
Constraints (2023) 28:363–396
https://doi.org/10.1007/s10601-023-09363-2

Learn and route: learning implicit preferences for vehicle
routing

Rocsildes Canoy1 · Víctor Bucarey2 · Jayanta Mandi1 · Tias Guns3

Accepted: 8 September 2023 / Published online: 11 October 2023
© The Author(s) 2023

Abstract
We investigate a learning decision support system for vehicle routing, where the routing
engine learns implicit preferences that human planners have when manually creating route
plans (or routings). The goal is to use these learned subjective preferences on top of the
distance-based objective criterion in vehicle routing systems. This is an alternative to the
practice of distinctively formulating a custom vehicle routing problem (VRP) for every com-
pany with its own routing requirements. Instead, we assume the presence of past vehicle
routing solutions over similar sets of customers, and learn to make similar choices. The
learning approach is based on the concept of learning a Markov model, which corresponds
to a probabilistic transition matrix, rather than a deterministic distance matrix. This never-
theless allows us to use existing arc routing VRP software in creating the actual routings,
and to optimize over both distances and preferences at the same time. For the learning, we
explore different schemes to construct the probabilistic transition matrix that can co-evolve
with changing preferences over time. Our results on randomly generated instances and on
a use-case with a small transportation company show that our method is able to generate
results that are close to the manually created solutions, without needing to characterize all
constraints and sub-objectives explicitly. Even in the case of changes in the customer sets,
our approach is able to find solutions that are closer to the actual routings than when using
only distances, and hence, solutions that require fewer manual changes when transformed
into practical routings.

Keywords Preference learning · Vehicle routing · Markov models · Transition probabilities

B Rocsildes Canoy
rocsildes.canoy@vub.be

Víctor Bucarey
victor.bucarey@uoh.cl

Jayanta Mandi
jayanta.mandi@vub.be

Tias Guns
tias.guns@kuleuven.be

1 Data Analytics Laboratory, Vrije Universiteit Brussel, Brussels, Belgium

2 Institute of Engineering Sciences, Universidad de O’Higgins, Rancagua, Chile

3 KUL Institute for AI, Katholieke Universiteit Leuven, Leuven, Belgium

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10601-023-09363-2&domain=pdf
http://orcid.org/0000-0003-1810-082X
https://orcid.org/0000-0002-3043-8404

364 Constraints (2023) 28:363–396

1 Introduction

Vehicle routing problems (VRP) at small or medium-sized enterprises (SME) are constrained
by the limited number of vehicles, the capacity of each delivery vehicle, and the scheduling
horizon within which all deliveries have to be made. The objective, often implicitly, can
include a wide range of company goals including reducing operational costs, minimizing
fuel consumption and carbon emissions, as well as optimizing driver familiarity with the
routes and maximizing fairness by assigning tours of similar length and/or time duration to
the drivers. Daily plans are often created in a route optimization software that is capable of
producing plans that are optimal in terms of route length and travel time. We have observed,
however, that in practice, route planners usually modify the result given by the software, or
simply pull out, modify, and reuse an old plan that has been used and known to work in the
past. The planners, by performing these modifications, are essentially optimizing with their
own set of objectives and personal preferences.

These preferences are often subjective and sometimes delicate to formalize in constraints.
Some examples are: where the best places for lunch breaks are, which stops are best served
earlier or later, and which drivers (tours) are more flexible in receiving more stops. Failure
to capture such human aspects is often a source of frustration for both drivers and planners,
and a cause for reluctance to use the optimisation software. Furthermore, planners may find
it easier or more effective to manually change a previous solution than to provide or update
the detailed information in the system. Being able to automatically capture such preferences
without the need to formalize them can hence lead to a wider acceptance and better use of
optimisation systems.

The goal of this research is to learn the preferences of the planners (and implicitly the
drivers) when choosing one option over another. Hence, the goal is to build an ‘intelligent’
system that can effectively reuse all of the knowledge and effort that have been put into
creating previous routings; much like how human planners use prior experience. We focus
on techniques from the domain of artificial intelligence that can learn from historical data,
and that can be used to manage and recommend similar routes as used in the past. This is in
contrast to the current practice of optimizing a VRP instance separately and independently
each day.

To learn from historical data, we take inspiration from various machine learning papers
on route prediction for a single vehicle: Markov models developed from historical data have
been applied to driver turn prediction [28], prediction of the remainder of the route by looking
at the previous road segments taken by the driver [44], and predicting individual road choices
given the origin and destination [39]. These studies have produced positive and encouraging
results for their respective tasks. Hence, in this work, we investigate the use ofMarkovmodels
for predicting the route choices for an entire fleet, and how to use these choices to create
preference-aware solutions to the VRP.

With a Markov model, route optimization can be done by maximizing the product of the
probabilities of the sequential actions taken by the vehicles,which corresponds tomaximizing
the sum of log likelihoods over the route arcs. In the case of a first order Markov model,
a key property of our approach is that it can use any existing VRP solution method to find
the maximum likelihood solution, as it corresponds to the sum of log likelihoods over the
individual arcs. This is a promising novel approach to the vehicle routing problem.

Our proposed first order Markov model approach has been published in a conference
proceeding [10]. In this article, we extend this methodology by developing the following
new contributions:

123

Constraints (2023) 28:363–396 365

• We provide a more general formalization of the methods for learning and optimizing the
preferences, and detail both a first order and a second order Markov model.

• We introduce a new and superior weighing technique called the exponential weighing
scheme and examine how it handles data drift, i.e., when there is either a large reduction
or a sudden increase in the number of stops.

• We present an extended study on distance-based, preference-based, and combined opti-
misation.

• We test our approach on synthetic data and compare the results against the recently pub-
lished inverse optimization approach introduced in [13]. Results show that our approach
is not only as good as the inverse optimization approach in terms of quality of the learning,
but is also more efficient in terms of computation time.

This manuscript is organized as follows: in Section 2, we provide the relevant work related
to this article. We discuss in Section 3 routing models that maximize the probability of the
learned preferences. Later in the section, we introduce the algorithms to learn the transition
matrix from historical data. The comparison of the different construction schemes and the
experimental results on synthetic and actual company data are shown in Section 4. Finally,
our conclusions and future research directions are presented in Section 5.

2 Related work

The first mathematical formulation and algorithmic approach to solving the Vehicle Routing
Problem (VRP) appeared in the paper by [16] which aimed to find an optimal routing for
a fleet of gasoline delivery trucks. Since its introduction, the VRP has become one of the
most studied combinatorial optimization problems. Faced on a daily basis by distributors
and logistics companies worldwide, the problem has attracted a lot of attention due to its
significant economic importance.

A large part of the research effort concerning theVRPhas focused on its classical version—
the Capacitated Vehicle Routing Problem (CVRP). The presumption is that the algorithms
developed for CVRP could be extended and applied to more complicated real-world cases
[29]. Due to the recent development of new andmore efficient optimisationmethods, research
interest has shifted towards realistic VRP variants known as Rich VRP [9, 21]. These prob-
lems deal with realistic, and sometimes multi-objective, optimisation functions, uncertainty,
and a wide variety of real-life constraints related to time and distance factors, inventory
and scheduling, environmental and energy concerns, driver experience, etc. [32]. The VRP
becomes increasingly complex as additional sub-objectives and constraints are introduced.
The inclusion of preferences, for example, necessitates the difficult, if not impossible, task
of formalizing the route planners’ knowledge and choice preferences explicitly in terms of
constraints and weights. In most cases, it is much easier to get examples and historical solu-
tions rather than to extract explicit decision rules from the planners, as observed by Potvin
et al. in the case of vehicle dispatching [35]. One approach is to use learning techniques,
particularly learning by examples, to reproduce the planners’ decision behavior. To this end,
we develop a new method that learns from previous solutions by using a Markov model,
which can simplify the problem formulation phase of vehicle routing by eliminating the need
to characterize all preference constraints and sub-objectives explicitly.

Learning from historical solutions has been investigated before within the context of
constraint programming. For example, in the paper of Beldiceanu and Simonis on constraint
seeker [5] and model seeker [6], and Picard-Cantin et al. on learning constraint parameters

123

366 Constraints (2023) 28:363–396

fromdata [34],where aMarkov chain is used, but for individual constraints. In this respect, our
goal is not to learn constraint instantiations, but rather to learn choice preferences, e.g., as part
of the objective. Related to the latter is the work on Constructive Preference Elicitation [20],
although this elicitation technique actively queries the user, as does constraint acquisition [8].

Our motivation for Markov models is that they have been previously used in route predic-
tion of individual vehicles. Ashbrook and Starner [4] presented a Markov model to predict
the next stop of a moving agent equipped with a wearable GPS receiver. They estimated
transition probabilities as frequencies and considered Markov models that depend not only
on the actual stop but also on past stops; that is, high orderMarkov chains. Personalized route
prediction has been used in transportation systems that provide drivers with real-time traffic
information and in intelligent vehicle systems for optimizing energy efficiency in hybrid
vehicles [17]. Ye et al. [44] introduced a route prediction method that can accurately predict
an entire route early in the trip. The method is based on Hidden Markov Models (HMM)
trained from the drivers’ past history. A route prediction algorithm that predicts a driving
route for a given pair of origin and destination was presented byWang et al. [39]. Also based
on the first order Markov model, the algorithm uses a probability transition matrix that was
constructed to represent the knowledge of the driver’s preferred links and routes. An algo-
rithm for driver turn prediction using a Markov model is developed in Krumm [28]. Trained
from the driver’s historical data, the model makes a probabilistic prediction based on a short
sequence of just-driven road segments. Experimental results showed that by looking at the
most recent 10 segments into the past, themodel can effectively predict the next segment with
about 90% accuracy. While related to our current work, we do not assume that a partial route
is given. Moreover, in our case, we are interested in optimizing the routing across multiple
vehicles rather than making predictions for a single vehicle.

Several algorithms were deployed to direct users through paths between origin and desti-
nation. These were done either through an enumeration of paths [42], or by adapting weights
on edges and computing shortest paths [18, 23, 30]. Although similar to this second category,
where weights represent probabilities, our work differs in that instead of planning single
paths (i.e., for an origin-destination pair), our methods use preferences to create a routing
plan for several vehicles. Also, we are adapting the classical CVRPmixed integer formulation
in order to generate high probability routes.

