
Des Autom Embed Syst (2010) 14: 75–103
DOI 10.1007/s10617-010-9051-5

A scheduler synthesis methodology for joint SW/HW
design exploration of SoC

Ismail Assayad · Sergio Yovine

Received: 26 April 2009 / Accepted: 3 February 2010 / Published online: 16 March 2010
© Springer Science+Business Media, LLC 2010

Abstract The introduction of high-performance applications such as multimedia applica-
tions into SoCs led the manufacturers to provide embedded SoCs able to offer an important
computing power which makes it possible to answer the increasing requirements of future
evolutions of these applications. One of the adopted solutions is the use of multiprocessor
SoCs. In this paper, we present a joint SW/HW design exploration methodology for mul-
tiprocessor SoCs. The system model relies on transaction-level component-based models
for modeling parallel software and multiprocessor hardware. Our proposal comprises two
original points. First, we propose a composable software-level scheduler constraints syn-
thesis technique. Second, we present a combined software-level and exploratory hardware-
level schedulers. The methodology has the advantage of combining real-time requirements
of software with effective exploitation of multiprocessor hardware. We describe and apply
the methodology to synthesize a scheduler of a slice-based MPEG-4 video encoder on the
multiprocessor Cake SoCs.

Keywords Multiprocessor System-On-Chips (SoCs) · SW/HW design · Scheduling ·
Exploration · Real-time requirements

1 Introduction

High performance embedded applications such as video compression, HDTV, and packet
routing, motivate the use of off-the-shelf, configurable, heterogeneous hardware platforms
offering multiple processing units, such as Philips’ VIPER [1] and Wasabi/Cake [2] SoCs,
and Intel’s IXP family of network processors [3]. These architectures provide significant
price, performance and flexibility advantages. However, the complexity of such multiproces-

I. Assayad (�)
ENSEM, University of Hassan II Ain Chock, Oasis Casablanca, Morocco
e-mail: i.assayad@ensem.ac.ma

S. Yovine
Departamento de Computacion, Universidad de Buenos Aires, and Researcher at CONICET, Buenos
Aires, Argentina
e-mail: syovine@dc.uba.ar

mailto:i.assayad@ensem.ac.ma
mailto:syovine@dc.uba.ar

76 I. Assayad, S. Yovine

sor embedded systems (MES) makes software programming and analysis difficult, leading
to sub-optimal software and hardware performances. Furthermore, as new applications and
services are continuously developed, the main challenge is to provide design frameworks
capable of supporting accurate, but fast, performance estimation for dimensioning the hard-
ware SoC in order to support integration of future applications [4]. This requires joint, rather
than separate, software and hardware modeling and simulation at design time. Indeed, an in-
tegrated software/hardware design exploration methodology, supported by the appropriate
tools, gives system developers means to improve field upgradability and time to market, and
therefore lower development costs, of embedded SoCs [5, 6].

In requirement-based system-level design, the set of tasks requirements plays a promi-
nent role in the design of the system. Typically, a designer studies this set of requirements,
makes some initial calculations and proposes a system architecture. The effectiveness of
this architecture is then to be evaluated and a comparison with alternative architectures is
to be made. Architectures are evaluated quantitatively by means of performance estimation.
For this, the tasks are scheduled onto the model of hardware and the performance of each
tasks-to-hardware scheduling combination is evaluated. The resulting performance num-
bers would be used by the system designer either (1) to modify the hardware, by adding
or removing components, changing their properties (e.g., bandwidth, frequency), etc.,
(2) to restructurate the tasks, or (3) to use another scheduling, in order to improve over-
all performances and/or meet the requirements.

In this paper, we present a SW/HW scheduling methodology developed along these lines.
The software is composed of hierarchical interdependent tasks which combine local real-
time requirements of tasks and performance efficiency of hardware. This methodology is
exploratory and is composed of two steps. The first step is the synthesis of a software-level
scheduler which defines a partial order on the set of hierarchical tasks. This scheduler is
independent from the hardware but take into accounts the interactions with the hardware
through data or precedence dependencies. The second step is a mapping step. This step
defines task scheduling at the hardware level.

This scheduling methodology is suitable for SW/HW design exploration of multimedia
applications. It is successfully used to find correct and efficient implementations of a slice-
based MPEG-4 video encoder on a multiprocessor SoC using P-WARE tool.

1.1 Related work

Several techniques have been proposed to address this issue. These techniques are classified
into three categories according to their modeling scope, namely software, hardware and
platform based approaches; and into two categories according to their modeling method, i.e.
analytical and simulation approaches.

Software-based design approaches for MES, e.g. [7, 8], do not provide means for an-
alyzing the impact of software implementation choices in the performance of hardware
micro-architectures, such as buses bandwidth or banks conflict. Thus, it becomes impossi-
ble to measure the capability of hardware configurations to accommodate future softwares.
Hardware-based design approaches, e.g. [9, 10], do not consider software programming and
analysis as part of the design flow. Therefore, there is no methodology to evaluate the im-
pact into software performance of changing a hardware configuration parameter. In contrast,
platform-based design (PBD) [11] provides the adequate level of abstraction that can be used
for addressing this problem.

Most PBD approaches found in the literature are not thought to provide complete solu-
tions for MES performance modeling and analysis.

A scheduler synthesis methodology for joint SW/HW design 77

METROPOLIS [12] provides general-purpose framework in the sense that it does not
make any assumption about the functional and timed models of micro-architectures. This has
the advantage of broadening the applicability of the framework for modeling concurrency
at a generic abstraction level. Nevertheless, this approach does not propose a methodology
for modeling and analysis of micro-architectures which resorts to the specific skills of the
designer.

The synthesis methodology presented in SHE [13] targets control software on sin-
gle processor and does not handle multiprocessors. TTL-based approaches [14, 15] does
not propose algorithmics for the synthesis of a scheduled software which thus resorts to
the designer exploration effort [14, 15], and does not handle software-level design explo-
ration [16].

Analytical models have been proposed in [17, 18] for modeling softwares in the specific
domain of packet processing. Reference [19] proposes a design flow allowing analytical
reasoning about performance requirements. Reference [20] automatically generates designs
of multiprocessor system on chip for FPGA instantiation. These works are however specific
for network on chip with guaranteed services, and softwares where only communication
requirements on network interfaces are relevant.

1.2 Our approach

In contrast to these approaches, our proposal in this paper is a scheduler synthesis methodol-
ogy for SW/HW design exploration of multiprocessor SoC. The methodology has the advan-
tage of being exploratory: it provides a software-level scheduler synthesis technique, and an
exploration approach for mapping software on hardware and synthesis of a hardware-level
scheduler. The synthesized scheduler allows to avoid exploring cases where the temporal re-
quirements of software are violated which simplifies the design exploration for the designer,
while the exploratory mapping allows designer to choose an efficient placement with regards
the performance of hardware. A formal and compositional synthesis is used for computing
each of the software and hardware-level schedulers.

This approach is original and has two novel contributions:

– In the scheduler synthesis, it combines both real-time software requirements consisting
of deadlines, and performance efficiency of hardware such as bandwidth consumption,
channels size, memory population, etc.

– It is an exploratory approach suitable for design space exploration of SoC. In this ap-
proach, the synthesized software-level scheduler is composable with the hardware-level
ones and hence computed only once during all design cycles, while the hardware-level
schedulers change according to defined mappings in design loops.

