
What Counts as Software Process? Negotiating
the Boundary of Software Work Through Artifacts
and Conversation

Marisa Leavitt Cohn1, Susan Elliott Sim1 & Charlotte P. Lee2
1Department of Informatics, University of California, Irvine, CA 92697-3440, USA (Phone: +1-
949-8244047; Fax: +1-949-8244056; E-mail: mlcohn@ics.uci.edu; Phone: +1-949-8232373;
Fax: +1-949-8244056; E-mail: ses@ics.uci.edu); 2Department of Human Centered Design &
Engineering, University of Washington, 423 Sieg Hall(Box 352315(Seattle, WA 98195, USA
(Fax: +1-206-5438858; E-mail: cplee@u.washington.edu)

Abstract. In software development, there is an interplay between Software Process models and
Software Process enactments. The former tends to be abstract descriptions or plans. The latter tends
to be specific instantiations of some ideal procedure. In this paper, we examine the role of work
artifacts and conversations in negotiating between prescriptions from a model and the contingencies
that arise in an enactment. A qualitative field study at two Agile software development companies
was conducted to investigate the role of artifacts in the software development work and the
relationship between these artifacts and the Software Process. Documentation of software
requirements is a major concern among software developers and software researchers. Agile
software development denotes a different relationship to documentation, one that warrants
investigation. Empirical findings are presented which suggest a new understanding of the
relationship between artifacts and Software Process. The paper argues that Software Process is a
generative system, which participants called “The Conversation,” that emerges out of the interplay
between Software Process models and Software Process enactments.

Key words: agile software development, requirements documentation, work artifacts, software
process models and enactments, collaboration, negotiation

1. Introduction

This paper investigates the role of Software Process and artifacts in the
collaborative work of software development at two Agile software development
companies. To begin, we would like to share an anecdote from the field.

We are interviewing a product manager, Brett, at Fast Tools, a company that
develops Agile software tools for Agile software developers. The company is a
mecca for Agile that in addition to building software tools for Agile software
development holds daily training seminars and offers consulting services to
companies that are transitioning to Agile. We are asking him to describe to us

Computer Supported Cooperative Work (2009) 18:401–443 © Springer 2009
DOI 10.1007/s10606-009-9100-4

how software is built at Fast Tools, how they gather requirements, what a
typical week looks like. To answer this question, Brett pulls up a power point
presentation that they use for training which explains Agile processes. Then he
pulls over a free-standing white board and writes out a list in two columns.
Pointing to the left side he says “These are the sort of things that get
emphasized in traditional methodologies. They focus on process and tools that
define what's supposed to happen, making sure that we document everything
because if we don't document it we end up with lots of arguments about who
said what when, getting people to sign off on things because it saves a lot of
problems, and following a plan because we know if we leave the plan it’s not
going to work. These are the traditional emphases.” Pointing to the right
column, he continues “In the Agile world you tend to see more of a focus on
individuals and interactions, working software, and customer collaboration.”
(Emphasis added to illustrate the words in the list.)

Brett’s comment can easily be chalked up as “Agile speak” or as “Agile
evangelism” as some of our informants called it. His right column draws directly
from the “Agile manifesto” (see Section 5) and aligns with much of Agile
software development literature. As illustrated by Brett, adherents of Agile tend
to de-emphasize both Software Process and documentation. Yet, in our study of
two Agile software development companies we observed quite a lot that could be
called Software Process and documentation. During our data analysis, a particular
question began to grab our attention. What counts as Software Process? Why do
some kinds of artifacts count as software documentation and others not? What
role are Software Process and artifacts playing at our research sites?

This paper presents an empirical investigation of these questions. We wish to
consider how Software Process and artifacts, as well as the relationship, between
them are understood by our participants. We present findings from qualitative
fieldwork at two Agile software development companies. We focused our
empirical observations and interviews on the explicitation of the Software Process
and the role of artifacts. We observed artifacts in use and collected sample
artifacts for analysis. We found that artifacts were indeed integral to the
accomplishment of the software development work, that these artifacts included
those prescribed by Agile software development methods as well as additional
artifacts, and that artifacts supported an emergent, bounded, and negotiated
Software Process. We found that there was a Software Process that emerged
through the performance of the software development work, but which did not
encompass all of the work accomplished every day. Rather, the Software Process
was something that our informants participated in selectively, negotiating what is
inside and outside of the Software Process. And indeed the artifacts they used
were critical to the definition of and negotiation of the Software Process.

Software Process has been approached in different ways in research on
software development. Two main approaches can be contrasted as emphasizing,

402 Marisa L. Cohn et al.

on the one hand, Software Process as something which can be modeled, and on
the other hand, Software Process as enacted in a specific time and place. While
our research shares many of the assumptions of the latter perspective, our findings
reveal Software Process as something which requires a combination of both
perspectives to explicate. In our analysis we argue that the Software Process
models and enactments form a generative system. It is through the interplay
between Software Process models and enactments that the Software Process and
the software system are generated. Artifacts can influence and represent both the
Software Process models and Software Process enactments as well as the shifts
between these two modes of conceptualizing the Software Process.

Our findings reaffirm the assumptions of research on Software Process
enactments by illustrating that Software Process cannot be defined only in terms
of the work that goes into creating a working software system. While the
development of working software is still central, it is only part of the story.
Software process is itself something that the software development team
constructs and reproduces over time. Software process is, in other words, one
of many accomplishments in the ongoing work of software developers. The
Software Process is a collection of effort that goes into making a working system
of people and machines. This includes the mechanisms for sharing information
about the software and creating ideas about it, the discussions that take place
about the software, the use of the system and stories about this use.

Yet the Software Process is not the totality of all enactments of software
development work; it is not an all-encompassing description of work practice.
Our study results point to a conceptualization of Software Process not as an
analytic category with which to scope our investigation, but as a space
constructed by the software development team that is bounded and negotiated.
Our study participants referred at times to this process as “The Conversation.”
The Conversation is a bounded space that is collectively constructed through
collaboration and negotiation. The work of constructing this bounded space is
also what helps them to scope the software system. The Conversation
simultaneously constitutes what counts as the Software Process and the software
system. It is made up of the software code, the software-in-use, stories about code
and its use, conversations, and artifacts. But it is a subset of these things since
some activities and artifacts take place outside of The Conversation.

Take for example two instances of hypothetical conversations between
colleagues on a software development team. Lisa and Jordan are working on the
development of a calendaring software tool for their customer. On one afternoon
after completing their work for the current release, they head out for coffee. While
they are out they end up discussing the software and come up with some ideas
about how to implement a new feature for the system which they bring up at a
group meeting on Monday. On another occasion, Lisa bumps into Jordan in the
hallway and asks him for some feedback on a particular feature request he had
written. She asks Jordan to clarify some assumptions in the feature request, but

403What Counts as Software Process?

Jordan says he had not thought about those assumptions. They find a place to chat
and work out the assumptions together, so that Lisa can continue with her work.

We might distinguish these two conversations in a variety of ways: when and
where they take place, the fact that one is unprompted and the other an answer to
a question. But in our findings the difference that matters is that the first
conversation is outside of the Software Process and the latter is inside the
Software Process. In the first story, Lisa and Jordan come up with ideas which
must be “brought in” (in the terms of our informants) to the Conversation at a
later meeting at which other team members are present. In the second story, even
though the assumptions about the feature, which will impact how it is
implemented, are decided without feedback from the rest of the team, this one-
on-one meeting is considered already part of the Conversation.

How this distinction between what is inside and outside of the Software
Process as Conversation is what this paper is about. How does Software Process
come to be constituted as this bounded and negotiated collection of effort? And
how do artifacts get used to represent and influence work that takes place inside
of The Conversation, outside of The Conversation, and in negotiating the
boundary of the Software Process?

2. Background

2.1. Software process models

Software process models are representations of the “sequence of activities, objects,
transformations and events that embody strategies for accomplishing software
evolution” (Scacchi 2001). These models make explicit an order in which software
development ought to take place, the types of artifacts which should be used to
design software, and the stages of design such as requirements engineering,
architecture design, implementation, quality assurance, and maintenance. While
there is a variety of software models, some of which are based on descriptive
research, the majority tend to be prescriptive and method-oriented in that they can
be employed to support planning and operations of a software development team.
Software process, according to these models, is systematic and methodical
(Osterweil 1987; Truex et al. 2000) and “context-free” in that it is defined
independently of any particular organizational setting (Scacchi 2001).

Software process models prescribe a set of artifacts that will support software
development work. Particular software artifacts are often associated with each
stage of the Software Process and are refined until they are ready to pass onto the
next stage. The Waterfall model is a typical phased description of Software
Process and Scrum is a typical iterative and incremental process. These will be
described here, as the details are pertinent to our field study. It should be noted
that these are normative, high-level sketches, and that the actual implementation
in practice can vary greatly.

404 Marisa L. Cohn et al.

2.1.1. Waterfall

The Waterfall model is depicted in Figure 1, below. The phases progress in an
orderly sequence from Requirements, when the software to be constructed is
identified, through to Maintenance, when the software is deployed and evolved.
Transitions can be made only between adjacent phases and involve a hand off,
either of documents (between the first four phases) or a running software system
(between the last three phases). These documents can be large, consisting of
hundreds or thousands of pages, depending on the size of the project.

Normally, in Waterfall, there is at least one major document per phase, which
serves as the starting point and constraints for the subsequent phases. The
requirements phase produces a document describing the problem to be solved, the
needs of the stakeholders, and desirable properties of the software to be built. It is
often said that the goal is to describe “what” needs to be built, not “how” it
should be built. The size and complexity of the requirements depend on the size
and formality of the project. It can include prose descriptions, Use Cases,
diagrams, tables of relationships, decision trees for business rules, and even
sketches for the interface (van Vliet 2008).

In the specification phase, the information in the requirements document is
changed from a customer-centric description into a software developer-centric
description of what needs to be built. At this point, more technical notations such
as UML (Unified Modeling Language) diagrams, formal languages, and logic
may be introduced. In the next phase, a design document is produced to describe
the structure and high-level details of the software to be built. This document

Figure 1. Diagram of the waterfall software development process model.

405What Counts as Software Process?

represents a shift to making decisions about how to build the software and serves
as the starting point for the implementation work in the next phase.

Although documentation is not the primary product of the implementation
phase, software developers are expected to put comments in their source code,
make records of design rationale, and create developer notes for those who will
be working on the system later. In the testing phase, the main document is a test
plan, which can be as detailed as the initial requirements. During maintenance,
records are kept of the changes that are made to the system. Depending on the
organization and the criticality of the software system, changes may be tracked by
a work ticketing or defect database, or changes may need to be described in
detail, so they can be proposed and approved.

2.1.2. Scrum

Scrum is a Software Process that is part of the Agile “family” of Software Process
models and programming techniques. The distinguishing feature of Agile
methods is an emphasis on adapting to change by working in an incremental
and iterative fashion, that is, taking many small steps repeatedly in order to grow
a software system. The Agile approach to software development contrasts with
phased, sequential processes, as typified by the Waterfall model, which seeks to
minimize change through careful study and planning. The two best-known Agile
models are Extreme Programming (XP) (Beck 2000), which is more concerned
with how software ought to be written, and Scrum (Schwaber and Beedle 2001),
which is more concerned with how software projects ought to be managed.

