Computer Supported Cooperative Work (CSCW) (2015) 23:79-108 © Springer Science+Business
DOI 10.1007/s10606-015-9218-5 Media Dordrecht 2015

Towards Concurrent Multi-Tasking in Shareable
Interfaces

Carles F. Julia & Sergi Jorda
Universitat Pompeu Fabra, Roc Boronat 138 08018 Barcelona, Spain (Phone: +34935422104,
E-mail: carles.fernandez@upf.edu; ; E-mail: sergi.jorda@upf-edu)

Abstract. Shareable interfaces, those that can be interacted simultaneously by several users, are a
common tool used both in CSCW research and in real world applications. They tend however to lack a
capability that has been traditionally relevant to the usefulness of computing systems: multi-tasking. In
this paper we explain why a combination of the multi-user features of shareable interfaces and the multi-
tasking capabilities of general-purpose computing, could be relevant for building useful systems, and
why these features are not present today in most of the current prototypes and systems. We also discuss
possible approaches for solving the problems that prevent shareable interfaces to fully support multi-
tasking, and we present a novel approach based on a distributed, application-centered, content-based
gesture disambiguation. We describe how an already existing framework, GestureAgents, implements
this new approach, focusing on expanding the description of the relevant elements related to this
problem, and conclude with some example applications and a discussion.

Keywords: Concurrent interaction, Multi-user, Shareable interfaces, Multi-tasking, Agent exclusivity

1. Introduction

Shareable interfaces are a common subject of study in the field of CSCW. Tabletops
and vertical displays, for instance, are considered, in many ways, a good approach to
promote collaboration, a circumstance that is valuable for solving complex tasks.

In the personal computer context (still the leading professional platform), complex
task solving is often supported by the use of a combination of several unrelated
software tools. However, the systems developed to study collaboration in shareable
interfaces usually feature a single ad-hoc application that tries to cover all the aspects
involved in the particular tested task. While this approach is valuable for studying
many mechanisms of collaboration, as it constitutes a controlled environment in
which the interaction dynamics can be tested, it still does not really represent existing
real-world practices.

Previous experiences in other kinds of interfaces, such as PCs or hand-held
devices, suggest that the real world use of new general purpose computing devices
will need some kind of multi-tasking capabilities if they aim to support general and
potentially complex task solving features and if, in short, they aspire to become
useful to the general public. And yet, multi-tasking features in shareable interfaces
may have deep differences even within single-user contexts.

80 Carles F. Julia and Sergi Jorda

This paper first analyzes the diverging relevant strengths of PCs and shared
interfaces (Section 2). It then explores how these two sets of strengths are present
in current shareable interface devices, and lists relevant work (Section 3). It next
analyzes how multi-tasking could be implemented in big shared interfaces; address-
ing the specific problems this may pose (Section 4). It also presents GestureAgents, a
concurrent multi-tasking interaction framework which solves the different issues
exposed (Section 5). Several demo applications ant tests are exposed following in
Section 6. Discussion is presented in Section 7 and finally conclusions exposed in
Section 8.

2. From personal to collaborative computing

When designing collaborative computing appliances, we are in risk of losing some of
the essential elements previously present in personal computing and thus ending up
with a useless system. Reviewing the features that made personal computing useful
to people can help us to prevent the latter from happening.

We here briefly review the qualities that contributed to make the personal com-
puting platform successful and useful to its users. We focus on multi-tasking as a key
element to such systems, and an element that we argue, is often overlooked in current
collaborative computing systems.

We also focus on the key deficiency of personal computers, which collaborative
computing intends to solve: collaboration, and more specifically multi-user interac-
tion with computer systems. We think that the combination of these two key
elements, collaboration and multi-user interaction, can bring collaborative comput-
ing system to a state of usefulness ready to be adopted.

2.1. The rise of the PC

The advent of computers and personal computing devices has had a very deep impact
in recent history. Their usefulness relies in their capacity of performing tasks that
previously were inconvenient, difficult or impossible, and the core goal of Human-
Computer Interaction is indeed devoted to support users accomplishing these tasks
(Shaer and Hornecker 2010).

Many qualities of computers contribute indeed to this goal of easing task solving
processes:

e Computing power: This was the original function of computers, the ability to
compute mathematical operations in an unprecedented speed. There is no
need to even try to enumerate the infinity of practical applications that
computing power has created, transforming our world.

e Convenience: Computers make it easy to perform simple but repetitive
tasks, instantly. Boring tasks that may not be especially difficult, when
automated, can be performed in a fraction of the time originally needed,
thus making them accessible to much more people. Spreadsheets are a good

Towards Concurrent Multi-Tasking in Shareable Interfaces 81

example: accounting existed before computers, but it is now more widely
accessible.

e Connectivity: It could be argued that portable computing devices do not
specially excel in computing power. Still, their usefulness is undeniable,
probably because of their connectivity, which allows users to communicate in
efficient ways.

e General-purpose computing: What makes computers even more useful is that
they are generic tools. The purpose and function of a computer can be
changed by changing its program. This uncoupling of the device from its
function, frees computer builders from having to think about every possible
use of the machine. Other parties can create programs that will turn that
computer into different specific tools such as a word processor or a calculator.
In the smartphone revolution the availability of third-party applications has
also arguably been instrumental to their success.

2.2. Multi-tasking

General-purpose computing allows a single computing device to change its
function according to a program. The computer itself has no specific objective
as a calculator would have. Logical programs are executed by the computer
instead, making it useful for a specific calculation or any task completion. On the
other side, as the universe of possible complex tasks and problems to be solved
with the assistance of a computer is broad and open, it seems rather unpractical to
create a single program for every different task. As complex tasks can often be
divided in simpler subtasks, the particularity of every task will often require the
use of several different more generic programs, which will address some of the
subtasks we can divide the original problem in. Those programs, on its turn, can
then be reused for other different tasks.

Let’s imagine, for instance, that someone is writing a report on the discoveries of
new wildlife in a country. This task will require writing, editing and formatting text,
capturing, classifying and editing images, calculating statistics and displaying charts,
creating and manipulating maps, etc. Instead of having a single program for “new
wildlife finding report writing” involving all these activities, several programs
addressing the needs of every single activity can be used: a word processor, an
image editor, a file browser, a spreadsheet editor, a map browser, etc. These pro-
grams, such as text editors or image viewers, usually designed to solve domain-
specific problems, can be also created by parties that do not relate to the creators of
the hardware or the programmers of the OS. These third-parties can be programmers
or teams that have an expert knowledge of the field the program is focused on.
Allowing third party software to be created without the prior consent of the computer,
the OS designers or other software creators, allows new programs to continuously
appear for filling potential new needs.

82 Carles F. Julia and Sergi Jorda

There is indeed a common agreement that allowing third-party apps is an impor-
tant factor for success on commercialization of computing platforms. A classic
example would be the effect of commercialization of the Lotus 1-2-3 spreadsheet
program exclusively for the IBM’s PC. Sales of IBM’s PC had been slow until 1-2-3
was made public, and then increased rapidly a few months after Lotus 1-2-3's
release.! As a more contemporary example, Apple trademarked the slogan “there
is an App for that” for its iPhone 3 g selling campaign on 2009,? advertising the
availability of third-party apps as its main appeal. This move by Apple revolution-
ized the smartphone scene (West and Mace 2010).

Modern operating systems and computers allow several programs to be run in
parallel, and to switch interaction with the user at any desired time. This ability,
multi-tasking, helps to use computers to solve a particular task that involves several
steps and requires potentially different programs, in a more convenient way than
having to stop the current program to start another. Multi-tasking would be indeed
very convenient in our hypothetical new wildlife finding report writing activity:
while our user is writing the report, she has the need of inserting a picture of a new
specimen. She switches the interaction from the word processor to a file browser to
find the picture she wants, she then opens it inside an image editing program (another
switch), where she crops the marginal part of the picture. She then switches again to
the word processor (that still holds the document she was working on) to insert the
modified image.

We can thus conclude that multi-tasking is a very desirable feature when creating
computing systems, as it provides a way to deal with real world tasks in a convenient
fashion, by allowing the use of third party programs.

2.3. Multi-user

Collaboration has also been traditionally tied to complex task completion: group
meetings are a common strategy to shed light into difficult problems. Big problems
can be divided into smaller ones that can be redistributed (Strauss 1985; Schmidt and
Liam 1992), and points of view can be exchanged (Hornecker and Buur 2006). Even
in the computer era, the practice of physical meetings seems to be still (if not more
than ever) prevailing. Empowering collaboration with computers is the primary goal
of Computer Supported Collaborative Work (CSCW) field, and it relates directly to
this group meeting problem. In this discipline, two different (but intersecting)
problems are studied: in co-located CSCW all group individuals are present in the
same workspace while in remote CSCW individuals are located in different places
and all personal interaction is mediated by computers. Both problems deal with

! https://en.wikipedia.org/wiki/Killer_application
2 http://www.trademarkia.com/theres-an-app-for-that-77980556.html

https://en.wikipedia.org/wiki/Killer_application
http://www.trademarkia.com/theres-an-app-for-that-77980556.html

Towards Concurrent Multi-Tasking in Shareable Interfaces 83

several users interacting with the same (local or distributed) system, leading to multi-
user interaction.

