
Des Autom Embed Syst (2007) 11: 249–283
DOI 10.1007/s10617-007-9009-4

Memory-efficient multithreaded code generation
from Simulink for heterogeneous MPSoC

Sang-Il Han · Soo-Ik Chae · Lisane Brisolara ·
Luigi Carro · Ricardo Reis · Xavier Guérin ·
Ahmed Amine Jerraya

Received: 3 May 2007 / Accepted: 6 November 2007 / Published online: 27 November 2007
© Springer Science+Business Media, LLC 2007

Abstract Emerging embedded systems require heterogeneous multiprocessor SoC archi-
tectures that can satisfy both high-performance and programmability. However, as the com-
plexity of embedded systems increases, software programming on an increasing number
of multiprocessors faces several critical problems, such as multithreaded code generation,
heterogeneous architecture adaptation, short design time, and low cost implementation. In

This manuscript has been extended with multithreaded code generation based on “Buffer memory
optimization for video codec application modeled in Simulink” by Sang-Il Han, Ahmed A. Jerraya,
et. al., which appeared in the Proceedings of the DAC 2006 and “Functional modeling techniques for
efficient SW code generation of video codec application” by Sang-Il Han, Ahmed A. Jerraya, et. al.,
which appeared in the Proceedings of the ASPDAC 2006.

S.-I. Han (�) · S.-I. Chae
School of Computer Science and Engineering, Seoul National University, Shilim-dong, San 56-1,
Kwanak-gu Seoul, South Korea
e-mail: sihan@sdgroup.snu.ac.kr

S.-I. Chae
e-mail: chae@sdgroup.snu.ac.kr

L. Brisolara · L. Carro · R. Reis
Instituto de Informatica, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

L. Brisolara
e-mail: lisane@inf.ufrgs.br

L. Carro
e-mail: carro@inf.ufrgs.br

R. Reis
e-mail: reis@inf.ufrgs.br

X. Guérin
TIMA Laboratory, 46 Av. Felix Viallet, 38031 Grenoble Cedex, France
e-mail: xavier.guerin@imag.fr

A.A. Jerraya
CEA-LETI, MINATEC, 17 rue des Martyrs, 38054 Grenoble, France
e-mail: ahmed.jerraya@cea.fr

250 S.-I. Han et al.

this paper, we present a software code generation flow based on Simulink to address these
problems. We propose a functional modeling style to capture data-intensive and control-
dependent target applications, and a system architecture modeling style to seamlessly trans-
form the functional model into the target architecture. Both models are described using
Simulink. From a system architecture Simulink model, a code generator produces a multi-
threaded code, inserting thread and communication primitives to abstract the heterogeneity
of the target architecture. In addition, the multithread code generator called LESCEA ap-
plies the extensions of dataflow based memory optimization techniques, considering both
data and control dependency. Experimental results on a Motion-JPEG decoder and an H.264
decoder show that the proposed multithread code generator enables easy software program-
ming on different multiprocessor architectures with substantially reduced data memory size
(up to 68.0%) and code memory size (up to 15.9%).

Keywords Multithreaded code generation · Memory size reduction · Multiprocessor SoC ·
Simulink

1 Introduction

Current embedded systems require flexible and high-performance architectures to concur-
rently execute multiple applications. An attractive solution for these systems can be the
use of heterogeneous multiprocessor SoC (MPSoC) architectures, which provides highly
concurrent computation and flexible programmability [1]. Recent platforms such as Cradle
CT3600™ [2] and IBM Cell™ [3] are examples of MPSoC architecture with 10–20 hetero-
geneous processors. The MPSoC architectures integrate an increasing number of processors
as the complexity of embedded applications increases. As a consequence, software program-
ming on the heterogeneous multiprocessors in an MPSoC platform is now becoming a major
challenge in the SoC design because software programmer should address several problems
such as designing multithreaded program, adapting and distributing software to different
multiprocessors, and implementing software with low cost.

The emerging multimedia and telecommunication applications impose real-time con-
straints, in such a way that the system should be able to process complex algorithms within
a given time period. Conventional single processor architectures can no longer serve these
constraints, thus one is required to investigate multiprocessor architectures on which several
threads extracted from the target application are executed concurrently [4]. To obtain suf-
ficient concurrent threads for high-performance, one should use an appropriate high-level
algorithm model that can expresses parallelism of the target application, and can be easily
transformed into multithreaded program in either automatic or manual way [5].

Programming multithreads on heterogeneous multiprocessors requires laborious proce-
sses to extract explicit communications between threads, to avoid multithread deadlock, to
adapt software code to different types of processors and communication protocols, and to
distribute code and data among processors. Furthermore, these processes should be done
within the limited design time to satisfy short time-to-market. To free designers from these
tedious processes, an automated code generation method, which can generate multithread
codes with explicit communications and automatically adapt them to the heterogeneous
processors and protocols, is indispensable.

The majority of MPSoC target applications include data-intensive and also control-
dependent algorithms, and they require a large amount of memory. The ITRS has estimated
that by the year 2014 embedded memory will account for over 90 percent of the area on

Memory-efficient multithreaded code generation from Simulink 251

Fig. 1 Design flow for multithread multiprocessor system

a chip [6], thus the memory size optimization is an important issue to reduce the cost and
the power consumption. To obtain multithread code with reasonable memory size, one is
required to use effective memory optimization techniques based on global analysis of data
and control dependencies during the code generation phase.

To address these software programming problems, this paper presents a multithreaded
code generation flow as depicted in Fig. 1. The design flow starts with functional modeling
(step 1) that builds an algorithm model from the target application specification. After that,
the algorithm model is partitioned into a set of multiple communicating threads on multiple
CPU subsystems, which corresponds to the given target architecture, in system architecture
modeling step (step 2). From the system architecture model, multithread code generator
(step 3) produces multithreaded programs, each of which consists of a set of thread codes
and a main code, executable on the target architecture. The main code is responsible to
initialize threads and communication channels through hardware dependent software (HdS)
primitives. This work focuses on software code generation for programming multiprocessors
on target platforms as opposed to designing and configuring hardware architectures.

This work has three main contributions. The first is the definition of a functional mod-
eling style to capture explicitly data and control dependencies of target applications, and a
system architecture modeling style to specify both hardware and software of heterogeneous
multithreaded multiprocessor architecture with specific communication I/O. Both models
are defined using Simulink [7]. The second contribution concerns the implementation of

252 S.-I. Han et al.

the code generation tool to generate multithreaded C code from the Simulink system archi-
tecture model. This tool automatically splices communication blocks (i.e. send and receive
blocks) into a system architecture model for inter and intra-processor communications. Dur-
ing the code generation, HdS primitives replace these communication blocks to abstract the
detailed architecture, thus providing an easier software programming environment for het-
erogeneous multiprocessor architecture. The third contribution is the memory-efficient mul-
tithreaded code generation. We extended dataflow-based techniques to consider both data
and control dependency in target applications [8], and these extended techniques were in-
tegrated in our multithread code generator. This paper includes the experiment results and
analysis with a Motion-JPEG decoder and an H.264 video decoder as test cases to show the
effectiveness of the proposed software-programming environment.

The paper is organized as follows. Section 2 describes previous work on functional mod-
eling style, multithreaded code generation, and memory optimization techniques. Section 3
introduces the proposed functional modeling style and system architecture modeling style
defined in Simulink. Section 4 explains the details of the automatic multithread code gener-
ator from the Simulink system architecture model. Section 5 summarizes the experimental
results and discusses the limitation of the proposed approach. Section 6 gives the conclusion
and future work.

2 Related work

According to the three contributions of this work, previous studies related to functional mod-
eling style, automatic code generation, and memory optimization are presented in Sects. 2.1,
2.2 and 2.3, respectively.

2.1 Functional modeling

The major parts of embedded applications involve data-intensive and control-dependent al-
gorithms. In order to express parallelism in the application and minimize the required mem-
ory size during multithreaded program generation, the control and data dependency should
be well-handled in an algorithm model. The most popular functional modeling styles are
Khan Process Network, Synchronous Dataflow, Boolean Dataflow, and Synchronous model.
In this section, these modeling styles are evaluated according to the capabilities and limita-
tions considering the modeling of a data-intensive and control-dependent application.

A Khan Process Network (KPN) is a directed graph where the nodes represent processes
and the edges represent communication FIFO channels between the processes [9]. KPN
is the most popular functional modeling style to specify signal processing and multime-
dia applications because it allows modeling concurrency and parallelism of computation
and communication and guarantees determinate execution. However, KPN requires runtime
scheduling to deal with blocked send/receive operations when space/data on the associated
channel is not available. To reduce the runtime scheduling overhead, e.g. context switching,
the granularity of process is relatively large, thus it may reduce the design space.

Synchronous Dataflow (SDF) is a restrictive version of KPN [10]. In a SDF model,
a process (actor) is executed (fired) with consuming a fixed number of data tokens from
each input port, and producing a fixed number of tokens to each output port. A SDF model
that has at least one periodic schedule is said to be consistent and every consistent SDF
model can be executed with bounded memory using a static schedule, thus eliminating the

Memory-efficient multithreaded code generation from Simulink 253

run-time scheduling overhead. However, the SDF cannot explicitly represent conditional ac-
tions such as the if-then-else structure, which is required for modeling application like video
codec.