The importance of preference-based learning can be realized from the study of Ceikute
and Jensen [11], which finds that local drivers often prefer paths that are not optimal in terms
of travel time or cost. This is because local drivers favor certain routes based on their personal
preferences. Chang et al. [12] and Letchner et al. [30] proposed a framework to recommend
personalized routes to the driver by taking into account which roads he or she is familiar
with. Yang et al. estimated a driver’s preferences by comparing the paths used by the driver
to the skyline paths [41]. Yang andYang [43] introducedPathRank, a machine learningmodel
trained with historical data, to rank candidate paths based on the driver’s preferences. Again,
the above-mentioned are mostly concerned with point-to-point ‘shortest path’ travel where
the source and destination pairs are known. Our work, on the other hand, focuses on the VRP:
recommending a multi-vehicle solution over shared stops.

Our work aligns with the ongoing line of research focused on directly solving combina-
torial optimization problems, such as CVRPs, using neural networks. Recently, the use of
deep learning and reinforcement learning to solve various combinatorial optimization prob-
lems has received increasing attention. However, it is important to note that our work does
not aim to solve CVRP problems efficiently; but to learn the preferences, which we trans-
form as the cost of the CVRP. While we acknowledge that these neural network models can
be adapted, for both learning the cost of the edges and solving the CVRP, their successful

123

Constraints (2023) 28:363–396 367

implementation requires a substantial amount of training data. Due to the limited availability
of a large training dataset, using such models are beyond the scope of our research. Nev-
ertheless, in the paragraph that follows, the readers can find a concise overview of notable
works that address the problem of solving combinatorial optimization problems using neural
networks.

The Pointer Network proposed in Vinyals et al. [38] makes use of sequence-to-sequence
models to solve a TSP. Here, an attention model is used to learn the optimal order of cities
to visit within a supervised learning framework. In Nazari et al. [33] the pointer network is
extended to tackle VRPs by making the model invariant with respect to the input sequence.
The work in Bello et al. [7] also tackles TSPs, where the pointer network architecture Vinyals
et al. [38] is used to determine the next city to visit. However, in this work the negative of
the tour length is considered as the reward and the network is trained via a policy gradient
algorithm Williams [40] without supervised solutions. The sequence-to-sequence model in
the pointer network is replaced with the Graph Attention Network Veličković et al. [37] in
Kool et al. [27]; Deudon et al. [19] and the model is trained via policy gradient algorithm.

A recent article [2] showed an application of routing with preferences using patient pref-
erences over the drivers/vehicles to create route visits for caregivers, where the problem is
formulated as a bi-criteria optimization problem. In contrast, our work is concerned in cre-
ating routings while taking into account the implicit planner and driver preferences over the
set of customers. More recently, an inverse optimization formulation that learns a cost matrix
from previous solutions was introduced in Chen et al. [13]. As with our approach, when
route optimization is done using this new learned cost matrix instead of the original distance
matrix, resulting solutions are found to be as good as those created by the experts. However,
our methodology is able to capture preferences as effectively as the inverse optimization
approach while being considerably more efficient in terms of computational time.

3 Formalisation

In this section we introduce the probabilistic model underlying our methodology to learn
the drivers’ preferences. Furthermore, we adapt the classical formulation of the CVRP to
compute the route with the highest probability.

3.1 Routing, probabilities andMarkovmodels

We begin with a set of stops V = {0, 1, . . . , n}, where 0 represents the depot and the
other stops represent the locations of the customers, and a fully-connected directed graph
G = (V , A). We call a routing x of V with m homogeneous vehicles, a set of at most m
tours in G with each tour starting from and ending at the depot 0 and such that each node in
V \{0} is visited exactly once.

We denote the set of all possible routings of m vehicles over V as Xm
V , or simply X when

it is clear from the context. A typical element s of Xm
V can be represented as a sequence

s = (0, s11, s12, . . . , s1p−1, s1p, 0, 0, s21, s22, . . . , s2q−1, s2q , 0, . . . , 0, sm1, . . . smr , 0),

where p, q and r represent the number of stops visited in routes 1, 2 and m, respectively.
Our goal is to determine a probabilistic model Pr such that Pr(x) is the probability of the
vehicles following the routing x ∈ X .

123

368 Constraints (2023) 28:363–396

A Markov model is defined over a single sequence of events, and so to be able to use
Markov models for Pr(x),we first daisy-chain the set of routes x. This is done by connecting
the routes into one long sequence:

0 −→ s11 −→ s12 −→ . . . −→ s1p−1 −→ s1p −→ 0 −→
0 −→ s21 −→ s22 −→ . . . −→ s2q−1 −→ s2q −→ 0 −→
...

0 −→ sm1 −→ sm2 −→ . . . −→ smr−1 −→ smr −→ 0,

which we then simplify by replacing the (0 → 0) connections by 0. Given this sequence
interpretation of x, we can decompose the joint probability Pr(x) as the probability of each
element conditional on the elements before it in the sequence:

Pr(x) = Pr(0, s11, s12, s13, . . . , 0, s21, . . .)

= Pr(X0 = 0)Pr(X1 = s11 | X0 = 0)Pr(X2 = s12 | X0 = 0, X1 = s11)

Pr(X3 = s13 | X0 = 0, X1 = s11, X2 = s12) · · · .

Estimating all conditional probabilities Pr(si j | 0, . . . , si j−2, si j−1) is difficult because of
the large number of such possible probabilities and their sparsity in the data. A common
approach is to use a Markovian approximation of the probabilistic model [3], which states
that the probability of an event depends only on the state of the previous event. The main
advantage is that, with this approach, themodel can be describedwithmuch fewer parameters
to learn.

We consider a first order Markov chain {Xt}t≥0 over V with transition probabilities
between states as:

Pr (Xt+1 = j | Xt = i, Xt−1 = it−1, . . . , X0 = i0) ≈ Pr (Xt+1 = j | Xt = i) .

The joint probability Pr(x) therefore becomes:

Pr(x) ≈ Pr(X0 = 0)Pr(X1 = s11 | X0 = 0)Pr(X2 = s12 | X1 = s11)Pr(X3 = s13 | X2 = s12) · · · .

On one hand, the interpretation of this model’s assumption is straightforward: a driver’s
decision to go from a stop i to another stop j depends only on the current position (current
stop), and does not consider the stops visited before that. With this assumption, the Markov
model can be seen as a probability distribution over the set of arcs A. On the other hand,
this model is in fact an approximation: in practice, drivers and planners also take the stops
preceding the current stop, and potentially even the stops after it, into account when making
their decision. In either case, the current stop Xt is the key deciding factor. A finer-grained
approximation is to consider a higher order, in particular a second order,Markov chain. In this
case, the state of an event contains both the current stop and the stop before it. By extending
the history of previously visited arcs, we get a better approximation of the probabilistic
model over X . For the second order model, the conditional probabilities are approximated
as follows:

Pr (Xt+1 = k | Xt = j, Xt−1 = i, . . . , X0 = i0) ≈ Pr (Xt+1 = k | Xt−1 = i, Xt = j) .

The trade-off is that the number of parameters to estimate increases from O(n2) to O(n3).
Later in this section, we will investigate the different ways of estimating these conditional
probabilities from the historical routings.

123

Constraints (2023) 28:363–396 369

3.2 Maximum likelihood routing

Given a (learned) probability distribution Pr over a set of stops V , the goal is to find the
maximum likelihood routing, that is, the routing with the highest joint probability. Let X be
the set of all possible routings for a given number m of vehicles and a set of stops V . The
goal of finding the maximum likelihood routing then becomes:

max
x∈X Pr(x). (1)

Naturally, the set of all possible routings X is not given explicitly. However, we can define
it implicitly as a set of constraints over decision variables, as common in optimisation
approaches to vehicle routing. We first look into formulating the constraints, and then the
objective function corresponding to (1).

Constraints

Note that while the probability distribution Pr is defined over all possible routings, we are
free to impose additional constraints over X when searching for the maximum likelihood
routing. In effect, this will be a constrained maximum likelihood inference problem.

In this paper, we will use a standard Capacitated Vehicle Routing Problem (CVRP) for-
mulation by means of Mixed Integer Programming (MIP) [25]. To do so, we represent the
routing X by the binary vector x ∈ {0, 1}|A| where A is the set of all possible edges between
V , that is, the arc set of the complete graph G = (V , A). Each component of a vector x,
namely xi j , takes the value 1 if there exists a transition from i to j in sequence x, and 0
otherwise. The CVRP routing problem with m homogeneous vehicles, each with capacity
Q, and a given demand qi for every stop i ∈ V , can then be represented by the following
standard constraints [25]:

∑

j∈V, j �=i

xi j = 1 i ∈ V \{0} (2)

∑

i∈V, i �= j

xi j = 1 j ∈ V \{0} (3)

n∑

j=1

x0 j ≤ m (4)

if xi j = 1 ⇒ ui + q j = u j (i, j) ∈ A : j �= 0, i �= 0 (5)

qi ≤ ui ≤ Q i ∈ V \{0} (6)

xi j ∈ {0, 1} (i, j) ∈ A, (7)

where constraints (2) and (3) impose that every stop other than the depot must be visited
by exactly one vehicle and that exactly one vehicle must leave from each node. Constraint
(4) limits the number of routes to the size of the fleet, m. In constraint (5), u j denotes
the cumulative vehicle load at node j . The constraint plays a dual role—it prevents the
formation of subtours, i.e., cycling routes that do not pass through the depot, and together
with constraint (6), it ensures that the vehicle capacity is not exceeded. While the model does
not make explicit which stop belongs to which route, this information can be reconstructed
from the active arcs xi j in the solution.

123

370 Constraints (2023) 28:363–396

Objective function

For a first order Markov chain approximation, the joint probability over a daisy-chained
sequence of stops x = {0, s1, s2, s3, . . . sn, 0} decomposes into the following:

Pr(x) ≈ Pr(X0 = 0)Pr(X1 = s1 | X0 = 0) · · · Pr(Xn+1 = 0 | Xn = sn) (8)

= Pr(X0 = 0)
∏

(i→ j) ∈ x

Pr (Xt+1 = j | Xt = i) .