The Scrum model is depicted in Figure 2, below. Rather than dividing the
project into phases corresponding to activities, time is divided into increments,
called “Sprints” or iterations, where the objective is to produce working software
that is another step closer to completion.

Figure 2. Diagram of the scrum software development process model.

406 Marisa L. Cohn et al.

Sprints can vary in length from 1 week to several weeks. In the figure, they are
represented as 30 days. Several sprints grouped together is called a “release,” and
can correspond to a time window (e.g. fiscal quarter) or a logical group of features
indicating a level of achievement. A sprint begins with a Sprint Planning meeting
in which items from the Product Backlog (called User Stories) are selected and
estimated for the upcoming time increment. This set of items becomes the Sprint
Backlog. Every 24 h, the team synchronizes their work in a “Daily Stand Up
Meeting,” which is a short meeting lasting no more than 15 min and is usually held
at the beginning of the workday. A sprint concludes with a sprint review meeting to
look back on the tactics that were supportive and detrimental to progress.

Iterative and incremental development models have been around for decades
(Larman and Basili 2003), but users tended to be isolated, and techniques were
invented locally or adopted piecemeal. The current move towards Agile is
marked by a large and growing community of users and advocates who are all
focused on promoting and applying Agile techniques. The flagship conference in
2007 was sold out with approximately 1,100 attendees, while the Agile 2008
Conference had over 1,600 attendees from around the world. Furthermore, there
is a significant cultural and social component to this generation of iterative and
incremental development methods, as illustrated by the Manifesto for Agile
Software Development (http://agilemanifesto.org/), which states:

We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on
the left more.

This declaration was created in 2001 and signed by seventeen luminaries from
the professional software development community. It is the single clearest
description of Agile, because this phenomenon is best understood as a movement
and includes not only programming techniques and project management methods,
but also values, culture, and worldview. For instance, XP is defined by four
values (communication, simplicity, feedback, and courage), fifteen principles
(e.g. Embracing change, Quality work, Travel light), and a set of twelve practices
(e.g., Collective Code Ownership, Pair Programming, Simple Design, and
Refactoring). Even the organization of the seminal book on XP by Beck (2000)
signals a departure from conventional software development. The first third of the

407What Counts as Software Process?

http://agilemanifesto.org/

book is devoted to sketching out a new approach to problematizing software
development, the second third of the book gives a strategic explanation of XP and
how it can work, and only the final third of the book provides guidance on how to
implement XP on a project. Robinson and Sharp (2003) observed that in order for
this set of twelve interdependent technical practices to function effectively, they
need to be supported by values and a community. However, these are not the only
technical practices that will give rise to an Agile project or community, leading
them to conclude that the twelve practices “both are and are not the most
significant thing.”

The basic unit of work in Scrum software development is called the User Story
(See Figure 3). According to Cohn, a User Story has three parts: a written
description of work to be done, conversations with the customer about the work,
and the test cases (Cohn 2004). A common format for the written description is
“As a <role>, I can <action>, so that <goal>.” They are partially a software
requirement and partially a to-do item. They should be small, so that they can fit
on a 3′′×5′′ index card (or sticky note) and can be completed within a single
sprint. In this formulation, User Stories include both static artifacts (the written
description), an interactive aspect (the conversations), and a computational aspect
(automated software tests). It is common to post index cards on a Scrum board for
everyone to see (See Figure 4). The board is typically divided into columns (e.g.
not started, in progress, tested, and accepted) and the placement of the index card
indicates the status of the task.

Because one of the Agile principles is to favor working software over
comprehensive documentation, lightweight record-keeping techniques are used,
including index cards, sticky notes, bulletin boards, and computer code. In this
context, it is understandable that adherents of both Agile and non-Agile
development processes might think that Agile uses minimal documentation.

There are five primary roles on the Scrum team: Scrum Master, Product
Owner, Team Members, Stakeholders, and Users (Schwaber and Beedle 2001).
These roles do not necessarily align with conventional job titles, for instance, a

Figure 3. Samples of user story cards from each of our field sites.

408 Marisa L. Cohn et al.

software developer could be a Scrum Master or Team Member. We will describe
each of the roles and give possible corresponding job titles.

Scrum Master. This person facilitates software development by removing
impediments and tracking the progress of the team. Typical tasks for the Scrum
Master are convening the Daily Stand Up Meeting, keeping a burn down chart to
record the tasks completed, maintaining the Product Backlog, preparing for sprint
planning meetings. Project managers are often Scrum Masters, but not always.
There may be a technical manager as well as a Scrum Master. A software
developer could be a Scrum Master, but a Scrum Master does not necessarily
have coding skills. Usually there is one Scrum Master per project, but with very
large projects, there can be a Scrum of Scrums with multiple levels of Scrum
Masters.

Figure 4. The Scrum board at one of our field sites.

409What Counts as Software Process?

Product Owner. This person represents business concerns and can be literally the
person paying for the project or a figurative surrogate for customers. The Product
Owner’s main responsibilities are writing User Stories and prioritizing the Product
Backlog. This role can be fulfilled by a senior manager, a product manager, someone
involved in sales and marketing, a business analyst, or a user experience designer.

Team Members. This group of people is engaged in the work of creating the working
software. Team members can include software developers, software testers, database
analysts, system administrators, technical writers, and multimedia artists. It is up to
the team to decide who is included, but membership is usually based on perceptions
of the “real work” on a project.

Stakeholders. Anyone with an interest in the software product is a stakeholder, but
in practice, stakeholders are limited to those with business interests, such as
customers and vendors. They tend to be involved only at release or sprint planning.

Users. A subset of the stakeholders are the Users of the software. Business
stakeholders often are not Users. This role is included to remind the team that
software should be built for someone to use. Individual users are usually not
participants in the process like the other roles, but are consulted regularly to
obtain feedback. This role can be fulfilled by someone who uses or will use the
software, or by a surrogate for them.

Software process, according to these models, is product-oriented and aimed at
delivering the software system. All of the activities and artifacts made explicit in
these models set the stage for implementation, making incremental progress towards
software code. The artifacts in each stage move a step closer to implementation. As
the development team moves from requirements documents to design documents to
system specifications, the technical language is refined such that the final step of
writing of software code can be made error-free. Ultimately, what Software Process
gets you is the software system. Whether in phased or iterative and incremental
development, the focus is on how artifacts are developed as outputs of a particular
stage or iteration of development and used as inputs for a subsequent phase/iteration
(See Figure 5). The software process provides the prescription for generating and
utilizing a set of artifacts as the means to produce software code.

2.2. Software process enactments

A different set of research on Software Process de-emphasizes Software Process
models and focuses instead on enactments—specific instantiations of Software
Process (Fuggetta 2000; Feiler and Humphrey 1993). This move has been
alternatively dubbed as a shift from prescriptive to descriptive (Dittrich 2002) and
methodical to amethodical (Truex et al. 2000). This work highlights that there is
more to the work of software development than can be represented in Software

410 Marisa L. Cohn et al.

Process models. The research is motivated by the complexity of software
development and focuses on process as something accomplished through situated
actions, local contingencies, work-arounds, exceptions and deviations from the
model. Based on empirical studies, this research claims that models are resources to
and accomplishments of the work of software development, and are “undeniably
social” and non-instrumental (Dittrich 2002; Fuggetta 2000). According to this view,
software process serves as a resource to ongoing software work, along with various
prescribed and ad hoc artifacts, and is an accomplishment of software work, rather
than strictly a means to produce software code (See Figure 6).

Our research shares this theoretical framing that Software Process is not
necessarily a prescription for software development work. Our study results align
with evidence from various studies. This research indicates that formal processes and
methods are chosen based on social, as well as technical, criteria and at least in part to
make the work “organizationally accountable” (Button and Sharrock 1992, 1994).
Methods and models “cannot be divorced from their practical use” (Button and
Sharrock 1994) and are at times “faked” (Parnas and Clements 1986). Adherence to
method is part of the accomplishment of software development and work is often

Figure 5. Software process models.

Figure 6. Software process enactments.

411What Counts as Software Process?

performed as if in accordance with Software Process models as a way to make the
work acceptable and accountable to others. This research demonstrates the
importance of organizational context and economic market factors (Fuggetta 2000),
organizational roles that bridge between the business and technical worlds of problem
and solution, and selective use of codified methods (Sim et al. 2008).

Research emphasizing Software Process enactments takes a broader view of
the importance of artifacts in software development work. Studies tend to include
treatment of all kinds of artifacts not accounted for in Software Process models
such as notes on scrap paper, whiteboard drawings, emails, and programming
environments. This research demonstrates that software developers must rely on
direct communication across technical boundaries in order to disambiguate speci-
fications or tease out faulty assumptions in documents (Bansler and Bødker 1993). It
is not enough to consider those artifacts that document only the “true” and “essential”
requirements nor is it simply a matter of improving the artifacts, or developing
processes which generate higher quality artifacts. Rather informal communication
and supplementary artifacts are needed to work out the meaning of prescribed
artifacts (Nørbjerg and Kraft 2002).

The outcome of Software Process from this perspective is not only software
but also the work itself, how it is organized, its sociality, culture, and values. The
interactions between people and the collaborative effort are described and
understood in their own terms. This perspective emphasizes the relationships
between people and the conditions of work, as well as the software system as
product. In a way, this research takes an all-inclusive perspective of Software
Process, within the limitations of the research design, considering all artifacts and
enactments which are relevant to the analyst’s scope. There is no technical
rationality that prescribes what counts as the outcome of the software work, rather
it is based on the descriptive aims of the researcher.

3. Software process as a generative system

We conducted a qualitative research study to understand the role of artifacts in the
work of Agile software development. We set out to understand:

& What is the Software Process at our field sites?
& What is the role of documentation in the Software Process?
& What is the relationship between the Software Process and artifacts?

During the data analysis a new question emerged: What counts as Software
Process and for whom? Or, in other words, who decides what counts as the
Software Process? Answering this question is not simply a matter of
understanding how and when the formalized Agile Software Process model gets
deployed or invoked. Instead, it is a matter of understanding what counts as the
Software Process in the day-to-day of software development work.

412 Marisa L. Cohn et al.

Our study takes as its starting point the knowledge that Software Process is an
accomplishment of software development work and can be discovered only
through careful empirical investigation of the context, conditions, and specific
enactments of software work. From an analytical standpoint we consider process
to be all the work that goes into the making of software. But in trying to
understand what Software Process means to our informants, we realized that it
was not inclusive of all the work that they perform. We were led to ask, what
counts as Software Process for them? Who decides what counts as Software
Process? The answer we found in the data is everyone, all the time.

Our analysis suggests that Software Process can be viewed as comprising both
models and enactments which work together to form a generative system (See
Figure 7). Software process as a generative system is made up of patterns of
action which people can recognize (models) as well as specific performances of
work (enactments). Models and enactments mutually constitute the Software
Process which is produced and reproduced through the interplay between the two.
Viewing the Software Process in this way means that we can consider the models
that we construct as analysts as well as the models that our informants construct
of the Software Process. In fact, models are always multiple, since models will
differ from one person to another, or from one moment to the next, depending on

Figure 7. Software process as a generative system.

413What Counts as Software Process?

the point of view. Enactments are also multiple in that even the most codified,
standardized, and regulated processes are open to fluctuation and change in
practice.

While models and enactments form a generative system, they require different
kinds of looking and thinking about the interactions, conversations, and artifacts
that make up the collection of effort of software work. There is a tension between
these two modes since it is difficult to hold both simultaneously. Any view of
software work can shift between these two modes. We can describe specific
enactments in specific times and places, or we can think about patterns of action
and create stories of typical actions.