Non co-located settings for multi-user interaction in a single virtual workspace,
such as web-based collaborative systems (Bowie et al. 2011), or general cases of
collective distributed work on single documents (groupware) (Ellis and Gibbs 1989),
are very common and widely studied. Co-located collaboration around computers,
on its turn, already exists in a daily basis. Work meetings are often complemented
with laptops, tablets, smartphones and other computing devices.

Needless to say, desktop and laptop computers have not been designed for co-
located multi-user interaction, but for individual usage. Since they feature a single
keyboard and a single pointing device, when used in multi-user setups computers
inevitably lead to an interaction “bottleneck” with the users (Stanton et al. 2001;
Shaer and Hornecker 2010). The use of computers in this context is thus still
individual, lacking the social affordances that can be provided by “shareable”
interfaces, or systems that have specifically been designed for co-located collabora-
tion (Marshall et al. 2007). Affordances, which according to scholars such as
Hornecker and Buur, should particularly consider Spatial interaction and Embodied
Facilitation (Hornecker and Buur 2006).

Shareable interfaces on their side, alleviate the interaction “bottleneck” by creat-
ing multiple interaction points, preventing individuals from taking over control of the
computing device (Hornecker and Buur 2006). Multiple interaction points do also
promote user participation, lowering thresholds for shy people (Hornecker and Buur
2006), and can provide means for bi-manual interaction promoting a richer gesture
vocabulary (Fitzmaurice et al. 1995° 1996). A typical type of interfaces developed for
these collaborative scenarios are tabletop interfaces, which allow users to interact
with horizontal displays using touch and/or pucks; vertical interactive displays (such
as interactive whiteboards) in which users interact using pens or touch; tangibles
which allow users to interact with physically-embedded artifacts and tokens (Rogers
et al. 2009; Shaer and Hornecker 2010); or body gestural interfaces, such as camera-
based systems, which allow users to interact using their bodies (Shaer and Hornecker
2010). As a distinct characteristic, all these interfaces allow users a shared access to
the same input and output physical interfaces, as opposed to typical groupware
systems, where each user has its own interface device (Rogers et al. 2009). Besides
collaboration, these shareable interfaces show also affordances more directly related
with complex task completion. Epistemic actions, physical constraints, and tangible
representations of a problem may contribute to problem solving and planning (Shaer
and Hornecker 2010). Spatial multiplexing allows for a more direct and fast interac-
tion (Fitzmaurice George 1996) while leveraging the cognitive load (Shaer and
Hornecker 2010); tangible objects facilitate creativity (Catala et al. 2012); and rich
gestures lighten cognitive load and help in the thinking process while taking advan-
tage of kinesthetic memory (Shaer and Hornecker 2010).

This combination of social and personal affordances suggest that shareable
interfaces are indeed well suited for complex task completion: apart from promoting

84 Carles F. Julia and Sergi Jorda

collaboration, they provide individual and collective benefits that help completing
these goals.

3. Multi-tasking in shareable interfaces: current situation and related research

Despite all the aforementioned affordances, and considering all the multi-task desir-
able properties, the majority of the currently available shareable interface systems
created for research purposes, consist of a single program that already includes all the
necessary facilities to cover every subtask of the main activity. This is, however,
consistent with the purpose of most research, because, in a collaboration co-located
setting, CSCW researchers typically focus their investigations on the human factors
in multi-user interaction, such as how input devices can be more effectively distrib-
uted between users in order to optimize group dynamics (Kim and Snow 2013;
Verma et al. 2013), or on studying different strategies to access digital and physical
items from the perspective of digital content sharing (Verma et al. 2013), control
sharing (Jorda et al. 2010; Kim and Snow 2013), or proxemics (Ballendat et al.
2010).

A similar enclosing phenomenon happens with real-world products using share-
able interfaces. While some of them focus on a very specific domain, avoiding to
address more general problems (e.g., the Reactable (Jorda 2008) addresses collabo-
ration from the very specific and peculiar needs of musical collaboration (Xambd
et al. 2013)), many others, such as interactive whiteboards, desist about using any
particular multi-user interaction, thus directly presenting the PC graphical system
(Beauchamp 2004); and when addressing multi-tasking, they are single-tasked, or
simply present methods to change the full-screen single active application (Ackad
Christopher et al. 2010).

However, having multi-tasking capabilities in shareable interfaces seems to be in
strict consonance with their goal of promoting and enabling collaborative work, as,
for instance, the recommendations by Scott et al. for collaborative tabletops (Scott
Stacey et al. 2003) are related: Multi-tasking provides a way to have simultaneous
activities, allowing the transition between them (support fluid transitions between
activities) and between personal and collective ones (support transitions between
personal and group work). Also, several tasks can be done concurrently, by several
users (support simultaneous user actions).

It would therefore seem clear that real world shareable interfaces should at least
support some of the characteristics that have turned the personal computer into such a
valuable tool, such as general purpose computing (and third party application
support) and multi-tasking, which sadly are not yet typically found on most current
research prototypes.

We argue that the lack of those features may not be an accident, neither an
unconscious omission: the combination of multi-tasking -a feature so closely asso-
ciated with single-user devices- with multi-user interaction, is not trivial; even less
when combined with rich interfaces such as the ones provided by tabletops. And yet,

Towards Concurrent Multi-Tasking in Shareable Interfaces 85

we want to stress our vision that real world collaborative systems should allow third
party applications (programs) to run and be interacted simultaneously. More precise-
ly, every program should support multi-user input, and a single user should be able to
interact with several applications at the same time. This is not a novel or revolution-
ary idea and some works have in fact, previously attempted at the creation of multi-
user multi-task systems.

Dynamo (Izadi et al. 2003), proposes a shared surface for sharing digital data
between several (remote) users, focusing on ownership and permissions over pro-
grams and documents in a shared multiuser WIMP system. Users may use pairs of
mouse-keyboard to interact with a system that presents local and shared interfaces. In
shared interfaces it focus the attention on methods for preserving and sharing control
over applications and files. It does not, however, deal with co-located access to the
interface, nor with third party applications in the shared space.

LACOME (Mackenzie et al. 2012) also depicts a common shared surface in
which remote single-user PC systems are presented as manipulable windows. Third
party applications are allowed, but those run in the logic of the former single-user
systems. A similar concept is developed in TablePortal (AlAgha et al. 2010), where
remote tabletop applications and activity is presented inside manipulable windows.
In this case remote applications are multi-touch enabled, although its aim is to be
used by a single user, the teacher of a classroom.

(Ballendat et al. 2010) presents us with a series of devices, one of them a vertical
shareable interface, which uses information such as the relative positions and
orientations of the users, the devices, and other objects, and specifically their
pairwise distances (proxemics), for affecting the interaction. As this information is
shared between all the devices (as an Ubicomp ecology), and each device can run a
different program, we could consider this example as a shared interface (based on the
relative positions and orientations) with multi-tasking. The proposal does not de-
scribe however any strategy for coordinating the different programs, but rather
assumes that they are created together as parts of the same system.

WebSurface (Tuddenham et al. 2009) presents a tabletop system with virtual
windows that can be freely manipulated. These windows are web browsers present-
ing conventional web pages that can be interacted by the users. It could be argued
that web pages are a form of third-party applications, although enclosed in a single-
user paradigm. This is also the case of Xplane (Gaggi and Regazzo 2013), a software
layer presenting several tiled windows on the surface with a distinct focus to enable
fast development of tabletop applications, although it does not provide window
transformation abilities.

Multi Pointer X (MPX) (Hutterer and Thomas Bruce 2007) tries to transform PCs
into shared systems by allowing them to use several pairs of keyboard and mouse. As
PCs are already multi-task and third-party application enabled, the result would be a
shared multi-user multi-tasking system. Using a PC setting and applications, how-
ever, does not help to easily allow multi-user interaction inside the applications,
neither collaboration dynamics related to the physical layout of the interfaces.

86 Carles F. Julia and Sergi Jorda

Julia and Gallardo’s TDesktop (Julia and Gallardo 2007) was a first unpublished
attempt to create a tabletop operating system. It provided facilities for third-party
tabletop applications to be developed, as well as an environment to run and manage
multiple applications at the same time. Applications were multi-user by default, and
they could ask the system for full-screen execution, when not designed as floating
widgets. However, it did not enforce that input events were distributed to one
application at most, leaving the possibility to multiple interpretations.

In the next section we will study and try to overcome some of the technical and
conceptual difficulties for designing a proper multi-tasking system on a shareable
interface.