Boolean Dataflow (BDF) is an extension of SDF to support conditionals [11]. In a
BDF model, an if-then-else structure is modeled using SWITCH and SELECT actors. The
SWITCH reads one token from the control input port, and depending on whether the value
of the control token is true or false, routes the input either to the output port marked T (true),
or to the output marked F (false). The SELECT selects one token from its input port in
similar way, and routes the token to the output port. A consistent BDF model can be also
executed in bounded memory using a static schedule. However, the general BDF model is
not guaranteed to be consistent because the token consuming rate of an edge can be different
from the token producing rate of the edge depending on the control input values [11].

The Synchronous Model (SM) [12] is based on the perfect synchrony hypothesis, which
assumes that each process instantaneously computes its output events from its input events,
and delivers the output set to the other processes. The synchronous assumption simplifies
system specification and verification. However, difficulties arise when the target architec-
ture is a distributed multiprocessor system, because it is necessary to maintain a conserv-
ative global clock for preserving the synchronous semantic. For example, Time-Triggered
Architecture (TTA) [13] is a distributed synchronous architecture where all nodes are syn-
chronized with a global clock maintained by a bus, and in each time slot only one node is
allowed to send data, while all other nodes must listen for data. In order to satisfy the syn-
chrony hypothesis, each node must finish its computation and communication within a given
time slot, and thereby the global clock needs to run as slow as the slowest computation and
communication time [14]. Therefore, the SM may be not suitable for applications that have
large variations in computation and communication.

For modeling data-intensive and control-dependent applications, we use clocked syn-
chronous model, which is successfully adopted in RTL modeling, as a functional modeling
style. However, to adopt this modeling style to software design for multiprocessor SoCs,
we extended it to Abstract Clock Synchronous Model (ACSM) that employs a coarser al-
gorithm clock to compose functional blocks as previously presented in [15]. By using the
coarser clock, ACSM can represent function-level parallelism and conditionals while the
processor network model (e.g. KPN), the dataflow model (e.g. SDF, BDF), and the event-
driven model (e.g. SM) have difficulties to express function-level parallelism, conditionals,
and distributed parallelism, respectively. To specify an ACSM, we use a restricted Simulink
model that is detailed in Sect. 3. The restricted Simulink model can be statically scheduled
and its memory can be also statically allocated by the multithread code generator presented
in Sect. 4.

2.2 Multithreaded code generation

A heterogeneous MPSoC requires complex multithreaded programming such as manage-
ment of a large number of threads and communications, allocation data memories, distri-
bution code over multiprocessors. Moreover, designer needs to adapt the software code to
different type of processors and communication protocols. To make designer free from these
laborious tasks, a complete automatic software generation approach is required.

SPADE [16], Sesame [17], Artemis [18], and Srijan [19] start with algorithm models in
the form of KPN [9]. These approaches can refine automatically hardware/software from
coarse-grain KPN. But these approaches still require the designer to determine the granu-
larity of processes, to specify manually behavior of threads, and to express explicitly the

254 S.-I. Han et al.

communication between threads using communication primitives. Furthermore, they do not
support memory optimization techniques based on lifetime analysis due to two reasons:
(1) the internal memories of each process are not visible to other processes, and (2) the
communication channels are assumed to be always live.

SystemC has become the preferred hardware-software codesign language, because it en-
ables one to specify and simulate both software and hardware within a wide range of ab-
straction levels [20]. F. Herrera et al. proposed an embedded software generation flow from
SystemC descriptions by translating SystemC modules to RTOS functions [21]. H. Yu et al.
presented a similar approach starting from SpecC specification [22]. They are also based
on thread-level specification like SPADE and Sesame, while our approach generates thread
codes by static scheduling function-level blocks.

Ptolemy [23] is a well-known environment for high-level system specification that sup-
ports description and simulation of multiple models of computation (e.g. SDF, BDF, FSM,
etc.). For multiprocessor software code generation, Ptolemy can generate a set of thread
codes from a set of clustered functional blocks (actors) in a SDF model [24] and it is very
similar to our approach. However, Ptolemy does not consider conditionals because of the
limited expression capability of SDF. Moreover, its software code generator limits partition-
ing opportunities because it uses too conservative partitioning rules for deadlock prevention
that will be presented in Sect. 4.3.

MATCH takes Matlab descriptions, partitions them automatically, and generates hard-
ware and software code for heterogeneous multiprocessor system [25]. However, MATCH
assumes that the target system consists of commercial-off-the-shelf (COTS) processors,
DSPs, FPGAs, and relatively fixed communication architecture such as Ethernet and VME
bus. Thus, MATCH does not address software adaptation to different processors and proto-
cols. Furthermore, MATCH does not address deadlock prevention and memory optimization
in generating software code.

Real-Time Workshop (RTW) [26] takes a Simulink model as the input and generates
only single thread software code as the output. RTI-MP from dSpace [27] can generate
automatically software code from a specific Simulink model for multiprocessor systems.
However, the generated software code is targeted to a specific architecture consisting of
several COTS processor boards and the main purpose is high-speed simulation of control-
intensive applications.

The proposed software code generation is made in two steps. First, the multithread code
generator produces automatically a multithread code consisting of a set of thread codes and
main codes from a Simulink system architecture model. They are architecture independent
codes through the use of high-level primitives. Second, the low-level implementations of the
high-level primitives are automatically linked with the codes by a set of Makefiles generated
according to the target processors. This approach avoids the need of designer for manually
extracting communication, adapting the software code to different processors/protocols, and
distributing data and code. The complete flow for multithreaded code generation is presented
in Sect. 4.

2.3 Buffer memory optimization

The design approaches based on dataflow specification have been widely adopted in de-
sign signal and media processing applications that usually require large buffer memory to
implement links between actors. Several previous studies addressed buffer sharing [28, 29]
and scheduling techniques for maximizing buffer sharing [30, 31] in software generation
from dataflow specification. However, they did not address buffer memory minimization

Memory-efficient multithreaded code generation from Simulink 255

for high-level specification with explicit conditionals. Note that some applications such as
the emerging video codec standards adopt more complex data-dependent operations to im-
prove coding efficiency, which requires a distinct technique to generate software code with
minimal buffer memory.

The data memory minimization for sequential programs is a well-known problem [32–
35]. In [34, 35], they analyzed the lifetimes of variables and shared the same memory space
for the variables with disjoint lifetime. In [32], a code transformation strategy was proposed
to reduce the buffer size for regular data-dominated signal processing application. In [33],
the lifetimes of elements within each array variable in a program were computed and the
results used for further buffer sharing. However, because it is difficult to analyze a large
sequential program to extract global data and control dependencies precisely, these tech-
niques generally use conservative analysis especially for pointer-intensive programs and/or
programs with complex call dependencies. For example, they do not consider if-then-else
structure across several functions. This conservative analysis generally restricts global opti-
mization. We use an algorithm model that simplifies global dependency analysis to minimize
the memory size during code generation.

Pramod et al. addressed the problem of optimizing array storage in MATLAB in [36],
using a weighted graph coloring to minimize the memory size required to implement the
“variables” used in a single MATLAB function. In this approach, an interference graph is
used to represent data dependencies between arrays in a function. The optimization algo-
rithm shares the same memory space for the arrays only if they have the same intrinsic type.
Furthermore, a single MATLAB function may include implicit types that can be resolved
with type propagation only through the overall program, so the effect of this algorithm is
more limited. In contrast, we resolve implicit types with type propagation and allow over-
lapping buffers with different intrinsic types.

Real-Time Workshop (RTW) [26] and RTI-MP [27] take a Simulink model as an input
and generates a C code targeted to single processor and multiprocessor, respectively. Both
have been mainly targeted for control-intensive applications where memory optimization is
less important. Consequently, RTW and RTI-MP provide only limited memory optimization
techniques. The software code generator presented in [8] applies buffer memory optimiza-
tion techniques just in generating single thread code from a Simulink model. In this work,
we extend the code generator for multithreaded code generation.

This paper addresses buffer memory minimization problem in generating a multithread
code from an ACSM described in Simulink that includes explicit conditionals. During the
code generation, we apply four memory optimization techniques, which are control-induced
copy removal, delay-induced copy removal, circular buffer introduction, and buffer sharing.
The proposed approach considers the global data and control dependency within a whole
Simulink model, thus it allows that a larger reduction in the memory size can be achieved.

3 Multi-processor system modeling

3.1 Functional modeling

The main target applications of the proposed software programming environment are data-
intensive applications such as the emerging multimedia and telecommunication applica-
tions (e.g. MPEG-4, WMV9, H.264, WCDMA, OFDM, etc.). They include not only data-
intensive, but also data-dependent operations. For example, the emerging video codec stan-
dards present more complex data-dependent operations (e.g. variable block-size transform
in H.264) to improve coding efficiency.