Dittrich refers to this tension as an “understanding from within” and a “looking
from without” (2002). With this metaphor she draws attention to the balance
between the concerns of the researcher who understands from the outside and the
concerns of the practitioner who understands from the inside. In fact, we found
that our informants too can move between these two modes, understanding the
process through specific performances, and reflecting upon their own process by
viewing it from the outside. We found that our informants switched between these
two modes and that it was the switching between the two that helped to form the
boundary of their Software Process which in turn helped them to scope the
software system.

Artifacts are everywhere and of many different types. This richness of artifacts
in software work grabs our attention as analysts who are trained to think of
Software Process in an all-encompassing manner, to look for and consider
everything from scraps of paper, to emails, to software code. All of these artifacts
are crucial to our understanding as software researchers of how Software Process
is constituted, shaped, and negotiated. What was most interesting to us was that
certain artifacts were used in ways that our study participants considered outside
of the Software Process. Artifacts also cross the boundary between the outside
and the inside of the process, negotiating the boundary as they cross it. And
artifacts exist inside of the Software Process as well (See Figure 8, below).

Artifacts thus represent and influence both models and enactments (See
Figure 7). We found that our informants tended to switch their mode of reflecting
on artifacts as these artifacts moved from outside to inside the Software Process.
When artifacts are outside of the Software Process they are considered more in
terms of the ways that they represent and influence models of the Software
Process and software system. When artifacts are inside of the Software Process
they are considered more in terms of the ways that they represent and influence
enactments of the Software Process and software system.

The outcome of Software Process is the Software Process itself and the work it
comprises. The Software Process is generative in that it creates and recreates the
Software Process through the interplay between models and enactments. In a way
it ceases to make sense to consider the product of the Software Process or to think
of the Software Process in terms of its inputs and outputs. The Software Process

414 Marisa L. Cohn et al.

has an outside and an inside, but it is never really done unless the business
rationale which brings a team together dissolves. In our analysis of the data we
found a blurring of the Software Process and the software system. Rather than the
Software Process generating code as its output or product, the software code is an
artifact which represents and influences the current enactment of the Software
Process, that which is inside The Conversation. Code being written, code in the
build, code running “green” through a collection of tests, and code in use, are all
part of the Software Process.

4. Research method

In order to gain a detailed and contextually-situated understanding of the role of
Software Process and artifacts in software development work, we conducted a
week-long qualitative study at two software development companies in Colorado,
USA. We chose to study Agile software companies because they present a
particularly appropriate setting for the study of artifacts and Software Process.
The models of Agile and Waterfall Software Processes described above show that
they are organized in significantly different ways, particularly in their prescribed
relationships to documentation. According to the models, documents in Waterfall
are handed down from phase to phase and once their details are finalized, these
documents do not change. Research has shown that in practice, changes to an
upstream document can involve a great deal of re-work and effort to propagate
the modification into later phases (Boehm 1981). Clearly, in iterative and
incremental Software Process models, such as Agile, the approach to documen-
tation needs to be radically different. In Agile, planning and decisions are made as
the project progresses and documentation is always in flux. In view of this, it

Figure 8. Negotiating the boundary of the software process.

415What Counts as Software Process?

makes sense that many Agile and non-Agile adherents view Agile as lacking in
documentation altogether. We even found that many of our informants
differentiate different Software Processes by the kinds of documentation they
have1. Thus, we think it is particularly appropriate to investigate the relationship
of Software Process to documentation further, and in a setting which is organized
differently from more traditional settings.

Our research sites were two Agile software development companies. One
research site, Easy Retirement, is a software company that provides software to
companies so their employees can manage federally-regulated self-directed
retirement investment plans. It uses a software-as-service business model. It
was founded in 2000 and currently has 26 employees. A second research site,
Fast Tools, develops a multi-user Software Process management suite. Fast Tools
was founded in 2002. In 2007, it was the fastest growing company in the region.
Both companies have adopted Scrum, an iterative and incremental development
model, as their software development process model. We identified these sites
through an Agile development support community and chose these two in part
because of their significant differences. Easy Retirement is a relatively small
company that transitioned to Agile in 2005 by hiring an outside consultant for
Agile training. While they had fully adopted Agile, the staff liked the change to
Agile to varying degrees. Their motivation for adopting Agile was to excel more
in their field. Fast Tools, a very large company, was formed to support Agile
processes. Its founders are Agile adherents and its staff were well-versed in the
Agile rhetoric. For this reason the two companies reflect different motivations for
their Software Process and attitudes towards Agile.

We conducted interviews, collected artifacts, and observed work in progress
throughout the week, with particular attention to planning meetings during which
the team members utilize and create documentary artifacts for the development
process. We conducted a total of 15 interviews lasting 30–68 minutes with team
members. We chose our interviewees to represent a wide range of positions
within the Scrum teams including a company president, a system administrator, a
trainer, sales and marketing, software developers, “Product Owners,” and “Scrum
Masters.” We also followed up on recommendations from our informants about
particular individuals in the companies we should speak to. In the interviews, we
asked our study participants questions about how they gather requirements, what
happens in a typical day, and how they know what to build into the software
system next.

We observed meetings and work in progress at both companies. We sat in on
one sprint-planning meeting at Easy Retirement and a daily stand-up meeting at
both companies. At Easy Retirement we observed work in progress with ease, as
all of the developers were located in cubicles open to a main area by the scrum
board. The Scrum Master, Chief Operations Officer, and Compliance Officer were
also located in cubicles or offices facing the open area in front of the scrum board.
From this spot we could hear the conversations of the developers and observe

416 Marisa L. Cohn et al.

when they gathered for ad hoc meetings with other team members. We did not
observe programming directly, because we did not have a view of their terminals,
but we observed the interactions between developers and conversations about
programming tasks. At Fast Tools, the staff were in the midst of a quarterly
review meeting and were not working at their desks. While we could observe
only minimal work in progress, we did receive multiple tours of the office by
different staff. We conducted our observations from an open work station where
some team members gathered to go over customer data.

We collected samples of artifacts by taking photographs of artifacts in use, as
well as collecting older artifacts (user story cards) that were no longer in use. We
asked our interviewees to explain artifacts in their work environment and asked
them to describe the sample artifacts we had collected. At Easy Retirement we
collected sample user story cards and observed the story cards in use on the
scrum board. For example, we could see whenever a developer came to the scrum
board and moved a user story card or took it off the board. At Fast Tools, there
were user story cards everywhere, on the walls of every cubicle and office, and
even on walls in the hallways. We asked various staff members to explain these
sets of artifacts to us.

After completing data collection, we transcribed our field notes and audio
recordings of the interviews. The transcripts were analyzed using ‘focus coding’
(Lofland et al. 2005). Focus coding is a technique that allows pieces of
information in the transcript to be coded to highlight points of interest for our
study. Following transcription and coding, we cross-tabulated the codes between
files to categorize our findings, which are presented in the next section.

5. Research setting

This paper is concerned with Software Process models and enactments and the
role of documentation in Agile software development. We will present more in
depth findings about the relationship between Software Process and artifacts in
the next section but first we want to provide an overview of the Software Process
at our fieldsites and the kinds of documentation used. Some of the activities and
artifacts we observed aligned with the prescribed Agile Software Process
described in the previous section, and some did not. We will also describe a bit
about the attitudes that our informants had towards Software Process and
documentation. Many of our informants view Agile as light on documentation
and process. They see Agile as organized in stark contrast to Waterfall. They also
view the user story as Agile’s basic unit of work and describe it as made up of a
set of artifacts and conversations. These attitudes align with how Agile is
normatively portrayed.

Ryan, a software developer at Easy Retirement, worked there before their
switch to Agile. He was hesitant about the switch at first. His coworkers
suggested that we speak to him to hear a less favorable perspective on Agile,

417What Counts as Software Process?

but we found that he mostly spoke positively about the improvements in the
company since the switch. For him this had a lot do with the different role of
documentation.

In the old days we used to doWaterfall, where we spent like three months just
building documents. That was not fun. And nobody would get to try out a bit
of code for about three months. And then by the time your document was
done, your document was out of date, typically. It did not really serve its
purpose because when you started doing development it was like, you kind of
have this document that kind of sort of shows what you were shooting for. But
because things had changed since you designed that, you sort of end with
another approach anyways, where you build pieces, do it piece by piece. And
you were kind of wasting that time during all this repetition, and those
documents never get up to date. So they were not even useful once the project
was done, you know. They did not reflect reality any more. That was part of
the biggest improvement I saw in development with Agile over Waterfall.

As Ryan notes, documentation in Agile does not serve to “reflect reality”
because reality is constantly changing. We heard from many participants that
Agile allowed the company and the software to adapt quickly to change. We also
heard from many developers this valuing of coding as the most active and
engaged kind of work and that Agile allowed them to focus more on coding.

Alexis, at Fast Tools, was relatively new to the company and to Agile. She
began in a role of Usability Designer, interviewing customers about their
experience and is now transitioning into the Product Owner role, with support
from Brett. From her experience with customers, she explained that the switch to
Agile is often difficult because of how it changes the relationship to process and
documentation.

I think that the thing that is hardest, is that there is a real cultural shift away
from dependence on process and structure and documentation and more
towards collaborating. I think for big companies that is difficult because this
whole idea that a team can decide for themselves how best they should work
is foreign to them, because a lot of companies are very process-intensive.

Here we see the valuing of collaboration over structure, process, and
documentation. Alexis also emphasizes that this is a “cultural shift” revealing
that the change is more about what gets valued than how things are done. Agile is
not just a sequence of activities, but a mindset that, for example, teams can work
independently. These values expressed by Ryan and Alexis adhere strongly with
those in the Agile Software Process model described in the previous section.

The planning meetings reveal that there are different ways of achieving
adherence to the Agile model. For example, we observed various tactics to get
people promptly to the daily 15-min stand up meetings. At Fast Tools you pay a
dollar to a shared petty fund for every minute you are late to the meeting. At Easy

418 Marisa L. Cohn et al.

Retirement, the Scrum Master rings a triangle to gather people to the Scrum
Board. Other factors lead to improvisation with the Agile Software Process
model. Working with legacy code means working with code that was not
developed using Agile methods. At Easy Retirement, this was a huge problem.
They contrasted the new and old code, even giving them names and personas2.
Estimating tasks which dealt with the legacy code would require extra research
“into the code” and time to work out the user story.

Transitioning to Agile roles also revealed some interesting tensions since Agile
roles do not always map cleanly onto traditional roles. This means that switching
to Agile can require interesting translations of work roles. For example, at Easy
Retirement they tried out different people as Scrum Master and then settled on
Leanne who had formally been a product manager. And at Fast Tools Alexis and
Brett were both serving Product Owner, though Brett was from sales and Alexis
was a Usability Designer.

In switching to Agile, the team at Easy Retirement saw Agile as giving them a
kind of tabula rasa for the Software Process. Leanne said that they tried to create
“a blank canvas” of their process during the transition and asked the consultant
hired to give them training in Agile methods to “treat them like a lab” for
experimentation. Yet, we also saw people who found a middle ground between
the old and the new. This of course differed from person to person depending on
how much they liked Agile, or how much they liked working collaboratively.
According to Leanne, some people did not adjust to Agile and were let go. She
explained that some people really like working alone and that Agile requires
conversation. Even now Leanne plays the role of enforcing conversation. A
developer might come to her with a question about a feature and rather than
answer it for them as she would in the past, by going to the user (in-house) and
going back with an answer, she will tell them to go talk to the user directly.