4. Approaches to multi-tasking

From an implementation point of view, interaction in multi-tasking can be narrowed
down to two different problems: (i) allowing two or more processes to share the input
and (ii) allowing two or more processes to share the output. In the PC, input would
consist of mouse and keyboard events, whereas the output would take place in the
monitor display (and in the speakers). In a tabletop system the output would also be
the visual and audible display, whereas the input would be provoked by the objects
and the finger touches on its surface.

Although sharing input and sharing output may be superficially seen as two
aspects of the same problem they are fundamentally different. Sharing output is a
relatively simple issue because it can be reduced to a mixing mechanism: many
programs may require to output some data to a specific destination (the screen), and
the task of such a system would simply consist on deciding how to (or rather whether
to) mix these data. As the source and destination of the output events is known, the
system can use simple rules to decide, for instance, if an app can draw into the
display, occluding other programs, or if the sound that it is generating will be mixed
with the sounds coming from other programs, and with which volume.

On the other hand, sharing input is a much more complicated de-mixing problem:
data from one source (such as the data coming from the touch sensor on a multi-touch
display) can potentially relate to several recipients, the programs. The task of the system
on this case is more complex: the system must know the destination of every data
element, that can be shared or not. On a PC, a media play keystroke, for instance, has to
be distributed to the correct program that is waiting for these types of events, and not
always necessarily to the “active” program, the one that is considered to be actually used
by the user, with a privileged situation that makes it the default receiver of all input data.

4.1. Input sharing

As many programs can be potential receivers of this data, the system needs a set of
rules and mechanisms to fully determine the correct recipient of every piece of input
data. These rules will determine the way multi-tasking is presented to the user.

Towards Concurrent Multi-Tasking in Shareable Interfaces 87

Several rules exist, for dealing with this uncertainty. Many of them will take into
account the context. In interfaces where input and output happen at the same place
(i.e., with Full or Nearby embodiment, according to Fishkin taxonomy (Fishkin
2004)), such as in a touchscreen, input events can be tied to the output elements
nearby. A touch can be tied to the visual element just underneath it, created by a
particular program that will become its correct recipient.

Interfaces in which input and output are decoupled (Sharlin et al. 2004) may
impose more difficulties. When input information is completely untied to the output
elements of the processes, strategies other than using a simple distance criterion have
to be used. In the case of a mouse device, for instance, the PC strategy is to create a
virtual pointer that is controlled by it: as this pointer is coupled to the display it can be
treated as in the previous case (coupled). The mouse mediates between the user and
the cursor; it is not a generic input device which is part of the interface, but a specific
physical representation of the cursor.

The PC keyboard is another decoupled interface, and keyboard events can have
several destinations, these being different programs or even different widgets inside a
program. Some windowing systems simply send the keyboard events to the program
under the pointer, while others create a default destination for the keystrokes
(Scheifler and Gettys 1990). This destination is controlled by the input keyboard
focus, so that only one widget (from one application -the active one) is the current
receiver of all keyboard activity, and this destination can be changed using the
pointer (interacting with another window/widget) or special key combinations (such
as Alt-Tab in the PC). The assumption of a single input keyboard focus by the PC
interaction makes it difficult to adapt it into a multi-user setting, as the interaction
would require multiple foci. Some approaches have been taken in this direction, such
as the Multi Pointer X (MPX) (Hutterer and Thomas 2007) extension, which allows
having virtual input pairs of visual pointers and keyboards that can operate at the
same time both with adapted and with legacy X11 applications. It struggles with
applications that assume that there is only one pointer and focus, enforcing single-
user interaction with those applications as a partial solution. By pairing cursors and
keyboards in pairs, MPX allows several foci (one per pair) to simultaneously exist
(Hutterer and Thomas 2008).

The approach to follow on shareable interfaces will depend on the type of
interface and its purpose. Coupled input/output interfaces, such as tabletops or
vertical displays have the possibility of tying input events to output entities. Gestural
body interfaces may have to use other approaches, such as using a mediating virtual
representation of the body (equivalent to the cursor) as the seminal work of Myron
Krueger in Videoplace or Videodesk (Krueger et al. 1985) already suggested, or
some other kind of focus mechanism.

Input sharing in tabletops is still a young question, as it seems that the problem of
multi-tasking has still not arisen. Window-based application management is starting
to be present on tables (Tuddenham et al. 2009; AlAgha et al. 2010) but the preferred
option continues to be full screen locking.

88 Carles F. Julia and Sergi Jorda

4.2. Area-based interaction

In coupled interfaces it is common to find window-based multi-tasking, so that
different programs obtain independent rectangular areas. They can draw and get all
the interaction performed inside. Those areas can usually be transformed and
manipulated by the user, making it possible for multiple processes to be present in
the display at the same time, thus promoting multi-tasking. In these cases, all the
programs inputs and outputs are confined inside their respective (or multiple)
windows, and a simple coordinate test helps input events to be assigned to the
correct program.

Rectangular windows particularly fit the PC setting. They have the same shape as
the screen, and as they cannot be rotated they can occupy the full screen if necessary,
occluding other windows (rotation of windows is not desirable, as the display is
vertical and has a well-defined orientation, similarly to what would happen to a
painting in a wall).

Using windows on other non-PC situations can have some caveats. In non-
rectangular interfaces, such as in round tabletops like the Reactable (Jorda 2008),
the rectangular shape seems to perform poorly. The Reactable’s circular surface was
designed to avoid dominant positions (Vernier et al. 2002; Jorda et al. 2005). While,
perhaps for this same reason, the original Reactable avoided the use of windows or
rectangular areas, its more recent commercial incarnations make use of them, and
allows users to reorient them,” suggesting that when no predefined orientation exists,
the potential rotation of windows seems necessary. Even within rectangular table-
tops, at least two (or even four) predominant points of view could exist, making the
rotation of windows a desired feature.

On top of these orientation issues, forcing a fixed shape for all applications may
not always be a convenient solution: some programs may need less restricted areas,
leaving most of its window space empty (for instance a circular program such a clock
would have considerable empty space at the edges of the window). This empty space
would prevent input events to reach other occluded applications, making them
unreachable (see Figure 1).

4.3. Arbitrary shape area-based interaction

An alternative to window-based interaction is area-based interaction. In this case,
instead of windows, the system will have to maintain a list of active arbitrary-shape
areas of the processes. The input events distribution mechanism should be equivalent
as when using windows: a collision test will find the correct program that holds the
target area for one particular event. By using arbitrary shapes instead of rectangular
windows, processes no longer have the problem of empty occlusion, as all the unused
application space does not have to be covered by an area. Using arbitrary-shape areas

3 https://www.youtube.com/watch?v=k Yyg-wVYvbo

https://www.youtube.com/watch?v=kYyg-wVYvbo

Towards Concurrent Multi-Tasking in Shareable Interfaces 89

— Rectangular window

Circular widget

r_— Empty,occluding space

—}—— Occluded application

Figure 1. A window with empty space occluding the interaction for another.

is already a popular approach when distributing events through different objects
inside an application. Inside a program window, the different presented elements
define areas where the forwarded input event can be assigned to. Buttons, sliders and
many kinds of controls are examples of this strategy.

However, this approach is not perfect. Apart from the case of decoupled inter-
faces, where area-based interaction is not possible, this strategy may not be desirable
in other additional situations, at least as the only discriminating mechanism.

Recent history of interaction in touch-enabled devices has shown that there is
room for improvement beyond the simple gesture primitives that were associated
with pointing devices, and a variety of touch-based gestures have been developed
and even patented since the first portable multi-touch devices appeared (e.g., pinch
zoom, swipe, swipe from outside of the screen, etc.) (Hotelling et al. 2004; Elias et al.
2007).

The fact that portable devices tend to have full-screen applications, which can
therefore trivially manage all the multi-touch input, has boosted the development of
complementary and often idiosyncratic gestures, able to handle more complex and
richer interaction. If areas were used to know the destination of every input event, the
gestures of every application should start, continue and end inside of the process’
areas, rendering many gestures that used to temporarily transit outside the target area,
impossible to recognize. Even a strategy where only the starting event is used to
check the colliding area may have problems with gestures starting outside of'it. Let’s
imagine and study some examples of gestures that would be problematic when using
areas. An application is responsible for displaying notes through the surface of a
tabletop. Those notes can be translated and transformed by standard direct manipu-
lation gestures such as pinch zoom or dragging. Imagine that the programmer wants
to implement a gesture to save this note: circling the note.

Note that for circling a widget with one finger, we do not need to enter in contact
with the widget itself (see Figure 2). If the area of the widget is defined by the surface
of the note, the needed input events will never reach its right destination. Having a
larger gesture area covering the places where gestures are likely to occur may help to
receive such events, but at the cost of occluding the interaction with other event
recipients, such as other potential applications underneath this note’s area.

90 Carles F. Julia and Sergi Jorda
App2
|

i

Figure 2. A note-taking application that allows the user to create new notes by drawing circles
with a finger over a map browsing application that can be dragged with the finger. Notice that if
using area-based interaction, the note taking program will not receive circling events.

