.

dexpr int S = ((b == 0) ? 0: sum(j in Cavities: 1<= j<= b)

(maxl(pfc[j], pfc[j+b])-minl(pfc[j], pfc[j+b]) >= 2));

94 Constraints (2021) 26:56–106

dexpr int L = ((b == 0) ? 0 : max (j in Cablestarts)

(maxl(pfc[j] - pfc[j+b], pfc[j+b] - pfc[j]) - 1));

dexpr int M = ((b == 0) ? 0 : (max (i in CavityPairs)

(sum(j in CavityPairs: j<=b) (pfc[j] <= (pfc[i] - 1) &&

pfc[i] <= (pfc[j+b] - 1))

+ sum(j in CavityPairs: j>b) (pfc[j] <= (pfc[i] - 1) &&

pfc[i] <= (pfc[j-b] - 1)))));

dexpr int N = sum(s in SoftAtomicConstraints)

(pfc[s.cafter] - pfc[s.cbefore] <= 0);

minimize S * pow(k, 3) + M * pow(k, 2) + L * pow(k, 1) + N;

The dual model DMMIP extends the model MMIP with the dual cfp representation and
the pairwise inequalities for cfp. The inverse constraint, which is not available in the MIP
variant of OPL, is expressed by equalities.

// position for chamber dvar int pfc[Cavities] in Positions;

//chamber for position dvar int cfp[Positions] in Cavities;

//alldifferent

forall(i, j in Cavities: i != j) pfc[i] != pfc[j];

forall(i, j in Positions: i != j) cfp[i] != cfp[j];

//duality (channeling constraint)

forall(j in Cavities, p in Positions)

pfc[j] == p => cfp[p] == j;

forall(j in Cavities, p in Positions)

cfp[p] == j => pfc[j] == p;

A.4 Themixed-integer programmingmodel MB

The model MB makes use of big-M reformulations for disjunctive constraints [55] using
additional decision variables and non-integer (floating point) optimization costs. The value
of the big-M constant has to be chosen sufficiently big to prevent the problem from becom-
ing unsolvable. As a rule of thumb, the big-M constant should be at least 100 times larger
than the largest value of any of the variables. However, it should not be too large, because
otherwise numerical instability and round-off errors can occur. Using an arbitrarily large
M value also expands the feasible region of the LP relaxation unnecessarily and results in
longer runtimes, see [10]. We decided to set int bigM=k*100 as smaller or larger values
led to incorrect values for some optimization criteria.

The following model MB for the Cplex MIP solver uses an upper triangular matrix of
booleans that indicates if a cavity is wired before another:

dvar boolean lt[Cavities][Cavities];

95Constraints (2021) 26:56–106

If lt[i, j] = 1, then pfc[i] < pfc[j], otherwise pfc[i] > pfc[j]. Only the upper triangular
matrix is defined, i.e., values are only defined for i < j . To find out if pfc[i] < pfc[j]
when i > j , the value of lt[j, i] is determined and inverted. The diagonal of the lt matrix
is undefined, because a cavity cannot be placed before or after itself in the permutation. A
solution can be directly extracted from the lt matrix as the subsequent example explains.

lt =

⎡
⎢⎢⎣

1 1 1
0 1
1

⎤
⎥⎥⎦

pf c = 1, 3, 2, 4 because
pfc[1] < pfc[2], pfc[1] < pfc[3],
pfc[1] < pfc[4], pfc[2] > pfc[3],
pfc[2] < pfc[4], pfc[3] < pfc[4]

Atomic constraints are expressed as entries in the lt matrix:

forall(a in AtomicConstraints)

if (a.cbefore < a.cafter) lt[a.cbefore,a.cafter] == 1;

else lt[a.cafter,a.cbefore] == 0;

The allDifferent constraint is expressed as inequalities over lt matrix values stating that
either pfc[i] or pfc[j] has to be larger than the other.

forall(ordered i,j in Cavities)

pfc[i] - pfc[j] + 1 <= bigM * (1 - lt[i,j]);

forall(ordered i,j in Cavities)

pfc[j] - pfc[i] + 1 <= bigM * lt[i,j];

For example, if lt[i, j] is equal to 0 and therefore pfc[i] > pfc[j], the first constraint is
always satisfied if the big-M constant is chosen big enough. The right term in the second
constraint evaluates to 0 and the left term has to be smaller or equal to 0, which is only
possible if the two values are different. Disjunctive constraints are formulated as inequality
constraints. A satisfied disjunctive constraint is larger or equal to 1, because we sum up
values for each atomic constraint in the disjunction from the lt matrix. As only the upper
triangular matrix of the lt matrix is defined, case distinctions based on cavity indices have
to be made and some values have to be inverted. With a fully populated matrix lt , each
disjunctive constraint is expressed by the following conditional inequalities. Note that for
each disjunctive constraint, only one of the if-clauses is satisfied.