256 S.-I. Han et al.

Fig. 2 Comparison between CSM and ACSM

To generate efficient multithread codes from these applications, the algorithm model
should allow designers to represent parallelism and explicit conditionals such as if-then-else
structure. To do this, we use Abstract Clock Synchronous Model (ACSM) [15] as functional
modeling style, which is a Clocked Synchronous Model (CSM) with abstract clock, in op-
position to the CSM for RTL modeling, which is described with an explicit physical-level
clock. The CSM is based on the clocked synchronous synchrony hypothesis [37]: There is
a global clock signal controlling the start of each computation in the system, and commu-
nication takes no time, and computation takes one clock cycle. This assumption makes it
possible to deterministically describe the functionality of a circuit independent of the de-
tailed timing of the gates in the circuit by separating each combinational logic block from
others with clocked registers. In this paper, we extend the CSM to the ACSM by using an
abstract clock of larger granularity that is suitable for system-level design.

Figure 2(a) shows an example of CSM for RTL modeling with a clock and Fig. 2(b)
shows an example of ACSM for functional modeling with an abstract clock. A CSM is
composed of a network of combinational gates and delays. It is implemented by low-level
hardware, as illustrated in Fig. 2(c). For example, an addition and a delay in the CSM can
be implemented by a 16 bit carry lookahead adder and a register, respectively. However, an
ACSM is composed of a network of state-less functions and delays. It may be implemented
by a combination of hardware and software, as shown in Fig. 2(d). For example, a function
and a delay in the ACSM can be implemented by a software code on a RISC processor and
an SRAM, respectively. The major difference between the two models is the granularity of
the clock and the components.

In order to describe the behaviors of components in ACSM, we employ the tagged-signal
model introduced in [38]. Given a set of values V and a set of tags T , an event e has a tag t

and a value v, i.e. e = (t, v) ∈ T × V . In ACSM, the tags represent a sequence of clock
cycles and the values represent the operands and results of computation. If an event has a
value at a certain clock cycle, we call it present event at the clock cycle. Otherwise, the event
is an empty one.

Memory-efficient multithreaded code generation from Simulink 257

Fig. 3 Basic components in ACSM

For specifying an ACSM, designers are asked to observe four modeling rules as follow-
ings. First, an ACSM consists of only five kinds of components, that is, block, delay, link,
If-action subsystem (IAS), and For-iterator subsystem (FIS) as defined in the next paragraph.
Second, an ACSM includes only one global clock that controls the executions of blocks and
delays. Third, each block follows firing rules, as will be explained, that specifies the condi-
tion when a block is executed (fired). Finally, cyclical paths must contain at least one delay
to prevent deadlock as the RTL model. Figure 3 shows basic components of ACSM that are
expressed easily using the Simulink subset.

– Block: A block, as shown in Fig. 3(a), maps n input events (tokens) on m output events:
(o1, . . . , om) = F0(i1, . . . , in). It corresponds to user-defined (S-function) or pre-defined
blocks with inherent sample rate in the Simulink.

– Delay: A delay, as shown in Fig. 3(b), represents that its output event is delayed from its
input event by k abstract clock cycles. It corresponds to discrete delay in the Simulink.

– Link: A link carries events from one output port of a block or a delay to one or more
input ports of one or more blocks and/or delays, as shown in Fig. 3(c). It corresponds to
connecting line in the Simulink.

We also defined two kinds of subsystems, If-action and For-iterator, to represent if-then-
else structure and for-loop structure, respectively. They can be composed of blocks, delays,
links, and other subsystems.

– If-action subsystem (IAS): An IAS, as shown in Fig. 3(d), represents an if-then-else
structure. An IAS is enabled when its control input port, which is connected to an if/else
block, has a present event, i.e. valid event. If an IAS is not enabled, its output ports have
empty events. All output ports must be connected to a merge block and only one of them
can have a present event at a time. It corresponds to “If-action subsystem” in the Simulink.

– For-iterator subsystem (FIS): A FIS, as shown in Fig. 3(e), represents a for-loop struc-
ture. It is used to describe sequential or parallel repeated executions of blocks where
the number of repetitions is known. It corresponds to “For-iterator subsystem” in the

258 S.-I. Han et al.

Fig. 4 A simplified ACSM of H.264 decoder modeled in Simulink

Simulink. A FIS usually includes Demux and Mux blocks. A Demux divides an event into
several sub-events and a Mux integrates several sub-events into an event.

A block consumes one event from each input port and produces one event to each output
port. This action is called firing and takes place under certain conditions called firing rules.
A block, except merge block in Fig. 3(d), is fired when all input events are present while
a merge block is fired when one of input events is present. A block, except if/else block in
Fig. 3(d), produces one present event to each output port when fired, while an if/else block
produces only one present event on one output port.

To show the applicability of the proposed model, we use an H.264 video decoder as the
target application example. Figure 4 illustrates an ACSM model example of an H.264 de-
coder modeled using the Simulink subset. The decoder receives an encoded video bit stream
from a network or a storage device and produces a sequence of frames by applying iterative
executions of macroblock-level functions such as variable length decoding (VLD), inverse
zigzag and quantization (IQ), inverse transform (IT), spatial compensation (SC), motion
compensation (MC) and deblocking filter (DF). The execution paths of these functions are
dependent on their image modes, macroblock modes, and bitstream contents.

In the functional modeling (step 1), the designer partitions the application specification,
typically written in C/C++, into a set of modular functions, and translates each of them to
a user-defined Simulink block, i.e. S-function, or a pre-defined Simulink block (e.g. mathe-
matical operation). Finally, the designers create a Simulink algorithm model by integrating
the S-functions and pre-defined blocks. In this figure, “FIS1” is an example of FIS and the
Loop iterator (0..3 in the figure) in “FIS1” represents the range of loop index from 0 to 3.
The full H.264 decoder Simulink algorithm/functional model consists of 83 user-defined
blocks, 101 pre-defined blocks, 310 data links, 43 IASs, 5 FISs, and 24 delays. In this
model, the macroblock index represents the abstract clock required for the ACSM modeling
style.

Memory-efficient multithreaded code generation from Simulink 259

Fig. 5 Simulink CAAM from an algorithm model

3.2 System architecture modeling

After functional validation using the Simulink simulation environment, a designer trans-
forms a Simulink algorithm model to a Simulink system architecture model that combines
the algorithm model with an abstract target architecture. To specify the system architecture
model, we define a modeling style called Combined Algorithm Architecture Model (CAAM)
as a three layered hierarchical structure, as illustrated in Fig. 5. The architecture layer, as
shown in Fig. 5(a), describes a system architecture that is made up of CPU subsystems and
inter-subsystem communication channels between them. The subsystem layer, as shown in
Fig. 5(b), describes a CPU subsystem that includes a set of threads and intra-subsystem com-
munication channels between them. Finally, the thread layer describes a software thread that
consists of Simulink blocks and links between them, as shown in Fig. 5(c).

To represent the three layered CAAM, we defined four kinds of specific Simulink sub-
systems, which are defined as following.

– CPU-SS is a conceptual representation of CPU subsystem. A CPU-SS corresponds to a
CPU subsystem, which includes a processor, local buses, local memories, and peripher-
als. CPU0 SS is an example of CPU-SS in Fig. 5(a), and Fig. 5(b) illustrates its CPU
subsystem layer composed of two threads communicating through channels.

– Inter-SS COMM is a conceptual representation of communication channels between CPU
subsystems. An Inter-SS COMM includes one or more links, each of them corresponding
to a point-to-point channel. Each channel corresponds to hardware communication chan-
nels and software communication port(s) to access the channel. In Fig. 5(a), CH4 is an
example of Inter-SS COMM.

– Thread-SS is a conceptual representation of a software thread. A Thread-SS is gradually
refined to a software thread including HdS API calls by the multithread code generator.
T0 and T1 in Fig. 5(b) are example of Thread-SS. Figure 5(c) illustrates the thread layer,
where thread T0 is composed of Simulink blocks.

– Intra-SS COMM is a conceptual representation of communication channels between
threads running on the same CPU subsystem. As an Inter-SS COMM, an Intra-SS COMM
also includes one or more links. Intra-SS COMM is gradually refined to OS commu-
nication channel(s) by the multithread code generator. In Fig. 5(b), CH0 and CH1 are
examples of Intra-SS COMM.

To make a thread subsystem, the designer clusters several Simulink blocks into a
Simulink hierarchical subsystem by using the Simulink graphical user interface (GUI), and

260 S.-I. Han et al.

then annotates Thread type to this subsystem. The designer can make CPU-SS, Inter-SS
COMM, and Intra-SS COMM subsystems in the same way. As normal Simulink subsystems
are used, they do not affect the original functionality, thus the designer can verify the func-
tionality of a Simulink CAAM using the Simulink simulation environment. At present, this
step is done manually according to the designer’s experience.

4 Multithreaded code generation

For generating multithreaded programs executable on target MPSoC platform from
Simulink CAAMs, we developed an automatic code generator called LESCEA (Light and
Efficient Simulink Compiler for Embedded Application). Figure 6 shows the global flow of
LESCEA that generates a memory-efficient thread C code for each Thread-SS, and a main
C code and a Makefile for each CPU-SS. The Simulink blocks within each thread-SS are
statically scheduled according to data and control dependency and translated into a thread
C code, whereas the generated threads are created in the main code and dynamically sched-
uled by the OS scheduler. At present, only FIFO based scheduling policy is supported. The
Makefile compiles the thread codes and the main code, and links them with appropriate HdS
libraries to build a software stack adapted to the target processor. The detailed flow consists
of the following six steps:

Step 1: Simulink Parsing: LESCEA parses a Simulink CAAM and generates a Colif
CAAM that is a XML based intermediate representation [39]. This step is addressed in
Sect. 4.1.