In our routing setting, by construction, the first stop is always the depot. Hence, we know that
Pr(X0 = 0) = 1. In order to transform the above into an objective function over decision
variables xi j we remark that xi j = 1 ⇔ (i → j) ∈ x. We can now derive the following:

argmax
x

Pr(x) ≈ argmax
x

Pr(X0 = 0)
∏

(i→ j) ∈ x

Pr (Xt+1 = j | Xt = i) (9)

= argmax
x

∏

(i→ j) ∈ x

Pr (Xt+1 = j | Xt = i)

= argmax
x

∑

(i→ j) ∈ x

log Pr (Xt+1 = j | Xt = i)

= argmax
x

∑

(i, j) | xi j=1

log Pr (Xt+1 = j | Xt = i) xi j

= argmin
x

∑

(i, j)∈ A

− log Pr (Xt+1 = j | Xt = i) xi j .

If we define p̂i j = − log Pr (Xt+1 = j | Xt = i), then we obtain the following standard
CVRP formulation:

min
x

∑

(i, j)∈ A

p̂i j xi j (10)

s.t. Constraints (2) − (7).

Hence, using p̂ as the cost vector in the traditional VRP setting enables us to use any existing
VRP solver to find the maximum likelihood routing of a given first order Markov model.
We now consider the case of a second order Markov chain:

Pr(x) ≈ Pr(X0 = 0)Pr(X1 = s1 | X0 = 0)Pr(X2 = s2 | X0 = 0, X1 = s1) · · · (11)

Pr(Xn+1 = 0 | Xn−1 = sn−1, Xn = sn)

= Pr(X0 = 0)Pr(X1 = s1 | X0 = 0)
∏

(i→ j→k) ∈ x

Pr (Xt+1 = k | Xt−1 = i, Xt = j) .

To construct a corresponding objective function over decision variables xi j , we have to be
more careful than in the first order case. More specifically, the second order Markov model
includes the probabilities of transitions over the different vehicles, such as (s1p → 0 →
s21). However, vehicles (and hence routes) are assumed to be homogeneous and therefore
interchangeable. Hence, the ordering of the routes when constructing the daisy-chain is
arbitrary. The last stop of one route should therefore not have any influence on the first stop
of another route. We will hence ignore all transitions of the kind (s1p → 0 → s21) and
instead use the first order transition probability from the depot: (0 → s21). These need to be

123

Constraints (2023) 28:363–396 371

estimated for the first transition Pr(X1 = s1 | X0 = 0) anyway. This leads to the following
derivation:

argmax
x

Pr(X0 = 0)Pr(X1 = s1 | X0 = 0)
∏

(i→ j→k) ∈ x

Pr (Xt+1 = k | Xt−1 = i, Xt = j) (12)

≈ argmax
x

Pr(X0 = 0)
∏

(0→i) ∈ x

Pr(Xt+1 = i | Xt = 0)
∏

(i→ j→k) ∈ x
j �=0

Pr (Xt+1 = k | Xt−1 = i, Xt = j)

= argmin
x

∑

(0,i) ∈ A

− log Pr(Xt+1 = i | Xt = 0) x0i

+
∑

(i, j) ∈ A, (j,k) ∈ A
j �=0

− log Pr (Xt+1 = k | Xt−1 = i, Xt = j) xi j x jk .

If we now define p̂i jk = − log Pr(Xt+1 = k | Xt−1 = i, Xt = j), and p̂i j =
− log Pr(Xt+1= j | Xt = i) as before, then we obtain the following CVRP formulation:

min
x

∑

(0,i) ∈ A

p̂0i x0i +
∑

(i, j)∈A
j �=0

∑

(j,k)∈A
j �=0

p̂i jk xi j x jk (13)

s.t. Constraints (2) − (7).

Note how we are still using the same xi j decision variables. The objective function, however,
is now a quadratic function and hence the problem becomes a Mixed Integer Quadratic
Problem (MIQP). There are well-known techniques to linearize the quadratic term and obtain
an MIP by introducing additional constraints and decision variables, e.g., by the McCormick
inequalities [31]. Many mathematical programming solvers for MIQP also exist. However, it
is reasonable to expect that optimizingwith this objective function of the second orderMarkov
chain will be computationally harder than optimizing with the linear objective function of
the first order model.

We now explain how to learn the transition probability matrix from historical solutions
(Section 3.3), followed by different ways of weighing the instances (Section 3.4). Finally, in
Section 3.5 we discuss how to combine a learned probability matrix with a distance-based
probability matrix.

3.3 Learning the transition probability matrix

We now outline the main approach that we propose for estimating the transition probabil-
ity matrix from historical solutions. We assume given a dataset H = {(V t ,mt , zt , xt)} of
instances with each instance a tuple where t is a timestamp (e.g., a specific day in case of
daily vehicle routing), V t is the set of stops served by the solution at timestamp t , mt is the
number of vehicles used, xt is the solution created by an expert or the actual driven routes
extracted from an on-board system, and zt are additional problem parameters such as the
demand of every stop, or some other known constraint parameters.

Note that V t , as well asmt and zt , can change from instance to instance. The approach we
propose assumes that while V t indeed changes from day to day, there will always be some
overlap with other days. In general, the set of stops is assumed to be composed of regular and
occasional or ad hoc stops. These assumptions are necessary to learn preferences between
pairs of stops. Even in cases where there is no actual repetition of stops, it may still be

123

372 Constraints (2023) 28:363–396

possible to extract patterns that capture the expert’s preferences. Rather than focusing solely
on individual stops, the analysis can be expanded to include stops with shared characteristics,
such as geographic proximity or similar service time intervals (in the case of time windows).
By examining stops that exhibit similar properties, valuable insights can be gained into the
expert’s preferences and underlying patterns.

Probability estimation

The basic idea of our approach is to estimate all the conditional probabilities Pr(Xn+1 =
j | Xn = i) over the set of all stops in the data: V all = ⋃

t V
t . The conditional probability of

a vehicle moving from stop i to stop j is:

Pr(Xn+1= j | Xn = i) = Pr(Xn+1= j, Xn = i)

Pr(Xn = i)
,

with Pr(Xn = i) = ∑
k Pr(Xn+1=k, Xn = i).

To compute this, we will count how often two stops follow each other in the data. We
denote by � · � the Iverson bracket which returns the value 1 if the statement inside the bracket
evaluates to true, and 0 otherwise. We define the frequency of a transition (i → j) in dataset
H as:

fi j =
∑

t

� (i → j) ∈ xt �. (14)

Now we can empirically estimate the conditional probabilities from the data as follows:

Pr(Xn+1=s j | Xn =si) = fi j∑
k fik

. (15)

Laplace smoothing

To account for the fact that the number of samples may be small, and some fi j may be zero,
we can smooth the probabilities using the Laplace smoothing technique [14, 26, 44]. The term
smoothing describes methods that adjust the maximum likelihood estimate of probabilities
by setting low probabilities upward and high probabilities downward. In particular, Laplace
smoothing adds a non-negative term to each event (in this case to each transition), which
reduces the impact of data sparseness arising in the process of building the transition matrix.
As a result of smoothing, these arcs are given a small, non-negative probability, thereby
eliminating the zeros in the resulting transition matrix. The removal of zeros is also desirable
from a computational perspective as it deletes the occurrence of “log(0)” during maximum
likelihood computation.

Conceptually, with λ as the smoothing parameter (λ=0 corresponds to no smoothing), we
add λ observations to each event. The conditional probability estimation therefore becomes:

Pr(Xn+1=s j | Xn =si) = fi j + λ∑
k(fik + λ)

. (16)

First-order estimation algorithm

Algorithm 1 shows the algorithm for estimating the first order probability transition matrix.
The dimension of the matrix, that is, the size of the total set of unique stops, is determined in

123

Constraints (2023) 28:363–396 373

Algorithm 1 Estimating a first order transition matrix from historical instances.
Input: A dataset H = {(V t ,mt , zt , xt)} where we will assume that the timestamps t have been replaced by
integer values 1 . . . |H | in a way that respects the ordering of the timestamps; a weight wt per data instance,
where the default value is wt = 1; and the Laplace smoothing parameter λ ≥ 0.
1. Determine the total set of stops Vall = ⋃

t V
t and let μ = | Vall |.

2. For each (V t ,mt , zt , xt) ∈ H, construct an adjacency matrix At
μ × μ = [ati j], where

ati j = � (si , s j) ∈ xt �. (17)

3. Build the arc transition frequencymatrix Fμ × μ with the weightswt and the adjacencymatrices constructed
in Step 2:

F =
∑

t

wtAt . (18)

4. Apply the Laplace smoothing technique to Fμ × μ = [fi j] to get the final probability estimates P̂μ ×μ =
[p̂i j]:

p̂i j = fi j + λ
∑

k (fik + λ)
. (19)

Output: Transition matrix P̂μ× μ = [p̂i j], where p̂i j = Pr(Xn+1 = s j | Xn = si).

Step 1. In Step 2, an adjacency matrix is constructed for each historical instance. A frequency
matrix is constructed in Step 3 by computing the (weighted) sum of all the adjacencymatrices
(18). By default,wt = 1 for all instances;more advanced schemeswill be discussed in Section
3.4. Finally, during normalisation in Step 4, Laplace smoothing is applied if λ > 0.

Second-order estimation algorithm

The second order transition matrix can be analogously constructed by building a three-
dimensional matrix At

μ × μ× μ = [ati jk] in Step 2, where ati jk = � (si , s j , sk) ∈ xt �. Laplace
smoothing is then applied by dividing each element of the frequency matrix Fμ×μ × μ =
[fi jk := ∑

t � (i → j), (j → k) ∈ xt �] with the row sum to obtain the transition matrix
P̂μ× μ× μ = [p̂i jk], where

p̂i jk = Pr(Xn+1 = sk | Xn−1 = si , Xn = s j) = fi jk + λ∑
l (fi jl + λ)

.

We also estimate the conditional probabilities of leaving from the depot:

p̂0i = f0 j + λ∑
k (f0k + λ)

.

With these estimates, we can use the above-defined optimisation formulation to find the
maximum likelihood VRP solution.