As described in the Agile Software Process model, the user story is the basic
unit of work and is made up of a set of artifacts and conversations. We found this
to be true at the field sites as well both in what we observed and how people
describe the user story and how it worked. User stories are the primary way that
requirements were captured at our field sites. Our study participants described
and interacted with the user stories in ways that align with the Agile definitions of
user stories. In our observations and interviews we saw that the user story is not
just what is written on the user story card but is actually made up of a set of
artifacts: the user story card, the task card, test cases, and code; and
conversations: the conversation during which the user story card is written, the
conversations that disambiguate the card during implementation including those
with the author of the card or with the in-house user whose perspective it
inscribes, the conversations about its relevant tests, the conversations about the
system-in use, and the conversations about the code which it “touches.”

The user story cards were written during the planning meeting during which the
entire development team was present, including all software developers, the lead

419What Counts as Software Process?

engineers, chief operations officer, the Scrum Master, and representatives from the
sales, business, and marketing team. Different team members would take turns
writing user story cards and sometimes would hand off a story card for someone else
to finish writing. There was debate at times about what should be on the card, and
sometimes a half-written card would be scrapped and started again on a fresh card.

The user story cards include information which links to its author, the point of
view of the particular stakeholder, and the person who will take on its
implementation tasks. Participants were able to tell us about a user story card
from previous releases or projects, telling us who wrote it based on hand-writing,
the person who worked on it based on notes added to it later. In showing us stacks
of old user story cards, our study participants were able to reflect on the project in
different ways. They could note that the velocity for the project was high because
lots of cards were finished in each sprint, or that there were a lot of bugs based on
the prevalence of pink cards. They might recall who was on a project or some big
obstacles they encountered. But individual cards and what was written on them
were relatively meaningless. Without being connected to what “we're actually,
really working on, people forg[et] what that little card mean[s].” Looking at a
recent user story card prompted our study participants to describe the context in
which it was written and the conversations taking place around it. When a user
story card is written, there was often some debate about what it was and how it
should be implemented, but these details were not written on the card.

Greg, a software developer at Easy Retirement, explained that he relies on
conversations to fill in the details that are not on the user story cards. “You have
people that understand the larger picture too. So you can look at the task and go,
well so and so is working on this task at the same time or just before [me]. So you
can have some context there where you might be able to use some of what he
did.” Or as Leanne explains, “There are some stories that everybody understands,
but there is usually one or two stories that we will talk about in the sprint
planning and we just have a vague understanding. [For one] really complex
issue... we went around and around on that.” This history that builds up around a
user story is important. Greg laughs saying “I will say, well how did it work
before and what is the delta between how it worked before and what I need to
make it do now?”

This sense of “delta” as small increments of change and working “piece by
piece” are the aspects of the Agile process that our informants highlight as
advantageous. The user story exists as a kind of documentation that is already a
“piece by piece” formulation of work. The user story is just a tiny piece of
documentation existing in combination with the work that provides its context.
Thus, a piece of code work and a piece of documentation work are crafted together.

Observing meetings reveals just how much negotiation takes place. The user
story card plays a central role in this negotiation. At both Easy Retirement and
Fast Tools, the meetings we observed had strict turn-taking procedures. At Fast
Tools, everyone convened around a conference table for the daily stand-up

420 Marisa L. Cohn et al.

meeting (literally standing up around the table behind the conference chairs).
They waited for the head of company before beginning the meeting who then
identified someone to start first and then they proceeded around the table. At Easy
Retirement the marker used to write user stories was used to indicate whose turn
it was to speak. Our informants noted that it can be contentious with “each person
push[ing] for the work of his or her group.” We observed several instances of
disagreement about the user story card. Often this was a debate about what is part
of the user story or not. “That’s a different story,” was a common interjection.

6. Results

In order to understand the Software Process and the role of artifacts we asked our
study participants questions about how they gather requirements, what happens in
a typical day, and how they know what to build into the software system next.
For both software development teams, the user stories were central to the work of
building the software system. If we asked where they documented requirements,
the answer was twofold—the user stories are the main artifact used to document
requirements, however user stories do not really document requirements. To our
informants, documentation connotes a category into which user stories fit
uneasily. We followed up by asking them to explain what a user story is and
how it works. We also asked about other artifacts and observed artifacts in use.
Sections 6.1–6.3 below present results and analysis in three themes: Living and
Still Artifacts, Software Process as Conversation, and Artifacts Inside and
Outside.

6.1. Living and still artifacts

We found that our study participants explained their Software Process in terms
of Agile’s user stories and by contrasting these with the requirements
documents found in Waterfall and other traditional Software Processes. They
contrasted artifacts which are still or frozen with those that are living and in
play. They primarily focused on the role of requirements documents and user
stories but also discussed test cases and code as artifacts which support the
software development process. User stories were the most helpful for keeping
the Software Process in play because they have a format which inscribes point
of view, are written in front of other team members, are handed off between
team members and are moved around the physical space of the office as a way
to represent the Software Process in the current iteration. Tests are valued for
keeping the software system live because they enforce keeping the system
“green” such that code which would make the system fail to run cannot be
entered into the code body. And the code itself is considered the best artifact
because it is the system.

421What Counts as Software Process?

Members of the software development team explained the user stories to us in
terms of what user stories are not. We heard many stories about how artifacts are
used in other Software Processes such as Waterfall, based on past experiences and
familiarity with the Waterfall models. Leanne, the Scrum Master at Easy
Retirement, had served as office manager before the company switched to Scrum.
While they tried out different people as the Scrum Master at first, she quickly
settled into the role because, as she explained, she had always been a kind of
liaison between the software development and business sides of the company. As
Scrum Master she leads the planning meetings, keeping order and time, putting the
user story cards on the board, and tracking the progress of the team throughout the
week on a hand-drawn chart. She recounts what it was like for her to work with
the requirements document before they switched to the Scrum model.

We had a requirements document about an inch thick and we’d spend three
to five days making sure all the developers knew what they are. And the
developers went away and no one could interrupt them. No one could ask
them to fix something. [The manager] didn't let them and they had to first
consult with him and he would decide if it needs to be fixed or not. And [the
manager] didn't know the problems as they couldn’t contact the engineers.
And it would take several months. And by the time they released [the
software], the customer didn't get what they wanted anyways as they either
had forgotten what was the thing they requested or they were complaining
about not having what they wanted. [The developers] were not proud of our
company [and] the management team blamed the engineers and vice versa.
They really didn't talk with each other and I was in the middle.

Leanne and others emphasized the thickness of the requirements document in
non-Agile methods and the time that it took to go through it as well as the ways it
did not serve to help different teams communicate, or even seemed a barrier to
communication.

Carol is the testing expert at Easy Retirement and is also a well-established
author of books on test-driven development. She too described her frustrations
with the requirements document before the switch to Scrum.

Weworked so hard to do a very disciplined process.Wewrote our requirements
document, our design document, we did all the steps and we delivered the
product in six months and it was already out of date. The competitors were
ahead of us. We needed more discipline and while you are doing that, the
marketing will say, ‘Well, we really need this feature.’Well, I am sorry, we are
doing this project and the requirements are frozen. That is a crazy way to work
but it’s how people used to work and probably how people still work.

Carol and Leanne and others used these examples as a way to highlight how
user stories allow for greater adaptability. Jerry, the owner of Easy Retirement,
explained that the reason for the switch to Scrum was the need to “evolve” the

422 Marisa L. Cohn et al.

software. He said that at first they went with traditional software development
methods but that after building up the base application they needed the software
to “react just like the rest of the company does” to change. He saw people,
particularly those trained in marketing, as very adaptable and good at responding
dynamically to a change in the economy. Scrum allowed the software team to do
the same.

Jerry explained:

Whatever was written on the page and how they [the engineers] interpreted
it, was what was developed. I would literally build the entire application in
power point and just say when you push this button you are supposed to go
to this web page and this is what you are supposed to end with.

In expressing his frustration with the software development team, artifacts
stand in for the breakdowns in communication as they did for Carol and Leanne.

Another software engineer told us about the circumstances in which he left his
prior job after working for over 6 months on a requirements document that was
growing larger and larger. The customer wanted the document to describe the
system more and more completely. For him, this was time wasted on trying to
build the system on paper when the computational medium is effective because it
is not paper. After leaving the company he discovered that 6 years later they still
had not begun programming on this project.

Various team members described how they learned to cope with software
documentation in the past. One method was simply not to read the documents. As
Gordon, a software engineer at Fast Tools noted, “I’ve worked in a lot of places
over the last ten to eleven years now. And in my previous company I never saw a
person reading the documentation.” The testing expert at Easy Retirement, Carol,
explained that she would find work-arounds to negotiate what was in the
requirements document. She would take the document back to her office, read
through it writing up all her assumptions based on the requirements, and bring it
back for verification. This was her way of doing test-driven development in an
environment that had not adopted that technique. “Other people” just wait to
receive the document and take it as it is, but she “never worked that way.” Other
participants noted that the best kind of requirements document is one made after
the fact, in a sense “faking” the artifact as a requirements document.

The informants differentiate between artifacts which seek to represent the
software system, providing a static image, and those that are “living” like the
code itself. Gordon makes the distinction in the following:

In documentation, the second you write it for a living application, it is still,
you never ever are able to keep it up to date. On an application that has been
around for 30 years and running in the mainframe and you see here is the
process of how to deploy it, run it, I think that's good. But documentation
like modeling, design... that kind of documentation I feel is completely still.

423What Counts as Software Process?

Artifacts that are static are appropriate for a system that is not changing, but
otherwise are not helpful in generating the software system.

In contrast to the stillness of Waterfall documents, our study participants
emphasized how user stories capture very little of the system in order to serve as
a “trigger” for conversation or to encourage them to “talk instead of write.” Sam,
the compliance officer, and Product Owner at Easy Retirement, described the user
stories as “triggers that help me to ask questions.” User stories are often written
on index cards during the planning meeting and many people will weigh in on a
particular card, negotiating what should be written on it or discussing details of
how it will be implemented, or what test will be written for it. The user story
serves not to inscribe the details or outcomes of conversations that take place, but
just to point to them. Gordon says that he prefers user stories because “the actual
approach is it makes people talk about it as opposed to making people write it
down.” So, even if a question was already answered, if you forget you have to go
and ask someone again.

User stories are contingent on context, roles, time, and location. They are
interactional and gain significance from the ways in which they are moved and
exchanged. Because of their highly contingent meaning, they date quickly and
their meaning changes over time. The user story is actually a set of artifacts: the
user story card, the task card, test cases, and code. These artifacts are
“meaningless without the interplay” between the artifacts and the roles and
individuals who use them.

Our study participants told us that the user stories work because they encode
points of view on the user story cards. The user story card is commonly written to
reflect a particular perspective such as that of the customer or a team member. It
is often written from the point of view of the person writing the card, but not
always. The User Story format which is invoked frequently, and sometimes used
on the card, is “As a <role>, I can <action>, so that <goal>.” Developers told us
that they enjoyed writing requirements “on behalf of the user or the customer"
and business people said that there was increased understanding of what the
software development team does and why due to the user stories’ inclusion of
point of view. Jerry focused on how the user stories increase the ability of the
software developers to understand the work of the company. “The user stories get
put in the first person. It is a way to help people think ‘Alright, I am working in
Amy’s role and Amy does this every day.” The user story enforces a “learning
curve” by requiring understanding of others’ perspectives, roles, and work
processes.