In this other example, let’s imagine a gesture (e.g., a cross) that instantiates a new
widget (e.g., a new note in our note-taking application), anywhere on the interactive
surface. As there is no predefined existing area listening for events, the note-taking
application cannot know when and where to invoke a new note, and, if the whole-
surface area was used for catching all potential crosses, other applications would be
occluded and being unable to receive any input event. Although this particular
example could be solved by showing a button widget to create new notes, it would
have to always be visible, cluttering the space. Global system gestures could be
another example of gestures made outside areas, a gesture defined by the system to
show a global menu, such as a wave gesture, can be performed anywhere on the
surface, regardless of whatever is underneath.

Julia and Gallardo’s TDesktop (Julia and Gallardo 2007) tabletop operating
system solved this problem by allowing the several applications that could run
simultaneously to receive the raw stream of input events as an addition from its
standard area-based input event filtering, thus receiving also input data that originat-
ed elsewhere of their areas. This solution, although effective, rises the problem of
how to distribute events through applications, so to avoid the problem of having
several subscriber programs receiving the same events, and each of them simulta-
neously assuming being the intended addressee of the interaction.

Finally, the area-based strategy to multi-task interaction is not possible with
decoupled interfaces such as full-body sensors and camera-based interfaces (e.g.,
Kinect), motion sensors (e.g., wiimote), voice and sound interfaces (e.g., Speech
recognition), these could still benefit from multi-tasking abilities as they are
already used in multi-user contexts. If multi-tasking with decoupled interfaces
may still seem like a fringe problem, an example can quickly reveal its need.
When multiple home appliances in the same room, such as a hi-fi sound system
and an air conditioner, can accept body gestures as commands, they are in fact
sharing the same input interface (the body). Some mechanism has to ensure that
the same body movement cannot be interpreted as commands for both appliances
simultaneously.

Towards Concurrent Multi-Tasking in Shareable Interfaces 91

In short, shareable interfaces (as we have seen in the example of TDesktop) trying
to process area-less gestures, but also decoupled interfaces, would benefit from a
mechanism different than using areas or windows, for distributing input data to its
correct destination, and thus preventing various programs to process the same events.

4.4. Content/semantics -based input sharing

For decoupled systems that cannot use window (or area)-based input sharing, as well
as for coupled interfaces that for some reason would opt for not using it, an
alternative can be using content-based input sharing.

In a content-based input sharing mechanism, the algorithm, instead of distributing
the input events to their destinations based on the position of the event, would try to
know which events are expected by every application, and would then distribute
these events by deducing their right destination. This approach would not necessarily
treat input data as separated events, but rather as streams of events that may convey
meaning within them. The destination of an input event, for instance, may not only
depend on its own information, but also on the gesture it is part of, on the types and
characteristics of the possible recipients, the context, etc. Generally speaking, when a
series of input events that have a global meaning/semantics as a gesture is defined,
the system’s function is to successfully recognize the performed gesture and subse-
quently distribute it into the processes, given their current expectations and their
contexts. A very simple example implementing this idea could be a system which has
the code to recognize a set of gestures from the input, and when it fully recognizes a
gesture, this is distributed to the application that has requested it. In the possible case
that applications 4 and B request respectively the stick and pinch gestures, when the
system recognizes a stick gesture it handles it to A. Instead, when a pinch gesture is
recognized this one is sent to B.

An issue arises when implementing a system that uses content-based input
sharing: does the system incorporate all the code needed to recognize all the defined
gestures? Should the full set of gestures be defined within the system or should they
be defined within the addressees programs themselves? Depending on how we
choose to distribute the role of defining and recognizing these gestures, three
different strategies can be employed:

a. A centralized gesture recognition engine, with a fixed set of gestures.

As in our stick and pinch gestures example, the system could define a fixed set
of gestures the applications could register to. Based on the preferences of the
applications at the time a gesture is recognized, the system just notifies the correct
program when an individual gesture is recognized. Unfortunately, this strategy has
a clear drawback since it prevents programs to define their own gestures, the ones
that the application programmer(s) felt were best suited. Rich interaction, under-
stood as the possibility for individual applications to define their own optimal
gestures independently of the existing system gestures, is thus dangerously limited.

92 Carles F. Julia and Sergi Jorda

b. A centralized gesture recognition engine, with an application-defined set of
gestures.

In this type of systems, common recognizing mechanism needs to be imple-
mented, for which the application programmers will define their own respective
recognizable gestures. Many recent advances have been attained in the direction
of language-based gesture definitions, especially in the context of multi-touch
applications, which in our case could allow arbitrary gesture definitions to be
added to the system at runtime:

Proton (Kin et al. 2012), Midas (Scholliers et al. 2011), GeForMT (Kammer
et al. 2010b) and GISpL (Echtler and Butz 2012) all allow the programmer to
describe gestures in specially crafted languages that simplify the programming of
gesture recognizers, and therefore the code dedicated to detect gestures from the
input event streams. From those, Midas, GeForMT and GISpL are interpreted
(GISpL only partially) and could theoretically be used as the basis for more general
systems, on wich the applications carry their own gesture definitions and transfer
such specifications to the system, which would use them to recognize the gestures.

The choice of the gesture definition language is also a non-trivial issue. Such a
language should ideally be as complete as possible in order not to become an
obstacle for the programmers, thus making some gestures impossible to define.
For instance, for allowing gestures to be related to the application context data,
such as virtual objects inside the application, the definition language should
provide ways to access it. Proton, GeForMT and GISpL explicitly integrate areas
(as parameters to be accessed in the language or as a previous filtering) as part of
their languages, easing area-based gestures to be programmed, but making area-
less gestures difficult to describe, as this is a fundamental part of these languages.
Midas allows instead for a sort of generic user-defined code and object access
from inside the gesture definition, thus enabling not only areas, but also other
types of constrains to be used, showing its potential to be useful in many gesture
recognition styles. However, it is unclear how such relationship would work
when applied on a server—client schema, which would need to interpret the
definitions within the system while the needed code and data resides on the
program. Apart from these language issues, a gesture recognizer system should
also meet some additional requirements. None of the aforementioned languages
allow multiple instances of gestures being performed at the same time, treating
instead all the input events as part of the same gesture, thus making them
unsuitable for multi-user contexts.

Although a variation of the previous projects would probably fit the require-
ments for building this type of system, forcing all the programs to describe their
gestures in a common language would also have the side effect of preventing
other kinds of gesture-recognition approaches from being used. For instance,
machine learning based approaches (such as (Wobbrock et al. 2007) or
(Caramiaux and Tanaka 2013)) would not be possible, since within this strategy,
gestures are not formally described, but learned instead from examples.

Towards Concurrent Multi-Tasking in Shareable Interfaces 93

c. A decentralized application-centered gesture recognition, with a coordination
protocol

With this third strategy, the system does not participate directly on the

recognition of the gestures, but helps instead in coordinating the set of
programs interested in these gestures. The recognition process takes therefore
place inside the applications, allowing nearly total freedom to the program-
mer, while a common protocol between the system and the programs is used
to guarantee that no single event is mistakenly delivered to two different
processes.
By running the gesture recognition inside the application, it can take into account
its context (e.g., position of the application elements, and other internal logic)
without having to rely on a good gesture language definition, as in the previous
case. This approach also allows programmers to code the recognizers using their
favorite techniques or frameworks, instead of having to rely on the system’s
choice of language or libraries. Furthermore, as the system is in charge of
preventing double interpretations of gestures across different applications, the
different recognizing mechanisms will not need to provide multi-tasking facili-
ties. The aforementioned gesture description languages could be easily adapted to
support the coordination protocol with the system, and they could be deployed
inside the application. Other programs could for example use a machine learning
approach provided that they respect the protocol, and thus train their gesture
recognizers with examples.

The framework we are presenting, GestureAgents (Julia et al. 2013), tries to
create this common protocol and infrastructure. In GestureAgents, instead of
relying in the use of a particular declarative language, the recognizing mechanism
is conditioned by a series of coordination messages that the system and the
processes need to exchange.

5. Implementation of GestureAgents framework

In this section, we describe how the GestureAgents framework implements the
proposed protocol strategy to manage input events to be consumed by recognizers
implemented in several applications. We first introduce the basic elements, then the
protocol between the applications and the system, the restrictions of the gesture
recognizers’ behavior, and give details about the functioning of the system and the
particular implementation of GestureAgents.

5.1. Elements of GestureAgents

GestureAgents is a framework that aims to provide a generic and flexible solution for
multi-user interaction in shareable interfaces, both inside a single application as in a
multi-tasking system. As schematized in Figure 3, GestureAgents relies upon the

94 Carles F. Julia and Sergi Jorda

Input events

(Gesture model) Gesture (event)

[
Recognizerﬂ—» Application
& handling

code

(i

gestures are composed by agent's events

Figure 3. Conceptual elements of GestureAgents.

LRI

concepts of “agent”, “gestures” and “gesture recognizers” and on the idea of “agent
exclusivity”.