3.4 Every day is different

The estimation method described above assumes that each instance is equally important, and
that the VRP solution of each instance is independently drawn from the same distribution.
However, we know that this is not entirely true: human planners learn from day to day,
with more recent experiences typically closer to mind. Furthermore, because the set of stops
changes each day, the similarity of the current instance to previous instances may also change
how choices on the current instance will be made.

123

374 Constraints (2023) 28:363–396

We identify two types of context that change the importance of previous instances—
the temporal context and the similarity context. The temporal context is known in machine
learning as concept drift [22]. The concept of similarity is central in many machine learning
and data mining approaches. We now discuss two modifications of the above transition
probability estimation algorithm that will take these contexts into account.

To this end, we assume that we are currently at timestamp T . Also, we are given a set of
stops V T , number of vehicles mT , and other parameters zT . That is, we have a new unseen
tuple (V T ,mT , zT) for which we are to determine the corresponding xT . We also have a set
of historical instances until timestamp T that we denote with H = {(V t ,mt , zt , xt)}T−1

t=1 .

To take the temporal and similarity aspects into account, we will define a prior on each
historical training instance, based on the current tuple (V T ,mT , zT). More specifically, we
use a weighing scheme where we define a weight wt for each historical instance in H based
on the properties of the current tuple.

Table 1 provides an overview of the three types of prior: uniform, time-based, and
similarity-based, with other possible variations within each type.

Time-based weighing

Inmachine learning, it is well known that temporally ordered data can have concept drift [22],
that is, the underlying distribution can change over time.

To account for this, we can use a time-based weighing scheme where older instances
are given smaller weights, and newer instances larger ones. Assuming the timestamps are
(replaced by) integer values in a way that respects the same ordering, we can weigh the
instances as:

wt = t

T
. (20)

This assumes a linearly increasing importance of instances, with the oldest (first) instance
having weight 1/T and the latest instance weight (T −1)/T . We can increase the importance
of the newer instances by squaring the weights:wt = (t/T)2 or more generally,wt = (t/T)a

for some value a.

Exponential smoothing

A further amplification of the importance ofmore recent instances can be done by considering
an exponential weighing scheme, a popular approach in time series analysis and forecasting
[15, 24].

In principle, exponential smoothing uses a weighted average of the most recent observa-
tions and the forecasted data. In general, let f̂T be the estimated data up to, but not including
time period T . Then, using the data fT of the current timestamp, the following gives the

Table 1 An overview of the proposed weighing schemes

Name Weights Squared weights Exponential Weights (EXP)

Uniform (UNIF) wt = 1 —

Time-based (TIME) wt = t/T wt = (t/T)2 wt = α(1 − α)T−t

Similarity-based (SIMI) wt = J (V t , V T) wt = J (V t , V T)2

123

Constraints (2023) 28:363–396 375

forecast for the next time period:

f̂T+1 = α fT + (1 − α) f̂T , (21)

where the smoothing parameter α ∈ (0, 1) is a weight assigned to the most recent data.
Furthermore, the expansion of (21) yields

f̂T+1 =
T∑

t=1

α(1 − α)T−t fT−t . (22)

This weighing scheme is called exponential smoothing because the weights in (22) decline
exponentially with time.

We can apply the same exponential smoothing on the frequency matrices, resulting in
F = ∑

t α(1 − α)T−t At and hence:

wt = α(1 − α)T−t . (23)

Similarity-based weighing

The stops in each instance typically vary, and the presence or absence of different stops can
lead to different decision behaviors. To account for this, we can use the similarity between
the set of stops of the current instance and the set of stops of each historical instance as a
prior. The goal is to assign larger weights to training instances that are more similar to the
test instance, and smaller weights if they are less similar.

The similarity of two stop sets can be measured using the Jaccard similarity coefficient.
The Jaccard similarity of two sets is defined as the size of the intersection divided by the size
of the union of the two sets:

J (A, B) = |A ∩ B|
|A ∪ B| (24)

for two non-empty sets A and B. The Jaccard similarity coefficient is always a value between
0 (no overlapping elements) and 1 (exactly the same elements).

Hence, we can use the following distance-based Jaccard similarity weighing:

wt = J (V t , V T). (25)

To further amplify the differences in the weights, we can also use the squared Jaccard coef-
ficient wt = J (V t , V T)2 or in general, wt = J (V t , V T)a .

3.5 Mixing distances and preferences

We have discussed learning preferences from historical solutions and how to optimize over
them, leading to the most likely VRP solution in expectation. However, this uses only the
historical preferences but never reasons at the level of distances traveled (kilometers). Using
only the probability matrix can hence lead to purelymimicking the human behaviour, instead
of reasoning and optimizing over both preferences and the impact on the driven kilometers.

To face this issue, we define a distance-based probability distribution based on the softmax
function on the distances between stops. The larger the distance between stops i and j , the
lower is the probability of that transition. This probability is defined as:

d̂i j = Prdist (Xn+1=s j | Xn =si) = e−di j
∑

k e
−dik

. (26)

123

376 Constraints (2023) 28:363–396

The main goal is to have a comparable measure between the driver’s preferences and the
cost of driving long distances. In Appendix A, we show that this definition of distance-based
probabilities would produce, under some mild conditions, the same set of solutions as the
standard CVRP formulation with the objective of minimizing the total distance.

Combining transition probability matrices

Given transition probability matrices P̂ = [p̂i j] and D̂ = [d̂i j], we can take the convex
combination as follows:

ĉi j = β p̂i j + (1 − β)d̂i j . (27)

Taking β = 1 corresponds to using purely the history-based transition probabilities, while
β = 0 will use only distance-based probabilities, with values in between resulting in a
combination of the two probabilities.

Note that this approach places no conditions on how the history-based transition proba-
bility matrix P̂ = [p̂i j] is computed, and hence is compatible with Laplace smoothing and
weighing during the construction of P̂.

4 Experiments

We evaluate the performance of our approach using two sets of data. We first present our
numerical results on data consisting of synthetic networks generated from benchmark CVRP
instances of VRPLIB. This is followed by a case study where we apply our proposed algo-
rithms on actual company data.

The numerical experimentswere performedusingPython 3.7.4 and theCPLEX12.9 solver
with the default setting, on a Lenovo ThinkPad X1 Carbon with an Intel Core i7 processor
running at 1.8GHz with 16GB RAM.

In our experiments, each VRP is solved exactly using CPLEX and the MIP formulation in
(10). We use an exact formulation in order to isolate the sources of errors during the training
process. By solving each VRP to optimality, we are able to isolate the errors coming from the
learned cost vectors from those that come from computing a heuristic (sub-optimal) solution.

4.1 Experiments on synthetic data

Generation of random instances

As described in Chen et al. [13], synthetic networks with 5, 10, 15, 30 and 50 vertices are
randomly generated. Instances of 5, 10 and 15 vertices are generated from a single instance
of VRPLIB containing 20 vertices; instances of 30 and 50 are from a VRPLIB instance with
75 vertices. We use the smaller instances to directly compare our approaches with the inverse
optimization approach in Chen et al. [13], and the larger ones to test the scalability of our
approaches on synthetic data.

The number of instances generated for each network size is 1000, except for |N | = 5
where we generate 2000 instances. Each set of instances is split into a training set T and a
test set T ′, as shown in Tables 2 and 3.

The expert solution for each instance is obtained by optimizingwith respect to a preference
cost matrix D′ = [d ′

i j], which represents the preferences of the expert. From the absolute

123

Constraints (2023) 28:363–396 377

Ta
bl
e
2

M
ar
ko
v
m
od
el
s
(U

N
IF
,S

IM
I)
ag
ai
ns
tt
he

in
ve
rs
e
op
tim

iz
at
io
n
ap
pr
oa
ch

In
ve
rs
e
op
tim

iz
at
io
n

M
ar
ko
vi
an

(U
N
IF
)

M
ar
ko
v
(S
IM

I)
|N

|
T

T
′

R
un

tim
e

E
di
td

is
t

So
le
rr
or

R
un

tim
e

E
di
td

is
t

So
le
rr
or

R
un

tim
e

E
di
td

is
t

So
le
rr
or

(s
)

θ
e 2
(%

)
(s
)

θ
e 2
(%

)
(s
)

θ
e 2
(%

)

5
10

0
10

0
38

1.
22

7.
16

1.
89

2.
14

7.
24

1.
72

2.
04

7.
57

5
50

0
10

0
22

5.
6

0.
76

5.
01

1.
93

1.
67

5.
08

1.
95

1.
54

4.
76

5
10

00
10

0
60

6.
1

0.
62

4.
46

1.
81

1.
46

3.
99

1.
95

1.
41

3.
56

5
15

00
10

0
11

44
.1

0.
64

4.
36

2.
13

1.
43

4.
04

2.
11

1.
38

3.
63

5
19

00
10

0
18

65
.9

0.
58

4.
29

2.
11

1.
46

4.
15

1.
88

1.
41

3.
87

10
10

10
0

15
.4

1.
77

7.
42

3.
57

5.
62

8.
70

3.
31

5.
42

9.
04

10
40

10
0

54
.2

2.
06

4.
8

3.
59

4.
80

6.
08

3.
55

4.
97

6.
62

10
10

0
10

0
16

5.
1

1.
9

3.
81

3.
46

4.
97

5.
32

3.
57

4.
76

5.
23

10
50

0
10

0
19

92
.7

1.
14

3.
08

3.
58

3.
44

2.
53

3.
48

3.
95

3.
13

10
90

0
10

0
58

87
.6

1.
01

2.
75

3.
66

3.
21

2.
27

3.
59

3.
41

2.
25

15
10

10
0

29
.4

4.
51

5.
85

6.
47

5.
80

9.
64

6.
62

5.
82

9.
21

15
40

10
0

15
5.
9

5.
09

10
.9
6

6.
23

5.
66

8.
07

6.
06

5.
71

8.
08

15
10

0
10

0
59

2.
8

5.
37

13
.3
6

6.
73

5.
22

7.
95

6.
33

5.
22

8.
02

15
50

0
10

0
83

57
.7

8.
04

25
6.
01

5.
21

6.
90

5.
79

5.
21

6.
90

15
90

0
10

0
24

79
1.
4

7.
32

25
.0
3

5.
89

5.
22

7.
08

5.
86

5.
22

7.
06

In
ea
ch

ro
w
,v
al
ue
s
in

bo
ld

re
pr
es
en
tt
he

be
st
-p
er
fo
rm

in
g
re
su
lts

fo
r
th
e
re
sp
ec
tiv

e
ne
tw
or
k
si
ze

|N
|

123

378 Constraints (2023) 28:363–396

Table 3 Markov models (UNIF, SIMI) on larger instances

Markovian (UNIF) Markov (SIMI)
|N | T T ′ Runtime Edit dist Sol error Runtime Edit dist Sol error