User stories can be tracked by different team members in a variety of
documents, but the user story card is always written during meetings at which the
entire software development team is present, and with representatives from other
parts of the company. The user story card frequently includes information linking
it to its author, the perspective it is written from, as well as the person who will be
taking on the tasks associated with that story. This could be observed in the ways

424 Marisa L. Cohn et al.

that participants discussed specific examples of user story cards with us. They
would note the hand-writing as belonging to a particular team member, and
initials in the corner marking who would be taking ownership of the story. But
more importantly, the stories are identified based on the context in which they
were discussed. When a user story card is written, there is often some negotiation
or clarification of what work it includes and these details are not typically written
on the card; the conversation becomes part of the context for that card.

The software teams discipline themselves to write test cases before
programming. The test case is part of the user story, though it is not always
written on the user story card. Test cases are written at times by Carol in a wiki
page and at times in an automated testing software that runs on top of the
software build. Gordon emphasized the importance of test cases for providing a
set of requirements for the system. He said that the test cases are probably the
“closest thing that we have written down for specification... Because they are
written informally in the scenario ‘The system should do this,’ that is actually the
best reference, because it is what it should be doing.” Later he continues saying,
“I will take a test over documentation any day of the week because it is what the
system is doing. It is going to be more accurate than comments in the code even.”

The code too is considered in its role as an artifact supporting the development
work on the latest release. The code “is a reference,” Gordon says, “the code is
the code,” but it is not as good as test cases for providing requirements. Test cases
are a reference “that is always up to sync” and that “you always keep running and
turning green.” “The code" on the other hand, “is in movement, evolving, so the
best information is the current information in the heads of everyone on the team.”

The study participants tended to focus on how artifacts support, represent, and
influence enactments in Agile software development and how they support,
represent and influence Software Process models and models of the system in
Waterfall. This marks the two modes of reflection, model and enactment, as a
way of distinguishing their Software Process from others. We can see, however,
that it is possible to apply the two modes to both sets of artifacts as is
demonstrated by the way that informants describe coping with and finding work-
arounds for Waterfall requirements documents or in describing patterns or
typifications of Agile artifacts in use.

A user story card gains its meaning from its interactions and movements. A
user story card is contingent on context, roles, and time of creation. The user
story card is an interactional artifact—its movements provide information; it is in
flux, changing value as it moves. Its role does not serve to represent requirements
but to prompt conversation—it has just enough information to prompt and
identify a conversation. The user story’s meaning is contingent on the role of the
person who wrote it, the perspective it represents. Its meaning is also contingent
on the time it was created—as it ages, its meaning degrades. All of these
attributes encourage a view of Software Process as it is enacted and how these
artifacts support and represent Software Process enactments.

425What Counts as Software Process?

The stories about artifacts in other software development models show an
emphasis on how the Software Process is prescribed or modeled. In a sense, these
are all views of the Waterfall process in hindsight and cannot be taken as accurate
depictions of how Waterfall works in practice. The various coping mechanisms
described provide a glimpse of how, in practice, these artifacts were made to
work and meet their needs. However, what is interesting is the way that these
stories define the Waterfall process model in terms of its artifacts and contrast the
relationship between the Waterfall process model and its artifacts with the
relationship between the Agile Software Process model and its artifacts.

Our informants held the opinion that all artifacts are contingent regardless of the
adopted Software Process model. The Waterfall requirements document was
contingent on organizational structure, roles and division of labor, it aged over time,
and required interpretation and negotiation to acquire meaning. The switch to Scrum
in part signified an explicit acknowledgement of this fact within the company.

The artifacts used to support the software development work are “meaningless
without the interplay” between the artifacts and the roles and individuals who use
them. The user stories can be viewed alternately as a model and an enactment. At
times participants focus on how user stories support enactments of Software
Process because they are written, discussed, and taken in front of others. At other
times they are emphasized for the way that they model a future part of the system
in terms of someone’s point of view and increase team members’ ability to build
a model of the work of others.

6.2. Software process as the conversation

In the previous section we discussed the interplay between the artifacts and the
conversations that serve as their context, but we have only just begun to peel
away the layers of the user stories and the work that they support. According to
the study participants, the user stories also encourage a sense of participation in
the Software Process. They make being there, witnessing the writing of the
artifact, and exchanging it, important. User stories are seen as successful because
they require reference to these conversations to be meaningful, so much so that
they are faulted for becoming meaningless very quickly as time passes.

In explaining how user stories support this participation in the Software
Process, our study participants often describe the Software Process itself as a
conversation in which to take part. User stories help to generate, track, and
remind participants of the conversation, what and who is a part of it. User stories
and other artifacts serve as a kind of collateral for entering into the conversation
or remembering what has been said.

One of the particularly interesting features of the user stories is that they are
sometimes written prior to the stand up meeting as a way for individuals or a
couple of team members to brainstorm ideas for features. These artifacts are
brought to the planning meeting, but frequently they are rewritten during the

426 Marisa L. Cohn et al.

planning meeting when they are discussed. Different team members bring
different artifacts to the planning meeting which they never directly share with
others but which inform the conversation and may end up contributing to what is
written on a user story card.

Team members referred at times to the Software Process as a conversation or as
“The Conversation.” They would also speak about “bringing things into” The
Conversation when describing user stories, ideas for features, or even ad hoc
discussions that took place. We use this term, “The Conversation,” from our
informants to draw attention to the way that they framed the Software Process as
a Conversation. Bringing user stories into The Conversation was sometimes
synonymous with bringing them into the software system. Of course ideas for
features can be rejected after some debate, but these are then considered not part
of The Conversation. In this way the Software Process as The Conversation is
conflated at times with the software system.

Everyone at Easy Retirement writes user stories, whereas at Fast Tools the
product owners tend to do most of the writing of user stories based on interviews
with customers. Leanne, at Easy Retirement, explains how user stories allow
people in the company to feel that they are participating in Software Process:

We encourage everyone to do the stories as everyone has his or her view of
how the system works or should work and makes them feel they are part of
the product and feel involved. [This applies to] the plan administrator, the
sales people. Even the accountant has actually written some stories for the
report data that she needs. And this is one of the things the people in this
company like about it here is that they feel they are part of the things that
are built and the process.

The user stories increase “group ownership of all the tasks” even though some
members of the group do not know technically how the task will be achieved.
Greg, a software developer at Easy Retirement who was hired within the last
year, is still getting used to working at the company. He said:

[There is a big difference between] sitting down with the requirements on
your desk versus actually taking a piece of the requirement in front of
everybody else. Now you’ve opened up the door to conversation about it
and now you have perspectives from multiple people and not just yourself
and that piece of paper that you think that you are interpreting correctly.

The story cards are also moved around during the sprint. At Fast Tools there
are various white boards and tack boards with arrays of user stories taped or
pinned up. At Easy Retirement all user stories are on a single Scrum Board. As
the team works on the implementation of a user story, the cards progress from
columns on the board: “to do,” “doing,” and “done.” Sometimes a developer will
take a user story down and will take it to his/her desk while working on it. “You
can just look at the board and know how things are going.” Leanne explained that

427What Counts as Software Process?

if there are too many cards still in the to do section or if there are a lot of cards of
a particular color (pink represents bugs “because programmers hate pink”) then
you know you might need to push to get through the sprint on time.

Alexis, a product owner at Fast Tools explained that she might come up with
user stories before the planning meeting even if things might change during the
meeting. During the meeting “we go through each one [of the stories]. The
developers ask questions about what you meant by this or that.” And participants
are able to recall these conversations as the context for the task because
“everybody was there in that initial conversation.” As one developer put it “One
of the strengths [of the user story] is the fact that you are talking about the story
in the context of the story... and having everybody there in the room at the same
time talking about that task, before any development is actually being done.” The
fact that the story can be the context for the story is an indication that the story is
both something linked to other artifacts and interactions as well as what is written
on the user story card.

The code too is an artifact that, while it is the outcome of work, is also
something which must be brought into the conversation. During the planning
meeting if the code comes up a developer might discuss how to bring it in.
Sometimes this means that some research into the code will be needed before a
particular user story can be brought into the conversation. During one planning
meeting, a developer explained to the rest of the team that a particular task was
larger than his teammates expected because it “touched a lot of places in the code,”
particularly in the legacy code. Ryan explained the role of code in this way:

I mean to solve it, you really drag out how long it’s going to take you to do
your estimate [of the user story] because that means before you estimate a
story, somebody will have to do some research, you know, actually deep
into the software to try to find all these problems that could show up. At
times I do not feel comfortable with the estimate I got because I think, ohhh
yeah, that part of the system is pretty bad.

In this way, different team members can be seen as more in conversation with
particular parts of the code. Greg explained that he is able to talk to other team
members if he needs to “get more context” for a task. He frequently goes to
Chad, another developer, for help because he is “pretty in tune with the state of
the requirements.” The requirements are seen as moving “through” the process.
Participants from both the software development teams and business teams at
both companies often referred to the ongoing “conversation” of the development
work. At times developers even referred to the code itself as a conversation or
highly intertwined with conversation as Greg does: “There are certain aspects of
the system that I can probably be more productive doing something else because I
cannot really contribute to this conversation.”

The outcome of the Software Process is not just the software system but the
Software Process itself. The Software Process is a generative system which is

428 Marisa L. Cohn et al.

shaped by the perspectives that team members bring to the Software Process
and by the artifacts which enter into, move around within, or stay outside of
the Software Process. The perspectives of team members in considering how
much they are in tune with or in conversation with various artifacts and parts
of the software system help to define the Software Process for them. In
speaking about specific enactments they will describe how particular ideas
enter into the process or how they participate in parts of the conversation.
And in modeling the Software Process by describing patterns of action or
typical actions, they will refer to The Conversation as something which
everyone takes part in collectively. In a sense, the conversations and The
Conversation, map onto Software Process enactments and the Software
Process model.

The user stories and other artifacts map out the space of The Conversation as
well as support individuals’ ability to take part in conversations. As Leanne says,
you can see the conversation as it is happening by watching the cards. The user
stories as larger than themselves, as encompassing user story cards, other artifacts,
parts of the code, test cases which may or may not be written down, and
conversations, lead to a picture of artifact, process, code, and conversation as
inextricably linked. Indeed there were many instances where our study
participants shifted seamlessly from talking about one modality (e.g. artifact)
to another (e.g. conversation). In the words of our participants: the code is the
documentation; the code is what we do; the tests are what the system is doing;
the tests are the intent of what we are building; the user stories are the context
but are also made up of the code, the tests, and the conversation; and the ability
of any team member to contribute to a User Story is her or his way of
contributing to The Conversation.

The role of code as an artifact supporting the Software Process and an outcome
of the work leads it to be particularly fraught in terms of how it touches or is
brought into the Software Process. There was frequent blurring of the Software
Process and the software system in part because of the emphasis on keeping the
system live or green. The code is simultaneously model and enactment since
the code is part of a process of building up a model of the system and is also the
system. The developers frequently describe building a model of the system in
terms of how story cards, code, and tests provide a picture of the “intent of what
we are building.” While the software “build” conventionally refers to compiling
and linking the source code, in Scrum, what is not being kept live through
conversation is in a sense no longer part of the software “build.” It is part of the
background, automated. Once you have the build, if the code is never touched
again, it is no longer part of the Software Process.