Step 2: Copy removal: LESCEA performs control-induced copy removal, delay-induced
copy removal, and circular buffer introduction for each thread in order to minimize its data
memory size. This step is detailed in Sect. 4.2.

Step 3: Scheduling: LESCEA statically determines the invocation order of blocks that
compose each thread according to a scheduling policy to maximize buffer sharing. This step
is detailed in Sect. 4.3.

Step 4: Buffer sharing: LESCEA allows two buffers within the same thread to share the
same memory space if their lifetimes are disjoint. This step is detailed in Sect. 4.4.

Step 5: Thread Code Generation: LESCEA generates thread C codes according to the re-
sults of the previous steps. Each thread C code includes memory declarations, a sequence of
function calls corresponding to the invocation order determined in the scheduling step, and
maps the allocated memory spaces to the function arguments. The resultant code includes
also communication primitives to promote communication between threads. This step is
addressed in Sect. 4.5.

Step 6: HdS Adaptation: LESCEA generates a main code and a Makefile to link the
threads with an appropriate HdS library for each CPU subsystem. This step is detailed in
Sect. 4.6.

4.1 Simulink parsing

Simulink Parser takes the Simulink CAAM (Fig. 7(a)) and generates an equivalent interme-
diate format called Colif CAAM (Fig. 7(b)). Colif is an XML-based meta-model proposed
in [39], which provides well-defined data structures and APIs for easy data manipulation
during code generation. Colif can represent a general system composed of three entities:
modules, channels and ports. A Simulink model has one-to-one correspondence with Colif,
i.e. Simulink block to module, Simulink link to channel, and Simulink port to port. Beside

Memory-efficient multithreaded code generation from Simulink 261

F
ig

.6
M

ul
tit

hr
ea

de
d

co
de

ge
ne

ra
tio

n
flo

w

262 S.-I. Han et al.

Fig. 7 Simulink parsing: a Simulink CAAM, b Colif CAAM with communication block

of the CAAM format translation, the Simulink parser converts a Simulink port connected to
an Inter-SS COMM or Intra-SS COMM to a send block or receive block, according to the
direction of the port. These send and receive blocks are scheduled together with the other
blocks and translated to communication HdS API calls during the thread code generation,
as explained in Sect. 4.5. Figure 7 shows an example, where the five ports in T0, shown in
Fig. 7(a), are translated to send (S1, S2) and receive (R0, R3, and R4) blocks in the Colif
CAAM, as illustrated in Fig. 7(b).

The Simulink parser also determines data type and size of each link in the Simulink
CAAM and annotates this information into the Colif CAAM. First, the Simulink parser finds
Simulink links with explicit types, e.g. links connected to Constant blocks or S-functions,
and propagates the explicit types to resolve implicit types of other Simulink links. The
Simulink parser repeats this process with all Simulink links with explicit type, and it re-
ports an error when the propagated type is inconsistent with the destination link type. The
data types are used in generating thread codes and implementing communication channels.

4.2 Copy removal

Each link in a Colif CAAM is allocated to a buffer memory that delivers data from an
input block to output blocks. A Simulink (and Colif) CAAM may include control blocks
and delays that introduce copy operations. In copy removal step, LESCEA removes these
copy operations and reduces the required buffers. There are three copy removal techniques:
control-induced copy removal, delay-induced copy removal, and circular buffer introduc-
tion. These techniques are explained using the example illustrated in Fig. 8. Figure 8(a)
represents a Colif CAAM that is composed for two threads, T0 and T1. The correspondent
C-codes obtained from this CAAM model for T0 and T1 are shown in Fig. 8(b) and (d),
respectively. To show the copy removal results, each link in Fig. 8(a) is annotated with a
buffer name and its size. For example, E2(11) means buffer E2 whose size is 11 byte.

Control-induced copy removal eliminates copy operation between one or more input
buffers and one or more output buffers of multiple I/O Simulink blocks such as “Switch”,
“Selector”, “Mux” and “Demux”. These pre-defined Simulink blocks are required to rep-
resent explicit conditionals or loops. This technique also allows them to share the same

Memory-efficient multithreaded code generation from Simulink 263

F
ig

.8
C

op
y

re
m

ov
al

te
ch

ni
qu

es
fo

r
a

C
A

A
M

264 S.-I. Han et al.

memory space. After applying it to the code lines 5 to 9 in Fig. 8(b), the input buffers “E5”
and “E6” of the switch are merged with its output buffer “E10” in the resulting code in
Fig. 8(c).

Delay-induced copy removal eliminates copy operation between the input and output
buffers of a delay and allows them to share the same memory space. After applying it to the
lines 4 to 7, and 10 in Fig. 8(d), the input buffer “E14” of the delay Z−1

1 is merged with its
output buffer “Z1” and the resulting code shown in Fig. 8(e) was obtained.

Circular buffer introduction converts a shifting buffer to a circular buffer to implement
non-unitary delay. After applying it to the lines 2, 5, and 7 to 9 in Fig. 8(e), the resulting
code is shown in Fig. 8(f). This technique introduces a clock variable (“clk”) to index buffer
elements. It does not reduce the memory size, but eliminates copy operations.

These techniques require a scheduling constraint to preserve the specification semantic:
all blocks, which read data from a copy inducing block or delay, should be executed before
executing the block that writes data to the block or delay. For example, executing block F9 is
prior to executing block F7 in Fig. 8(e) after applying delay-induced copy removal to Z−1

1 .
LESCEA considers this constraint in the next scheduling step.

4.3 Scheduling

LESCEA performs a scheduling algorithm to find the possible static invocation sequence
of the blocks in order to maximize buffer sharing. We extended the existing dataflow based
scheduling methods [30, 31] for the proposed Simulink subset to support nested conditionals
and loops.

Figure 9 illustrates the pseudo-code for the scheduling algorithm. Here, each block
processing is assumed to be invoked once in a unit of time interval. The lifetime of each
buffer is represented as a time interval [t, t ′) that starts at the invocation time t of its source
block (included) and ends at the completion time t ′ of the last invoked one among its desti-
nation blocks (excluded). The buffer is said to be live during its lifetime, defined at time t ,
and dead at time t ′. Note that a block should hold both input buffers and output buffers
until its execution finished. To derive the scheduling algorithm, we need to define some
terminologies.

Definition 1 Let Smax(t) and let Sliv(t) be the maximum of peak memory size and the live
memory size after the block, invoked at time t − 1, completes. Let sdef(t, v) and sdead(t, v)

be the memory size of defined buffers and that of dead buffers if block v is invoked at
time t , respectively. Similarly, let speak(t, v) and sliv(t, v) be the peak memory size and the
live memory if block v is invoked at time t . Then they can be defined as follows:

sliv(t, v) = sliv(t) + sdef(t, v) − sdead(t, v), (1)

speak(t, v) = sliv(t) + sdef(t, v). (2)

After block v, invoked at time t , completes,

Sliv(t + 1) = sliv(t, v), (3)

Smax(t + 1) = max(Smax(t), speak(t, v)). (4)

The objective of scheduling is to find the invocation times of blocks that minimize the
maximum of peak memory size, i.e. Smax(t), over all time since it is the low bound of the

Memory-efficient multithreaded code generation from Simulink 265

Fig. 9 Pseudo code of scheduling algorithm

required buffer memory size. Because this problem is a NP-hard [31], we used a greedy-
style algorithm [40] for scheduling, as shown in Fig. 9. The algorithm takes a Colif CAAM
as input, and returns the maximum of peak memory size and the live memory size as output.
In short, the algorithm selects a schedulable block that minimizes the live memory size if the
block does not increase the maximum of peak memory size in line 13. If there is no block that
does not increase the maximum of peak memory size, the algorithm selects a schedulable
block that minimizes the maximum of peak memory size in line 14 to 16. Note that a block
(or subsystem) v is “schedulable” at time t if all of its precedent blocks are invoked before
time t to handle precedence dependency. The algorithm complexity is O(n2) where n is
the number of blocks in the input model since LESCEA computes sliv(t, v) and speak(t, v)

for all v ∈ R in O(n) (line 10) and repeats it in O(n) (line 11). To prevent deadlock, the
whole blocks in an input Colif CAAM are scheduled together even if each thread has its
own scheduled set Si (line 6). We discuss it in the last part of this section.