Basics of software/hardware models and a compositional constraint generation technique
for concurrent loops are presented in previous work [21–23] and [24] respectively. In this
paper we will extend this technique and show how to apply it to the tasks model, and we
will focus on presenting the methodology for synthesizing and exploring software-level and
hardware-level schedulers by using the technique for constraints generation and P-WARE

tool [23] for simulation-driven performance evaluation.

1.3 Outline

The remainder of the paper is structured as follows. Section 2 presents the software and
hardware models while Sect. 3 gives a big picture of the synthesis. Section 4 gives the
details of the constraints synthesis used for the calculation of the software level scheduler.

78 I. Assayad, S. Yovine

Section 5 presents the hardware level scheduler. Section 6 illustrates the methodology on
a slice-based MPEG-4 video encoder. Section 7 presents the results obtained for an OC-
48 IPv4 forwarding application. Section 8 gives a practical overview of synthesis flow and
execution choices. Finally, Sect. 9 presents some conclusions and future work.

2 System model

In this section we present the software and hardware models.

2.1 SW model

A software is composed of a set of simple or hierarchical tasks. A component A of a task t is
a tuple 〈t, C, D〉 where C is the set of constraints on the begin times of sub-tasks t1, . . . , tn,
D is the SW-to-HW mapping.

The constraints on begin times for a hierarchical task t define the scheduling of its sub-
tasks t1, . . . , tn. The execution time of a task may be unknown, or dependent on the map-
pings. The last case is equivalent to the use of the or operator to specify all the mappings.

A SW architecture is a set of tasks components. Sections 4 and 5 explain the methodology
for defining the scheduling and mapping constraints of the components.

The software component model is depicted in Fig. 1. The scheduler (C) receives the
scheduling requests (?ti.R) from tasks and puts them into a set of waiting tasks. It computes
the set of tasks to begin according to the timing constraints and notifies them (!ti.S). During
execution, tasks transaction requests (TR) are consumed by hardware components according
to defined mapping (D). The scheduler also observes the completion time of tasks, thus when
a task completes it notifies the scheduler (?ti.E).

2.2 HW model

Unlike pure functional models, components need accurate models for their traffic and timing
changes to obtain timing performance of the hardware. A good example to illustrate this
idea is the modeling of a cache. By definition a cache is an implementation to improve
the performance of the hardware. It is not required to be included in the model to verify

Fig. 1 Software component

A scheduler synthesis methodology for joint SW/HW design 79

the functional correctness of a program. Yet, it is necessary to observe the actual traffic of
cache activities on the buses for collecting the timing performance, not only for the cache,
but for the overall hardware. In this case, the model of the cache must include not only
timing latencies, but also some algorithmics that reflect the cache effect on the data amount
generated onto the buses. The same requirements apply to the modeling of other hardware
components.

We present here a transaction-level functional and timing model for hardware component.
A transaction request TR for a transaction T is a tuple composed of information such as

the type (e.g. read, write), stage of transaction (e.g. arbitration), and a data payload. A HW
component C is composed of a behavior and an interface 〈Ii,Oj 〉. The behavior is composed
of a request arbiter, a transaction controller, the transaction-level timed behavior. Ii is the
set of input ports for the requests TR of C. Oj is the set of output ports of the requests TR
of C.

A connection is a tuple 〈O,I1, . . . , In〉 where O is an output port of the source compo-
nent, I1, . . . , In are the input ports for the requests TR sent from the port O . A component
transactor generates and sends requests using blocking and non-blocking calls on input in-
terfaces of destination components through these connections.

A HW architecture is a pair 〈C, B〉 where

– C is the set of components.
– B is the set of connections.

The full component blocks semantics is given in [22, 23]. The principal component de-
tails are also given in what follows.

The hardware components model is depicted in Fig. 2. It is composed of five blocks
whose interactions are fixed. The buffer stores input TR, and it signals if the component
accepts or refuses new TR. The arbiter is to be instantiated with the arbitration policy inside
the buffer. Both the buffer and the arbiter may incur, i.e. may be annotated by, latencies.
The controller is to be instantiated with a control policy in charge of deciding which and
when to launch a transaction and resolving conflicts between operations: an operation starts
execution when it receives a “fire” message from the controller, and notifies the latter and the
next operation to start with the completion of the operation by sending the end message and
the start message, respectively. The transactor sends outputs to recipient’s input buffers. It is
also used to control transaction granularity, i.e., size of physical data on which transactions
operate in the real micro-architecture (e.g. data of the bus). The transaction-level timed
behavior (TLTB) is to be instantiated with the set of transaction behaviors.

Fig. 2 Hardware component

80 I. Assayad, S. Yovine

When the controller receives a transaction request T i from the arbiter, it decides which
transaction of TLTB to fire and when. This decision making is hardware specific. If the trans-
action is enabled it immediately fires it, otherwise, the firing is delayed until the transaction
becomes enabled. The controller also resolves inter-transaction conflicts discussed before.
When a transaction completes, the controller is notified and sends results to the transac-
tor. The latter outputs results, i.e. generates TR to output buffers or to controller of target
component.

As aforementioned, the interactions between blocks are fixed but their behaviors are de-
scribed by instantiating the automata: functions associated to some states of these automata
are to be implemented (e.g. arbitration function of the arbiter, operation latencies of the
TLTB, etc.). To return to the cache example, this model allows the designer to accurately
describe the cache data access latencies, its algorithmics, and its generated traffic on the
buses through the instantiations of the TLTB, controller and transactor, respectively.

It is worth noticing that In this work, hardware component models are used for simulation
purposes in the hardware-level scheduler synthesis step: for a given architecture configura-
tion, these component-based TLM simulations will allow for evaluating the efficiency, with
regards the hardware performance, of a set of tasks mapping choices.

3 Big picture of the synthesis

3.1 Synthesis steps and flow

We present here a big picture introducing a view of the context of our scheduler synthesis ap-
proach. We consider an architecture and an application running on it. The application is the
software and its environment, while the architecture is the underlying execution hardware.
The application model only1 takes into account environment execution times and periodic
activations, and software and environment interactions due to data and control dependencies.

Then, the step “constraint synthesis” derives a software-level scheduler of this applica-
tion and constraints on the parameters which must be satisfied at runtime, by any parallel
mapping of software which will be defined later. After that, we look for system implemen-
tations, e.g. mappings on processors, and compute corresponding hardware-level schedulers
which must satisfy the latter constraints. This is done by considering several classes of par-
allel implementations (e.g., data parallel, task parallel and hybrid implementations).2

The different parts of the context and the flow of the scheduler synthesis are depicted in
Fig. 3.

3.2 Kind of equations used in the synthesis

Before describing the constraints synthesis in details, we show here on a very simple exam-
ple what kind of equations are necessary for the synthesis with less formulations first. This
is composed of two tasks which are two loops with data dependencies (Fig. 4). e4 and e9
denote the computations end times. Numbers beside states are the execution times.

1That is, the model abstracts away from hardware-dependent issues, such as conflicts between software and
environment communication due to concurrent bus and memory accesses. An automatic target specific profil-
ing of user code is outside the scope of this paper and considered as an input. Thus timing properties attached
to (computation and communication) tasks should take them into account, otherwise the inaccurate timing
will be identified by simulation and back-annotated on the model.
2This exploration is currently manual.

A scheduler synthesis methodology for joint SW/HW design 81

Fig. 3 Simplified design flow

Fig. 4 Simple tasks automata

Without loss of generality, control points of tasks are considered to be on the first compu-
tations of the loops. It is possible to use parallel tasks when more control points are needed.
In the latter case, computations are dispatched on several automata instead of one.