forall(d in DisjunctiveConstraints){

if (d.c1before < d.c1after && d.c2before < d.c2after)

{lt[d.c1before,d.c1after] + lt[d.c2before,d.c2after]

>= 1;}

if (d.c1before < d.c1after && d.c2before > d.c2after)

{lt[d.c1before,d.c1after] + 1-lt[d.c2after,d.c2before]

>= 1;}

if (d.c1before > d.c1after && d.c2before < d.c2after)

{1-lt[d.c1after,d.c1before] + lt[d.c2before,d.c2after]

>= 1;}

if (d.c1before > d.c1after && d.c2before > d.c2after)

{1-lt[d.c1after,d.c1before] + 1-lt[d.c2after,d.c2before]

>= 1;}}

96 Constraints (2021) 26:56–106

Direct successor constraints also make a case distinction based on cavity indices. If i is
in DirectSuccessors, then i + b must follow immediately in the permutation, which means
that the left-hand side of the condition must be equal to 0 if and only if pfc[i] < pfc[i+b].

forall(i in Cablestarts:

i in DirectSuccessors || (i+b) in DirectSuccessors){

if (i in DirectSuccessors)

pfc[i+b] - pfc[i] - 1 <= bigM * (1 - lt[i,i+b]);

if ((i+b) in DirectSuccessors)

pfc[i] - pfc[i+b] - 1 <= bigM * lt[i,i+b];}

Minimum and maximum positions of cavities in the permutation are stored in arrays
minimum and maximum. Their values are set by constraints.

dvar float+ minimum[Cablestarts] in Positions;

dvar float+ maximum[Cablestarts] in Positions;

forall(i in Cablestarts) {

minimum[i] - pfc[i] <= 0; (1)

minimum[i] - pfc[i+b] <= 0; (2)

pfc[i] - minimum[i] <= bigM * (1-lt[i,i+b]); (3)

pfc[i+b] - minimum[i] <= bigM * lt[i,i+b]; (4)

maximum[i] == pfc[i]+pfc[i+b] - minimum[i];} (5)

Constraints (1) and (2) ensure that the value of minimum[i] is larger or equal to
min(pfc[i],pfc[i+b]). Constraints (3) and (4) ensure that the value of minimum[i] is smaller
or equal to min(pfc[i],pfc[i+b]), depending on which of the cavities in a job pair occurs first
in the permutation. The value of minimum[i] is set correctly if and only if constraints (1) to
(4) are satisfied. Calculating the value of maximum[i] is then trivial using constraint (5).

If a job pair is interrupted, its entry in the array cableIsStored is set to 1, which happens
if the difference between the minimum and maximum position of cavities from a job pair in
the permutation is larger than or equal to 2.

dvar boolean cableIsStored[Cablestarts];

forall(p in Cablestarts) {

2 - maximum[p] + minimum[p] <= bigM * (1-cableIsStored[p]);

maximum[p] - minimum[p] - 1 <= bigM * cableIsStored[p];}

The variable cableIsStoredAtPosition[i,t] is equal to 1 if one cavity from the job pair i

occurs in the permutation before the position t , but the other does not. Otherwise cableIs-
StoredAtPosition[i,t] is equal to 0. The variable cableIsPluggedBefore[i,t] is equal to 1 if
both cavities of a job pair i occur in the permutation before position t . The variable cableIs-
PluggedAfter[i,t] is equal to 1 if both cavities of a job pair i occur in the permutation after
position t .

dvar boolean cableIsStoredAtPosition[Cablestarts,Positions];

dvar boolean cableIsPluggedBefore[Cablestarts,Positions];

dvar boolean cableIsPluggedAfter[Cablestarts,Positions];

97Constraints (2021) 26:56–106

Because a cable can either be completely inserted before one position in the permutation
or only be inserted with one cable end or not be inserted at all, the following constraints
hold:

forall(p in Cablestarts, t in Positions) {

cableIsStoredAtPosition[p,t] + cableIsPluggedBefore[p,t]

+ cableIsPluggedAfter[p,t] == 1;

minimum[p]-t+1 <= bigM*(1-cableIsStoredAtPosition[p,t]);

t-maximum[p]+1 <= bigM*(1-cableIsStoredAtPosition[p,t]);

t-minimum[p] <= bigM*(1-cableIsPluggedBefore[p,t]);

maximum[p]-t <= bigM*(1-cableIsPluggedAfter[p,t]);}

The maximum number of cables M that are simultaneously contained in storage is set
implicitly by a constraint. Any value larger than M satisfies this constraint, however since
M is part of the optimization objective, M is correctly set to be the smallest value satisfying
this constraint. Similarly, the value L is also set implicitly by a constraint, whereas the
calculation of N and S is straightforward:

forall(t in Positions) sum(p in Cablestarts)

cableIsStoredAtPosition[p,t] <= M;

forall(p in Cablestarts) maximum[p] - minimum[p] - 1 <= L;