To schedule a subsystem v (i.e. hierarchical blocks as IAS or FIS), LESCEA applies the
algorithm to the subsystem recursively, in which the subsystem can be treated as another
input model. LESCEA uses the following equations (1′) and (2′), instead of (1) and (2) to
compute sliv(t, v) and speak(t, v) in line 11. In this case, the 〈Sdef(t, v), Sdelta(t, v)〉 are return
values for the Scheduling(t, v) method. In the IAS case, LESCEA ignores the increased time

266 S.-I. Han et al.

Fig. 10 Scheduling example

and the produced buffers in all the other exclusive IASs.

sliv(t, v) = Sliv(t) + Sdelta(t, v), (1′)

speak(t, v) = Sliv(t) + Sdef(t, v). (2′)

Figure 10 illustrates an example of scheduling, in which buffer lifetime chart [29] is used
to display the lifetimes of buffers where the horizontal axis indicates the abstract time and the
vertical axis indicates the memory address offset. Each rectangle denotes the lifetime inter-
val of a buffer. To share memory space among buffers with different types, memory address
of each buffer is aligned to a four-byte boundary. Figure 10(a) presents the algorithm proce-
dure at time 3 for thread T0 in Fig. 8(a) where the scheduled block set S is {F0,R4,R3} and
schedulable block set R is {F1,F6,R0}. Since buffer “cond(4)”, “E2(11+1)”, and “E8(16)”
are live at time 3, Sliv(3) and Smax(3) are 32 (4 + 11 + 1 + 16). Note that “E8(16)” is not lo-
cated at address 15 but at 16 due to four byte alignment of buffer “E2(11)”. If F6 is selected
to be invoked in time 4, its output buffer “E7(20)” is defined while its input buffers “E2(12)”
and “E8(16)” are dead. According to (1) and (2), sliv(4,F6) is 24 (32 + 20 − 12 − 16) and
speak(4,F6) is 52 (32+20). Similarly, sliv(4,F1), sliv(4,R0), speak(4,F1), speak(4,R0) are 56,
52, 56, and 52, as shown in Fig. 10(a). In this case, the scheduling algorithm selects F6

because it has the lowest speak(t, v), i.e. 52, and the lowest sliv(t, v), i.e. 24, among the
schedulable blocks. Figure 10(b) shows the result of the scheduling algorithm. Note that the
invocation times of F2, F3 and F4, F5 are overlapped because they belong to two exclusive
subsystems, IAS0 and IAS1, respectively.

In the proposed scheduling algorithm, all blocks in the input model, which includes all
threads, are scheduled together according to their precedence dependency. On the contrary,
the code generator of Ptolemy schedules blocks within a thread independently from blocks
within other threads [24]. In this case, a certain partition may cause deadlock problem even
if the original model has no precedence loop without delay. Figure 11 illustrates this kind
of deadlock problem. If R0 is invoked prior to S1 in T0, as shown in Fig. 11(a), and R1 is
invoked prior to S0 in T1, as Fig. 11(b), a precedence loop is introduced (R0 → S1 → R1 →
S0 → R0) in Fig. 8(a) and thus, causing deadlock. The code generator of Ptolemy does not
allow such partitions where any two threads have feedback such as Fig. 8(a). Therefore, this

Memory-efficient multithreaded code generation from Simulink 267

Fig. 11 Multithread deadlock problem

approach limits partitioning opportunities. In the proposed scheduling algorithm, R1 must be
invoked after S0, as shown in Fig. 11(c), because they have a precedence dependency even
if it is across two threads. Our approach guarantees that any partitioning of the algorithm
model has at least one deadlock-free schedule if the algorithm model has no precedence
loop without delay.

4.4 Buffer sharing

After the scheduling step, LESCEA performs a lifetime-based buffer sharing algorithm for
each thread. The objective of buffer sharing is placing all buffers at feasible memory address
offsets minimizing the total required memory for each thread, and consequently for the
system. Since buffer sharing problem is NP-complete [29], LESCEA exploits a heuristic
algorithm called LOES algorithm in [29] and extends it to consider the conditionals.

Figure 12 illustrates the algorithm used for buffer sharing. The algorithm input is a Colif
CAAM and for each thread, the algorithm determines a feasible offset for each buffer within
the thread. Let moffset(b,P) of an unplaced buffer b is the feasible address offset given a set
of the placed buffer P . Each unplaced buffer can be overlapped with a placed buffer if they
have disjoint lifetimes or they belong to two exclusive IASs. In short, the algorithm selects
the buffer that has the lowest offset in line 9 and the earliest start time in line 10 to 12 [29].
The algorithm complexity is O(n3) where n is the number of buffers in the input Colif
CAAM model since it computes moffset(b,P) for each b in O(n) in line 7, line 6 in O(n),
and line 5 in O(n).

Figure 13 illustrates the buffer sharing procedure applied to T0 when its scheduling re-
sult is as shown in Fig. 10(b). In Fig. 13(a), the placed buffer set P is {cond} and the
unplaced buffer set U is {E1,E2,E3,E4,E7,E8,E9,E10}. Since the lifetimes of buffer
“cond(4)” and “E1(24)” are not disjoint, as shown in Fig. 10(b), the feasible address off-
set of buffer “E1” is 28 (4 + 24). Similarly, the feasible address offsets for the members
of U are {28,16,20,16,24,20,24,24}, as shown in Fig. 13(a). Among the buffers “E2”
and “E4” with the lowest offset, the earliest buffer is “E2”, and consequently LESCEA se-
lects E2 and places it at offset 16, as shown in Fig. 13(b). Note that buffer “E2” should be
aligned at a four byte boundary. The buffer “E3” and “E4” can be shared because each of
them belongs to one of the two mutually exclusive IASs, both buffers are placed in the same
address in Fig. 13(b), where the buffer sharing results is illustrated.

268 S.-I. Han et al.

Fig. 12 Pseudo code of buffer sharing algorithm

Fig. 13 Buffer sharing applied to T0

4.5 Thread code generation

The thread code generation step produces automatically a C-code for each thread using the
results of the previous steps. This step is explained with the example in Fig. 14. Figures 14(a)
and 14(b) show the buffer sharing result and its corresponding code, respectively, for thread
T0 in Fig. 8(a). Each thread code includes memory declaration and behavior code for user-
defined blocks, communication blocks, and pre-defined blocks. First, LESCEA generates
memory declaration(s) according to the results of the copy removal and buffer sharing steps.
If buffer sharing option is enabled, LESCEA declares a memory array as line 2 in Fig. 14(b)
and each data link in the Colif CAAM has its own location on the memory array. In this

Memory-efficient multithreaded code generation from Simulink 269

F
ig

.1
4

C
od

e
ge

ne
ra

tio
n

ex
am

pl
e—

co
de

ge
ne

ra
te

d
fo

r
T

0

270 S.-I. Han et al.

Table 1 HdS primitives

Types Primitives Description

Thread thread_create Create software thread

thread_resume/thread_suspend Resume/suspend thread

Communication send_data/recv_data send/receive data from/to port with specific
protocol

send_event/recv_event send/receive event, e.g. data transfer
completion, from/to port with specific
protocol

port_init/channel_init initialize port/channel data structure

Interrupt ISR_attach/ISR_dettach attach/detach interrupt service routine

intr_enable/intr_disable enable/disable interrupt

case, the basic data type is 32-bit integer (i.e. int). Otherwise, LESCEA separately declare
a memory space for each data link according to its data type (i.e. char, short, int, etc.). The
allocated memory is used to store the input and output data of Simulink blocks.

After memory declaration, LESCEA generates a behavior code for each thread accord-
ing to the scheduling result. For a user-defined block (i.e. Simulink S-function), our tool
generates a function invocation corresponding to the block (F0–F6 in example) and maps
the allocated memories for the input and output links to the function arguments. For exam-
ple, LESCEA generates line 8 for F6 invocation where the input and output buffers are E2,
E8, and E7, as shown in Fig. 8(a), and the memory locations of them are 4 (1), 16 (4), and
32 (8) byte (word), respectively. The data type, which is not 4 byte integer, is cast into its
own data type. For example, the data type of buffer “E2” is cast into “char *” as line 6 in
Fig. 14(b) when its data type is character array.

For communication blocks (i.e. send and receive blocks), LESCEA inserts communica-
tion primitive invocations (send_data and recv_data in example) defined in Table 1. These
invocations promote the communication between different threads, which can be in the
same CPU (intra-subsystem) or in different CPUs (inter-subsystems). The arguments of
the communication primitives are port data structure address, memory address allocated by
buffer sharing, and data transfer size, which are also automatically generated. For example,
LESCEA generates line 6 for R4 block where the associated port data structure is p4, output
buffer is E2, and the transfer size is 12 bytes, as shown in Fig. 14(a). Finally, for pre-defined
Simulink blocks (e.g. adder, FIS, IAS), LESCEA generates C codes corresponding to the
specific blocks (if-else in example). In this case, LESCEA maps the allocated memories to
the operands. LESCEA can handle a large subset of pre-defined blocks such as mathematical
operations, logical operations, discrete blocks, etc.

4.6 HdS adaptation

LESCEA generates a high-level multithread code independent of the architecture details
through the use of high-level primitives. To execute the generated code on a target MPSoC,
the thread codes should be linked with the appropriate HdS library that provides architecture
dependent implementations for the high-level primitives. To do this, we first assume that
there are pre-built HdS libraries, each of which is targeted to a specific CPU. The HdS
library should provide the high-level primitives summarized in Table 1. We have targeted

Memory-efficient multithreaded code generation from Simulink 271

the HdS library to ARM7 processor and Xtensa processor with default configuration [41]
and its memory footprint is about 4 KB. Using these primitives, LESCEA then generates a
main code, which initializes thread and channel data structures, and a Makefile, which links
the generated thread codes and main code with an appropriate HdS library.