Therefore, the scheduler to be synthesized will start execution of tasks according to some
constraints on b1 and b2, the begin times of computations 1 and 2 as shown in Fig. 4.

82 I. Assayad, S. Yovine

In the process of computing a scheduler we synthesize a set of constraints. These con-
straints are compositional which allows for incremental synthesis. As will be seen in details
in the paper, we will take advantage from this feature to incrementally compute and com-
pose a software-level scheduler with hardware-level schedulers in two steps considering
both real-time and performance objectives, respectively.

Concretely, for Fig. 4, we may synthesize the software-level scheduler for the two tasks
and compose it with the software-level scheduler of the sub-tasks of F(X). Then, after
deciding the tasks-mapping we can compute the hardware-level scheduler by adding the
mapping constraints. These compositions are detailed in this paper for the general case.

Let us now focus here on the main kind of equations which might be calculated for the
synthesis in both steps: the backward propagation equations and interaction equations.

The backward propagation Equations are the equations resulting from the propagation of
the requirements starting from the last states of the automata. Since the control points are
considered to be on the beginning of the first computations, the equations of the first kind
are the following:

σ9 ≤ 22 ∧ σ9 = σ8 + 3 σ9 = σ8 + 3
∧ σ8 ≤ 19 ∧ σ8 = σ7 + 2 ∧ σ8 = σ7 + 2

�1 = ∧ σ7 ≤ 18 ∧ σ7 = σ6 + 2 = ∧ σ7 = σ6 + 2
∧ σ6 ≤ 16 ∧ σ6 = σ5 + w6 + 1 ∧ w6 ≤ 16 − 1 − σ5 ≤ 13 ∧ σ6 = σ5 + w6 + 1
∧ σ5 ≤ 15 ∧ σ5 = 2 ∧ σ5 = 2

�1 = Constraint ∧ Invariant = w6 ≤ 13 ∧ I1 = W1 ∧ I1

Where σi and wi are the relative end time, and waiting time of automaton state i respec-
tively. Similarly, for second automaton we obtain equations of the form:

�2 = σ3 + w4 ≤ 17 ∧ I2 = W2 ∧ I2

Interaction equations The second kind of equations are equations that characterize the
interactions of automata. These equations will link waiting time variables to (scheduler)
control points. If we assume that waiting times meet the W ’s constraints, then these equa-
tions characterize the subset of interactions which satisfy the real-time requirements. For
the simple example above the equations of the dependencies-based interactions are the fol-
lowing four: the two first equations for one interaction and the two second equations for the
other interaction, π12 = −π21 denotes b1 − b2.

π21 + σ5 < σ2 ∧ w6 = σ2 − π21 + σ5

π21 + σ5 >= σ2 ∧ w6 = 0
π12 + σ3 < σ8 = 6 + w6 ∧ w4 = 6 + w6 − π12 − σ3

π12 + σ3 ≥ σ8 = 6 + w6 ∧ w4 = 0

How to compute constraints? Finally, to compute the constraints on b1, b2 and σ3, the
execution time of computation 3, we replace, in the last two interactions, w6 with its values
given in the first two interactions. Hence, for each interaction we get equations with one

A scheduler synthesis methodology for joint SW/HW design 83

waiting time variable. Lastly, by simple transitivity from the latter obtained equations and the
previous equations W1 and W2, we deduce a disjunction of four constraints on b1, b2, δ3:

δ3 ∈ [0,8[∧ + π12 ≥ 2 ∧ π12 ≤ 13
δ3 + π12 ≤ 4 ∧ 2 + π12 ∈ [−11,0]
δ3 ≥ 8 ∧ 2 + π12 − 2 ≥ 0 ∧ π12 ≥ 13
δ3 + π12 ≥ 4 ∧ π12 ≤ 0

Notice that for the hardware-level scheduler, some additional (mapping) interactions may
be added such as the sequentialization of two initially parallel tasks. They are expressed in
the same way as the dependency-based interactions.

4 Constraints synthesis

In the following, we show how to apply the constraints synthesis technique presented in [24]
to hierarchical tasks subject to deadlines for synthesizing a software-level scheduler, inde-
pendently from hardware. This scheduler consists of a set of constraints3 on the begin-times
of each task executions such that the timing requirements of all tasks are satisfied.

4.1 Description

The technique presented in [24] computes constraints for concurrent loops. Loops bodies
are described as inter-dependant timed automata4 whose states correspond to computations.

Requirements A task has a local deadline as a requirement on its end time. For instance,
deadline of a while task is the deadline of each iteration of loop starting from the begin
time of this iteration.

Output The technique produces constraints on the begin times of tasks and constraints on
the execution times of tasks whose execution times are unknown. These constraints are
solved using integer linear programs ILP.

4.2 Application to tasks

4.2.1 Description

The technique presented in [24] computes constraints for concurrent real-time loops. Loops
bodies are described as inter-dependant timed automata whose states correspond to compu-
tations. The following are the key ideas of how the technique is applied to timed automata
representing loops bodies.

– For each (body of) loop, propagate the requirement and express it as a constraint on the
waiting time (w’s) of loop computations and unknown execution times variables (δ’s).
The result of this propagation is the propagation relation denoted by �(w, δ).

3These constraints define a partial order whereas the total order is defined by the mapping step.
4The motivations for timed automata models are their ability to express timing constraints between events
very naturally, and the growing interest in their applicability to both qualitative and quantitative synthesis.

84 I. Assayad, S. Yovine

– For each (body of) loop, compute a constraint on begin times (b’s) of loop iterations which
guarantees the constraint �(w, δ). To do that, the waiting time of a loop computation is
expressed by a relation between the begin time of that computation and the computations
it depends on. This interaction relation is denoted �(b,w, δ). Then using the constraint on
that waiting time given by �(w, δ), and the relation �(b,w, δ), constraints are inferred
on variables b and δ. These scheduler constraints are denoted �(b, δ).

The constraints �(b, δ) are consistent by construction. Indeed, � characterizes the set of
interactions consistent with the waiting times objects of � .

4.2.2 Preliminary example

We describe in this example the main steps of the constraints synthesis. We use two automata
AP and AQ depicted in Fig. 5 to illustrate the technique. The indexed arrows indicate de-
pendencies between iterations of computations at begins and ends of arrows.

We denote by σx the relative end time of the execution of x. For example σp3 =
ep3 − bp1 , σq4 = eq4 − bq1 . We denote by bfirst(A) the begin time of the execution of the
first computation of automaton A. We denote by Prd(q) the set of computations in other
automata than q’s automaton and on which q is dependant.

Computing �i This step computes a set of constraints denoted Wi on the waiting times
variables, w’s variables, for each automaton separately, of the form Xi ⇐ Wi ∧ Ii where Xi

is the result of the backward constraints propagation on the automaton Ai starting from the
last state, Wi is the constraint on the w’s variables of Ai and Ii is an invariant of Ai . Notice
that Wi contains only the w’s. The Ii formula may contain the w’s b’s and e’s. Computations
of XP , WP and IP for automaton AP are explained in Table 1. AP has no conditional branch
hence WP is the sufficient and necessary condition on waiting times, i.e., Xp ⇔ WP ∧ IP .
Notice that in Table 1, b’s and e’s are contained in σ ’s. Constraints propagation process for
AQ is done similarly.