N == sum(s in SoftAtomicConstraints)

(pfc[s.cafter] - pfc[s.cbefore] <= 0);

S == sum(p in Cablestarts) cableIsStored[p];

The objective function is identical to the one used in the MC model.

minimize S * pow(k, 3) + M * pow(k, 2) + L * pow(k, 1) + N;

For the Gurobi solver, we manually implemented the modelsMI,MB, andMB in the C#

API of this solver.

Appendix B: Details on experimental setup: mapping solver states

Before beginning any experimentation, we needed to decide how to map the individual
solver states to a common set of states. For the experiments, we mapped the individual
solver states to five possible outcomes:

– unsatisfiable: the solver has proven the instance to have no solution,
– optimal: the solver has found a solution and proven that no better solution with lower

costs exists,
– suboptimal: the solver has found a solution, but was not able to prove it as optimal,
– unsolved: the solver was not able to find a solution or prove an instance as being

unsatisfiable within a given time limit,
– undefined: any other state returned by a solver not mapped to one of the states above.

Table 17 summarizes the mapping. For Chuffed and OR-Tools, the entries refer to a
string syntax used by MiniZinc to represent the status of a solution. For Cplex CP, solver

98 Constraints (2021) 26:56–106

Table 17 Mapping of solver-specific information about solver state and solution existence to four outcomes
of a benchmark test, any other state returned by a solver is mapped to a state undefined

Optimal Suboptimal Unsatisfiable Unsolved

Chuffed “==========” “———-” “UNSATISFIABLE” “UNKNOWN”

OR-Tools “==========” “———-” “UNSATISFIABLE” “TIMEOUT”

Cplex CP SearchCompleted SearchStopped SearchCompleted SearchStopped

and and and and

cp.Solve==true cp.Solve==true cp.Solve==false cp.Solve==false

Cplex MIP Optimal AbortTimeLim AbortTimeLim

or and Infeasible and

OptimalTol cplex.Solve==true cplex.Solve==false

Gurobi GRB.Status==2 GRB.Status==9 GRB.Status==3 GRB.Status==9

and and

SolCount>0 SolCount==0

Z3 n/a (cost-based) “sat” “unsat” “timeout”

OptiMathSat “sat optimal” “sat” “unsat” “timeout”

states are defined by a parameter value IloCP::ParameterValues of the solver and there is
a separate boolean parameter to indicate whether a solution was found or not. For Cplex
MIP, we check the solver state in the Cplex.CplexStatus parameter and the existence of
a solution. Gurobi returns a numerical solver status code in parameter GRB.Status and a
solution count in parameter GRBModel.SolCount that we check in addition to the status
code. Z3 distinguishes three different solver states in a status variable and adds the state in a
string to the output file containing the solution. However, it has no explicit state for marking
a solution as being optimal. Therefore, we checked its solution costs and if this is equal to
the cost of a solution marked as optimal by another solver we also count it as an optimal
solution found by Z3. OptiMathSAT outputs a solution status on the Linux console, to which
we added a timeout output string via our Python wrapper in case the solver exhausted the
time limit.

Appendix C: Details on experimental setup: setting an appropriate
time limit

We also ran experiments to find an appropriate time limit for how long to invoke a solver
on an instance. We are interested in setting a time limit, which allows solvers to find good
solutions or even solve instances optimally. However, solvers can easily get stuck in large
search spaces resulting from the very large instances in our benchmark set and investing
more time will not allow them to significantly improve solution quality. Therefore, we ran
a number of tests with the instances from the challenge set using selected combinations
of the models DM, M, and DMGT with some solvers under time limits of 2, 5, 10, and
20 minutes. For these tests, we selected all constraint solvers, the Cplex MIP solver, and
Z3. We compared the costs of solutions found by these solvers under different time limits.
Table 18 summarizes the results for the Cplex CP solver using the DMmodel, which solves
all challenge set instances under all time limits, but cannot prove any of its solutions as
optimal.