(s) θ e2(%) (s) θ e2(%)

30 10 100 218 15.96 22.47 220 15.79 21.52

30 40 100 206 15.51 18.52 274 15.77 20.13

30 100 100 125 14.53 17.55 130 15.09 19.10

30 500 100 113 12.77 12.85 113 13.06 14.47

30 900 100 120 13.21 13.37 104 13.29 15.54

50 10 100 2181 34.07 26.90 2139 34.18 25.08

50 40 100 2150 31.76 24.73 2074 31.82 25.63

50 100 100 2627 30.96 22.19 2667 31.69 23.08

50 500 100 3034 29.70 22.35 3015 29.36 21.81

50 900 100 4561 29.86 20.95 2915 29.62 20.53

In each row, values in bold represent the best-performing results for the respective network size |N |

distance matrix D = [di j] consisting of the pairwise distances of all available nodes, D′ was
derived as follows: i) A matrix of epsilons E = [εi j] was first created, where each εi j is a
random real number from the uniform distributionU (0.8, 1.2); ii) Then D′ = D
E, where

 represents the Hadamard (element-wise) product of two matrices.

For |N | = 5 and 10, a single vehicle is used during optimization; two vehicles are used
for |N | = 15, and three vehicles for |N | = 30 and 50. For each network size, the same 100
instances are used to test the model performance.

Evaluation metrics

In order to allow a direct comparison with the results in Chen et al. [13], we use exactly the
same metrics used in the paper, namely:

i) Average edit distance (θ). The edit distance d̄ between two routings is based on the
Levenshtein distance, as described in Sörensen [36]. It is defined as the minimal number
of edit operations (substitutions, insertions, deletions) required to transform one routing
into the other. The average edit distance θ between our solutions xt

′
on the test instances

and the expert’s solutions x∗t ′ , t ′ = 1, . . . , T ′, is computed as

θ =
∑T ′

t ′=1 d̄ (xt
′
, x∗t ′)

T ′ .

ii) Average solution error (e2). Solution error measures the suboptimality of our solutions
xt

′
when compared to the expert’s solutions x∗t ′ . The average is calculated as

e2 = 1

T ′
T ′∑

t ′=1

D′ · xt ′ − D′ · x∗t ′

D′ · x∗t ′ .

Results on synthetic data

We compare our Markovian approach with the uniform (UNIF) and similarity-based (SIMI)
weighing schemes against the inverse optimization approach. UNIF and SIMI are the logical

123

Constraints (2023) 28:363–396 379

choices in this experiment, as the randomly generated instances do not have a temporal
structure. In contrast, time-based (TIME) and the exponential (EXP) weighing schemes
require a chronological order of the instances representing the evolution of the decision-
making process. This experiment is shown in Table 2. Results show that the Markovian
approaches are faster in terms of computational time, with the difference becoming more
dramatic as the size of the training set increases. While the routes obtained through inverse
optimization have slightly lower edit distances, this advantage diminishes in larger instances
(N = 15). As for solution error, we also observe a dominance of the Markovian approaches
when the size of the training set increases. We remark that our Markovian approach is
generally able to learn in larger instances, increasing the applicability of the learning in
larger, more realistic data sets.

We also applied our SIMI and UNIF Markovian approaches on larger synthetic instances
to examine their scalability. The results of this experiment, summarized in Table 3, reveal
no clear dominance between the two weighing schemes. It is worth noting that learning
preferences within a VRP structure inherits the inherent difficulties of solving the NP-hard
VRP problem. Nevertheless, despite this challenge, our approach demonstrates its capability
to learnwith instances of 50 nodes and over a training set of 900 instances, requiring five times
less computational time compared to the inverse optimization approach on instances with
only 15 nodes (as shown in the last line of Table 2). These findings highlight the scalability
of our approach and the potential of our methodology to address larger-scale vehicle routing
problems.

4.2 Case study: results on actual company data

Description of the data

The historical data used in these experiments consist of daily routings collected within a span
of nine months. The routings were generated and modified by the route planners to align with
their local knowledge and preferences. As these are the actual routings used by the company
in their operations, it is possible that the drivers also made adjustments to the routes. Each
data is a numbered instance and the entire data is ordered by time.

Data instances are grouped by day-of-week including Saturday and Sunday. This grouping
mimics the operational characteristic of the company. The entire data set is composed of 201
instances, equivalent to an average of 29 instances per weekday. Capacity demand estimates
for each stop were provided by the company. In all case study experiments, capacity demands
were taken into consideration. (See Appendix B for an experiment that examines how our
approach performs without the capacity demands.)

Data visualization

Figure 1 shows the number of stops served per weekday during the entire experimental time
period. A concept drift is clearly discernible starting Week 53, where a decrease in stop set
size occurs. An average of 9 vehicles servicing 35 stops are used per instance in the data
before drift, and 6 vehicles (25 stops) for the 73 instances after drift. This observation has
prompted us to make explicit whenever we are using all the data from the entire period, or
only data from the period before the drift.

The number of times each of the customer stops has appeared in the historical data is shown
in Fig. 2, which exhibits a mix of regular and ad hoc (occasional) stops. At the extremes,

123

380 Constraints (2023) 28:363–396

Fig. 1 No. of stops by weekday (WD)

14 out of the 73 unique stops (19.2%) have been serviced more than 195 (out of 201) times,
while 30 (41.1%) have appeared in only ten or less instances.

Evaluation methodology

In a traditional machine learning setup, the dataset is split into a training set and a test set.
The training set is used for training, and the test set for evaluation. This is called batch
evaluation, as all test instances are evaluated in one batch. The best resulting model is then
deployed. However, our data has a temporal aspect to it, namely the routing is performed
everyday. Hence, each day one additional training instance becomes available, allowing us

Fig. 2 Frequency of stops across data

123

Constraints (2023) 28:363–396 381

Table 4 Initial training and test
set sizes after 75% − 25% split

Before drift Entire data
WD Train Test Train Test

1 14 5 23 7

2 12 5 21 7

3 11 5 19 7

4 13 5 22 7

5 14 5 22 7

6 14 5 22 7

7 15 5 23 7

Total 93 35 152 49

to incrementally grow the data and learn from it. Indeed, human planners also learn from
prior experience and expand their knowledge day by day.

As this is the most sensible way in which such a system would be used, the system has to
be evaluated in this way, i.e., by incremental evaluation (See Ade and Deshmukh [1] for more
details). The incremental evaluation procedure is depicted in Algorithm 2 and the breakdown
of the entire data set after the initial train-test split is shown in Table 4.

Algorithm 2 Training and testing with an incrementally increasing training set.
Input: A dataset H = {(V t ,mt , zt , xt)} with timestamps t as in Algorithm 1.
1. Start from an initial η training instances, e.g., η = � 0.75 |H| � for a 75% − 25% initial split.
2. For σ = η + 1, . . . , |H|−1 do:

2.1. Build the probability transition matrix P̂σ onHσ = {(V t ,mt , zt , xt)}t<σ using Algorithm 1.
2.2. Add to P̂σ all stops in V σ that are not in Hσ , with uniform probability.
2.3. Solve CVRP (10) using P̂σ as in Section 3.2.
2.4. Evaluate the CVRP solution against xσ .

On top of the evaluation measures introduced in the previous subsection, when making a
comparison of the prediction accuracy of the proposed schemes, we evaluate the performance
using two evaluation measures based on two properties of a VRP solution, namely the group-
ing of stops into routes (Route Difference) and the resulting chosen arcs (Arc Difference).
Route Difference (RD) indicates the percentage of stops that were incorrectly assigned to a
different route. Intuitively, RDmay be interpreted as an estimate of howmanymoves between
routes are necessary when modifying the predicted solution to match the actual grouping of
stops into routes. To compute route difference, a pairwise comparison of the routes contained
in the predicted and test solution is made. The pair of routes with the smallest difference in
stops is greedily selected without replacement. Incorrectly assigned stops are counted and
the total number is taken as RD. The percentage is taken by dividing RD by the total number
of stops in the whole routing.

Arc Difference (AD) measures the percentage of arcs traveled in the actual solution but not
in the predicted solution. AD is calculated by taking the set difference of the arc sets of
the test and predicted solutions, then dividing the value by the total number of arcs in the
routing. Correspondingly, AD gives an estimate of the total number of modifications needed
to correct the predicted solution.

123

382 Constraints (2023) 28:363–396

Fig. 3 First order (1) versus second order (2) model (data from entire period)

Experimental setup

The Laplace smoothing parameter (λ), convex combination parameter (β) and exponential
smoothing parameter (α) take default values λ = 1, β = 1, and α = 0.7. (See Appendix C
for experiments on the parameter sensitivity of λ and α.)

Following the weighing scheme overview in Table 1, we denote uniform weighing
by UNIF, TIME for time-based, EXP for exponential time-based weighing and SIMI for
similarity-based weights. TIME2 and SIMI2 indicate squared weights. Furthermore, when-
ever necessary, we use superscripts (1) and (2) to distinguish when a weighing scheme is
applied using the first or the second order model, respectively. For instance, UNIF1 indicates
uniform weighing using the first order model.

4.2.1 First order versus second order model

In this experiment, we tested the performance of our models on a subset, composed of three
weekdays, of all data from the entire period using three schemes (UNIF, EXP, SIMI2)—one
from each type of prior: uniform, time-based and similarity-based. From the results shown
in (Fig. 3), we see that the second order model consistently produced better results in terms
of route difference. However, this is not the case for arc difference, where aside from there
being almost no change in prediction accuracy, the variance also increased. We assert that
more data points are necessary in order to better evaluate the second order model.