The current HdS library supports three communication protocols: GFIFO, HWFIFO, and
SWFIFO. GFIFO is an inter-subsystem communication protocol that transfers data using a
global memory, a bus, and mailboxes. The data transfer is divided into two steps. First, the
CPU in the source subsystem writes data to a global memory, and sends an event to the
mailbox in the target subsystem. After receiving the event, the CPU in the target subsys-
tem reads the data from the global memory, and sends another event to the mailbox in the
source subsystem to notify the completion of the read. HWFIFO is also an inter-subsystem
communication protocol that transfers data via a hardware FIFO while SWFIFO is an intra-
subsystem protocol based on software FIFO.

Figure 15(a) illustrates a Simulink CAAM that has three CPU subsystems and seven
threads, and Fig. 15(b) shows the main code generated with LESCEA for CPU2. The main
code includes interrupt registration (ISR_attach in example), channel initialization (chan-
nel_init), port initialization (port_init), and thread creation (thread_create) primitives ac-
cording to the CAAM model. As shown in Fig. 15(c), LESCEA also generates a Makefile
that enables to link the generated multithread code and main code with application library
including user-defined function bodies and appropriate HdS library. With the proposed soft-
ware programming environment, we can build binary files that are executable on the target
heterogeneous MPSoC.

5 Experimental results

To show the applicability of the proposed software programming environment, we ap-
plied it to two real applications: a Motion-JPEG decoder and an H.264 baseline decoder.
Firstly, we developed a Simulink algorithm model for the Motion-JPEG decoder and one
for the H.264 baseline decoder, and validated their functionalities with the Simulink sim-
ulation environment. We used macroblock index as abstract clock to model them as the
proposed functional modeling style, i.e. abstract clock synchronous model (ACSM). Af-
ter validation, we transformed the two Simulink ACSMs into two Simulink CAAMs ac-
cording to the chosen platforms, which are explained in Sect. 5.1 and Sect. 5.2. To mea-
sure the effect of each memory optimization technique, we generated seven versions of C
codes from each Simulink CAAM: one single-thread version with RTW, three single-thread
ones with LESCEA, and three multithread ones with LESCEA, as specified in Table 2. In
generating single-thread code with RTW, we used the following optimization options with
Generic Real-Time (GRT) target: block reduction optimization, conditional input branch
execution, implement logic signals as boolean data, signal storage reuse, enable local
block outputs, reuse block outputs, and eliminate superfluous temporary variables provided
by RTW [42].

In the experiments, we mapped the image buffers (e.g. previous and current frames in
Fig. 4) into off-chip (or on-chip) global memory and all the other memories into on-chip lo-
cal memories in CPU subsystems. Here, we traced only on-chip local memory size since it is
substantially more expensive than global memory. In Sect. 5.1 and Sect. 5.2, we present the
experimental results for the Motion-JPEG decoder CAAM and the H.264 decoder CAAM,
respectively. In Sect. 5.3, we discuss the results and limitations of the proposed environment.

272 S.-I. Han et al.

F
ig

.1
5

M
ai

n
co

de
an

d
M

ak
efi

le
ge

ne
ra

tio
n

Memory-efficient multithreaded code generation from Simulink 273

Table 2 C code generation with
seven configurations # Name Configuration for code generation

1 RTW RTW

2 S1 Single-thread without optimization options

3 S2 Single-thread with copy removal

4 S3 Single-thread with copy removal and buffer sharing

5 M1 Multithread without optimization options

6 M2 Multithread with copy removal

7 M3 Multithread with copy removal and buffer sharing

Fig. 16 Simulink CAAM for Motion-JPEG

5.1 Experiments with Motion-JPEG decoder

Motion-JPEG decoder decodes a bit stream encoded by JPEG still-image compression al-
gorithm. From reference C code, we developed a Simulink algorithm model, which has 7
S-Functions (user-defined blocks), 7 delays, 26 data links, and 4 IASs. From this Simulink
algorithm model, we built the Simulink CAAM illustrated in Fig. 16 using Simulink GUI.
In the architecture layer of the CAAM, as shown in Fig. 16(a), one ARM7 and two Xtensa
CPU-SSs are connected with each other through one GFIFO and one HWFIFO Inter-SS

274 S.-I. Han et al.

Fig. 17 Virtual prototype for Motion-JPEG

COMMs. The partitioning was done manually. CPU1 executes variable length decoding
(VLD), and CPU2 and CPU3 execute one dimension discrete cosine transform (IDCT). In
the CPU subsystem layer of CPU1, depicted in Fig. 16(b), two threads communicate with
each other through SWFIFOs. As shown in Fig. 16(c), Thread2 includes several Simulink
blocks and links that will be transformed in the thread code.

Figure 17 illustrates a multiprocessor platform that is automatically generated from the
Simulink CAAM with hardware architecture generator [43]. It is a cycle-accurate SystemC
model that consists of one ARM7 and two Xtensa CPU subsystems communicating through
five GFIFO channels and two HWFIFO channels. Note that the GFIFO channels are imple-
mented using one global memory for data transfer and mailboxs for synchronization. We
also generated single-thread C codes and multithread C codes as the configurations defined
in Table 2, and measured their performances, data memory sizes, and code memory sizes
using pre-built single-processor platform and the generated multiprocessor platform.

Figure 18(a) shows the relative data memory sizes for the seven configurations. In the
single-thread case, the data memory is composed of buffer and constant memories. The
buffer memory represents the memory necessary to implement the Simulink data links and
the constant memory represents the memory for Huffman table in the Motion-JPEG library.
LESCEA with full optimization options (S3) reduces the total data memory size by 50.9%
compared to RTW. Note that RTW provides only limited memory minimization techniques,
so the data memory size of the C code generated with RTW is relatively close to that with
LESCEA without optimization options (S1). In the multithread case, the reduction obtained
for configuration M3 compared to RTW is 27.7% even although the multithread code re-
quires additional buffers and channel memories to promote communication between threads
while the code generated with RTW is single-thread. Compared to configuration M1, M3
shows 34.3% total data memory size reduction.

In the single-thread case, one thread and application library represent whole implemen-
tation code. However, for multithread case, the total code size is increased because it is the
sum of all thread codes, main codes, application library, and HdS library. Our memory opti-
mization techniques also reduce the code size because the copy removal techniques remove
some copy operations. Figure 18(b) shows the relative code memory sizes of Motion-JPEG
for the seven configurations. Compared to configuration S1, S3 achieves 6.2% code size
reduction. In multithread case, M3 presents 1.8% code memory size reduction compared to
configuration M1. Experiment results show that the proposed memory optimization tech-
niques are effective for multithreaded code generation, reducing both data and code sizes.

Multithread multiprocessor solutions are used to achieve better performance. To evaluate
the impact on performance, we obtained the number of cycles required to decode 30 frames
QVGA Unicycle JPEG stream for each configuration, which are presented in Fig. 18(c).

Memory-efficient multithreaded code generation from Simulink 275

F
ig

.1
8

D
at

a
m

em
or

y
si

ze
,c

od
e

m
em

or
y

si
ze

an
d

ex
ec

ut
io

n
tim

e
of

M
ot

io
n-

JP
E

G
de

co
de

r
w

ith
si

ng
le

-
an

d
th

re
e-

pr
oc

es
so

r
pl

at
fo

rm
s

276 S.-I. Han et al.

Regarding copy removal technique, configuration S2 (M2) shows 49.4% (55.9%) execu-
tion time reduction than S1 (M1). This result shows that copy removal technique improves
significantly the performance of the generated code especially when there are copy opera-
tions between large-sized arrays. Compared to RTW, the configuration M3 shows 3.89 times
faster performance because of the concurrent execution and the memory optimization that
impact also in performance. The multithread solution with all optimization options (M3) is
1.60 times faster than single thread one with all optimization options (S3). This result is less
than our expectation mainly because two subsystems transfer massive data through global
memory using processor load/store instructions (i.e. GFIFO). The required bandwidth is
19.0 MB/sec and the processors averagely spent 53.3% and 25.3% processing time for com-
putation and communication, respectively. The rest part is idle time, waiting for available
data or space.

5.2 Experiments with H.264 baseline decoder

The H.264 Simulink algorithm model includes 83 S-Functions, 24 delays, 310 data links,
43 IASs, 5 FISs and 101 pre-defined Simulink blocks. From the algorithm model, we built
an H.264 CAAM with four Xtensa CPU-SSs and a GFIFO Inter-SS COMM, and generated a
multiprocessor platform from it. The partitioning was done manually according to designer’s
experience. The first processor executes variable length decoding (i.e. VLDs in Fig. 4) parts.
The second and third processors execute luminance decoding parts (i.e. IQ, IT, MC, SC, and
DF for luminance in Fig. 4) while the fourth processor executes chrominance decoding part
(i.e. IQ, IT, MC, SC, and DF for chrominance in Fig. 4). We also generated C codes with
the same configurations defined in Table 2 from this H.264 decoder CAAM.