An agent is the source component of part of the interface input events, such as an
object in contact with a tangible tabletop interface or a finger touching the surface on
a touch-based interface. For example, in the case of a multi-touch interface, an agent
would be created for every sequence of touches, considering that a sequence starts
with the detection of a finger hitting the surface and concludes when the finger is
removed from the surface. By default agents will represent the minimal set of
identifiable event types (such as the finger touch already described) while more high
level agents, those composed by other agents, such as a hand agent composed by
finger ones, can be also provided, which are best suited for full body interfaces,
where the interaction can have different “resolutions”.

Gestures are sequences of agents’ events, which convey meaning expressed by the
user and defined by the program. A gesture can relate to a single agent or to multiple
ones, both simultaneously and distributed in time. Gestures can be discrete (or
symbolic), in which case they will not trigger any reaction until they are finished,
or continuous, which already convey meaning before they are completed, and can
therefore trigger reactions before finished (Kammer et al. 2010a).

A gesture recognizer, a piece of code that checks that the pattern that defines the
gesture corresponds to the received events, is used by the program to identify a
gesture coming from the agents’ events. By using agents as the basis for its gestures,
recognizers do not have to receive all the events from the interface, but only the
agents they are interested in. This allows the recognition of multiple gestures at the
same time (see Figure 4), as opposed to the majority of gesture frameworks, where all
the input events are part of the same gesture.

The fundamental idea in GestureAgents is based upon agent exclusivity. An agent,
at one given time, can only be part of one gesture (see Figure 5). The system presents
the input data, in the form of agents, to the gesture recognizers inside the applica-
tions, and, if they want to use them as a part of their associated gestures, they will
have to compete between them to earn the exclusivity over the agent’s use before
recognizing their gesture. By locking different agents, several recognizers can
simultaneously recognize gestures, preventing double interpretation of the same
input events, and allowing multi-tasking and multi-user gesture interaction.

As GestureAgents does not use a special gestural description language, problems
concerning the limits of this framework in terms of completeness or design assumptions

Towards Concurrent Multi-Tasking in Shareable Interfaces 95

Gl G2 G3
Al @@ @000 0OO0

A2 e @000 000
> [

Figure 4. In this example the events, emitted by two agents (A1,A2) and represented by circles,
are part of three different gestures (G1,G2,G3) that can occur simultaneously, as in the case of
G2 and G3.

do not apply. Definition of gestures is done solely on the applications. Areas, if present,
are also implemented at the application level, and tested by the applications’ own
gesture recognizers, using their own settings. It is thus up to the programmer to use any
existing library to recognize gestures or to code a recognizer from scratch.

5.2. GestureAgents protocol

The coordination protocol is defined by communication between recognizers (inside
applications) and agents (in the system), relating to the process of soliciting agents,
getting their exclusivity and releasing them.

The communication regarding the recognition of gestures, happens between
recognizers (inside the applications) and the system (holding the agents), as shown
in Figure 6. The GestureAgents’ protocol defines various types of relationships
between recognizers and agents, depending on their internal state. Specifically, a
recognizer is considered to follow a process of four distinct steps:

e Initial state
The recognizer is waiting for an agent (of one specific type) to be announced
by the system. While in this situation, the recognizer can be considered dormant
(that it is not related to any active agent or gesture).
e Evaluation state
The recognizer, which has communicated to the system an interest on one or
several agents, is evaluating if their events match a possible gesture, which may
or may not be recognized at the end. In this state, the confidence of the

Gesture Recognizer

Agent Finger /Tap °
Event: — > Double-Tap @

Finger On Table -

> Move @

Figure 5. Agent exclusivity enforces that an agent at a given time can only be part of one
single gesture.

96

Carles F. Julia and Sergi Jorda

Acquire
Agent

Acquire Agent m Confirm Agents
~ X R
T Fail\ /Finish

Figure 6. States of a recognizer.

recognizer for the hypothesized gesture is not high enough for considering it to
be correct or incorrect.

Depending on the type of gesture being evaluated, this state can be more or
less extended in time. Discrete (or symbolic) gestures will be processed mostly
in this state, because their correctness is not fully set until the end of the gesture
(Kammer et al. 2010b). Continuous gestures, however, can be recognized way
before the gesture has ended. In this former case, this state will last as long as
the type of the gesture is not confirmed.

Recognition state

In this phase the recognizer is confident that the tracked events of the agents
match its associated gesture pattern. The transition to this state occurs after two
subsequent factors: (i) the recognizer no longer considers the gesture an
hypothesis (and so it abandons its evaluation state), and (ii) the system grants
the recognizer the exclusivity on the requested agents. In this state the recog-
nizer simply processes the agents’ events to extract control events from the
gesture, until the recognizer considers it to have ended.

Failed/finished state

In this state the recognizer is no longer active; this can be due to the nonrec-

ognition of the gesture, or to the successful conclusion of the recognized gesture.

With this behavior in mind, the protocol is composed of a series of messages that

can be exchanged between the recognizer and the system. From the recognizer
perspective these would be the messages sendable to the system:

Register (or unregister) to a type of agent

If a recognizer is registered to a type of agent (for instance a “touch agent”),
when a new agent of this kind appears in the system, the recognizer is notified.
This message will typically happen in the recognizer’s initial state.
Register (or unregister) to an agent’s event type

Given an agent, the recognizer subscribes to its events. For instance given a touch
agent it could be possible to register to its update events (movement, or pressure). In
the evaluation state, the recognizer will subscribe or unsubscribe to different type of
the agent’s events, depending of the pattern of the associated gesture.

Towards Concurrent Multi-Tasking in Shareable Interfaces 97

e Acquire an Agent (preventing other recognizers of getting its exclusivity)

By acquiring an agent, the recognizer expresses its interest on it, communi-
cating the system that it is currently evaluating if the agent is part of a given
gesture. This message will be responded by the system with the result of the
operation: frue for success acquiring the agent; false for failure acquiring it. This
prevents the agent to be assigned to other recognizers (from another program,
for instance) until this recognizer dismisses it (due to conclusion or to nonrec-
ognition). The recognizer will typically acquire agents in the evaluation state.

e Confirm an Agent (requesting the Agent exclusivity)

After successfully acquiring an agent and checking for its events, the recog-
nizer may conclude that it is part of the expected gesture. It then proceeds to
confirm it. This message will only be issued by the recognizer when attempting
to transition from the evaluation state to the recognition state. The response
from the system may not be immediate (we will later address disambiguation
delay), and until then the recognizer remains in the evaluation state. If the
exclusivity is finally granted by the system, the recognizer will receive a
message from the system notifying so. If the system does not grant the
exclusivity, it will send a message forcing the recognizer to fail.

e Dismissing an Agent

An agent can be dismissed in order to be reclaimed by the system, for being
assigned to other recognizers. This may happen when a recognizer voluntarily
considers that an acquired agent is not part of the expected gesture, or when
confirmed agents are part of a gesture that the recognizer considers finalized.
Also, when a recognizer fails, all the acquired and confirmed agents are
forcefully dismissed.

The system will send signals to the recognizer, both (i) in response to its requests,
(i1) in the case of acquiring an agent and, on its own prerogative, (iii) for notifying the
presence of new agents, (iv) for transmitting agents’ events, (v) for granting the
exclusivity over an agent, or (vi) for forcing the recognizer to fail.

To illustrate how this protocol works we will detail a possible example of a
recognizer’s life-cycle, based on a recognizer that implements the recognition of the
gesture “straight line over a widget” in a tabletop system, as represented in Figure 7.

In this example, when the application starts, the recognizer is instantiated by the
application and it starts in its initial dormant state. It then subscribes to the touch
agent type to receive new agents’ announcements. Each time the system notifies the
recognizer of the presence of a new touch agent, the recognizer checks that this agent
is near a widget, as its gesture should be related to one of them. If the touch agent
happens to be near a widget, the recognizer declares its interest in the agent by
acquiring it, and entering into its evaluation state.

If this agent is not yet assigned in exclusivity to any other recognizer, the
system accepts the query and communicates it to the recognizer, which sub-
scribes to this agent’s movement events, in order to track the trajectory of the

98 Carles F. Julia and Sergi Jorda

system recognizer
J subscribe touch agents

new touch agent T

Initial state

Agent is new

. acaureagentT

— acquire: true
subscribe T.move

Disambiguating report T.move events Evaluation state

E
exclusivity granted

report Tmove events .
Exclusivity granted Recognition state

. dismissagentT ___—
Finished state

Agent recycled
Figure 7. Protocol representation of the “straight line over a widget” gesture recognition example.

touch. While the touch agent slides through the surface, the system sends the
corresponding agent events related to this movement. With every update, the
recognizer keeps checking if the overall movement is indeed a straight line, and
if it is crossing the widget nearby.