Computing �i It’s a relation which links uncontrollable variables, i.e., the w’s of Ai , and
control points, i.e., the activation times bfirst(Ai). This relation characterizes the possible inter-
actions of Ai with its environment. For instance, AQ has two execution paths corresponding

Fig. 5 Concurrent automata AP

and AQ corresponding to two
loops bodies

A scheduler synthesis methodology for joint SW/HW design 85

Table 1 Details of the constraints propagation process on P

Constraints propagation on P :

XP ≡ ∧
(σp3 ≤ dP ∧ σp3 = σp2 + δp3 + wp3)

(σp2 ≤ dP − δp3 − wp3 ∧ σp2 = σp1 + δp2)

(σp1 ≤ dP − δp3 − wp3 − δp2 ∧ σp1 = δp3)

XP can be expressed as a conjunction of an invariant
of P , IP , and a constraint on w’s, WP , as follows:

XP ≡ (σp1 ≤ dP − δp3 − wp3 − δp2) ∧ IP

≡ (wp3 ≤ dP − δp3 − δp2 − δp1) ∧ IP

IP ≡
⎛
⎜⎝∧

(σp3 = σp2 + δp3 + wp3)

(σp2 = σp1 + δp2)

(σp1 = δp3)

⎞
⎟⎠

WP ≡ (wp3 ≤ dP − δp3 − δp2 − δp1)

Finally, we obtain �P . Notice that since P does not
contain a branch, WP is a necessary and sufficient
property on w’s, that is, no need to compute the weakest precondition:

XP ⇔ WP ∧ IP = �P

to the conditions cond1 = cd1 and cond2 = cd1. This causes two possible interactions of
AP with AQ, that is, �

cond1
Q (wq2 , bq1 , bp1) when cond1 is true and �

cond2
Q (wq3 ,wq2 , bq1 , bp1)

when cond2 is true, and two interactions of AP with AQ, that is, �
cond1
P (wp3 , bq1 , bp1) when

cond1 is true and �
cond2
P (wp3 , bq1 , bp1) when cond2 is true. �

condj

i is computed as follows:
for each state q of the automaton A with a non empty set Prd(q), and which is executed
when condj holds, we compute φ(wq): wq = maxq ′∈Prd(q) wq ′ where wq ′ satisfies relation:

∨

(
∧ (σq ′ + bfirst(A) > σq + bfirst(A′))

(wq ′ = 0)

)

⎛
⎜⎜⎜⎝∧

(σq ′ + bfirst(A) ≤ σq + bfirst(A′))⎛
⎜⎝

wq ′ = σq − σq ′

+ bfirst(A′)

− bfirst(A)

⎞
⎟⎠

⎞
⎟⎟⎟⎠

In the relation above, A′ is the automaton to which q ′ belongs and σq is the relative end time
of q when condition condj holds. Expression wq may contain some unknown waiting times
variables in which case they are recursively computed in function of appropriate control

points under condj . Finally, �i = ∨
j �

condj

i . The details of this calculation process are

also illustrated on example of Fig. 5: relations �
cd1
P and �

cd1
P , �

cd1
Q and �

cd1
Q are given in

86 I. Assayad, S. Yovine

Table 2 Interactions of Q

Sub-interactions of Q with P when the branch condition cd1 holds:

�
cd1
Q

≡
(

∨ (πq1p1 + σq1 > σp2 ∧ wq2 = 0)

(πq1p1 + σq1 ≤ σp2 ∧ wq2 = πq1p1 + δp1 + δp2 − δq1)

)

Sub-interactions of Q with P when cd1 is false:

�
cd1
Q

≡

⎛
⎜⎜⎜⎜⎝

∧

(
∨ (πq1p1 + σq3 > σp2 ∧ wq2 = 0)

(πq1p1 + σq3 ≤ σp2 ∧ wq2 = πq1p1 + δp1 + δp2 − δq1 − δq3 − wq3)

)

(
∨ (πq1p1 + σq1 > σp1 ∧ wq3 = 0)

(πq1p1 + σq1 ≤ σp1 ∧ wq3 = πq1p1 + δp1 − δq1)

)

⎞
⎟⎟⎟⎟⎠

Table 3 Interactions of P and the global interactions of both P and Q

Sub-interactions of P with Q when the branch condition cd1 holds:

�
cd1
P ≡

(
∨ (πq1p1 + σq4 < σp2 ∧ wp3 = 0)

(πq1p1 + σq4 ≥ σp2 ∧ wp3 = −πq1p1 + δq1 + δq2 + δq4 + wq2 − δp1 − δp2)

)

�cd1 ≡
⎛
⎜⎝∨

(πq1p1 + σq4 < σp2 ∧ wp3 = 0)

(πq1p1 + σq4 ≥ σp2 ∧ πq1p1 + σq1 > σp2 ∧ wp3 = −πq1p1 + δq1 + δq2 + δq4 − δp1 − δp2)

(πq1p1 + σq4 ≥ σp2 ∧ πq1p1 + σq1 ≤ σp2 ∧ wp3 = δq2 + δq4)

⎞
⎟⎠

Sub-interactions of P with Q when cd1 is false:

�
cd1
P ≡

(
∨ (πq1p1 + σq4 < σp2 ∧ wp3 = 0)

(πq1p1 + σq4 ≥ σp2 ∧ wp3 = −πq1p1 + ∑
i δqi

+ wq3 + wq2 − δp1 − δp2)

)

�cd1 ≡

⎛
⎜⎜⎜⎜⎜⎝

∨

(πq1p1 + σq4 < σp2 ∧ wp3 = 0)

(πq1p1 + σq4 ≥ σp2 ∧ πq1p1 + σq1 > σp1 ∧ πq1p1 + σq3 > σp2 ∧ wp3 = −πq1p1 + ∑
i δqi

− δp1 − δp2)

(πq1p1 + σq4 ≥ σp2 ∧ πq1p1 + σq1 ≤ σp1 ∧ πq1p1 + σq3 > σp2 ∧ wp3 = δq2 + δq3 + δq4 − δp2)

(πq1p1 + σq4 ≥ σp2 ∧ πq1p1 + σq1 > σp1 ∧ πq1p1 + σq3 ≤ σp2 ∧ wp3 = δq2 + δq4)

(πq1p1 + σq4 ≥ σp2 ∧ πq1p1 + σq1 ≤ σp1 ∧ πq1p1 + σq3 ≤ σp2 ∧ wp3 = πq1p1 − δq1 + δq2 + δq4 + δp1)

⎞
⎟⎟⎟⎟⎟⎠

Table 3 for P and Table 2 respectively where symbol πq1p1 denotes bq1 − bp1 and �cd1 =
�

cd1
P ∧ �

cd1
Q . and �cd1

= �
cd1
P ∧ �

cd1
Q .

Execution constraints Execution constraints of automaton Ai , named �i(bfirst(Ai),

〈bfirst(Aj)〉j∈Env(Ai)), are obtained by mean of quantifiers w′s elimination. For conditional
choices condj we compute conjunctions over execution combination choices: �i =∧

Cj
∃w (�j (〈bfirst(Ak)〉) ∧ �i(〈w〉)). Finally, for (non-conditional) execution choices we

compute disjunctions over execution combination choices: �i = ∨
Ck

�ik . On the example
of AP and AQ and when considering unit execution times for computations, i.e., δqi

= 1,
and deadlines equal to 10 units, dP = dQ = 10, the two generated constraints after removing
redundancy are (bq1 + 2 ≥ bp1) and (bp1 + 5 ≥ bq1).