Looking at the computation times (Table 5), we see a considerable disparity between the
twomodels.While schemes using the first order formulation result to subsecond computation
times, using the fastest scheme in the second order model (EXP2) takes more than 2000
seconds for each test instance to be solved to optimality. We can hence remark that the slight

Table 5 Average runtimes for the different weighing schemes

Weighing scheme UNIF1 UNIF2 EXP1 EXP2 SIMI21 SIMI22

Avg Runtime (s) 0.1016 4355.75 0.1455 2055.33 0.0922 9101.41

123

Constraints (2023) 28:363–396 383

Fig. 4 Route and arc difference (period before drift)

improvement in route difference is, for practical purposes, reduced by the substantially longer
running time of the second order model. Subsequently, we observe that while a higher-order
model may offer a closer representation, it comes with increased computational complexity
and data requirements without providing significant empirical gains, compared to the first-
order model. Considering the substantial computational burden and the comparable solution
quality, we believe that the first-order model is more practical for real-world applications.

For the succeeding experiments, we therefore focus our attention on further investigating
the effects of the first order formulation.

4.2.2 Evaluation of weighing schemes in the first order model

In the next two experiments (Figs. 4 and 5), we do a wider comparison by investigating the
performance of all our proposed weighing schemes (see Table 1)—UNIF, TIME, SIMI, and
EXP, and TIME2 and SIMI2—in the first order model.

Figure 4 is on data before the drift (up to week 53 in Fig. 1). It shows that all the proposed
schemes produced better estimates than DIST. There appears to be no significant difference
in the results in terms of route difference. For arc difference, however, using time-based
weighing (TIME, TIME2, EXP) considerably improved the solutions given byUNIF. Among
all schemes, EXP gave the most accurate predictions. Hence, it can be deduced that more
recent routings are more relevant when making choices in this case.

Fig. 5 Route and arc difference (entire period)

123

384 Constraints (2023) 28:363–396

Results on data from the entire period (Fig. 5) exhibit a slightly different behavior. As
before, all the schemes outperformed DIST. Notably in terms of arc difference, both the
time-based and similarity-based schemes significantly outperformed UNIF. Also, in most
cases, the schemes with the squared weights (TIME2, SIMI2) performed better than their
counterparts (TIME, SIMI). As before, EXP gave the most accurate predictions among all
schemes.

4.2.3 How the weighing schemes handle concept drift

The two succeeding experimentswere conducted to observe the performances of the proposed
schemesduring a concept drift.Ourmotivation is thatwewant to determine how the prediction
quality of each scheme evolves when there is a sudden change in data structure.

We consider two scenarios. The first case is when there is an abrupt drop in the number
of stops. Observe that this is the case immediately after week 53 in Fig. 1. For this scenario,
we trim our data set such that our 13 test instances, i.e., instances in the tail end of the data
set, consist of 3 instances before the drift and 10 instances after the drift. As before, the
probability matrix is trained on all data older than the ones contained in the test set. We plot
the prediction accuracy of each scheme on each of the test instances.

The results of the first scenario are shown in Fig. 6, where instance 0 denotes the first
instance after the drift. Naturally, in both route and arc difference, we observe a sharp rise in
error percentage at instance 0. Especiallywith route difference, the error remained high for all
the schemes (except EXP) until about instance 2 or 3, after which we see some improvement
particularly for TIME2 and SIMI2. EXP, on the other hand, readjusted immediately after
instance 0 and clearly outperformed the other schemes in terms of prediction accuracy and
its ability to adjust to changes in data structure.

For the second scenario, we consider the case where there is a sudden rise in the number
of stops. In order to use the same company data that we have, we simulate this case by
reversing the time stamps of all the data instances. With the data in reverse order, we are able
to simulate a drift where there is an increase in the number of stops, e.g., new stops that have
not been seen before. As with the first case, we trim the data and select the 13 test instances
after reordering the data. Compared to the first case, here all the schemes seemed to adjust
more rapidly (Fig. 7) after instance 0. The increase in route and arc difference at instance 0
is unsurprisingly greater than in the previous scenario, as the schemes adjust with the new
stops that were not seen before.

Fig. 6 Route and arc difference during concept drift (drop in number of stops)

123

Constraints (2023) 28:363–396 385

Fig. 7 Route and arc difference during concept drift (rise in number of stops)

The above experiments show that generally, all schemesmanage to stabilize after the initial
rise in error due to structural change. In both scenarios, TIME2 and SIMI2 restabilize faster
than their counterparts, TIME and SIMI. Among all the schemes, UNIF clearly performed
the worst, while EXP was the fastest to adjust.

4.2.4 Addition of distance-based probabilities

Up to this point, we have investigated the performance of our model using transition matrices
made of only probabilities learned from the historical solutions. We expect, however, to
gain further improvement when the learned transition probability matrix is combined with a
distance-based probability matrix, the construction of which is described in Section 3.5. For
the next experiment, we investigate how the final solution is affected by the different ways
of mixing, i.e., varying values of the β parameter in (27).

Figure 8 shows the result for different β values, using EXP with the default value on data
from the entire period. When combined with the learned probability matrix, we see that even
with small values of β, we already get better results than using distances alone, especially in
terms of arc difference.

While the boxplots alone seem to indicate that larger β values lead to small but consistent
improvements in RD and AD, we must warn that the arc and route differences with respect to
the actual solution tell only one side of the story. In the accompanying table below the figures
(Table 6), we show the average RD/AD as well as the average total distance driven. Looking

Fig. 8 Route and arc difference for varying values of β (entire period)

123

386 Constraints (2023) 28:363–396

Ta
bl
e
6

E
X
P
re
su
lts

fo
r
va
ry
in
g
va
lu
es

of
β
(e
nt
ir
e
pe
ri
od

)

β
pa
ra
m
et
er

(D
IS
T
)

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1
(A

ct
ua
lS

ol
)

R
D

43
.7
0

41
.2
2

34
.3
9

32
.1
7

32
.9
7

29
.8
0

28
.1
4

27
.7
8

22
.8
6

19
.6
4

19
.0
1

0

A
D

73
.8
1

48
.8
2

42
.7
7

40
.0
4

37
.7
8

36
.3
1

33
.4
3

30
.1
9

25
.5
7

21
.9
5

21
.5
2

0

A
vg

To
ta
lD

is
t(
km

)
39

5.
42

39
6.
67

40
0.
31

40
3.
79

40
3.
32

40
3.
80

40
6.
44

40
9.
50

41
4.
46

41
8.
87

42
7.
41

41
2.
13

A
vg

R
un

tim
e
(s
)

59
58

.6
6

22
3.
66

16
2.
60

10
2.
54

15
.4
7

2.
26

0.
73

0.
42

0.
22

0.
09

0.
11

-

A
vg

E
di
tD

is
t(

θ
)

24
.0
0

19
.6
0

16
.7
6

15
.9
6

15
.0
6

14
.0
0

12
.9
6

12
.5
3

10
.2
2

8.
92

8.
49

0

123

Constraints (2023) 28:363–396 387

closely at the kilometers, we see that while higher values of β generally lead to lower percent
differences, they also increase the number of kilometers and do so beyond the number of
kilometers of the actual solution. Using a β value of 0.8 shows that on average, this leads to
a good RD/AD accuracy as well as an average number of kilometers roughly equal to that of
the actual solutions. For solutions that optimize both the preferences and the total distance,
we hence recommend a rather large β value, such as β = 0.8, i.e., a mix of 80%-preference
and 20%-distance probabilities. Alternatively, we propose generating a set of diverse routes
using different β values. By providing this range of options, we let the domain expert choose
the route that best alignswith their priorities, whether their focus is onminimizing the number
of kilometers or optimizing their preferences. This approach allows for a more personalized
selection process, tailored to individual preferences and requirements.

4.2.5 Detailed example

A visual illustration of the way the routes are predicted by the transition matrix can be
observed in Figs. 9, 10, 11, 12, 13, 14. Note that these figures are not drawn to scale. The
main focus of the visualizations should be on understanding the sequence of stops and the
overall routing rather than the precise distances depicted. Figure 9 shows a map of 24 stops
to visit using three delivery vehicles. The depot is denoted by 0. Also shown in Fig. 9 is the
solution obtained by using the standard distance-based approach. The actual routing used by
the company is shown in Fig. 10. Notice that except for the slight similarity in the way the
stops are clustered into routes, the two routings appear to be almost completely different.

From the historical data of the same weekday as the actual solution, we construct a
transition probability matrix. The first order matrix learned with the simplest scheme (UNIF)
is visualized in Fig. 11, where darker arcs indicate higher probabilities. It can be observed
that the image shows a clear structure, with distinct connections, e.g., to the furthest stops,
but also a higher variability in the denser regions and near the depot. Figure 12 shows the first
order solution constructed with the probability matrix of Fig. 11. We can see that the solution

Fig. 9 Distance-based solution

123

388 Constraints (2023) 28:363–396

Fig. 10 Human-made solution

was able to capture key structural parts while making trade-offs elsewhere to come up with
a global solution, e.g., making a connection from stop 11 to 16. The actual human-made
solution, on the other hand, was made with a number of distinct choices which cannot be
easily predicted just by looking at the probability matrix map, e.g., the direct connections
from 0 to 17, and 23 to 24.

The solution obtained by adding distance-based probabilities to the first order model is
displayed in Fig. 13. It can be observed that the solution is able to keep the general structure
of the human-made solution, while also avoiding the longer connections (e.g., 11 to 16, and
15 to 22) made by the purely preference-based first order model.

Figure 14 shows the solution when optimising with the second order model, which
improved the route difference of the first order solution (RD in Table 7). Also from the

Fig. 11 Learned first order
probabilities

123

Constraints (2023) 28:363–396 389

Fig. 12 First order solution

detailed table of results, we can see that in this particular example, the first order with β

model was able to most closely capture the general structure of the human-made solution.
Obviously, this is not always the case (see Fig. 8 in Section 4.2.4). Nevertheless, looking at
the total distances displayed in Table 7, here we observe that adding distance-based prob-
abilities not only preserved the structure but also offered a solution with fewer kilometers.
Hence, it does not merely mimic the human planners but is also able to take preferences into
account while still optimizing the total distance.