When the touch crosses the widget, the recognizer notices that the events defin-
itively do match its expected gesture pattern, and it confirms the already acquired
touch agent, thus requesting its exclusivity. If at this moment no other recognizer is
acquiring it, the system confirms the exclusivity to the recognizer. With this confir-
mation, the recognizer moves to the recognition state, and starts receiving the events
from the touch agent. When the recognizer decides that the gesture is completed, it
finishes by dismissing the agent in the process.

5.3. Restrictions on the behaviors of recognizers

The good functioning of the described protocol depends on the recognizers
implementing the protocol correctly, but also on respecting some good practices.
In particular, during all the time one recognizer stays in its evaluating state it is
preventing other (possibly correct) recognizers to get the agents exclusivity and enter
their own recognition states.

An ill-coded recognizer, for instance, could just acquire all the agents in the
system, and never fail or confirm them. This would indefinitely prevent all other
recognizers to successfully earn the agents’ exclusivity and thus no recognizer would
ever actually recognize their corresponding gestures.

To minimize the disambiguation delay between the recognizer confirming the
agents and getting their exclusivity (pictured in Figure 8), recognizers must decide as
soon as possible whether a stream of input events can be or not be assigned to a
gesture, thus minimizing their stay in the evaluation state.

Towards Concurrent Multi-Tasking in Shareable Interfaces 99

Symbolic (Discreete, Offline) gestures Continuous (Online) gestures
Recognition Recognition
Control

Disambiguation delay

Recognize

N A X & 8 (CACRORCRCRGRT)

L Control

Figure 8. Disambiguation delay occurs between the evaluation state (black) and the recognition
state (green).

Another consequence of this recognition process protocol is that confirming
agents is a final decision. Once a recognizer enters the recognition state, the gesture
should always be valid, and if the agent’s events are no longer considered part of the
gesture, the recognizer should finish and release all the agents’ exclusivity. The
agents can then be used again by other recognizers, in the condition of recycled
agents, as their appearance is caused by the release form a previous recognizer,
instead of being new.

5.4. The GestureAgents system

The rationale behind these messages is embedded in the functioning of the system
while protecting the agent exclusivity. For each agent, the system manages a list of
acquiring recognizers (those that are interested in the agent) and a slot for only one
completing recognizer (that considers this agent as part of its gesture). When a
recognizer acquires the agent, the system simply adds it to this list, unless this agent’s
exclusivity is already given.

When a recognizer confirms an agent requesting its exclusivity, the system
removes the recognizer from the acquired list and puts it into the completing slot.
If the slot is not empty, the system decides (via the consultation of several policies)
whether or not the new candidate should replace the old one, and the loser (which-
ever it is) is forced to fail. In general, exclusivity is granted only when the list of
acquiring recognizers is empty, which usually happens when alternative acquiring
recognizers fail recognizing the gesture and thus dismiss the agent, removing them
from the agent’s list of acquiring recognizers.

When a recognizer dismisses an agent of which it had its exclusivity, this
agent can be used again by other recognizers; the system sets a flag marking it
as “recycled” and notifies other interested recognizers as if it was a brand new
agent (an overall picture of the states and transitions of an agent is shown
in Figure 9).

100 Carles F. Julia and Sergi Jorda

Acquire Acquire

Fail

7~ N\ g — q Complete
® ———(nNew) (Disambiguation):_)

AN y

o X Can
Acquire Confirm

(] Recycled / Exclusivity Grantec‘i;\)

Finish

Figure 9. Life cycle of an agent.

This mechanism actually prevents agents from being used as a part of a gesture,
until no other recognizers are interested. When two competing recognizers are sure
that an agent is part of their gesture, a decision has to be made. Policies, an ordered
list of specific rules that apply to specific situations, will deal with cases of conflict,
defining priorities and compatibilities between recognizers.

The decisions to be taken by the system can be defined by using two sets of
policies, completion_policies and compatibility policies:

e The first are consulted when confirming an agent. They decide whether the
new recognizer candidate for exclusivity can replace the old one in the
completing slot, defining a priority between two competing recognizers. For
instance, a system could decide that recognizers from applications with a
given priority, will win over non-prioritized ones, or an application could
enforce that a pinch zoom recognizer always wins a drag move recognize

e The compatibility policies are used to decide whether a recognizer can be given
the exclusivity over one agent, while another one is still acquiring it. Although
at a first glance this may seem as if we were breaking the exclusivity rule, we are
in fact only affecting the disambiguation mechanism, as we will still only allow
one of the recognizer to use the events from this gesture. What this mechanism
is in fact allowing is having recognizers in a “latent” state, which will allow
other recognizers to use the agent until they can confirm it, thus finally
provoking the recognized gesture to end. Compatibility policies thus permit
defining a priority between a confirmed recognizer and “latent” aspirants.

A common generic policy set that could be added to a system using
GestureAgents, would be one prioritizing complex gestures over simple gestures.
For instance, in a tabletop, prioritizing gestures involving multiple fingers over
gestures involving one single finger. If we measure this complexity by the number
of acquired agents, it would be simple to define a completion policy guaranteeing
that complex gesture recognizers will be granted the agents’ exclusivity whenever
they successfully recognize a gesture, in spite of the less complex gesture recognizers
acquiring them:

Towards Concurrent Multi-Tasking in Shareable Interfaces 101

@Agent.completion policy.rule(0)
def complex beat simple(rl, r2):
if len(rl. agentsAcquired) < len(r2. agentsAcquired):
return True

By defining a similar compatibility policy, we would allow simpler gestures to be
recognized until a more complex gesture gets the exclusivity. This pair of polices
would also solve the previously mentioned pinch-zoom versus drag-move gesture
problem.

@Agent.compatibility policy.rule(0)
def simple can recognize until complex(rl, r2):
if len(rl. agentsAcquired) < len(r2. agentsAcquired):
return True

At this point, it has to be noted that the current implementation is not using yet a
real, portable network protocol, but is instead prototyped as a relationship between
Python objects inside the system and the application. However it follows this pattern
closely. In the current prototype implementation, policies can be defined at many
levels, and can be introduced by applications, recognizers or the system itself. In a
more conservative implementation, with a network-based coordination protocol, it
could be more interesting that system-wide policies would only be defined inside the
system, thus preventing arbitrary code from injected application-defined policies to
be executed by the system. Application-based policies could be instead enforced at
the application level.

5.5. The GestureAgents recognition framework

Apart from the agent exclusivity coordination protocol for multi-user and multi-
touch interaction, GestureAgents provides a gesture recognition framework based on
the same agent exclusivity concept. It provides gesture composition (i.e., describing
a gesture in terms of a combination of previously defined simpler ones) by stacking
layers of agent-recognizer relations, and by considering that recognized gestures can
also be agents (such as double-tap agents). The framework also takes advantage of
the agent exclusivity competition between recognizers for solving internal disam-
biguation for simultaneous instance of the same gesture recognizer, by treating them
as different gestures that have to compete for the agent’s exclusivity.

Recent developments in the framework have simplified the first layer of agent-
recognizer relation, the one of the system-recognizer communication. By encapsu-
lating every recognizer relationship tree inside an isolating proxy, the protocol
becomes much clearer and eliminates possible incompatibility issues due to the use

102 Carles F. Julia and Sergi Jorda

of the compositing feature of the gesture-recognition framework. In the previous
structure, there was no distinction between end-user gestures and sub-gestures.

6. Example applications and systems created with GestureAgents

GestureAgents has been used in several systems and applications, testing several
aspects of the framework: a concurrency test application, a painting system demo, a
map-browsing demo and an orchestra conducting simulator. Unless stated, the
examples have been implemented in a Reactable Experience tabletop device.*

To test the performance on a multi-user condition, a gesture-performing game has
been implemented. The gestures used include Tap, Double Tap, Tap Tempo (4 taps)
and a variety of waveforms with different shapes and orientations. Users earn points
by performing the correct gesture when asked to. Experiments done in this system
show that it is capable of successfully supporting concurrent gesture recognition and
interaction (Julia et al. 2013).

A painting system constituted by two separate applications has also been created
to test both the agent exclusivity competition by recognizers, and the effects of the
recognition delay (see Figure 10, right). One application has recognizers for the tap,
stick (straight line) and paint (free movement) gestures, while another uses a double-
tap recognizer in a circular area. The results of the gestures of the first application are
reflected in visual elements (lines, dots and traces), while the second application
erases the display when a double tap is detected. As the double tap is only valid in a
circular area, performing a single tap inside the area would, at first, activate also the
double-tap recognizer, to end failing after a timeout call. This setting allowed to
observe that the recognition delay introduced by the double-tap happened only inside
the area.

A map application, featuring typical pinch zoom and drag move gestures for
manipulating a world map, as well as tap and stick gestures for annotating geograph-
ical locations and reseting the view respectively, has been created to test the different
policies (see Figure 10, left). The relationship between the pinch zoom and the drag
move recognizers require the first to be able to overcome the agents completed by the
second, thus defining both a compatibility policy and a completion policy to
achieve the effect.