4.2.3 Application to tasks

We describe how to apply the technique to tasks. For this, we show the timed automata
models of tasks on which it is applied on.

A scheduler synthesis methodology for joint SW/HW design 87

Fig. 6 Tasks to automata

Basic blocks, sequentials and conditionals Applying it to basic and sequential nodes is
straight forward and is done as for loop bodies: general forms of corresponding timed mod-
els are shown in Figs. 6(a), 6(b), 6(c).

Loops The timed models of while, for and dependency-free forall tasks are generated for
the corresponding loops bodies and the synthesis is done in a similar way for all of them.
As for inter-dependent forall nodes, they are handled in the same way as the parallel task
par.

Or Task Or describes a choice between several sub-tasks computations. As much timed
model as number of choice are generated. Therefore, this technique consists of generating
constraints in one of the following forms:

–
∧

�(bti , δj)

–
∨

Ck
(
∧

�(bti , δj)
∧{bt = ⊥, t /∈ Ck})∧

and
∨

denote conjunctions and disjunctions, respectively. The set of variables δj

is the set of unknown execution times; each set Ck is a set of choices (for Or tasks);∧
�(bti , δj)

∧{bt = ⊥, t /∈ Ck} are the corresponding constraints where bt = ⊥, t /∈ Ck

indicate that computations of each task t which does not belong to Ck are not executed. The
software scheduler is thus either a solution of an integer linear system, IL, or a set of pairs
of integer linear systems with the set of corresponding choices, 〈ILk,Ck〉.
Parallels Some parallel tasks may be removed since all top level tasks are implicitly par-
allel,5 and imbrication of multiple parallel task may be transformed to a single parallel.
Therefore, after performing the multiple to single parallel task transformation if any, the
synthesis technique for a parallel task is done as follows:

– (a) Apply the synthesis while unexpanding the parallel task, i.e., while the parallel task is
treated as a basic block;

– (b) Apply recursively the synthesis on sub-tasks of parallel task by considering the pos-
sible constraints on that task in (a) as a requirement. The composition of the obtained
constraints and the ones of (a) is the conjunction of the two.

This will be illustrated by the example given in Sect. 5.

5Top level tasks behave as if they were combined by a parallel task.

88 I. Assayad, S. Yovine

4.2.4 Complexity

For a given combination of sub-tasks choices, Ci :

– We denote by ki the number of disjoints sets of dependencies or hyper-dependencies, such
that each set contains all the dependencies or hyper-dependencies with a same source
number, say it is equal to ns , and a same target number, say it is equal to nd .

– For each set Dj above, we denote lj its cardinality.

Thus, the number of generated constraints for the combination Ci is at most the product
of the number of generated constraints for each set Dj . Since there are ki such set, this
number is

ki∏
j=1

nd(ns + 1)lj

For instance, 5 and 3 linear constraints are generated for the Fig. 5 for conditions cond1

and cond2, respectively, as shown in 3. By summing over the combinations choices, we
obtain a bound on the total generated linear constraints:

I∑
i=1

ki∏
j=1

nd(ns + 1)lj

Where I is the number of tasks Or multiplied by the number of their execution choices.
Each constraint may have at most N w′s variables each of whom may depend on less than

N w′s variables; therefore w′s elimination is performed in at most N2 operations, where N

is the tasks number.
Finally, the overall complexity is dominated by

N2 × I ×
k∏

j=1

nd(ns + 1)lj

Where k is the maximal number, over all possible execution choices, of sets of depen-
dencies or hyper-dependencies whose, as explained before, sources number is equal to ns

and target number is equal to nd , i.e., k = maxI
i=1 ki .

We notice that the latter complexity is determined by the following factors:

1. The sum of the multiplications of the choice tasks number by their number of choices
(from their sub-tasks), I .

2. Exponents of the number of inter-tasks dependencies. Indeed the relation � is potentially
disjunctive. Hollow times due to the latencies for synchronization of the tasks computa-
tions may intervene in the calculation of the relation �. This depends on end times and
begin times of one or more source tasks computations and their target computations, re-
spectively. Thus the number of generated systems of linear constraints is determined by
a product over these dependencies as previously explained.

3. The quadratic number of tasks.

By choosing a small partition, the synthesis complexity may be reduced, Such parti-
tion may be a set of (a) hierarchical tasks whose sub-tasks have the same constraints, or
(b) hierarchical tasks whose sub-tasks are ignored in the scheduler synthesis and thus whose

A scheduler synthesis methodology for joint SW/HW design 89

Fig. 7 Three tasks P , Q and S and expanded views for sub-tasks p1 and s1

scheduler is not computed. As an example if sub-tasks (t1, . . . , tn) of T are not involved
in any dependency with any other task, then begin times of tasks (t1, . . . , tn) depend only
on begin time of T . Hence, sub-tasks (t1, . . . , tn) may be put inside the same element in
the partition. This element may be T or any other containing task verifying this condi-
tion.

The example of Fig. 7 contains twelve simple tasks. Partitions are {P,Q,S} {p11,p12,

p13,Q,S} . . . {P,Q, s1, s2}. The maximal partition P , i.e., the partition with maximal car-
dinality, for this set of tasks when applying partitioning (a) is composed of eleven tasks,
P = {p11,p12,p13,p3,p2,p4, q1, q2, q3, s1, s2} because only sub-tasks s11, s12 are not sub-
ject to any dependency and hence the synthesis results in them having the same constraints
as s1. For simplicity, the dependencies between sub-tasks of p1 are not presented in this
figure.

4.3 Example

Let us consider the example of Fig. 7 with deadlines data D1 = 10, D2 = 10, and D3 =
5; and following worst case execution times: δp2 = 1, δp3 = 1, δp4 = 1, δq1 = 1, δq2 = 4,

δq3 = 1, δs1 = 1, δs2 = 1; while WCET of p1 is unknown.
We obtain the set of constraints C of Fig. 8 where x = bp1 − bq1 and y = bs1 − bq1 are

time distances between tasks p1 q1 and s1.

How to compute these constraints? The constraints shown in Fig. 8 are obtained in the
same way described in examples of Sects. 3.2 and 4.2.2. That is:

1. We first compute the constraints propagation equations,
2. Then we compute the interaction equations, and
3. Finally, by variables substitution and transitivity of waiting times constraints we deduce

the shown set of constraints on δp1 , bp1 , bq1 and bs1 .

As an example, when s2 is executed (bs1 = ⊥), and when the scheduling of q1 and
p1 verify x = bq1 − bp1 ≤ 2 which means that time distance between hierarchical tasks
Q and P is smaller than or equal to 2, then the constraint of execution time of p1 is:
δp1 = max(δp11 , δp12 , δp13) ∈ [0,6].