The re-writing of user stories in front of others even when they do not change,
also points to the way in which user stories are both models and enactments. As
an artifact which a team member brings to the planning meeting it is a model of
some intent of what they are building. As something traced out on a card for

429What Counts as Software Process?

others to see it is an enactment of a kind of agreement that this story is now a part
of the Software Process, part of The Conversation.

6.3. Artifacts inside and out

In this section, we will present three anecdotes from the data about artifacts that
reveal the interplay between Software Process and artifacts.

The first anecdote is about Carol’s test wiki which she has developed to
maintain a database of test cases. Her wiki contains both the tests which can be
automated, with links to their implementations in Fitnesse (a test automation
software), and tests which must be performed by a human tester. When we first
asked Carol and others how they document requirements for the system, even
though they acknowledge that the tests are the closest thing to requirements, they
did not mention this very large wiki that contains tests. Carol showed it to us only
when we asked her specifically, where do you write the tests. She was completely
willing to show it to us when we asked but downplayed its importance.

While the wiki was a kind of historical record or archive of all the tests ever
written, it seemed to be more for her own personal use. She was meticulous about
keeping it up to date in a way that was reminiscent of her story with the Waterfall
requirements document which she pored over looking for assumptions. When we
asked whether other team members contribute to the wiki or use the wiki, she
consistently said that she was not sure if they did or did not. She said that on
occasion someone will ask her a question and rather than answer it she will email
them a link to a page in the wiki where it is answered. In these cases she was
pretty sure that they read the selection they needed, but that often she had to send
a link to the same page again if the question came up again indicating that others
were not familiarizing themselves with the wiki extensively.

When we asked other team members about the wiki, their answers were also
mostly shrugs. They knew that Carol kept the wiki, but did not know much about
it aside from the specific times and circumstances in which she had referred them
to it. Carol was even a bit apologetic in her explanation of why she kept the wiki,
saying that she did not know why she kept it, and that she was sure it was
redundant with other artifacts being used by other team members. She said a few
times that they have been meaning to sit down some time, (her and Sam and
perhaps others) to consolidate these artifacts, but have not gotten around to it.

As for how Carol uses the artifact, she said that she uses it to keep a complete
picture of all the tests for herself. She also mentioned times when she used it as
collateral evidence in conversations because she can find the email in her email
archive where she sent a link to a team member in response to a question. Thus it
is a way to keep others accountable to doing disciplined test-driven development
and to the decisions they make together about tests.

A second anecdote is about Sam the compliance officer and an artifact he uses
to keep track of user stories. He has two artifacts, one that is a spreadsheet of user

430 Marisa L. Cohn et al.

stories with dates when they were written, added to a release, and completed.
Another is a word document template that he uses to create a document for each
user story. He showed us how he goes through after each planning meeting and
enters in all the user stories for the new sprint and at the end of the sprint goes
through and checks them off as completed.

Sam was similarly reticent about these artifacts. He was reluctant to show them
to us only because he did not think we would care about them. They were just
artifacts he used for himself, he said. After sharing them with us, he admitted that
he had actually designed these artifacts as a way to keep track of features before
they switched to Scrum but had continued to use them after the switch.

Yet, the switch to Scrum had changed the way that he used these artifacts.

I even have these little things like sign-offs (laughs) at the bottom. You know,
like I'll put everything in there, go to that story owner, have them read it, [and
ask] "Does this capture 100% of what you want? If so, sign here." Like a
contract kind of thing. I have never gone to that extent, but when I put [the
template] together I had thought of that. It might be a more formal thing that
some organizations would need. I put it on there, but I never really use it.

The artifact had a place for a signature as if the user story were a kind of contract
for work. However, he had not used the signature line since switching to Scrum. Sam
said that he made this artifact for himself, for his needs as compliance officer, yet it
turned out that he would sit down each sprint, before the planning meeting with
Carol and maybe a product owner, and brainstorm user stories for the sprint.

The final story is about how Jerry, the company owner, relies upon user story
estimates to negotiate with customers and potential industry partners. He too sees
the user story as sort of mini-contract for work.

If we have an existing business requirement, you fully explain our process to
anybody who said that they want something [a new feature]. And I told them,
if you want it to be prioritized, here is what it means to me. So it is number 5
under 122 others, (laughs). You want it to be in the top five? Tell me you will
pay me 25 thousand dollars, otherwise just understand that there is no return
on the investment. [I use] the user points to assign a value to it. So if it is a 5
point theme it is going to cost just around 15 thousand dollars and so you are
able to give that kind of information to somebody and say OK, so it is going
to cost me 15 grand and the best case scenario is over three years and makes
me 60 and that means y equals x. I’ve got these three things that we are doing
that you are interested in that can make us both exponentially more money, so
why would I prioritize that above those things.

A similar kind of negotiation can take place internally on a smaller scale.
Leanne said that sometimes the business people are "asking for the world"
because they care more about sales than anything else. They might not
understand that a request is very big, for example if it requires changes to the

431What Counts as Software Process?

legacy code. Leanne would go to Jerry and explain that it is a “very expensive”
feature, relying on estimates to convince him.

These moments reveal that software work can take place outside of the
Software Process and that artifacts can support work both inside and outside of
the Software Process. It also gives a window into how each team member uses
artifacts to negotiate the boundary of the Software Process. Each team member
builds up his or her own model of the Software Process and the software system.
Carol's dismissal of her wiki, Sam’s marginalization of his user story sign-offs,
and Jerry’s reliance on the user stories to project the value of features,
demonstrate the way that they each negotiate the boundary of the Software
Process on an individual basis.

These also demonstrate in each case the interplay between the model and the
enactment since the artifacts support both modes. For Carol and Sam, telling us about
what they do in specific cases with these artifacts was an afterthought or apology.
Jerry on the other hand works more explicitly with negotiating the boundary of the
software system by using the user story to account for models of the system.

These artifacts could be viewed as deviations from or work-arounds to the
Software Process model, but our analysis is that these artifacts exist outside of
the Software Process, defining and negotiating its boundary. This is achieved in
part because the Software Process is bounded by keeping artifacts that represent and
influence models of the Software Process or system on the outside and artifacts that
represent and influence enactments on the inside. Carol and Sam’s artifacts in
particular seem designed to support more of a view of the Software Process as model
from the outside. Sam's lines for sign-offs, though never used, are an indication that
the document serves as a representation of work. Signatures are one of those odd
moments where an enactment of signing actually designates the artifact as a model.
Carol’s wiki too resembles some of the specifications documents which aim to
provide a complete model of the system to be built. Indeed with her wiki someone
could readily recreate the software system.

The fact that Jerry, Sam, and Carol all use the artifacts as a form of collateral
reveals how these artifacts can enter into particular enactments of Software
Process. While Sam's spreadsheet primarily serves as a picture of the Software
Process and software system, he also uses it to track conversations as a reminder
for or form of evidence of a decision.

As Gordon at Fast Tools put it, there are many artifacts which “radiate out from
the code.” Certain artifacts are central to the Software Process such as user story
cards, code, and tests, others are peripheral to the Software Process such as these
improvised and personal artifacts, and others move across the boundary of
Software Process such as user stories. Yet there are no smooth transitions of
artifacts across this boundary. Instead there is a kind of tension, or a pressure that
the artifacts exert on the boundary from within and without.

432 Marisa L. Cohn et al.

7. Discussion

7.1. Artifacts

We have shown in our analysis that artifacts serve to represent and influence both
Software Process models and enactments. The Software Process is a generative
system which relies upon both points of view. Our study participants move
between these two points of view as they move from inside to outside the
Software Process. And artifacts are integral to their ability to shift perspectives, to
work within and outside of the Software Process, and particularly to negotiate the
boundary of the Software Process.

Research on boundary objects (Star and Griesemer 1989) has investigated how
artifacts can move between different communities of practice allowing teams to
collaborate across technical differences in practice and language. Boundary
objects are flexible enough to mean different things to different sets of people, yet
robust enough to be identifiable to everyone who uses them. User stories appear
to be similar to boundary objects in that their meanings change depending on the
context and that some amount of standardization is needed for user stories to be
recognizable to different team members. However, we also found that user stories
were being used to define and negotiate boundaries on a daily basis. Rather than
moving easily across boundaries, they constituted the boundary. Additionally,
while their meaning changes depending on context, the user stories help to
accomplish context as something shared with the entire team, breaking down
technical differences.

Our informants emphasized the variety of perspectives which were encoded
into the user stories, how these perspectives provided context, translated the
activities of others, and prompted conversation. User stories call attention to the
tension between different technical roles and their intentions for the software
system, rather than alleviating these tensions. User stories may be an example of
“conscription devices” (Lee 2007, citing Henderson 1999), artifacts that “enlist
group participation” and are “adjusted through group interaction.” However, they
did more than encourage participation. Lee’s notion of “boundary-negotiating
artifacts” is perhaps the most fitting category for the user story. The boundary-
negotiating artifacts are artifacts that test and establish boundaries, practices, and
standards. Unlike boundary objects they cross boundaries roughly, if at all, and
are sometimes used to negotiate the boundaries themselves. Artifacts such as
Sam’s sign-offs and Carol’s wiki may be examples of “self-explanation artifacts,”
a particular type of boundary-negotiating artifact, that are created and used
privately, but are sometimes indirectly presented to others (Lee 2007).

Bertelsen has conceptualized artifacts as part of project to develop a design
epistemology. Design artifacts, like boundary objects, “mediate across heteroge-
neity” (Bertelsen 2000). This broadens the perspective from artifacts which move

433What Counts as Software Process?

across boundaries to those that exist in the heterogeneous spaces between people
with different technical roles, skills, or experiences. Bertelsen suggests that
design artifacts move between construction and representation. Our findings align
with his notes towards an epistemology showing that models and enactments, like
construction and representation, are two modes which exist in tension and which
together form a generative system. User stories reveal this tension between “the
possible and the existing” in that they support both models of the software system
and enactments of software work. However we have focused on the ways that
user stories mediate the Software Process itself. The fact that the Software
Process and the software system became conflated at our field sites suggests that
artifacts can support not only a confrontation between the possible and the
existing, but also a blurring between the two (an assemblage of the possible and
the existing).

Our project contributes to the understanding of this space where the model
meets enactment, what Bertelsen has called a heterogeneous space, or what Lee
has called a boundary space. While their work has aimed to theorize the types of
artifacts that exist in this space, we hope to add to the understanding of how
boundary work is accomplished. The boundary work of software work takes
place at the edges of the Software Process.

7.2. Models vs enactments

Our model of Software Process as a generative system draws heavily on the work
of Feldman and Pentland on organizational routines. They provide a model of the
organizational routine as a generative system which emerges out of the interplay
between the ostensive and performative modes of reflecting on the routine. They
define the ostensive as referring to abstract patterns, generalizations, or
“theories.” These are, in commonsense terms, the ideas we have about the world
based on a collecting up of experiences or a narrative or script of typical actions
(Pentland and Feldman 2005). They define the performative as referring to
“specific actions taken by specific people at specific times” and specific locations
(Pentland and Feldman 2005). These actions “are carried out against the
background of rules and expectations, but the particular course of action we
choose are always, to some extent, novel.” This theoretical concept, founded in
structuration (Giddens 1979) and practice theory (Bourdieu 1977), draws
also upon Latour’s definition of the “ostensive” and “performative” modes
(Latour 1986).