Figure 19(a) shows the relative data memory size where “constant” represents VLD ta-
bles. In the single-thread case, the configuration S3 achieves 70.9% data memory size re-
duction compared to RTW. In the multithread case, LESCEA with full optimization (M3)
reduced the data memory size by 68.0% compared to that without optimization (M1). Re-
garding to code memory size as shown in Fig. 19(b), configuration S3 (single-thread case)
and M3 (multithread case) show 19.4% and 15.9% code size reduction compared to S1 and
M1, respectively. These results also show that the effectiveness of the proposed memory op-
timization techniques in automatic code generation for both single-thread and multithread
cases.

Figure 19(c) presents the performance for each configuration, showing the number of
cycles required to decode 30 frames QCIF H.264 stream. Multiprocessor implementation
with configuration M3 is 2.54 times and 3.58 times faster performance compared to single-
processor one with configuration S3 and to RTW, respectively. The required bandwidth is
12.1 MB/s and the processors spent time around 63.7% in computation and 13.7% in com-
munication.

To explore the design space of the H.264 decoder, we generated several multiprocessor
platform models written in cycle-accurate SystemC with hardware architecture generator
explained in [43] by increasing the number of Xtensa processors. GFIFO channels are used
for inter-subsystem communications. At the beginning, we profiled the execution cycle with
a single processor system (SS1). We partitioned the Simulink algorithm model and built
a Simulink CAAM with two processor subsystems (SS1, SS2) based on the profile result.
Similarly, we continued to build Simulink CAAMs by increasing the number of processors.
The different partitioning was done manually.

Figure 20 presents memory sizes with different numbers of processors where Px repre-
sents a multiprocessor platform with x varying from 1 to 6 Xtensa subsystems. Figure 20(a)

Memory-efficient multithreaded code generation from Simulink 277

F
ig

.1
9

D
at

a
m

em
or

y
si

ze
,c

od
e

m
em

or
y

si
ze

an
d

ex
ec

ut
io

n
tim

e
of

H
.2

64
de

co
de

r
w

ith
si

ng
le

-
an

d
fo

ur
-p

ro
ce

ss
or

pl
at

fo
rm

s

278 S.-I. Han et al.

F
ig

.2
0

H
.2

64
de

co
de

r
da

ta
m

em
or

y
si

ze
(k

by
te

)
an

d
co

de
m

em
or

y
si

ze
(k

by
te

)
w

ith
di

ff
er

en
tm

em
or

y
op

tim
iz

at
io

n
co

nfi
gu

ra
tio

ns
an

d
di

ff
er

en
tn

um
be

r
of

pr
oc

es
so

rs

Memory-efficient multithreaded code generation from Simulink 279

Fig. 21 H.264 decoder performance (Mcycle/s) with different memory optimization configurations and dif-
ferent number of processors

shows data memory sizes obtained varying the number of processors and the configurations
options for M1 (S1 for P1), M2 (S2 for P1) and M3 (S3 for P1). As the number of processors
increases, the data memory size also increases, because of the number of required channel
buffer memories, which are connected to send or receive blocks, and channel data structure.
Regarding to code size, similar effect can be observed in Fig. 20(b), because when the num-
ber of processors grows, the number of threads also increase, consequently increasing the
number of line codes.

Figure 21 presents the performance for each platform, showing the number of cycles re-
quired to decode 30 frames of the QCIF H.264 stream. The multiprocessor platform with
six Xtensa subsystems (P6) with configuration M3 (multithread with all optimization op-
tions) shows 2.91 times higher performance compared to single processor platform (P1)
with configuration S3 (single-thread with all optimization options). From the design space
exploration, we found that VLD parts (frame, slice, and macroblock VLD in Fig. 4) limit
the performance because they are sequential, and it does not pay off to add extra processors.

We can check the total required memory size and performance for different platform can-
didates within 7 hours, including code generation (∼10 min) and cycle-accurate simulation
(∼6 hours), because LESCEA can automatically generate multithreaded programs targeted
to the multiprocessor platforms. The number of lines of the generated thread and main codes
for six multiprocessor platforms is 5388 and it would take 8.3 days to manually develop the
codes with two programmers when we assume that two designers can produce 27 lines per
hour [44]. Furthermore, the manual optimization is somewhat limited since the designers
should schedule and allocate a large number of blocks and links respectively while consid-
ering global data and control dependency. For example, the H.264 Simulink model includes
107 blocks and 310 links of different sizes. LESCEA can automatically share the buffer
memories with different types and sizes with considering global data and control depen-
dency.

5.3 Result discussion and future work

First, this work proposes abstract clock synchronous model (ACSM) as the functional mod-
eling style and combined algorithm architecture model (CAAM) as the system architecture

280 S.-I. Han et al.

modeling style. Using two real applications, we show the feasibility of the proposed model-
ing styles for data-intensive and control-dependent applications, and their MPSoC architec-
tures.

Second, our multithread code generator extracts necessary information such as number
of threads, types of processors, communication channels from the input Simulink CAAM,
and then produces a set of software binaries, each of which executes on target processor.
Consequently, our multithread code generator can make designer free from laborious pro-
gramming work and explore design space within a short time. Using our tool, we evaluated
performances, data memory sizes and code memory sizes of six different platforms within
seven hours.

Finally, from the experiment results, we can check the effectiveness of the proposed
memory optimization techniques implemented in LESCEA. In the multithread case, the
data memory with all optimization options was 34.3% less for a Motion-JPEG decoder with
three processors and 68.0% less for an H.264 decoder with four processors than that without
optimizations. We can achieve more memory reduction in the H.264 decoder than in Motion-
JPEG decoder because H.264 decoder includes a relatively larger number of buffers with
disjoint lifetimes. Our memory optimizations also impacts on the code size, reducing the
application code size in 19.4% and 15.8% for H.264 decoder single-thread and multithread
cases, respectively. These results show that each memory optimization techniques affect
heavily the memory size (additionally execution time) of the generated code in both single-
thread and multithread cases.

However, the current software programming environment still has several limitations.
First, the performance of the presented multiprocessor platforms is still not enough for real
systems. For example, the digital video broadcasting system requires H.264 QVGA decod-
ing with a frame rate of 15 fr/s, which is about one and half times faster than the plat-
form with four processors at 93.2 MHz for QCIF 30 fr/s decoding. The QVGA format is
about three times larger than QCIF format. The platform is pure software approach and
thus its performance is somewhat limited to process data-intensive applications. In order to
achieve the required performance, we need to adopt multiprocessor platforms with config-
urable processors such as Xtensa with customized instructions to specific applications [45].
Second, presently we can take only a Simulink subset as input and, for example, we can-
not handle a Simulink model with multiple clocks even though the restricted subset can be
used to model the majority of embedded applications such as video codec applications and
telecommunication applications, as shown. Third, a Simulink algorithm model composed
with fine-grained blocks may cause a large number of data transfer and synchronization.
To solve this problem it is necessary to apply traditional communication optimization tech-
niques such as message aggregation and message coalescing [46]. For example, message
aggregation technique combines several small data transfers into a large data transfer when
the source thread and destination thread are the same. Fourth, we used a non-standard OS for
small memory footprint, but we need to use a standard OS API such as pthread [47] to im-
prove portability of the generated codes. Finally, the current software environment does not
include an automatic partition algorithm, thus the partitioning result depends on the designer
experience.

6 Conclusion

To achieve both high-performance and programmability, heterogeneous multiprocessor ar-
chitectures are becoming more popular in embedded systems. However, because of the in-

Memory-efficient multithreaded code generation from Simulink 281

trinsic heterogeneity and complexity of these architectures, software programming is be-
coming more complex and tedious process. This paper proposed a software programming
environment based on Simulink to cope with this complexity, which automatically generates
executable code for heterogeneous MPSoCs.

The main target applications of this environment are data-intensive applications such as
the emerging multimedia and telecommunication ones, which also include data-dependent
operations. To capture the functionality of data-intensive and control-dependent applica-
tions, we proposed a functional modeling style called Abstract Clock Synchronous Model
(ACSM). We also proposed a system modeling style called Combined Architecture Applica-
tion Model (CAAM) to specify both hardware and software with particular communication
I/O. This facilitates the automatic adaptation of the software code according to the target
processors and communication protocols.

As its main contribution, the paper presents our automatic software generation tool that
produces multithreaded programs executable on the heterogeneous multiprocessor platforms
from CAAMs. We divide the generation flow into hardware-independent and -dependent
steps. First, to address the design complexity of multithreaded code, the proposed tool
translates input CAAMs, schedules function-level Simulink blocks according to their de-
pendencies, applies buffer-memory optimization techniques, and generates a set of threads
communicating with each other via high-level communication primitives. Second, to build
multithreaded binary programs executable on heterogeneous processors from the generated
codes, the proposed tool also generates main codes and Makefiles. The Main codes are re-
sponsible to schedule threads and manage communication channels, while the Makefiles
link the codes with target processor specific OS libraries and build program binaries directly
executable on the target processors. Consequently, our tool frees the designer from manual
adaptation and distribution software to different multiprocessors.