Fig. 13 First order solution with
β = 0.8

123

390 Constraints (2023) 28:363–396

Fig. 14 Second order solution

5 Concluding remarks

One of the crucial first steps in solving vehicle routing problems is explicitly formulating the
problem objectives and constraints. Oftentimes in practice, the optimized routing takes into
account not only time and distance-related factors, but also a multitude of other concerns,
which remain a tacit knowledge of the route planners. Specifying each sub-objective and
constraint may be an intractable task. Moreover, as we have observed in practice, computed
solutions seldom fully satisfy the wishes of the route planners and all involved stakeholders.

This paper studied the potential of learning the preferences of the route planners from
historical solutions in solving VRP. Specifically, we presented an approach to solving the
VRP which does not require a full explicit problem characterization. Inspired by existing
research on exploiting Markov models to predict individual route choices, we developed
an approach that learns a probabilistic preference model based on historical solutions. This
probabilistic model can subsequently be optimized to obtain the most likely routing for an
entire fleet. We have shown how this approach is capable of learning implicit preferences
from real data, resulting in more accurate solutions than using distances alone. The algorithm
performs well even without capacity demands, confirming its ability to learn patterns in the
underlying solution structure.

Table 7 Detailed results for example routing

DIST First order First order Second order Actual
(β = 0.8) (Human-made)

RD 36.00 32.00 28.00 28.00 0

AD 81.48 70.37 25.93 72.63 0

Total Dist (km) 337.12 352.71 346.02 359.17 353.32

Runtime (s) 9938.91 0.2642 0.2580 21606.17 -

123

Constraints (2023) 28:363–396 391

Ourwork extends beyond a first orderMarkovmodel andwe have provided amore general
formalization, which includes a second order Markov model, for learning and optimizing
preferences. We have seen that the second order model improves the accuracy in terms route
difference. This improvement, however, does not translate to arc difference. Furthermore,
the second order model is expensive in terms of computational burden. Here, we assert that
a richer database is necessary to better evaluate the performance of higher order models.

We also presented an approach which combines distance-based and preference-based
probabilities. This approach has the advantage of being robust to changing customer sets
and computationally fast due to the sparsity of the resulting cost matrix. By mixing the two
probabilities, we obtained more robust results without sacrificing computational times. Other
objectives may also be combined with our approach, as user and expert preferences can come
in various forms. For example, route planners may have preferences over the order in which
stops are visited. Customers may prefer to be serviced at a particular time of day. Meanwhile,
drivers may have preferences of a more “global” scope, such as shorter working hours or
equally distributed travel distances among drivers. We remark that the focus of our proposed
Markovian approach is more towards learning “local” preferences, i.e., on the sequencing
of stops. We argue, however, that the approach can be readily combined with other sub-
objectives and constraints to deal with the global preferences. For example, a parameter can
be added to the model to measure fairness among drivers. Fairness can be measured in terms
of travel distance or time; the weight of the parameter may be learned from the historical
solutions or adjusted to find a compromise between, e.g., preferences, the overall route length,
and balancing of the routes.

Results on real data have been encouraging. Validation on other real-life data, however,
should be considered for generalization, as other data may have more (or less) structural
assumptions. Our proposed first order approach could be plugged into existing VRP soft-
ware today, but as with all predictive techniques there should be human oversight to avoid
unwanted bias. It is important to note that, although our approach effectively incorporates
the standard hard constraints of the CVRP, there may be additional domain-specific hard
constraints that our proposed model cannot explicitly learn. Future research should focus
on addressing these constraints to further enhance the applicability and effectiveness of the
proposed methodology. Furthermore, exploring advanced techniques and alternative mod-
eling approaches will be crucial in order to reduce the observed route and arc differences
between routes during evaluation, as well as improve the overall performance of the proposed
methodology. This will allow for a more comprehensive and adaptable solution to real-world
vehicle routing problems.

Future work on the routing side will involve applications to richer VRP models, e.g.,
problems involving time windows, multiple deliveries, etc. On the learning side, the use of
richer predictive models such as neural networks or higher order Markov models can be
considered. Also, using separate learned or contextual models per vehicle or per driver is
worth investigating. Due to the hardness of solving theVRP exactly, the use ofmore advanced
exact methods and of heuristics necessary to deal with larger instances open an opportunity
for research in this topic. While our experimental results demonstrate the effectiveness of
our methods on synthetic and real data, further investigation is needed to evaluate their
performance on larger instances. This will require new techniques to isolate the errors coming
from the process of learning the cost vectors from those that result from the generation of
sub-optimal solutions. Finally, extending the technique so that the user can be actively queried
and learned from during construction is an interesting direction, e.g., to further reduce the
amount of user modifications needed on the predicted solutions.

123

392 Constraints (2023) 28:363–396

Appendix

A Distance-based probabilities

Here, we prove that minimizing the absolute distances in the standard CVRP is equivalent to
minimizing the distance-based probabilities of (26) under some mild conditions. We write
the solution using the distance-based probabilities as:

argmin
x

∑

(i, j)∈A

d̂i j xi j = argmin
x

∑

(i, j)∈A

− log
(e−di j

∑
k e

−dik

)
xi j = argmin

x

∑

(i, j)∈A

−
(
log e−di j − log

∑

k

e−dik

)
xi j

(28)

=argmin
x

∑

(i, j)∈A

di j xi j +
∑

i∈V

∑

j :(i, j)∈A

log

(∑

k

e−dik

)
xi j

=argmin
x

∑

(i, j)∈A

di j xi j +
∑

i∈V \{0}
log

(∑

k

e−dik

) ∑

j :(i, j)∈A

xi j + log

(∑

k

e−d0k

) ∑

j :(0, j)∈A

x0 j .

The first term in the final expression corresponds to the classical VRPwhere the total distance
is minimized. Given that

∑
j :(i, j)∈A xi j = 1 (2), the second term is always a constant. Hence,

it does not play any role in the optimization above. The third term depends on the number of
vehicles used in the routing x.

Whenever the optimal solution utilizes all the vehicles, we have
∑

j :(0, j)∈A x0 j = m
(where m is the number of vehicles). As the third term also becomes a constant, (28) simply
becomes argminx

∑
(i, j)∈A di j xi j , which is the same as the originalCVRPobjective function.

From the operational point of view, in the company setting in which this work is applied,
the number of available drivers each day is fixed. Allocating a route to each of the drivers
does not entail any additional cost. Therefore, we can assume that the equality constraint is
always active.

Otherwise, we can always scale up the softmax function with a parameter θ > 0 in order
to obtain g(θ) = ∑

k e
−θd0k = 1. In fact, g(·) is a continuous function such that g(0) = |V |

and limθ→+∞ g(θ) = 0. Hence, there exists a value θ∗ > 0 with the desired property.
Thus, scaling up by θ∗ makes the third term in (28) equal to 0, and the solution using the
distance-based probabilities is always equivalent to the CVRP solution.

Fig. 15 UNIF without and with capacity (Cap) constraints (data from entire period)

123

Constraints (2023) 28:363–396 393

Table 8 Average runtimes for
UNIF without and with capacity
constraints

Weighing scheme DIST(Cap) UNIF UNIF(Cap)

Avg Runtime (s) 5958.66 0.1135 0.9730

B UNIF without and with capacity constraints

This experiment is done to compare the prediction accuracy of UNIF without and with
the capacity (Cap) demand estimates (Fig. 15). The motivation is to investigate how UNIF
will perform even without the capacity constraints. When evaluating without the capacity
estimates, in order to keep the subtour elimination constraint (5), each qi is assigned a value
of 1 while using the number of stops as a fictive bound on the vehicle capacities, i.e., Q=n.
As a baseline, we include the solution (DIST) obtained by solving the standard distance-
based CVRP to near-optimality (5% optimality gap). The experiment is done on data from
the entire period.

Results show that DIST is consistently outperformed by UNIF. Moreover, in both route
and arc difference, we always notice some improvement when capacity estimates are taken
into account. Remarkably, when using the transition probability matrices, we see that we can
solve the VRP even without the capacity constraints and still get meaningful results. This
shows the ability of the method to learn the structure underlying the problem just from the
solutions.

As for the computation time (Table 8), DIST needed an average of almost 6000 seconds to
solve each instance despite the imposed near-optimality relaxation. In contrast, both UNIF
and UNIF(Cap) only took less than a second on average to obtain the optimal solutions, with
UNIF(Cap) taking slightly more time due to the additional capacity constraints. Additionally,
we observed that the learned probability matrices are much more sparse (containing more 0
or near-0 values) than the distance matrices.

C Parameter sensitivity

Laplace parameterλ To understand the effects of varying the Laplace parameter λ (Fig. 16),
we performed an experiment on data from the entire period. Capacity demands were taken
into account and EXP was selected on the basis of the results from the previous experiments.

Fig. 16 Route and arc difference for values of Laplace parameter λ (entire period)

123

394 Constraints (2023) 28:363–396

Fig. 17 Route and arc difference for varying values of EXP parameter (entire period)

It is interesting to note that EXP worked well even with no smoothing (λ = 0). It can also be
observed that EXP produced slightly improved results when smoothing is applied. In general,
however, we see that on our data, Laplace smoothing has very little effect.

EXP parameterα We examined the behavior of themodel for different values between 0 and
1 of the EXP parameter α. Instead of looking at the average percent differences as we did for
the preceding experiment on the Laplace parameter, here we opted to inspect more closely the
evolution of the prediction across different time periods. In Fig. 17, each point on the graph
represents the average route or arc difference when the model is tested on the test instances
from the corresponding time period 0, 1, . . . , or 6, with 0 being the oldest, and 6 the newest
time period. The results of the experiment show that as α increases, prediction accuracy also
increases. Accuracy appears to stabilize at α = 0.7, which incidentally coincides with our
choice of the parameter’s default value.

Funding Víctor Bucarey was funded by the ANID Fondecyt Iniciacion grant no 11220864. This research also
received partial funding from the FWO Flanders project grant FWO-S007318N (Data-driven logistics), the
European Research Council (ERC H2020, Grant agreement No. 101002802, CHAT-Opt), and the Institute for
the Encouragement of Scientific Research & Innovation of Brussels (Innoviris, 2021-RECONCILE).