Others have referred to this distinction between model and enactment as
prescriptive and descriptive, method and amethod (Truex et al. 2000). While we
have used the distinction between model and enactment, the distinction between
ostensive and performative has some advantages. For one thing, models are really
only one kind of ostensive reflection. Our study participants’ metaphor of the
Software Process as a Conversation was an ostensive description, though perhaps

434 Marisa L. Cohn et al.

not a model. Bertelsen and Naur reflect on the role that theories and ideas play in
design work and software development, which are also examples of ostensive
reflections.

The ostensive and performative, because they are adjectives rather than nouns,
emphasize that these are modes of looking, not mutually exclusive types. The
ostensive and performative are indeed modes of looking and reflecting. Like
multistability in Gestalt theory, they are difficult to hold simultaneously but are
not mutually exclusive. Any activity or interaction can be viewed in either mode,
foregrounding and backgrounding certain aspects of the activity. This leads to the
tendency for research to focus almost entirely on one or the other, as noted by
Truex et al. (2000), and for studies of the ostensive to marginalize the
performative as valuable knowledge and vice versa. But in fact it is possible to
think about how the two modes interrelate and how moves back and forth are
common throughout work activity.

The ostensive/performative distinction has advantages over others such as
subjective/objective and structure/agency because it focuses on the collective way
in which performances are achieved and on the "ability of both participants and
observers" of a particular work activity to generate the ostensive from the
performative, or in other words to make both ostensive and performative accounts
and move between them (Pentland and Feldman 2005). This responds directly to
Dittrich’s call for a consideration of how practitioners and researchers can move
between an “understanding from within” to a “looking from without” (2002). Our
study participants, like us, can move between being a participant and an observer
of the Software Process and software system.

Bertelsen also points out that theories too can be design artifacts drawing on
the work of Peter Naur. Naur presents an argument for “programming as theory
building” in Computing: A Human Activity (1992). He argues that software
programs are not the central product of software development, nor can the
knowledge needed to build software by fully contained in the software, its
documentation, or its specification artifacts. He makes a move to reclaim the
importance of theory. He claims “the building of the program is the same as the
building of the theory of it by and in the team of programmers.” Yet he says “in
building the theory there can be no particular sequence of actions.” We agree, and
would add that theories are a kind of model or ostensive aspect of the system and
that artifacts can support these theories. Like Bertelsen (2000) and Naur (1992)
we are seeking a way to make room for the interplay between theories of the
system and its enactments.

We can consider the artifacts and activities of software development through
both the ostensive and performative modes. The user story illustrates how an
artifact can influence and support both ostensive and performative aspects of
software development work. Alexis, Sam, and others told us how they would
write up user stories on their own before planning meetings. These artifacts for
them were a way of brainstorming and coming up with ideas for the system. The

435What Counts as Software Process?

user stories are thus helping to represent the system as it will be in the future,
supporting an ostensive view of the software system. However, during the
planning meeting these user stories written out on cards or excel sheets were not
directly shared with the rest of the team. Instead, the emphasis was on writing the
cards in front of others. In this setting even the gestures of writing become
important as enactments. The movements of the card also provide meaning
during the planning meeting and afterwards. For example, one software developer
might write a user story on an index card in front of the rest of the team, with
others chiming in about what should be on the card. He then hands it to someone
who will be working on that user story, who writes up a bunch of task cards. The
cards are then placed on the magnetic scrum board and moved each time that the
“user story” is worked on as it goes from “to do” to “done.” We can foreground
the performative mode by focusing on these specific interactions. When a
software developer takes a card back to his desk while working on programming
the user story, it may be that the card is then supporting an ostensive mode of
reflecting on the software system.

We can identify moments were artifacts shift between the two modes such as
the moment of when a document gets signed off. The writing of the signature
foregrounds the performance, but the signature becomes a mark on the artifact
which allows it to ostensively represent the system being built. It is the signature
that allows the artifact to move from one mode to the other. We saw this in the
case of Sam’s user story artifacts where he tracked user stories and had a place for
sign off. The fact that he never used these sign-offs was an indication that their
role of respresenting an ostensive view of the system never reached full closure.
Because Agile artifacts lack sign-offs, Easy Retirement also had difficulty with
auditing companies. Legal and regulatory compliance are important to their work
since they are providing financial service software. The auditors had a difficult
time dealing with their process because there were no documents with sign-offs.
“They were very upset that we didn’t have any signatures confirming what we
were going to make in the next sprint.” As a result, Easy Retirement came up
with a new document called a Software Release Document, which had the release
date on which it was tested, a build number, and a signature.

The Conversation also reveals this shifting between the two modes. Our
participants switched back and forth frequently between describing The
Conversation and describing conversations. The Conversation is an ostensive
conceptualization of the Software Process. It generalizes many enactments and
activities into a coherent whole. While it is clear that what takes place inside of
the Software Process is many conversations, which not all members are always
privy to, the view that these together form one single Conversation, is an
ostensive move.

The software code itself shifts between these two modes. The code is an
artifact which simultaneously supports both modes of viewing the software
system. The code artifact helps the development team to think about the intended

436 Marisa L. Cohn et al.

system, or to build up a pattern of actions which then influence the user stories. In
this capacity it supports an ostensive view of the software system, what the team
intends it to be. But the code artifact is also a performance of a collection of
actions. The code, in combination with automated tests running “green,” in the
“build,” and in use, supports a series of enactments.

We also found that our informants moved between these two modes in such a
way that helped to negotiate the boundary of the Software Process. They tended
to foreground the ostensive mode when describing activities and artifacts outside
of the Software Process and to foreground the performative when describing
activities and artifacts inside the Software Process. They marginalized artifacts
that were outside of the Software Process and that helped them to build their own
ostensive view of the system. They also marginalized the artifacts used in non-
Agile processes by foregrounding their ostensive aspects.

We found that our study participants move back and forth between the
ostensive and performative mode in their descriptions of the Software Process
and their use of artifacts. These moves between the two modes accomplish
several things. First, they support a contrast between the companies’ current
Software Process and other Software Processes. Second, a privileging of the
performative mode and marginalizing of the ostensive mode helps to highlight
their Software Process as superior to other processes. Thirdly, the privileging of
the performative mode and marginalizing of the ostensive mode helps to stabilize
a boundary between what counts as inside of and outside of the Software Process
as Conversation. Artifacts which are reflected upon in the ostensive mode are
downplayed and considered outside of the Conversation. Those artifacts which
enter the Conversation are used to emphasize the performative aspects of the
work.

Based on our observations we also found that the user stories as artifacts
support this privileging of the performative mode because they represent very
little of the ostensive aspects of the software product (only short ostensive
narrative fragments). The User Stories support the negotiation of the boundary of
the Conversation process through this performative mode which helps to
construct a shared collective ostensive vision of the software system. The
performative mode foregrounds the ways in which User Stories are written in
front of the whole team, handed off among members, and moved and circulated
through the implementation process. User Stories are able to cross the boundary
between what is outside of and inside of the Process Conversation and thus
negotiate its boundary.

Inside of the Software Process we found that there was a blurring of the
Software Process and the software system. Additionally, our informants blended
together the user story artifacts and activities in ways that made them seem
indivisible. The artifacts that support activities inside of the Software Process are
the user story cards, test cases, and code. These artifacts were woven together
with each other and with conversations in such a way that it became very difficult

437What Counts as Software Process?

for our study participants to tease them apart. Rather than describe the Software
Process ostensively, they frequently made recourse to specific instances where the
artifacts and conversations came into interaction.

Our study participants negotiate this boundary by moving from the ostensive
the performative modes of reflection on the Software Process and the software
system. They foreground the ostensive for that which is outside of the Software
Process and the performative for what is inside. They constitute the boundary
through the interplay between the two modes. As they switch from viewing an
artifact in one way to viewing it in the other, they maintain and negotiate the
boundary. User stories move across this boundary, but at the same time must be
written from scratch in order to enter the Software Process. Code exists both as
output and input to each iteration and can be viewed simultaneously from both
modes as either something which is read and documented to support an ostensive
model of the software system or as something which is woven into the user story
as part of conversations.

7.3. The negotiated space

We found that our study participants negotiate the boundary of the Software
Process in part by switching from the ostensive mode to the performative mode in
their reflection on artifacts (See Figure 7). While artifacts such as the user story
cards or wikis, when outside of the process are considered for their ability to
represent ostensive aspects of the software system, once they are inside the
Software Process they are valued for their ability to represent enactments (See
Figure 8). This helps to negotiate what is inside of the Software Process and what
is without. What is being negotiated is the boundary of the Software Process, the
Software Process itself, and the software system.

While the boundary object is a “pioneering concept” that has been “a useful
placeholder for explaining that artifacts ‘live’ in the space between collaborating
communities of practice,” it is limited to providing different communities of
practice a “means of translation” between them since the boundary object can
“inhabit multiple worlds simultaneously.” This concept is limited, however, in
that it does not help to understand sites where the boundary between communities
of practice are still being negotiated or, in our study, where a collective boundary
of what is the Software Process are under constant negotiation.

The software system itself is under constant negotiation. As Naur points out,
the nature of developing software systems involves a constant negotiation
between problems in the world and problems in the computer. Lee also suggests
that “perhaps boundary negotiating is part of a process by which methods are
developed.” In developing software systems, methods are not only a means to
write computer code, code is itself a set of methods. It makes sense then, that
artifacts would be found to support constant negotiation rather than stabilization.

438 Marisa L. Cohn et al.

Bertelsen describes the activities of design as heterogeneous. In our study we
found that the Software Process is heterogeneous in that those participating in it
bring different perspectives and sets of technical expertise. It is also heteroge-
neous in that what exists inside of the Software Process is a mixture of the
possible and the existing. Rather than drawing a clear line between designs for
the software system yet-to-be-built and that which is already built, inside of the
Software Process these two modes blend together. User stories are crafted
together with code. The user story itself is heterogeneous and is the basic unit of
work and of the software system.

Naur describes the relationship between the programmer and the software as
that which keeps it “live” through the programmer’s theories about the code. It is
the ostensive aspects which keep software’s performance live. We found that user
stories provide a way for not only programmers but the entire team to keep the
software system live. The Software Process as a generative system allows a group
of people to collaboratively keep the software system “live.”

Our interest has been to understand boundary-making and pushing rather than
how standards and collaboration can dissolve boundaries. In our analysis we have
claimed that Software Process is generated by the interplay between models and
enactments, and depends on the choices of participants to decide what counts as
Software Process and what does not. Artifacts are a part of these choices and of
the negotiation of the boundary of the Software Process. As Lee states “artifacts
can serve to establish and destabilize protocols themselves... artifacts can be used
to push boundaries rather than merely sailing across them” (Lee 2007).

Our analysis of the Software Process helps to fill the gap between research on
Software Process models and enactments. We hope that this conceptualization of
the Software Process as a generative system can help to reveal the interplay
between research on models and enactments. It may also help to consider our
roles as software researchers and what it means for us to study and intervene in
the making of Software Process. Rather than viewing research as an effort to
model or describe, it can be understood as part of the process of boundary
negotiating. We can aim to ask what does it mean to make and use methods?
(Truex et al. 2000; Dittrich 2002).