99Constraints (2021) 26:56–106

Table 18 Results for Cplex CP on the challenge set under different time limits, entries show solution costs,
none of the solutions found were marked as optimal

Cplex CP DM

Instance 2 minutes 5 minutes 10 minutes 20 minutes

A033 7,742,021 7,742,021 7,741,861 7,741,781

A060 43,318,041 43,308,025 42,338,828 41,317,903

A066 374,829,658 364,859,160 359,918,105 335,380,634

A069 529,386,562 503,541,657 484,268,711 464,931,037

A073 630,266,347 536,520,241 420,367,496 288,011,609

R192 26,007,513 22,587,155 20,337,530 20,337,530

R193 15,827,902 10,191,828 10,191,619 10,181,118

R194 36,724,491 28,217,186 19,748,757 19,748,757

R195 34,748,796 28,069,153 28,069,153 28,069,150

R196 34,782,897 32,105,826 30,774,826 18,685,725

Cplex CP can improve solution costs on all instances when given more time. However,
as Fig. 5 illustrates, the improvement is much less significant from 10 to 20 minutes when
compared with the decrease in costs made when going from 2 to 5. Investing 10 minutes
yields relevant cost reductions for only three instances.

Table 19 summarizes the results for all other solvers, which only solve a few instances
from the challenge set. Only OR-Tools using a non-dual model is able to solve one instance
optimally in 5 minutes and 2 more instances optimally in 20 minutes. Cplex MIP was only
able to solve one instance, whereas Z3 was not able to solve any instance even when given
a 20 minutes time limit.

A 5 minute time limit allows solvers to find solutions as the experiments show. For
instances, for which only suboptimal solutions are found, running the solvers for 10 or 20

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A033 A060 A066 A069 A073 R192 R193 R194 R195 R196

2 min 5 min 10 min 20 min

Fig. 5 Relative decrease in solution costs for Cplex CP on the challenge set over all tested time limits, costs
of the solution found within 2 minutes is set as 100%

100 Constraints (2021) 26:56–106

Table 19 Summary of results obtained by Chuffed, Cplex MIP, and OR-Tools on the challenge set under
different time limits

Instance 2 minutes 5 minutes 10 minutes 20 minutes Solver

A033 20,671,476 19,634,521 18,610,991 Chuffed MZ

19,660,117 20,099,646 19,615,230 18,563,257 Chuffed MGT

18,026,120 16,465,075 Cplex MIP MMIP

5,153,238 5,153,238 5,153,238 OR-Tools .FZN1

11,391,543 5,153,238 5,153,238 5,153,238 OR-Tools .FZN2

A060 46,359,032 Cplex MIP MMIP

R192 58,965,217 58,965,217 Chuffed MZ

28,202,636 12,408,258 OR-Tools .FZN1

36,118,707 12,408,258 OR-Tools .FZN2

R193 54,215,758 Chuffed MGT

11,284,655 OR-Tools .FZN1

19,234,102 OR-Tools .FZN2

R194 78,936,063 OR-Tools .FZN1

49,328,866 25,369,932 OR-Tools .FZN2

R195 73,481,904 Chuffed MGT

28,107,669 OR-Tools .FZN1

26,750,039 OR-Tools .FZN2

R196 24,021,937 OR-Tools .FZN1

61,487,932 40,095,576 14,679,739 OR-Tools .FZN2

Only those instances are shown where at least one solution was found by a solver. Instances from the chal-
lenge set not shown in this table where not solved by any of the selected solvers under the given time limit(s).
Entries show solution costs. The few optimal solutions found are marked in bold. Cells with no entries mean
that no solution was found by any of the solvers

minutes yields improvements, but they rarely allow solvers to find optimal solutions. We
thus set the time limit for all experiments to 5 minutes.

Appendix D: Details on tuning constraint solver performance

The following tuning options were investigated for the three constraint solvers: For Cplex
CP, we investigated the influence of extended inference level settings, which allow the con-
straint solver to control the strength of domain reduction that it can achieve on the constraint
variables by performing more or less constraint propagation. We set three inference levels
to the value extended: default inference level, precedence inference level, and allDifferent
inference level.

For the Chuffed solver, we experimented with different search annotations in MiniZ-
inc and Chuffed using non-dual models. We first experimented with an annotation on the
allDifferent constraint in theMZ and DM′

Z models to use bounds or domain propagation:

constraint all_different(pfc)::bounds;

constraint all_different(pfc)::domain;

101Constraints (2021) 26:56–106

Table 20 Impact of different combinations of search annotations on solution costs in Chuffed compared to
Chuffed’s performance without search annotations taken as 100% baseline, best values are marked in bold

Variable Choice

Variable Value Choice dom w deg first fail impact most constrained occurence

MZ indomain min 99.91 99.87 99.66 99.99 100.00

MZ indomain split random 97.71 97.69 97.73 98.28 97.84

MGT indomain min 99.90 99.83 100.00 99.94 99.80

MGT indomain split random 97.66 97.65 97.85 97.50 97.55

However, these annotations had no significant impact on the number of instances that
Chuffed can solve. Chuffed can find none more suboptimal solution when using the MGT
model with annotated domain propagation on the allDifferent constraint. Solution costs even
increased slightly. We therefore abandoned this annotation.