90 I. Assayad, S. Yovine

When s2 is executed⎧⎪⎪⎨
⎪⎪⎩

(1) δp1 >= 5 + x ∧ δp1 <= 6
(2) δp1 >= 4 + x ∧ δp1 <= 5 ∧ x ≤ 2
(3) δp1 >= 1 + x ∧ δp1 <= 4 ∧ x ≤ 2
(4) δp1 >= 0 ∧ δp1 <= 1

When s1 is executed
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5) δp1 >= x − y − 2 ∧ δp1 >= x + 5 ∧ δp1 <= x + 6 ∧ δp1 <= 7
(6) δp1 >= x − y − 2 ∧ δp1 >= x + 4 ∧ δp1 <= x + 5 ∧ δp1 <= 7 ∧ x <= 2

∧ y >= −7
(7) δp1 >= x − y − 2 ∧ δp1 >= x + 4 ∧ δp1 <= x + 5 ∧ δp1 <= 7 ∧ x <= 2

∧ y >= −8 ∧ y <= −6
(8) δp1 >= x − y − 2 ∧ δp1 >= x + 4 ∧ δp1 <= x + 5 ∧ δp1 <= 7 ∧ x <= 2

∧ y >= −7 ∧ y <= −4
(9) δp1 >= x − y − 2 ∧ δp1 <= x + 5 ∧ δp1 <= 7 ∧ y >= −8 ∧ y <= −4
(10) δp1 >= x − y − 2 ∧ δp1 >= x + 4 ∧ δp1 <= x + 5 ∧ δp1 <= 7 ∧ x <= 2

∧ y >= −8 ∧ y <= −6
(11) δp1 >= x + 1 ∧ δp1 <= x + 4 ∧ x <= 2 ∧ y >= −6
(12) δp1 >= x + 1 ∧ δp1 <= x + 4 ∧ x <= 2 ∧ y >= −7 ∧ y <= −6
(13) δp1 >= x + 1 ∧ δp1 <= x + 4 ∧ x <= 2 ∧ y >= −8 ∧ y <= −7
(14) δp1 <= x + 1 ∧ δp1 <= 5 ∧ x <= 2 ∧ y >= −6
(15) δp1 >= x + 1 ∧ δp1 <= 5 ∧ x <= 2 ∧ y >= −7 ∧ y <= −6
(16) δp1 >= x + 1 ∧ δp1 <= 5 ∧ x <= 2 ∧ y >= −8 ∧ y <= −7

Fig. 8 The sets of constraints for the example of Fig. 7

5 Hardware-level scheduler

The set of synthesized constraints in Sect. 4 constitutes a set S of linear constraints systems
over the begin times and execution times of tasks. To compute the hardware-level scheduler,
we first define the software-to-hardware mapping functions of the components. Then either
these systems remain unchanged in the case where tasks are mapped on different (groups)
of processors, and are composed with mapping constraints; or the interaction constraints are
resynthesized and systems are recomputed:

– Either the systems remain unchanged in the case where tasks are mapped to different
groups of processors. In this case, the running hardware platform does not limit the tasks
parallelism and may offer more. Therefore some tasks may be expanded to a par (or
forall) combinations to exploit these groups. And the systems have to composed with
the computed corresponding hardware-level constraints, in a recursive way as explained
earlier.

– Either the interaction constraints have to be synthesized again. It is done in the same way
but on a new timed model which considers the limitation of platform parallelism reflected
by the defined mapping. For instance, the mapping may add new dependencies between
tasks or transform some parallel combinations to sequential ones (dependency free forall
to for, forall with dependent iterations to sequence of for, or par to seq).

Then, the final solutions are obtained by choosing the early begin times of tasks. For that
we add the objective function min

∑
i bti .

A scheduler synthesis methodology for joint SW/HW design 91

Table 4 Software and hardware
level schedulers for the example
of Fig. 7

case (a) case (b)

Software-level scheduler S

Hardware-level scheduler

{
min f

SHW

⎧⎪⎨
⎪⎩

minf

bp1 + D1 > bq1

S⎧⎪⎨
⎪⎩

minf

bq1 + D2 > bp1

S

As an example, let us consider the example of Fig. 7, with the following three cases. In
the first case, the mapping on three processors one for each task P , Q and S. This case does
not require additional mapping constraints. However for the second case only two processors
are used, one for P and Q, and one for S, the mapping constraints have to be composed with
the software-level scheduler. The constraint �HW on end times and begin times of P and Q,
expressing that P and Q share one processor, is a disjunction:

bp1 + δp1 + δp2 + δp3 + wp3 + wp2 > bq1

∨
bq1 + δq2 + δq3 + wq3 > bp1

In this case the constraints of the interaction relation � is obtained by composition
and becomes S ∧ �HW which, let us say, result in the hardware-level scheduler SHW .
Then the solutions for the hardware-level scheduler are obtained as before by taking the
early begin times and are given in Table 4(a). In this table we denoted f the expression∑

i bqi
+ ∑

j bpj
+ ∑

k bsk .
The last case is also when only two processors are used, one for P and Q, and one for

S, but P and Q keep the processor during a duration equal to their deadline, respectively. In
this case the hardware-level constraints �HW do not include waiting time variables and are:

bp1 + D1 > bq1

∨
bq1 + D2 > bp1

Therefore the hardware-level scheduler is obtained by composition and becomes S ∧ �HW

as shown in Table 4(b).

5.1 Efficiency

After the definition of the software-to-hardware mapping function and calculation of the
final scheduler, system performance are estimated to evaluate its efficiency. For ease of
presentation, we present here this evaluation for the hierarchical sub-task p1. The sub-tasks
of p1 are depicted in Listing 1.

The hardware architecture properties are depicted in Table 5.
Writing, reading, addition and multiplication latencies are equal to two cycles. In the

opposite of the two first transactions, addition and multiplication must be executed on dif-
ferent cycles. References [22, 23] give detailed presentations on the modeling of hardware
architectures.

As the sub-tasks of p1 are not a part of the initial partition, their scheduler is not synthe-
sized. However, the synthesis is compositional and can be applied on the sub-tasks by taking
the constraint on p1 as the execution time deadline to obtain the constraints Sp1. Then the

92 I. Assayad, S. Yovine

p1 : p a r
p11 : w h i l e (i >0) x=add (x0 , r e a d (&M[i])) ;
p12 : w h i l e (i >0) dec (i) ; w r i t e (&M[i] , x) ;
p13 : w h i l e (i >0) w r i t e (&z , mul t (x , r e a d (&c))) ;

Listing 1 Sub-tasks of p1

Table 5 Hardware properties

TR read write add mult dec

T latencies 2 2 2 2 1

Conflictual T – – mult add –

Parallel T write, dec read, dec read, write – read, write

Table 6 Mappings and
performance results Scheduling P1 Mapping P2 Mapping δp1 Rate

Sequential p11, p12, p13 – 6 <0.17

Pipeline p11, p12 p13 6 0.25

hardware-level scheduler is: S ′ = S ∧ Sp1. In this example, it is necessary to take into ac-
count latencies due to the cyclic dependencies, not shown in the listing, between tasks, i.e.,
those due to the task reading the variable i and the task which decrements it on the one hand,
and the reading/writing of variables M on the other hand.

Finally, P-WARE [22, 23, 25] is used to evaluate the performance of global scheduling of
the system (rate, bandwidth, execution time, etc.). A sequential scheduling has an execution
time of six cycles and give a rate of one output every six cycles, whereas pipeline scheduling
on two processors P1 and P2 produces a better rate for the same execution time as shown in
Table 6.

6 Video encoding SoC

6.1 Description

We present here the results obtained using our methodology for synthesizing a software
scheduler for an MPEG-4 video encoder. The video encoder tasks are shown on Figs. 9
and 10. This encoder is based on the one presented in [26] and supports slicing.