Declarations

Competing interests The authors have no relevant financial or non-financial interests to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

Constraints (2023) 28:363–396 395

References

1. Ade, R. R., & Deshmukh, P. R. (2013). Methods for incremental learning: a survey. International Journal
of Data Mining & Knowledge Management Process, 3(4), 119.

2. Ait Haddadene, S. R., Labadie, N., & Prodhon, C. (2019). Bicriteria Vehicle Routing Problem with
Preferences and Timing Constraints in Home Health Care Services. Algorithms, 12(8), 152.

3. Ames, C. (1989). The Markov process as a compositional model: A survey and tutorial. Leonardo, 4,
175–187.

4. Ashbrook, D., & Starner, T. (2003). Using GPS to learn significant locations and predict movement across
multiple users. Personal and Ubiquitous Computing, 7(5), 275–286.

5. Beldiceanu, N., & Simonis, H. (2011). “A constraint seeker: Finding and ranking global constraints from
examples.” In: International conference on principles and practice of constraint programming. Springer,
pp. 12–26

6. Beldiceanu, N., & Simonis, H. (2012). “Amodel seeker: Extracting global constraint models from positive
examples.” In: International conference on principles and practice of constraint programming. Springer,
pp. 141–157

7. Bello, I., Pham, H., Le, Q. V., Norouzi, M., & Bengio, S. (2017). Neural combinatorial optimization with
reinforcement learning. https://openreview.net/forum?id=rJY3vK9eg

8. Bessiere, C., Koriche, F., Lazaar, N., & O’Sullivan, B. (2017). Constraint acquisition. Artificial Intelli-
gence, 244, 315–342.

9. Caceres-Cruz, J., Arias, P., Guimarans, D., Riera, D., & Juan, A. A. (2015). Rich vehicle routing problem:
Survey. ACM Computing Surveys (CSUR), 47(2), 32.

10. Canoy, R., & Guns, T. (2019). “Vehicle routing by learning from historical solutions.” In: International
conference on principles and practice of constraint programming. Springer, pp. 54–70

11. Ceikute,V.,& Jensen,C. S. (2013). “Routing service quality-local driver behavior versus routing services.”
In: 2013 IEEE 14th international conference on mobile data management. Vol. 1. IEEE, pp. 97–106

12. Chang, K.-P., Wei, L.-Y., Yeh, M.-Y., & Peng, W.-C. (2011). “Discovering personalized routes from
trajectories.” In: Proceedings of the 3rd ACM SIGSPATIAL international workshop on location-based
social networks, pp. 33–40

13. Chen, L., Chen, Y., & Langevin, A. (2021). An inverse optimization approach for a capacitated vehicle
routing problem. European Journal of Operational Research, 295(3), 1087–1098.

14. Chen, S. F., & Goodman, J. (1999). An empirical study of smoothing techniques for language modeling.
Computer Speech & Language, 13(4), 359–394.

15. Cox, D. R. (1961). Prediction by exponentially weighted moving averages and related methods. Journal
of the Royal Statistical Society: Series B (Methodological), 23(2), 414–422.

16. Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management Science, 6(1),
80–91.

17. Deguchi, Y., Kuroda, K., Shouji, M., & Kawabe, T. (2004). HEV charge/discharge control system based
on navigation information. SAE Technical Paper: Tech. rep.

18. Delling,D.,Goldberg,A.V.,Goldszmidt,M.,Krumm, J., Talwar,K.,&Werneck,R. F. (2015). “Navigation
made personal: Inferring driving preferences from gps traces.” In: Proceedings of the 23rd SIGSPATIAL
international conference on advances in geographic information Systems, pp. 1–9

19. Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., & Rousseau, L.-M. (2018). “Learning heuristics
for the tsp by policy gradient.” In: Integration of constraint programming, artificial intelligence, and
operations research: 15th international conference, CPAIOR 2018, Delft, The Netherlands, June 26–29,
2018, Proceedings 15. Springer, pp. 170–181

20. Dragone, P., Teso, S., & Passerini, A. (2018). Constructive preference elicitation. Frontiers in Robotics
and AI, 4, 71.

21. Drexl, M. (2012). Rich vehicle routing in theory and practice. Logistics Research, 5(1–2), 47–63.
22. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept drift

adaptation. ACM Computing Surveys (CSUR), 46(4), 44.
23. Guo, C., Yang, B., Hu, J., Jensen, C. S., & Chen, L. (2020). Context-aware, preference-based vehicle

routing. The VLDB Journal, 29, 1149–1170.
24. Harrison, P. J. (1967). Exponential smoothing and short-term sales forecasting. Management Science,

13(11), 821–842.
25. Irnich, S., Toth, P., & Vigo, D. (2014). “Chapter 1: The family of vehicle routing problems.” In: Vehicle

routing: problems, methods, and applications, second edition. SIAM, pp. 1–33
26. Johnson, W. E. (1932). Probability: The deductive and inductive problems. Mind, 41(164), 409–423.
27. Kool, W., Van Hoof, H., & Welling, M. (2019). “Attention, Learn to Solve Routing Problems!” In:

International conference on learning representations. https://openreview.net/forum?id=ByxBFsRqYm

123

https://openreview.net/forum?id=rJY3vK9eg
https://openreview.net/forum?id=ByxBFsRqYm

396 Constraints (2023) 28:363–396

28. Krumm, J. (2008). “A Markov Model for Driver Turn Prediction.” In: SAE 2008 world congress. Lloyd
L. Withrow Distinguished Speaker Award

29. Laporte, G. (2007). What you should know about the vehicle routing problem. Naval Research Logistics
(NRL), 54(8), 811–819.

30. Letchner, J., Krumm, J., & Horvitz, E. (2006). “Trip router with individualized preferences (trip): Incor-
porating personalization into route planning.” In: AAAI, pp. 1795–1800

31. McCormick, G. P. (1976). Computability of global solutions to factorable nonconvex programs: Part
I-Convex underestimating problems. Mathematical Programming, 10(1), 147–175.

32. Mor, A., & Speranza, M. G. (2020). “Vehicle routing problems over time: a survey.” In: 4OR, pp. 1–21
33. Nazari M, Oroojlooy A, Snyder L, & Takác M. (2018). “Reinforcement Learning for Solving the Vehicle

Routing Problem.” In: Advances in Neural Information Processing Systems. Ed. by Bengio, S., Wallach,
H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., & Garnett, R. Vol. 31. Curran Associates, Inc. https://
proceedings.neurips.cc/paper_files/paper/2018/file/9fb4651c05b2ed70fba5afe0b039a550-Paper.pdf

34. Picard-Cantin, É., Bouchard, M., Quimper, C.-G., & Sweeney, J. (2016). “Learning parameters for the
sequence constraint from solutions.” In: International conference on principles and practice of constraint
programming. Springer, pp. 405–420

35. Potvin, J.-Y.,Dufour,G.,&Rousseau, J.-M. (1993).Learningvehicle dispatchingwith linear programming
models. Computers & Operations Research, 20(4), 371–380.

36. Sörensen, K. (2007). Distance measures based on the edit distance for permutation-type representations.
Journal of Heuristics, 13(1), 35–47.

37. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2018). “Graph Atten-
tion Networks.” In: International conference on learning representations. https://openreview.net/forum?
id=rJXMpikCZ

38. Vinyals, O., Fortunato, M., & Jaitly, N. (2015). “Pointer Networks.” In: Advances in neural infor-
mation processing systems. Ed. by Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., & Gar-
nett, R. Vol. 28. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2015/file/
29921001f2f04bd3baee84a12e98098f-Paper.pdf

39. Wang, X., Ma, Y., Di, J., Murphey, Y. L., Qiu, S., Kristinsson, J., Meyer, J., Tseng, F., & Feldkamp, T.
(2015). Building efficient probability transition matrix using machine learning from big data for person-
alized route prediction. Procedia Computer Science, 53, 284–291.

40. Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Reinforcement Learning, 5–32.

41. Yang, B., Guo, C., Jensen, C. S., Kaul, M., & Shang, S. (2014). “Stochastic skyline route planning under
time-varying uncertainty.” In: 2014 IEEE 30th international conference on data engineering. IEEE, pp.
136–147

42. Yang, B., Guo, C., Yu, M., & Jensen, C. S. (2015). Toward personalized, context-aware routing. The
VLDB Journal, 24(2), 297–318.

43. Yang, S. B., & Yang, B. (2019). “PathRank: A Multi-Task Learning Framework to Rank Paths in Spatial
Networks.” arXiv preprint arXiv:1907.04028

44. Ye, N., Wang, Z.-Q., Malekian, R., Lin, Q., &Wang, R.-C. (2015). A method for driving route predictions
based on hidden Markov model. Mathematical Problems in Engineering, 2015

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://proceedings.neurips.cc/paper_files/paper/2018/file/9fb4651c05b2ed70fba5afe0b039a550-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/9fb4651c05b2ed70fba5afe0b039a550-Paper.pdf
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://proceedings.neurips.cc/paper_files/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
http://arxiv.org/abs/1907.04028

	Learn and route: learning implicit preferences for vehicle routing
	Abstract
	1 Introduction
	2 Related work
	3 Formalisation
	3.1 Routing, probabilities and Markov models
	3.2 Maximum likelihood routing
	Constraints
	Objective function

	3.3 Learning the transition probability matrix
	Probability estimation
	Laplace smoothing
	First-order estimation algorithm
	Second-order estimation algorithm

	3.4 Every day is different
	Time-based weighing
	Exponential smoothing
	Similarity-based weighing

	3.5 Mixing distances and preferences
	Combining transition probability matrices

	4 Experiments
	4.1 Experiments on synthetic data
	Generation of random instances
	Evaluation metrics
	Results on synthetic data

	4.2 Case study: results on actual company data
	Description of the data
	Data visualization
	Evaluation methodology
	Experimental setup
	4.2.1 First order versus second order model
	4.2.2 Evaluation of weighing schemes in the first order model
	4.2.3 How the weighing schemes handle concept drift
	4.2.4 Addition of distance-based probabilities
	4.2.5 Detailed example

	5 Concluding remarks
	Appendix
	A Distance-based probabilities
	B UNIF without and with capacity constraints
	C Parameter sensitivity

	References