We then experimented with various combinations of search annotations in order to con-
trol how the Chuffed solver conducts its variable choices and how it selects the domain
values for a variable, which seemed appropriate for the CTW domain. None of the combi-
nations had a relevant impact on the number of instances solved by Chuffed, but sometimes
solutions of lower cost are found. Table 20 summarizes the relative changes in costs on
the same subset of 208 (43 artificial and 165 real-world) instances where Chuffed finds an
optimal or suboptimal solution in its default configuration (costs are set to 100%) or when
using any of the different combinations of search annotations. For the choice of how to con-
strain a variable, indomain split random, which assigns a random value from the variable’s
domain, works best, whereas the variable choice settings lead to no clear picture. For the
MZ model, the first fail strategy (choose the variable with the smallest domain size) works
best and for the MGT model, the most constrained strategy (choose the variable with the
smallest domain, breaking ties using the number of constraints) works best.

As a result, we decided to tune Chuffed with the best working search annotation and
applied this annotation also to the dual model DM′

Z:

::int_search(pfc, first_fail,indomain_split_random)

Table 21 Parameters of the ten instances with smallest average CP solving time

Instance Two-sided Atomic Soft atomic Disjunctive Constraint Average CP

Cables b Constraints Constraints Constraints Sum Solving time

A005 2 3 2 0 7 0.2420s

A007 1 0 0 0 2 0.2529s

A008 3 9 2 1 15 0.2502s

A012 2 0 2 0 6 0.2512s

A013 2 5 2 0 9 0.2506s

A054 1 0 0 0 1 0.2251s

A055 3 10 3 1 23 0.2491s

R026 0 30 7 2 39 0.2391s

R034 3 9 3 0 15 0.2546s

R170 1 1 1 0 3 0.2370s

102 Constraints (2021) 26:56–106

Table 22 Parameters of the 22 unsatisfiable instances in the benchmark set

Instance Two-sided Atomic Soft atomic Disjunctive Constraint Average CP

Cables b Constraints Constraints Constraints Sum Solving time

A049 35 1394 57 115 1671 2.5021s

A050 35 1392 57 134 1637 2.4412s

R005 18 137 18 15 212 0.7713s

R007 23 322 16 85 461 2.0450s

R024 6 89 19 11 129 0.3476s

R027 6 96 16 10 132 0.3309s

R028 6 102 16 11 139 0.3318s

R029 6 91 16 9 126 0.3241s

R030 6 105 17 12 144 0.3180s

R071 3 10 3 1 23 0.2491s

R072 6 4 10 7 39 0.3049s

R074 10 12 17 9 64 0.6241s

R100 23 196 26 47 310 1.5554s

R153 37 1060 47 137 1299 2.7011s

R154 38 1060 48 142 1306 2.8043s

R155 37 1066 47 138 1306 2.7057s

R156 39 1100 48 152 1358 3.2733s

R157 39 1106 48 156 1368 3.2711s

R158 40 1113 56 119 1346 3.2018s

R159 40 1055 56 120 1289 3.1522s

R161 40 723 54 204 1037 3.8566s

R198 25 477 28 71 605 1.3635s

Appendix E: Easily solvable and unsatisfiable instances

In Table 21, we give an overview of the parameters and average solving time of CP solvers
for the ten instances with smallest average CP solving time. These instances may be con-
sidered the easiest instances in the benchmark set. Note that we consider for the average CP
solving time the solving times of the Cplex CP solver on theM andDMmodels, the Chuffed
solver on theMZ,MGT, and DMZ models, and the Google OR-Tools solver on the .FZN1,
.FZN2, and .DFZN models. In Table 22 we give a similar overview for all unsatisfiable
instances in the benchmark set.

Acknowledgements This work was partially supported by the Swiss Innovation Agency innosuisse and
the RICAIP project that has received funding from the European Union’s Horizon 2020 research and inno-
vation programme under grant agreement No 857306. We thank Stefan Bucheli, Beat Estermann, Roland
Liem, Georg Moravitz, Kurt Ulrich, and Zeta technicians from Komax AG for their support, fruitful coopera-
tion, and access to this interesting data set. Deep thanks goes to Bernhard Nebel, Albert-Ludwigs-University
Freiburg, for a fruitful discussion on the complexity of the CTW problem and to Guido Tack, Monash Uni-
versity, for feedback on an earlier version of this paper and for contributing one of the models. Deep thanks
also goes to the reviewers for their helpful comments.

Funding Open Access funding enabled and organized by Projekt DEAL.