The video encoding SoC functions as follows: first of all the images of the camera CAM
are sent to the user interface HI with the format of the camera, that is, RGB. Then the user
interface performs certain operations, like zooming on the image, before transmitting it to
the display DISP (Fig. 10). In parallel to displaying, the other tasks, the format converter FC
and a video encoder VE, runs on the processors. They convert then encode the 640 × 480
images. FC is in charge of transforming the images to the entry format of VE, that is, YUV,
before transmitting them to VE so that they are encoded in an MPEG-4 format on the cake
multiprocessor hardware [2] shown in Fig. 11.

The objective for this application is to use our methodology for finding an implementa-
tion which meets the application requirements with a good bandwidth consumption on Cake

A scheduler synthesis methodology for joint SW/HW design 93

Fig. 9 Two simple and
hierarchical sub-tasks of the
encoder FC and VE. fr is a frame
and sl is a slice of macroblocks

Fig. 10 Three simple tasks of
period P interacting with the
encoder

SoCs. Degree of freedom is the type of software parallelization (data and task-level paral-
lelism) and the number of processors in each of the interconnected Cake SoCs (Fig. 11).

6.2 Constraints synthesis

Let us now see, on this application, how the step of constraints synthesis of our methodology
functions. The synthesis takes into account the requirements of the application, that is, the
periods of task activations, and hardware and software tasks interactions.

These interactions consist of dependencies on data stored in memory buffers as depicted
in Fig. 12. The timing requirements for the input model are the periods of the loops (1/15)
for the software tasks FC, and VE; and 1/30, which is half of the periods, for the hardware
tasks CAM, HI, and DISP.

The synthesis procedure derives a scheduler Fig. 13 and a constraint on the execution
times of the software (5). In these figures, begin and execution times of a task X are indicated
by notations bX and δX , respectively.

As an example, in this scheduler, the first constraint stipulates that the interface must
begin its execution after the beginning of the camera by one thirtieth of seconds.

94 I. Assayad, S. Yovine

Fig. 11 4-tiles cake configuration

Fig. 12 Software and hardware environment interactions

On the other hand, the synthesis also derives a constraint on the execution times of FC
and VE which were regarded as parameters in the model:

(5) δFC + δVE ≤ 1

15
Constraint on exec times of VE and FC to be met

This constraint fixes the condition under which the scheduler respects the requirements
of the model. Equation (5) is the execution times constraint.

A scheduler synthesis methodology for joint SW/HW design 95

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1) bHI = bCAM + 1
30 HI activated 1

30 after CAM

(2) bDISP = bHI + 1
30 DISP activated 1

30 after HI

(3) bFC = bHI + 1
30 FC activated 1

30 after HI (software scheduler)

(4) bVE = bFC + 1
30 VE activated 1

30 after FC (software scheduler)

Fig. 13 Synthesized scheduler constraints

Fig. 14 A feasible scheduling of the application

Let us assume that the execution time of FC is:

δFC ≤ 2

3
× 1

25

From this constraint, it follows that a deadline on the execution time of the encoder is:

δVE ≤ 1

25

Figure 14 shows a scheduling compatible with this set of constraints.
VE is parallelized on the available processors on the Cake SoCs while FC is sequentially

run on one of the processors. According the software model VE and FC run in mutual

96 I. Assayad, S. Yovine

Fig. 15 Execution times for
parallel mappings of tasks

Fig. 16 Execution times for
parallel mappings of data slices

exclusion. Moreover we chosed not to expand VE tasks when computing the hardware-
level scheduler in order to accelerate mappings exploration. Therefore, the hardware-level
scheduler does not introduce new interaction constraints on VE or FC. For the mappings
below, it is equal to (3), (4) with constraint (5).

Per tasks parallel mappings consist of mapping one task on one processor and mapping
(groups of) different tasks on different processors. Figure 15 shows that these mappings
violate the constraint δVE ≤ 1

25 in the case where slice sizes are five or ten macroblocks. The
other higher sizes have very similar and overlapping performance results not shown in the
figure.

Slice-level parallel mappings consist of mapping independent units composed of one
or several slices on different processors. Corresponding threads have the same constraints
as VE. Figure 16 shows the execution time results. These mappings provide better results
than preceding ones. Indeed, they allow satisfying the scheduler constraint starting from two
processors except for slices whose sizes are equal or bigger than four hundred macroblocks.

The data rate and available bandwidths per slice-level mappings are depicted in Fig. 17
where SLS denotes the slices size, i.e., number of macroblocks per slice. These experiments
show that the available bandwidth are higher for slices of size one hundred or higher. Also,
the data rates are almost the same which indicate a negligible variation in the size of the
produced bit stream.

The gain in execution time when using more than four processors is not significant, while
the obtained available bandwidths are better for bigger slices. Therefore, the slice-level map-
ping using one hundred macroblock slices on four processors is the implementation which
meets the software encoding requirements and which is the most efficient in term of used
bandwidth and produced data rate.

A scheduler synthesis methodology for joint SW/HW design 97

Fig. 17 Hardware bandwidth (BDW) and data rate (S) for different slice-level parallel mappings

par

forall(p)

D

forall(p)

D

forall(p)

D

forall(p)

D

RECEIV ER
FORWARDER

(RECEIVER,p)→(FORWARDER,p)
seq TRANSMITTER

(MACENCAPSULATER2,p)→(TRANSMITTER,p)

MACENCAPSULATER1
(FORWARDER,p)→(MACENCAPSULATER1,p)

MACENCAPSULATER2
(MACTRANSMITTER,p)→(MACENCAPSULATER2,p)

Fig. 18 IPv4 Data plane tasks

par

forall(p)

D

forall(p)

D

seq seq

PEP
(FORWARDER,p)→(PEP,p)

(MACTRANSMITTER1,p)→(PEP,p)
CPDP FORWARDERPIM MACTRANSMITTER1

MACTRANSMITTER2
(FORWARDERPIM,p)→(MACTRANSMITTER2,p)

Fig. 19 IPv4 Control plane tasks

The scheduler synthesis approach is very fast with the constraint synthesis for the encoder
application taking some seconds, and the simulation speed for design exploration reaching
490000 processor cycles per second at average without exceeding 644000 cycles per second
in other cases.

7 IPv4

We show the results of scheduling an IP Version 4 (IPv4) packet forwarder application with
three levels lookup [27] on the IXP2800 NP [28] with IXP channels sizing. The target OC-48
data rate for the forwarder application is at least 2.5 Gbs for 53 bytes cells.

Software tasks are depicted in Figs. 18 and 19. To meet the OC-48 requirement above,
forall tasks have an execution deadline D of 236 cycles.

98 I. Assayad, S. Yovine

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) bFORWARDER >= bRECEIVER + δRECEIVER

(2) bFORWARDERPEP >= bRECEIVER + δRECEIVER + δFORWARDER + δMACENCAPSULATER1

+ δMACTRANSMITTER1

(3) bFORWARDERPEP − bMACTRANSMITTER <= 131 − δMACTRANSMITTER2

(4) bMACENCAPSULATER >= bRECEIVER + δRECEIVER + δFORWARDER

(5) bMACTRANSMITTER >= bRECEIVER + δRECEIVER + δFORWARDER + δMACENCAPSULATER1

(6) bMACENCAPSULATER − bRECEIVER

<= 2δRECEIVER + 2δFORWARDER + 2δMACENCAPSULATER + 2δMACTRANSMITTER

Fig. 20 Software-level scheduler constraints

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) bFORWARDER = bRECEIVER + δRECEIVER

(2) bFORWARDERPEP = bRECEIVER + δRECEIVER + δFORWARDER + δMACENCAPSULATER1

+ δMACTRANSMITTER1

(3) bMACENCAPSULATER = bRECEIVER + δRECEIVER + δFORWARDER

(4) bMACTRANSMITTER = bRECEIVER + δRECEIVER + δFORWARDER + δMACENCAPSULATER1

(5) δMACTRANSMITTER1 + δMACTRANSMITTER2 <= 131

Fig. 21 IPv4 IXP Scheduler

The computed software-level scheduler constraints are given in Fig. 20, with FOR-
WARDERPEP, CPDP and FWPIM having worst case execution times of 49, 28 and 42
respectively.