We applied our software generation flow for two data-intensive applications, a Motion-
JPEG decoder and an H.264 decoder. The experiment results show that the proposed envi-
ronment is applicable and effective to design complex multithread code for heterogeneous
multiprocessor architectures in terms of design time and memory size. In terms of memory,
our multithread code generator achieves data memory reduction around 68.0% for H264
decoder. Regarding design time, we show that since our code generation can automatically
generate multithreaded programs targeted to multiprocessor platforms, we let designers free
from tedious tasks like adapting code to different processors/protocols, and hence save de-
sign time. Moreover, our environment allows designers to explore different configurations
to find the better trade-off between efficiency and cost.

As the future work, we plan to implement communication optimization techniques such
as message aggregation and message coalescing, standard OS support, and automatic parti-
tioning based on high-level performance estimation.

References

1. Jerraya AA, Wolf W, Tenhunen H (eds) (2005) IEEE Comput, Special issue on MPSoC 38(7):36–40
2. Cradle CT3600 Family™. http://www.cradle.com/products/sil_3600_family.shtml
3. IBM Cell™. http://www-128.ibm.com/developerworks/power/cell/
4. Ravikumar CP (2004) Multiprocessor architectures for embedded system-on-chip applications, vlsid. In:

17th international conference on VLSI design, p 512
5. Keutzer K, Malik S, Newton R, Rabaey J, Sangiovanni-Vincentelli A (2000) System-level design: or-

thogonalization of concerns and platform-based design. IEEE Trans Comput-Aided Des Integr Circuits
Syst 19(12):1523–1543

6. International technology roadmap for semiconductors (ITRS) (2001). http://public.itrs.net

282 S.-I. Han et al.

7. Simulink mathworks. http://www.mathworks.com
8. Han SI, Guerin X, Chae S-I, Jerraya AA (2006) Buffer memory optimization for video codec application

modeled in Simulink. In: Proceedings of DAC’06, San Francisco, July 2006, pp 689–694
9. Kahn G, MacQueen DB (1977) Coroutines and networks of parallel processes. In: Gilchrist B (ed) Pro-

ceedings of the information processing, vol 77. Toronto, Canada, pp 993–998
10. Lee EA, Parks TM (1995) Dataflow process networks. Proc IEEE 83(5):773–801
11. Buck JT (1993) Scheduling dynamic dataflow graphs with bounded memory using the token flow model.

PhD thesis, University of California, EECS Dept., Berkeley, CA. Technical Memorandum UCB/ERL
M93/69

12. Benveniste A, Caspi P, Edwards SA, Halbwachs N, Le Guernic P, de Simone R (2003) The synchronous
languages 12 years later. Proc IEEE 91(1):64–83

13. Kopetz H (1998) The time-triggered architecture. In: Proceedings of ISORC’98, Kyoto, Japan
14. Benveniste A, Carloni L, Caspi P, Sangiovanni-Vincentelli A (2003) Heterogeneous reactive systems

modeling and correct-by-construction deployment. In: Proceedings of the third international conference
on embedded software

15. Han S-I, Chae S-I, Jerraya AA (2006) Functional modeling techniques for efficient SW code generation
of video codec application. In: Proceedings of ASP-DAC’06, Japan, January 2006, pp 935–940

16. Lieverse P, Van Der Wolf P, Vissers K, Deprettere E (2001) A methodology for architecture exploration of
heterogeneous signal processing systems. J VLSI Signal Process Signal Image Video Technol 29(3):197–
207

17. Pimentel AD, Erbas C, Polstra S (2006) A systematic approach to exploring embedded system architec-
tures at multiple abstraction levels. IEEE Trans Comput 55(2):99–112

18. Artemis project. http://ce.et.tudelft.nl/artemis/
19. Dwivedi SK, Kumar A, Balakrishnan M (2004) Automatic synthesis of system on chip multiproces-

sor architectures for process networks. In: Proceedings of CODES+ISSS’04, Sweden, September 2004,
pp 60–65

20. Open systemc initiative. Online available at tttp://www.systemc.org/
21. Herrera F, Posadas H, Sanchez P, Villar E (2003) Systematic embedded software generation from Sys-

temC. In: Proceedings of DATE’03
22. Yu H, Doemer R, Gajski D (2004) Embedded software generation from system-level design languages.

In: Proceedings of ASP-DAC’04
23. Buck JT, Ha S, Lee EA, Messerschmitt DG (2004) Ptolemy: a framework for simulating and prototyping

heterogeneous systems. Int J Comput Simul 4:155–182
24. Pino JL, Bhattacharyya SS, Lee EA (1995) A hierarchical multiprocessor scheduling system for DSP

applications. In: Proceedings of the IEEE asilomar conference on signals, systems, and computers, No-
vember 1995

25. Banerjee P, Shenoy N, Choudhary A, Hauck S, Bachmann C, Haldar M, Joisha P, Jones A, Kanhare A,
Nayak A, Periyacheri S, Walkden M, Zaretsky D (2000) A MATLAB compiler for distributed, hetero-
geneous, reconfigurable computing systems. In: Proceedings of FCCM’00, California, April 2000

26. Real-time workshop. Mathworks. http://www.mathworks.com
27. RTI-MP. http://www.dspaceinc.com/ww/en/inc/home/products/sw/impsw/rtimpblo.cfm
28. Murthy PK, Bhattacharyya SS (2001) Shared buffer implementations of signal processing systems using

lifetime analysis techniques. IEEE Trans Comput-Aided Des Integr Circuits Syst 20(2):177–198
29. Oh H, Ha S (2003) Memory-optimized software synthesis from dataflow program graphs with large size

data samples. EURASIP J Appl Signal Process 2003:514–529
30. Ritz S, Willems M, Meyr H (1995) Scheduling for optimum data memory compaction in block diagram

oriented software synthesis. In: Proceedings of ICASS’95, Detroit, May 1995, pp 2651–2653
31. Balasa F, Catthoor F, De Man H (1995) Background memory area estimation for multidimensional signal

processing systems. IEEE Trans. Comput. Des. Integr. Circuits Syst. 3(2):157–172
32. De Greef E, Catthoor F, De Man H (1998) Program transformation strategies for memory size and power

reduction of pseudo-regular multimedia subsystems. IEEE Trans Circuits Syst Video Technol 8(6):719–
733

33. Greef ED, Catthoor F, Man HD (1997) Array placement for storage size reduction in embedded multi-
media systems. In: Proceedings of ASAP’97, Zurich, July 1997

34. Fabri J (1979) Automatic storage optimization. ACM SIGPLAN’79 Not 14(8):83–91
35. Zhu J (2001) Static memory allocation by pointer analysis and coloring. In: Proceedings of DATE’01,

Munich, March 2001, pp 785–790
36. Joisha PG, Banerjee P (2003) Static array storage optimization in MATLAB. In: ACM SIGPLAN 2003,

California, pp 258–268
37. Jantsch A (2003) Modeling embedded systems and SoCs—concurrency and time in models of compu-

tation. Kaufmann, Los Altos

Memory-efficient multithreaded code generation from Simulink 283

38. Lee EA, Sangiovanni-Vincentelli A (1998) A framework for comparing models of computation. IEEE
Trans CAD Integr Circuits Syst 17(12):1217–1229

39. Cesario WO, Nicolescu G, Gauthier L, Lyonnard D, Jerraya AA (2001) Colif: a design representation
for application-specific multiprocessor SoC. IEEE Des Test Comput 18(5):18–20

40. Cormen TH, Leiserson CE, Rivest RL (1990) Introduction to algorithms. MIT Press, Cambridge, pp 329–
355

41. Tensilica Xtensa V. http://www.tensilica.com
42. Mathworks Inc. Tips for optimizing the generated code. In: Real-time workshop embedded coder 5,

pp 84–94. http://www.mathworks.com
43. Huang K, Han S-I, Popovici K, Brisolara L, Guerin X, Li L, Yan X, Chae S-I, Carro L, Jerraya AA

(2007) Simulink-based MPSoC design flow: case study of motion-JPEG and H.264. In: Proceedings of
DAC’07, San Diego, June 2007, pp 39–42

44. Wood WA, Kleb WL (2003) Exploring XP for scientific research. IEEE Soft 20(3):30–36
45. Tensilica. XPRES compiler. http://www.tensilica.com/products/xpres.htm
46. Banerjee P, Chandy JA, Gupta M, Hodges IV EW, Holm JG, Lain A, Palermo DJ, Ramaswamy S, Su E

(1995) The paradigm compiler for distributed-memory multicomputers. Computer 28(10):37–47
47. POSIX 1003.1c threading, IEEE POSIX 1003.1c-1995, ISO/IEC 9945-1:1996

	Memory-efficient multithreaded code generation from Simulink for heterogeneous MPSoC
	Abstract
	Introduction
	Related work
	Functional modeling
	Multithreaded code generation
	Buffer memory optimization

	Multi-processor system modeling
	Functional modeling
	System architecture modeling

	Multithreaded code generation
	Simulink parsing
	Copy removal
	Scheduling
	Buffer sharing
	Thread code generation
	HdS adaptation

	Experimental results
	Experiments with Motion-JPEG decoder
	Experiments with H.264 baseline decoder
	Result discussion and future work

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