103Constraints (2021) 26:56–106

Declarations

Conflict of Interests The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abbou, R., Barman, J., Martinez, C., Verma, S. (2017). Dynamic route planning and scheduling in
flexible manufacturing systems with heterogeneous resources, a max-plus approach. In Control &
Automation (ICCA), 2017 13th IEEE international conference on (pp. 723–728): IEEE.

2. Arora, J.S. (2017). Multi-objective optimum design concepts and methods, Chap. 18, (pp. 771–794).
Cambridge: Academic Press.

3. Austrin, P., Manokaran, R., Wenner, C. (2013). On the NP-hardness of approximating ordering constraint
satisfaction problems. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and techniques, LNCS, (Vol. 8096 pp. 26–41): Springer.

4. Baptiste, P. (1996). Disjunctive constraints for manufacturing scheduling: Principles and extensions.
International Journal of Computer Integrated Manufacturing, 9(4), 306–310.

5. Benoist, T. (2008). Soft car sequencing with colors: Lower bounds and optimality proofs. European
Journal of Operational Research, 191(3), 957–971.

6. Bjørner, N. (2011). Engineering theories with Z3. In Asian Symposium on Programming Languages and
Systems (pp. 4–16): Springer.

7. Bjørner, N., Phan, A.D., Fleckenstein, L. (2015). νz-An Optimizing SMT Solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems (pp. 194–199):
Springer.

8. Bonet, M.L., Levy, J., Manya, F. (2007). Resolution for Max-SAT. Artificial Intelligence, 171(8), 606–
618.

9. Bredström, D., & Rönnqvist, M. (2008). Combined vehicle routing and scheduling with temporal
precedence and synchronization constraints. European Journal of Operational Research, 191(1), 19–31.

10. Camm, J.D., Raturi, A.S., Tsubakitani, S. (1990). Cutting Big M down to size. Interfaces, 20(5), 61–66.
11. Chalasani, P., & Motwani, R. (1999). Approximating capacitated routing and delivery problems. SIAM

Journal on Computing, 28(6), 2133–2149.
12. Cheeseman, P., Kanefsky, B., Taylor, W.M. (1991). Where the really hard problems are. In 12Th

International Joint Conference on Artificial Intelligence, IJCAI’91 (pp. 331–337).
13. Chen, C.P. (1990). AND/OR precedence constraint traveling salesman problem and its application to

assembly schedule generation. In Systems, Man and Cybernetics, 1990. Conference proceedings., IEEE
international conference on (pp. 560–562): IEEE.

14. Chu, G., & Stuckey, P.J. (2015). Dominance breaking constraints. Constraints, 20(2), 155–182.
15. Chu, G., Stuckey, P.J., Schutt, A., Ehlers, T., Gange, G., Francis, K. Chuffed: A lazy clause solver. https://

github.com/chuffed/chuffed.
16. Condotta, A., & Shakhlevich, N.V. (2012). Scheduling coupled-operation jobs with exact time-lags.

Discrete Applied Mathematics, 160(16-17), 2370–2388.
17. Contaldo, F., Trentin, P., Sebastiani, R. An enhanced mzn2fzn compiler for OptiMathSAT. https://github.

com/PatrickTrentin88/emzn2fzn.
18. Contaldo, F., Trentin, P., Sebastiani, R. (2020). From MINIZINC to optimization modulo theories,

and back. In Proceedings of the 17th International Conference on the Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, LNCS: Springer.

104 Constraints (2021) 26:56–106

http://creativecommons.org/licenses/by/4.0/
https://github.com/chuffed/chuffed
https://github.com/chuffed/chuffed
https://github.com/PatrickTrentin88/emzn2fzn
https://github.com/PatrickTrentin88/emzn2fzn

19. Da Col, G., & Teppan, E. (2019). Google vs IBM: A constraint solving challenge on the job-shop
scheduling problem. arXiv:1909.08247.

20. De Moura, L., & Bjørner, N. (2008). Z3: an efficient SMT solver. In International conference on Tools
and Algorithms for the Construction and Analysis of Systems (pp. 337–340): Springer.

21. Donati, A.V., Montemanni, R., Casagrande, N., Rizzoli, A.E., Gambardella, L.M. (2008). Time depen-
dent vehicle routing problem with a multi ant colony system. European Journal of Operational Research,
185(3), 1174–1191.

22. Fagerholt, K., & Christiansen, M. (2000). A travelling salesman problem with allocation, time win-
dow and precedence constraints—an application to ship scheduling. International Transactions in
Operational Research, 7(3), 231–244.

23. Gao, T., & Liu, C. (1996). Minimum crosstalk channel routing. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 15(5), 465–474.

24. Gottlieb, J., Puchta, M., Solnon, C. (2003). A study of greedy, local search, and ant colony optimization
approaches for car sequencing problems. In EvoWorkshops, (Vol. 2611 pp. 246–257): Springer.