Finally, a fully “decoupled interface” application, consisting of an orchestra
conductor simulator for the detection of conductor movements using a depth camera,
is currently in development (Goémez et al. 2013) (see Figure 11). The use of skeleton-
based agents as the basis for the gesture recognition is helping us to clarify how
multi-level agents, such as joints, limbs and users, should be used in a decoupled
level without affecting the agent exclusivity competition between recognizers.

4 http://www.reactable.com/products/reactable experience/

http://www.reactable.com/products/reactable_experience/

Towards Concurrent Multi-Tasking in Shareable Interfaces 103

Figure 10. A map browsing application (/eff) and a painting system (right) implemented in
GestureAgents.

The GestureAgents framework is open source and available to anyone for use and
improve. The code can be found in the following repository: https://bitbucket.org/
chaosct/gesture-agents, and videos of some of the examples can be found at http://
carles.fjulia.name/gestureagentsvideos .

7. Discussion

The GestureAgents approach to provide multi-tasking to shareable interfaces is still
in a prototype stage and can primarily serve as a starting point to explore this type of
application-centric distributed gesture recognition strategy. This means that many
aspects regarding the real world usage of such mechanism are still to be explored and
discussed in depth.

A typical concern of such system could be its resilience against ill-behaved
programs. An application that unintentionally grabs input events without releasing

ViewONI

Figure 11. Orchestra conductor gesture recognizer application implemented in GestureAgents.

https://bitbucket.org/chaosct/gesture-agents
https://bitbucket.org/chaosct/gesture-agents
http://carles.fjulia.name/gestureagentsvideos
http://carles.fjulia.name/gestureagentsvideos

104 Carles F. Julia and Sergi Jorda

them, could effectively block all other programs from receiving the exclusivity over
the agents to fully recognize their gestures, unless specific policies preventing or
limiting this type of behavior were implemented.

Even malware could register similar or identical gestures to the ones from legit
programs in order to steal those to insert its malicious content. Again, careful policies
would have to be designed to limit this kind of attacks, such as using proximity to
areas to prioritize conflicting gestures. However, the experience with PC malware
tells us that it is very difficult to be protected from malicious applications.

Another security-related concern is whether an application could steal secrets
from our interaction with other programs. As in GestureAgents every process can
receive all input information to check if it fits a particular gesture, it is sensible to
think that key-logger-like applications could be effectively developed. Being the
situation similar to the PC’s in this case, we can learn from its implemented strategies
to solve that particular problem. Some operating systems implement a way to interact
with a specific dialog that is isolated from all the other processes in order to enter a
password or to confirm an action that requires specific privileges, a possible solution
in GestureAgents could be based on this same idea.

Other issues related to efficiency could be relevant. The GestureAgents strategy
simply distributes the events to the applications, leaving to them the recognition. In
this perspective it does not pose any relevant computing burden. Additionally, the
restrictions imposed on the recognizers’ behavior favors incremental gesture recog-
nition approaches, which are computationally cheap. In fact, the informal experience
through the different exposed tests and demos, does not clearly reveal any percep-
tually relevant impact by GestureAgents.

That said, in current systems, input events are either processed in a central
engine before distributing them to the applications, or are filtered by area (or by
focus point) before being processed inside the application. In GestureAgents
many applications can be processing the same events at the same time, multi-
plying the needed processing power. At least with the current implementation,
this effect seems inevitable.

Existing centralized gesture recognition engines that recognize several hypothet-
ical gestures simultaneously are making efforts to parallelize this processing while
guaranteeing soft real-time (Marr et al. 2014). In GestureAgents the processing of
gestures in different applications would be done in parallel by definition, although
without real-time guarantees.

Overall, we think that the identification of the problem of the lack and need of
multi-user concurrent multitasking, and our approach to the solution contribute to the
current state of the art. By proposing a content-based disambiguation instead of an
area-based one, GestureAgents approach can be a valid solution for multi-tasking, in
both coupled and decoupled shareable interfaces, revealing itself as a generic
solution. This can be increasingly relevant for new upcoming decoupled interfaces
such as hand tracking sensors or depth cameras, which could benefit from policies
and strategies developed for other more popular interfaces.

Towards Concurrent Multi-Tasking in Shareable Interfaces 105

8. Conclusions

We have identified and exposed the need of multi-tasking capabilities in shareable
multi-user interfaces. We have argued about the utility of multi-tasking when solving
complex tasks with computers, and showed that multi-tasking features are currently
missing in actual shareable interfaces, despite the fact that one of their main goals is
complex task solving through collaboration between users.

We argue that this lack is not unintentional but a consequence of the difficulty of
adapting current multi-tasking-capable systems into shareable interfaces.

An analysis of the complexities of implementing such a system together with a
discussion of possible strategies has been carried, revealing that “area-based input
events distribution” or “gesture language definition-based” approaches may pose
problems in the context of rich interaction and decoupled interfaces. A third ap-
proach, using a protocol to control input event distribution but leaving gesture
recognition to the application has been described and considered as the best choice.

An implementation of this approach, GestureAgents, has been presented as a
possible solution, which implements the third of these strategies.

Examples of use of the framework have been finally presented, showing some of
the possibilities of multi-user multi-tasking interaction and the potential of the
framework itself.

Acknowledgments

The research leading to these results has received funding from the European
Union Seventh Framework Programme FP7 / 2007-2013 through PHENICX
project under grant agreement n° 601166.

References

Ackad, Christopher James, Anthony Collins, Judy Kay (2010). Switch: exploring the design of
application and configuration switching at tabletops. I7S°10: ACM Int. Conf. Interact. Tabletops
Surfaces. Saarbriicken, Germany. New York: ACM Press, pp. 95-104.

AlAgha, Iyad, Andrew Hatch, Linxiao Ma, Liz Burd (2010). Towards a teacher-centric approach for
multi-touch surfaces in classrooms. I7S°'10: ACM Int. Conf. Interact. Tabletops Surfaces.
Saarbriicken, Germany. New York: ACM Press, pp. 187-196.

Ballendat, Till, Nicolai Marquardt, Saul Greenberg (2010). Proxemic interaction. /75°10: ACM Int.
Conf. Interact. Tabletops Surfaces. Saarbriicken, Germany. New York: ACM Press, pp. 121-130.

Beauchamp, Gary (2004). Teacher use of the interactive whiteboard in primary schools: towards an
effective transition framework. Technology, Pedagogy and Education, vol. 13, no. 3, pp. 327-348.

Bowie, Muriel, Oliver Schmid, Agnes Lisowska Masson, Béat Hirsbrunner (2011). Web-based
multipointer interaction on shared displays. CSCW’11: Proc. ACM 2011 Conf. Comput. Support.
Coop. Work. Hangzhou, China. New York: ACM Press, pp. 609—612.

Caramiaux, Baptiste, Atau Tanaka (2013). Machine Learning of Musical Gestures. NIME 2013: Proc.
2013 Conf. New Interfaces Music. Expr. Daejeon & Seoul, pp. 27-30.

106 Carles F. Julia and Sergi Jorda

Catala, Alejandro, Javier Jaen, Betsy van Dijk, Sergi Jorda (2012). Exploring tabletops as an effective
tool to foster creativity traits. 7EI’12: Proc. Sixth Int. Conf. Tangible, Embed. Embodied Interact.
Kingston, Ontario, Canada. New York: ACM Press, pp. 143—150.

Echtler, Florian, Andreas Butz (2012). GISpL: Gestures Made Easy. TEI’12: Proc. Sixth Int. Conf.
Tangible, Embed. Embodied Interact. Kingston, Ontario, Canada. New York: ACM Press, pp. 233—
240.

Elias, John Greer, Wayne Carl Westerman, Myra Mary Haggerty (2007). Multi-touch gesture
dictionary. US Patent 7,840,912 B2.

Ellis, Clarence A, Simon J Gibbs (1989). Concurrency control in groupware systems. SIGMOD '89:
Proc. 1989 ACM SIGMOD Int. Conf. Manag. Data. Seattle, Washington, USA. pp. 399-407.

Fishkin, Kenneth P (2004). A taxonomy for and analysis of tangible interfaces. Personal and
Ubiquitous Computing, vol. 8, no. 5, pp. 347-358.

Fitzmaurice, George W (1996). Graspable user interfaces. Ph.D. dissertation. University of Toronto:
Graduate Department of Computer Science.

Fitzmaurice, George W, Hiroshi Ishii, William AS Buxton (1995). Bricks: laying the foundations for
graspable user interfaces. CHI'95: Proc. SIGCHI Conf. Hum. Factors Comput. Syst. Denver,
Colorado, USA. New York:ACM Press/Addison-Wesley Publishing Co., pp. 442-449.

Gaggi, Ombretta, Marco Regazzo (2013). An environment for fast development of tabletop
applications. /TS’13: Proc. 2013 ACM Int. Conf. Interact. tabletops surfaces. St. Andrews, United
Kingdom. New York: ACM Press, pp. 413—416.