7.4. Implications for practice

While the study of enactments has focused on where the abstract models meet the
real world in terms of their gaps, omissions, and inadequacies, this research
points to the ways that negotiating the Software Process itself can be an entry
point to participation and collaboration. Our study suggests that both research and
practice can be informed by the generative interplay between what have tended to
be two distinct modes of understanding Software Process. It suggests that the two
camps of academic software research, the prescriptive and descriptive, or method
and amethod (Truex et al. 2000), might have a space for dialog. It also means that

439What Counts as Software Process?

practitioners might reflect on their own practice in a different way. Software
process is something which developers can engage in to varying degrees and
these choices can be seen as agentic moves which help to constitute the software
process rather than impede it. Rather than being apologetic about duplicative
artifacts or nonstandard work practice (as our informants were at times), our
results suggest that elimination of duplication is not necessarily desirable, nor is
bringing all activities into the fold of Process.

Relevant to both research and practice, we wish to add to the discussion of
what it means to make and use methods. Methods are something that both
researchers and practitioners reflect upon and perform, thus placing us on more
equal footing. At Dittrich has suggested, this might mean entering into
collaborative method development. Or rather it might mean that there are roles
to be played by both researchers and practitioners to broaden the boundary of
process as a means for increased participation. Rather than seeing code as at the
center of the software development process, we can see conversations at the
center. Rather than finding ways in to code, we can find ways out for code. We
can ask, how does code move out into the stories and conversations, rather than
asking how we get the conversations about use integrated into code.

8. Conclusion: the boundary work of software work

In this paper we have posed the question of What counts as Software Process? We
ask this question to draw attention to the ways in which both researchers and
practitioners actively make choices about what counts as Software Process. The
question of what counts as Software Process then leads us to consider how these
choices are made and why. If we as researchers can move from the “understanding
from within” to the “looking from without,” and if practitioners can do the same
(which indeed they can), then what is happening as wemake this shift, and what does
it accomplish? Given that Software Process is not a prescription for practice, what is
accomplished by invoking and describing an ostensive Software Process and what
relationship does this have to particular performances of Software Process?

We found that what counts as Software Process, for our informants, is a
collection of software work which is bounded. The Software Process provides a
generative system through which the software team scopes and defines its work,
not as the outcome of Software Process but through the negotiation of the
Software Process itself. Software Process is not a prescriptive model that is
periodically accessed to make work accountable, nor does it encompass all of the
work of the software development team. Rather, the Software Process comprises
many models and ostensive reflections on the Software Process, ideas and
theories about what their process is. And the Software Process is also a bounded
set of practices that comprise the software work, made up of conversations and
artifacts. Software Process is not only models that prescribe software methods or

440 Marisa L. Cohn et al.

an analytical category for the sake of description, but a bit of both, or the gray
space between.

The gray space is defined by the way that these two modes of thinking about
Software Process form a generative system. The Software Process is constituted
by the interplay between these two modes, because models constrain and enable
enactments, and enactments create and recreate models. As software developers
switch between the ostensive and performative modes of reflecting on their work
and on the artifacts that they use, these switches accomplish much of the work of
maintaining and negotiating the boundary of the Software Process.

We have proposed a different picture of the Software Process. Rather than just
model or enactment, it is a generative system that involves both models and
enactments. Software process is generated through the interplay between the
ostensive and performative. Software developers move between the two modes,
and the choice to highlight the ostensive or performative is not made once-and-
for-all, but is made again and again. It is a generative process, but not one that is
unbounded as found in the research on Software Process enactments. There are
agentic decisions to choose what is included in the Software Process and what is
excluded, which means this boundary is under constant negotiation.

This negotiation takes place through the conversations and artifacts of the
Software Process. Conversations and artifacts exist inside of the Software
Process, outside of the Software Process, and constitute the boundary of the
Software Process itself. The ostensive and performative modes helped to define
these different sets of artifacts and conversations. Artifacts outside of the
process tend to be viewed in the ostensive mode, for their capabilities in
representing the software system, these artifacts are used as a kind of collateral
to negotiate and push the boundary, but do not in fact cross the boundary.
Artifacts such as user stories seem to cross the boundary through a switch
between the ostensive and performative modes. Inside of the Software Process
the performative mode is privileged such that artifacts are meaningless without
the links that tie them to conversations.

Code, tests, and user story cards, come together to form an indivisible unit of work
that is a mixture of the possible and the existing, a combination of the system-being-
built and the system-in-use. Code, rather than being the center towards which all
work is oriented, moves out into the Software Process through these conversations
and artifacts. Rather than positioning design artifacts or code as the central means by
which access is gained to software development, the boundaries are where much of
the participation takes place as team members decide individually and collectively
what counts as Software Process. We have sought to understand not how ideas get
into code but how code moves out into the Software Process.

By asking what counts as the Software Process we have opened up the
possibility of considering the boundary work of Software Process as the locus for
knowledge work in software development. It is at the boundaries where methods
are made, negotiated, and brought into the software system. The Software Process

441What Counts as Software Process?

is crafted together with code instead of for code. Software code and the Software
Process are crafted together through the interplay of artifacts and conversations,
models and enactments, at the boundary of the Software Process.

Acknowledgements

We are indebted to our field sites and the participants who consented to be
observed and interviewed. Many, many thanks to Rosalva Gallardo-Valencia who
was instrumental in the data collection and transcription. Thanks also to Anahita
Fazl who helped with the transcription. Yvonne Dittrich provided, reviewed and
guided our research direction. This research has been funded in part by the
National Science Foundation (Award IIS-0712994) and the Agile Alliance
Academic Research Program.

Note

1. We found that many of our study participants distinguished Agile from other processes based on
the role of documentation. They compared and contrasted different Software Processes in terms
of documentation. For example, Brett, a Product Owner at Fast Tools gave a rundown of various
processes: “Some software teams work collaboratively and iteratively but produce tons of
documentation” doing “ten iterations of documentation with no software.” RUP (Rational
Unified Process) is “lighter weight than Waterfall, you can redefine it, but it is still focused on...
process and tools and documents.” In RUP, “you can choose between ten different suites of
documents and tailor them to your specification.” And in Extreme Programming, “the XP person
will say I don’t care [about documentation] it is whatever you want,” so there is “no guidance
about documents.” Agile actually has a lot of guidance about documents in terms of what a user
story should look like and how it should be used. But user stories tend not to be considered
documentation in the same way.

2. The legacy code was called Whitney for Whitney Houston to denote that it was “all washed up”
and the new code was called Ghidrah and was represented by a three-headed dragon figurine
who “eats the legacy code” a reversal of saving the damsel in distress from the dragon.

References

Bansler, J. P., & Bødker, K. (1993). A reappraisal of structured analysis: design in an organizational
context. ACM Transactions on Information Systems, 11(2), 165–193.

Beck, K. (2000). Extreme programming explained: Embrace change. Boston: Addison-Wesley
Professional.

Bertelsen, O. (2000). Design artefacts: towards a design-oriented epistemology. Scandinavian
Journal of Information Systems, 12, 15–27.

Boehm, B. (1981). Software engineering economics. Englewood Cliffs: Prentice-Hall.
Bourdieu, P. (1977). Outline of a theory of practice. Cambridge: Cambridge University Press.
Button, G., & Sharrock, W. (1992). The mundane work of writing and reading computer programs.

Cambridge: Rank Xerox, EuroPARC.
Button, G., & Sharrock, W. (1994). Occasioned practices in the work of software engineers. In M.

Jirotka & J. Goguen (Eds.), Requirements engineering: Social and technical issues. London:
Academic Press Professional.

442 Marisa L. Cohn et al.

Cohn, M. (2004). User stories applied: For agile software development. Boston: Addison-Wesley
Professional.

Dittrich, Y. (2002). Doing empirical research on software development: Finding a path between
understanding, intervention, and method development. In Y. Dittrich, C. Floyd, & R. Klischewski
(Eds.), Social thinking-software practice. Cambridge: MIT.

Feiler, P. H., & Humphrey, W. S. (1993). Software process development and enactment: Concepts
and definitions. In Second International Conference on Continuous Software Process
Improvement (pp. 28–40).

Fuggetta, A. (2000). Software process: A roadmap. In Proceedings of the conference on The Future
of Software Engineering (pp. 25–34).

Giddens, A. (1979). Chapter 2: Agency, structure. In Central problems in social theory: action,
structure, and contradiction in social analysis. University of California Press.

Larman, C., & Basili, V. R. (2003). Iterative and incremental software development. IEEE Software,
36(6), 47–56.

Latour, B. (1986). The powers of association. In Power, action and belief: A new sociology of
knowledge (vol. 32, pp. 264–280).

Lee, C. P. (2007). Boundary negotiating artifacts: unbinding the Routine of boundary objects and
embracing chaos in collaborative work. Journal of Computer Supported Cooperative Work, 18
(3), 307–339.

Lofland, J., Snow, D. A., Anderson, L., & Lofland, L. H. (2005). Analyzing social settings: A guide
to qualitative observation and analysis (4th ed.). Belmont: Wadsworth.

Naur, P. (1992). Computing: A human activity. New York: ACM.
Nørbjerg, J., & Kraft, P. (2002). Software practice is social practice. In Y. Dittrich, C. Floyd & R.

Klischewski (Eds.), Social thinking—software practice. Cambridge: MIT.
Osterweil, L. (1987). Software processes are software too. In Proceedings of the 9th International

Conference on Software Engineering (pp. 2–13).
Parnas, D. L., & Clements, P. C. (1986). A rational design process: how and why to fake it. IEEE

Transactions on Software Engineering, 12(2), 251–257.
Pentland, B. T., & Feldman, M. S. (2005). Organizational routines as a unit of analysis. Industrial

and Corporate Change, 14, 793–815.
Robinson, H., & Sharp, H. (2003). XP culture: Why the twelve practices both are and are not the

most significant thing. Salt Lake City: Agile Development Conference.
Scacchi, W. (2001). Process models in software engineering. In J. Marciniak (Ed.), Encyclopedia of

software engineering (2nd ed.). New York: Wiley.
Schwaber, K., & Beedle, M. (2001). Agile software development with SCRUM. Englewood Cliffs:

Prentice Hall.
Sim, S. E., Alspaugh, T. A., & Al-Ani, B. (2008). Marginal notes on amethodical requirements

engineering: What experts learned from experience. In Proceedings of the 2008 16th IEEE
International Requirements Engineering Conference (pp. 105–114).

Star, S. L., & Griesemer, J. R. (1989). Institutional ecology, ‘translations’ and boundary objects:
amateurs and professionals in Berkeley’s Museum of Vertebrate Zoology 1907–39. Social
Studies of Science, 19, 387–420.

Truex, D., Baskerville, R., & Travis, J. (2000). Amethodical systems development: the deferred
meaning of systems development methods. Accounting, Management and Information
Technologies, 10(1), 53–79.

van Vliet, H. (2008). Software engineering: Principles and practice (3rd ed.). New York: Wiley.

443What Counts as Software Process?

	What Counts as Software Process? Negotiating the Boundary of Software Work Through Artifacts and Conversation
	Abstract
	Introduction
	Background
	Software process models
	Waterfall�
	Scrum�

	Software process enactments

	Software process as a generative system
	Research method
	Research setting
	Results
	Living and still artifacts
	Software process as the conversation
	Artifacts inside and out

	Discussion
	Artifacts
	Models vs enactments
	The negotiated space
	Implications for practice

	Conclusion: the boundary work of software work
	References