25. Grabowski, J., & Wodecki, M. (2004). A very fast tabu search algorithm for the permutation flow shop
problem with makespan criterion. Computers & Operations Research, 31(11), 1891–1909.

26. Gurobi. http://www.gurobi.com/.
27. Gutin, G., & Punnen, A.P. (Eds.) (2007). The Traveling Salesman Problem and its Variations. Berlin:

Springer.
28. Haghani, A., & Jung, S. (2005). A dynamic vehicle routing problem with time-dependent travel times.

Computers & Operations Research, 32(11), 2959–2986.
29. Heinz, S., Schulz, J., Beck, J.C. (2013). Using dual presolving reductions to reformulate cumulative

constraints. Constraints, 18(2), 166–201.
30. Hnich, B., Smith, B.M., Walsh, T. (2004). Dual modelling of permutation and injection problems. JAIR,

21, 357–391.
31. IBM: Cplex. https://www.ibm.com/products/ilog-cplex-optimization-studio/.
32. Kahn, A.B. (1962). Topological sorting of large networks. Communications of the ACM, 5(11), 558–562.
33. Karp, R.M. (1972). Reducibility among combinatorial problems. In Complexity of computer computa-

tions (pp. 85–103): Springer.
34. Ku, W.Y., & Beck, J.C. (2016). Mixed integer programming models for job shop scheduling: A

computational analysis. Computers & Operations Research, 73, 165–173.
35. Kubo, M., & Kasugai, H. (1991). The precedence constrained traveling salesman problem. Journal of

the Operations Research Society of Japan, 34(2), 152–172.
36. Lageweg, B.J., Lenstra, J.K., Kan, A.H.G.R. (1978). A general bounding scheme for the permutation

flow-shop problem. Operations Research, 26(1), 53–67.
37. Leo, K., & Tack, G. (2017). Debugging unsatisfiable constraint models. In International conference on

AI and OR techniques in constraint programming for combinatorial optimization problems (pp. 77–93):
Springer.

38. Manlove, D.F., & McBride, I. (2017). Trimble, J.: “Almost-stable” matchings in the hospitals/residents
problem with couples. Constraints, 22(1), 50–72.

39. Mapa, S.M.S., & Urrutia, S. (2015). On the maximum acyclic subgraph problem under disjunctive
constraints. Information Processing Letters, 115(2), 119–124.

40. Miltersen, P.B., Radhakrishnan, J., Wegener, I. (2005). On converting CNF to DNF. Theoretical
Computer Science, 347(1-2), 325–335.

41. Mitchell, D., Selman, B., Levesque, H. (1992). Hard and easy distributions of SAT problems. In
Proceedings of the 10th national conference on AI (AAAI) (pp. 459–465).

42. Moon, C., Kim, J., Choi, G., Seo, Y. (2002). An efficient genetic algorithm for the traveling salesman
problem with precedence constraints. European Journal of Operational Research, 140(3), 606–617.

43. Narodytska, N., & Bacchus, F. (2014). Maximum satisfiability using core-guided MaxSat resolution. In
Proceedings of the 28th AAAI conference on artificial intelligence, AAAI’14: AAAI press.

44. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G. (2007). MiniZinc: Towards a
standard CP modelling language. In International Conference on Principles and Practice of Constraint
Programming (pp. 529–543): Springer.

45. Nieuwenhuis, R., & Oliveras, A. (2006). On SAT modulo theories and optimization problems. In
International conference on theory and applications of satisfiability testing (pp. 156–169): Springer.

46. Nightingale, P., Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I., Spracklen, P. (2017). Automatically
improving constraint models in Savile Row. Artificial Intelligence, 251, 35–61.

47. Orman, A.J., & Potts, C.N. (1997). On the complexity of coupled-task scheduling. Discrete Applied
Mathematics, 72(1-2), 141–154.

48. Google OR-tools. https://developers.google.com/optimization/.

105Constraints (2021) 26:56–106

http://arxiv.org/abs/1909.08247
http://www.gurobi.com/
https://www.ibm.com/products/ilog-cplex-optimization-studio/
https://developers.google.com/optimization/

49. Osman, I.H., & Potts, C. (1989). Simulated annealing for permutation flow-shop scheduling. Omega.
Int. Journal of Management Science, 17(6), 551–557.

50. Pferschy, U., & Schauer, J. (2013). The maximum flow problem with disjunctive constraints. Journal of
Combinatorial Optimization, 26(1), 109–119.

51. Picard, J.C., & Queyranne, M. (1978). The time-dependent traveling salesman problem and its
application to the tardiness problem in one-machine scheduling. Operations Research, 26(1), 86–110.