Gomez, Emilia, Maarten Grachten, Alan Hanjalic, et al. (2013). PHENICX: Performances as Highly
Enriched aNd Interactive Concert Experiences. Open access

Hornecker, Eva, Jacob Buur (2006). Getting a grip on tangible interaction: a framework on physical
space and social interaction. Proc. CHI'06: SIGCHI Conf. Hum. Factors Comput. Syst. Montréal,
Québec, Canada, New York: ACM Press, pp. 437—446.

Hotelling, Steve, Joshua A Strickon, Brian Q Huppi, et al. (2004). Gestures for touch sensitive input
devices. US Patent 8,479,122 B2.

Hutterer, Peter, Bruce H Thomas (2007). Groupware support in the windowing system. Eighth
Australas. User Interface Conf. Ballarat, Australia. Australian Computer Society, Inc., pp. 39-46.

Hutterer, Peter, Bruce H Thomas (2008). Enabling co-located ad-hoc collaboration on shared displays.
Ninth Australas. User Interface Conf. Wollongong, NSW, Australia. Australian Computer Society,
Inc., pp. 43-50.

Izadi, Shahram, Harry Brignull, Tom Rodden, et al. (2003). Dynamo: a public interactive surface
supporting the cooperative sharing and exchange of media. UIST 03: Proc. 16th Annu. ACM Symp.
User interface Softw. Technol. Vancouver, BC, Canada. pp. 159-168.

Jorda, Sergi (2008). On Stage: the Reactable and other Musical Tangibles go Real. International
Journal of Arts and Technology, vol. 1, no. 3/4, pp. 268-287.

Jorda, Sergi, Martin Kaltenbrunner, Giinter Geiger, Ross Bencina (2005). The reactable*. /ICMC
2005: Proc. Int. Comput. Music Conf. Barcelona, Spain. pp. 579-582.

Jorda, Sergi, Carles F Julia, Daniel Gallardo (2010). Interactive surfaces and tangibles. XRDS:
Crossroads, The ACM Magazine for Students, vol. 16, no. 4, pp. 21-28.

Julia, Carles F, Daniel Gallardo (2007). TDesktop?: Disseny i implementacio d’un sistema grafic
tangible. Degree thesis. Universitat Pompeu Fabra.

Julia, Carles F, Nicolas Earnshaw, Sergi Jorda (2013). GestureAgents: an agent-based framework for
concurrent multi-task multiuser interaction. Proc. 7th Int. Conf. Tangible, Embed. Embodied
Interact. Barcelona, Spain. pp. 207-214.

Kammer, Dietrich, Georg Freitag, Mandy Keck, Markus Wacker (2010a). Taxonomy and Overview of
Multi-touch Frameworks: Architecture, Scope and Features. Workshop Eng. Patterns Multitouch
Interfaces

Towards Concurrent Multi-Tasking in Shareable Interfaces 107

Kammer, Dietrich, Jan Wojdziak, Mandy Keck, et al. (2010b). Towards a formalization of multi-touch
gestures. [7S°10: ACM Int. Conf. Interact. Tabletops Surfaces. Saarbriicken, Germany. New York:
ACM Press, pp. 49-58.

Kim, Henna, Sara Snow (2013). Collaboration on a large-scale, multi-touch display: asynchronous
interaction and multiple-input use. CSCW’13. San Antonio. pp. 165-168.

Kin, Kenrick, Bjérn Hartmann, Tony DeRose, Maneesh Agrawala (2012). Proton: Multitouch
Gestures as Regular Expressions. CHI'12: Proc. SIGCHI Conf. Hum. Factors Comput. Syst.
Austin, Texas, USA. New York: ACM Press pp. 2885-2894.

Krueger, Myron W, Thomas Gionfriddo, Katrin Hinrichsen (1985). VIDEOPLACE An artificial
reality. CHI'85. New York: ACM Press pp. 35-40.

Mackenzie, Russell, Kirstie Hawkey, Kellogg S Booth, et al. (2012). LACOME: a Multi-User
Collaboration System for Shared Large Displays. CSCW’12, Washington. New York: ACM Press,
pp. 267-268.

Marr, Stefan, Thierry Renaux, Lode Hoste, Wolfgang De Meuter (2014). Parallel gesture recognition
with soft real-time guarantees. Science of Computer Programming, vol. 98, no. 2, pp. 159-183.
Marshall, Paul, Yvonne Rogers, Eva Hornecker (2007). Are Tangible Interfaces Really Any Better
Than Other Kinds of Interfaces? CHI'07 workshop on Tangible User Interfaces in Context &

Theory, 28 April 2007, San Jose, California, USA.

Rogers, Yvonne, Youn-kyung Lim, William Hazlewood, Paul Marshall (2009). Equal Opportunities:
Do Shareable Interfaces Promote More Group Participation Than Single User Displays? Human-
Computer Interaction, vol. 24, no. 1, pp. 79-116.

Scheifler, Robert W, Jim Gettys (1990). The X window system. Sofiware: Practice and Experience,
vol. 20, no. S2, pp. S5-S34.

Schmidt, Kjeld, Liam Bannon (1992). Taking CSCW seriously. Computer Supported Cooperative
Work (CSCW), vol. 1, no. 1-2, pp. 7-40.

Scholliers, Christophe, Lode Hoste, Beat Signer, Wolfgang De Meuter (2011). Midas: a declarative
multi-touch interaction framework. TEI'll: Proc. fifth Int. Conf. Tangible, Embed. embodied
Interact. Funchal, Portugal. New York: ACM Press, pp. 49-56.

Scott, Stacey D, Karen D Grant, Regan L Mandryk (2003). System guidelines for co-located,
collaborative work on a tabletop display. ECSCW 2003: Proc. Eighth Eur: Conf. Comput. Support.
Coop. Work. Helsinki, Finland. Springer, pp. 159-178.

Shaer, Orit, Eva Hornecker (2010). Tangible User Interfaces: Past, Present, and Future Directions.
Foundations and Trends in Human-Computer Interaction, vol. 3, no. 1-2, pp. 1-137.

Sharlin, Ehud, Benjamin Watson, Yoshifumi Kitamura, et al. (2004). On tangible user interfaces,
humans and spatiality. Personal and Ubiquitous Computing, vol. 8, no. 5, pp. 338-346.

Stanton, Danae, Tony Pridmore, Victor Bayon, et al. (2001). Classroom collaboration in the design of
tangible interfaces for storytelling. CHI'01: Proc. SIGCHI Conf. Hum. factors Comput. Syst.
Seattle, Washington, USA. New York: ACM Press, pp. 482—489.

Strauss, Anselm (1985). Work and the Division of Labor. The Sociological Quarterly, vol. 26, no. 1,
pp. 1-19.

Tuddenham, Philip, Ian Davies, Peter Robinson (2009). WebSurface. /7S°09: Proc. ACM Int. Conf.
Interact. Tabletops Surfaces. Banff, Alberta, Canada. New York: ACM Press, pp. 181-188.

Verma, Himanshu, Flaviu Roman, Silvia Magrelli, et al. (2013). Complementarity of input devices to
achieve knowledge sharing in meetings. CSCW’13: Proc. 2013 Conf. Comput. Support. Coop.
Work. San Antonio, Texas, USA. ACM, pp. 701-703.

Vernier, Frédéric, Neal Lesh, Chia Shen (2002). Visualization techniques for circular tabletop
interfaces. AVI'02: Proc. Work. Conf. Adv. Vis. Interfaces Trento, Italy. New York: ACM Press, pp.
257-266.

West, Joel, Michael Mace (2010). Browsing as the killer app: Explaining the rapid success of Apple’s
iPhone. Telecommunications Policy, vol. 34, no. 5-6, pp. 270-286.

108 Carles F. Julia and Sergi Jorda

Wobbrock, Jacob O, Andrew D Wilson, Yang Li (2007). Gestures without libraries, toolkits or
training: a $1 recognizer for user interface prototypes. UIST 07: Proc. 20th Annu. ACM Symp. User
interface Softw. Technol. Newport, Rhode Island, USA. New York: ACM Press, pp. 159-168.

Xambo, Anna, Eva Hornecker, Paul Marshall, et al. (2013). Let’s jam the reactable. ACM
Transactions on Computer-Human Interaction, vol. 20, no. 6, pp. 1-34.

	Towards Concurrent Multi-Tasking in Shareable Interfaces
	Abstract
	Introduction
	From personal to collaborative computing
	The rise of the PC
	Multi-tasking
	Multi-user

	Multi-tasking in shareable interfaces: current situation and related research
	Approaches to multi-tasking
	Input sharing
	Area-based interaction
	Arbitrary shape <?thyc=10?>area-based<?thyc=5?> interaction
	Content/semantics <?thyc=10?>-based<?thyc=5?> input sharing

	Implementation of GestureAgents framework
	Elements of GestureAgents
	GestureAgents protocol
	Restrictions on the behaviors of recognizers
	The GestureAgents system
	The GestureAgents recognition framework

	Example applications and systems created with GestureAgents
	Discussion
	Conclusions
	References