52. Rashid, M.F.F.A., Jusop, M., Mohamed, N.M.Z. (2018). R.romlay, F.: Optimization of travelling sales-
man problem with precedence constraint using modified GA encoding. Advanced Science Letters, 24(2),
1484–1487.

53. Refalo, P. (2000). Linear formulation of constraint programming models and hybrid solvers. In Intertan-
ional Conference on Principles and Practice of Constraint Programming (pp. 369–383): Springer.

54. Rendl, A. (2010). Effective compilation of constraint models. Ph.D. thesis, University of St Andrews.
55. Ruiz, J.P., & Grossmann, I.E. (2017). Global optimization of non-convex generalized disjunctive pro-

grams: a review on reformulations and relaxation techniques. Journal of Global Optimization, 67(1),
43–58.

56. Rytter, W., & Szreder, B. (2012). Computing maximum hamiltonian paths in complete graphs with tree
metric. In International Conference on Fun with Algorithms (pp. 346–356): Springer.

57. Sawada, H., Mukai, R., Araki, S., Makino, S. (2004). A robust and precise method for solving the permu-
tation problem of frequency-domain blind source separation. IEEE Transactions on Speech and Audio
Processing, 12(5), 530–538.

58. Sebastiani, R., & Trentin, P. (2015). OptiMathSAT: a tool for optimization modulo theories. In Computer
Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24,
2015, Proceedings, Part I (pp. 447–454).

59. Solnon, C. (2000). Solving permutation constraint satisfaction problems with artificial ants. In Proceed-
ings of the 14th European Conference on Artificial Intelligence (pp. 118–122): IOS press.

60. Stein, D.M. (1978). An asymptotic, probabilistic analysis of a routing problem. Mathematics of
Operations Research, 3, 89–101.

61. Tasgetiren, M.F., Liang, Y.C., Sevkli, M., Gencyilmaz, G. (2007). A particle swarm optimization algo-
rithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem.
European Journal of Operational Research, 177(3), 1930–1947.

62. Vajda, S. (1961). Mathematical programming, Addison-Wesley, Boston.
63. Vander Wiel, R.J., & Sahinidis, N.V. (1996). An exact solution approach for the time-dependent

traveling-salesman problem. Naval Research Logistics (NRL), 43(6), 797–820.
64. Veenstra, M., Roodbergen, K.J., Vis, I.F.A., Coelho, L.C. (2017). The pickup and delivery traveling

salesman problem with handling costs. European Journal of Operational Research, 257(1), 118–132.
65. Walsh, T. (2001). Permutation problems and channelling constraints. In Logic for Programming,

Artificial Intelligence, and Reasoning (pp. 377–391): Springer.
66. Wang, J.B., & Wang, J.J. (2013). Single-machine scheduling with precedence constraints and position-

dependent processing times. Applied Mathematical Modelling, 37(3), 649–658.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

106 Constraints (2021) 26:56–106

	Cable tree wiring: scheduling problem with precedence constraints
	Abstract
	Introduction
	Related work
	Formalization and complexity of the cable tree wiring problem
	Formalization of the cable tree wiring problem
	Optimal solutions of CTW instances
	NP-hardness of the CTW problem
	Relationship of CTW to TSP

	The CTW benchmark set
	Modeling the CTW problem
	The constraint models M and DM
	Overview on model variants, instance data formats, and the supporting tool chain

	Benchmarking models and solvers on the CTW problem
	Constraint solver performance on the CTW benchmark set
	MIP solver performance on the CTW benchmark set
	OMT solver performance on the CTW benchmark set

	Summary of findings and research challenges
	Simplifying Benchmarking Experiments
	Undefined Solver States
	Deviations in Solution Costs
	Algorithmic Insights For Improving Models
	Recognizing Hard and Easy Instances
	Comparison of Solutions found by Humans and Constraint Solvers

	Conclusion
	Appendix: A: Details of Models MZ, DMZ, MGT, MMIP, DMMIP, MB
	A.1 The constraint models MZ and DMZ in MiniZinc language
	A.2 The constraint model MGT in MiniZinc language
	A.3 The mixed-integer programming models MMIP and DMMIP
	A.4 The mixed-integer programming model MB
	Appendix B: Details on experimental setup: mapping solver states
	Appendix: B: Details on experimental setup: mapping solver states
	Appendix C: Details on experimental setup: setting an appropriate time limit
	Appendix: C: Details on experimental setup: setting an appropriate time limit
	Appendix D: Details on tuning constraint solver performance
	Appendix: D: Details on tuning constraint solver performance
	Appendix E: Easily solvable and unsatisfiable instances
	Appendix: E: Easily solvable and unsatisfiable instances
	References