We considered tasks pipelining with multiprocessing at stage-level. A mapping strategy
which is shown to achieve high rates consists of mapping tasks operating on data content of
packets (Fig. 18) on distinct microengines while assigning more of them to heavy tasks as
follows: 4 microengines for task FORWARDER, 2 for TRANSMITTER, 1 for others, and
using the eight parallel threads per microengine. Computation tasks (Fig. 19) are mapped
on XSCALE using proper thread for MACTRANSMITTER.

The corresponding scheduler constraints are given in Fig. 21.
The forwarding application is able to meet OC-48 line rates with more than 3 Gb/s

throughput as shown in the simulation results in Fig. 22. The best channels sizing is 12
banks: 3 channels with 4 banks in each, resulting in up to 5.7 Gb/s.

8 Practical overview

We have presented the scheduler synthesis methodology and its global context. So far we
have left aside some system-level practical aspects, most important of which are specifics of
tasks executions, synthesis flow and scheduler execution choices.

8.1 Tasks executions

P-WARE is a modeling and simulation framework that allows designer to specify P-WARE

software and hardware components at transaction level according to the previously presented
models and evaluate their joint performance.

A scheduler synthesis methodology for joint SW/HW design 99

Fig. 22 IPv4 throughput in function of IXP2800 configurations

Fig. 23 Tasks interactions

In a practical point of view, to be ready to run onto a given platform, tasks need to
be instrumented with supplementary information which is aimed at the hardware platform.
This information defines the executions and relates to the sequentialization, parallelization
and evaluation of assignments on hardware. Figure 23 depicts the interactions model that is
chosen and added to P-WARE tasks in order to define its executions.

A P-WARE task t behavior is depicted in Fig. 23. Once all preceding tasks are completed
(?ti.tdep), and t is scheduled by the scheduler (?C.S), the task transaction requests are sent
to hardware dispatcher.

8.2 Synthesis flow

As depicted in Fig. 24, the idea is as follows. First, the code generation and tasks-to-
automata transformation chains generate two outputs, namely the application code and the
automata-based timed model of it, both generated from the system model.

The former, rather than calling platform primitives directly, calls a platform-dependent
function, implemented on top of the target platform, that performs the appropriate schedul-
ing which is responsible for ensuring that timing constraints are met. For this, the application
provides some reflective information such as the task identifier and its current state.

100 I. Assayad, S. Yovine

Fig. 24 Synthesis flow

The timed model is fed into the scheduler synthesis, which generates the tasks schedul-
ing table, if a scheduler exists. This table contains tasks constraints and will be used to
determine for each task with which the scheduler is called, what actions need to be taken
accordingly. Such actions consist in, typically, a sequence of waitings, for either variable
conditions corresponding to starts or an terminations of tasks executions, or for timeouts.

Second, a componentization transformation6 is in charge of producing SystemC/TLM
simulation and performance evaluation program from the system model and the synthesized
scheduler constraints.

P-WARE TLM components and programs are written in SystemC. P-WARE components
observers provide during a simulation for a given observation time interval various perfor-
mance metrics. These performance metrics are tasks waiting times, tasks execution times,
components available bandwidth, conflicts and output rates. A component idle time is the
time during which the arbiter, the controller and the TLTB are all idle. The per TLTB-
transaction available bandwidth are computed similarly by taking into account the idle time
of the transaction only. The component conflicts and output rate are the average buffer size
and number of issued transactions, respectively, over the observation interval.

8.3 Scheduler executions

The schematic view of the application and platform run-time is shown in Fig. 25.
Once a thread7 starts to execute, it calls the scheduler to assure that it can safely continue.

We have implemented the schedulers on SystemC/TLM with non preemptive execution of
threads. Once the scheduler has been synthesized using the timed model, it has to be imple-
mented and integrated with the code generated. The generated code consists of two parts,

6Transformations operate successive source-to-source transformations defined in handy way using xsl
stylesheets. This allows for easier model/chain extensibility but requires software and hardware models to
be described by XSD schemas. Hence, in the source, all basic blocks are described as function calls, and all
hardware behaviors are described as input/output interfaces; while the actual software functions and hardware
behaviors were defined as external legacy or P-Ware code, respectively.
7In current implementation one posix/SystemC thread corresponds to one task.

A scheduler synthesis methodology for joint SW/HW design 101

Fig. 25 Schematic architecture
and the run-time flow

namely, the application code and the synthesized scheduler. The application code is instru-
mented to call the application-level scheduler functions before an application thread begins
execution and after it terminates.

We also studied scheduler implementation on top of eCos. Scheduler functions are exe-
cuted in the caller execution flow and use mutexes, condition variables, thread timers, stan-
dard posix lock, unlock, wait, notify routines, and non preemption. Three priorities are how-
ever used to ensure that a notifying thread is not preempted by another thread by assigning
the lowest to notified ones. Also, a thread execution performing a timed wait, except for pe-
riods, gets the highest priority so that it has the chance to be executed as soon as it timeouts.
Timed waits, for a period or a certain amount of time, are treated by the runtime library.

9 Conclusion

We have proposed an original exploratory methodology for scheduler synthesis for em-
bedded softwares modeled as hierarchical interdependent tasks subject to real-time dead-
lines. This methodology allows calculating a set of linear constraints systems which define
the software level scheduler. Then, different mappings of tasks and their sub-tasks in the
hardware architecture define the hardware level scheduler for the software. Finally, the per-
formance evaluation of software and hardware for these mappings allows comparing the
efficiency of different hardware-level scheduling mappings.

This approach is original and has two novel contributions: (a) It combines software real-
time requirements with hardware performance optimization objectives. (b) It synthesizes
composable software-level and hardware-level schedulers which makes the hardware-level
scheduler computation incremental and suitable for design exploration of SoCs in particular.

A tool chain supporting the methodology and producing P-WARE simulation programs
has been developed. P-WARE has been used to validate our approach on a slice-based
MPEG-4 encoder on a multiprocessor SoC. We have shown that a slice-level parallel im-
plementation of the encoder using slices of one hundred macroblocks for 640 × 480 frames
satisfies the encoding rate and produce efficient hardware performance on four processors.
The methodology has also been successfully applied to an OC-48 packet forwarder applica-
tion.

102 I. Assayad, S. Yovine

Currently we are working on the automatization of the methodology. The designer effort
will focus on system modeling using high level XML-based format of SW/HW models. The
scheduler synthesis is automated which make it possible to offer a considerable gain in time
of exploration cycles and in time of implantation [25].

References

1. Dutta S, Jensen R, Rieckmann A (2001) Viper: A multiprocessor SOC for advanced set-top box and
digital TV systems. IEEE Des Test Comput 18(5):21–31

2. Stravers P, Hoogerbrugge J (2001) Homogeneous multiprocessing and the future of silicon design
paradigms. In: International symposium on VLSI technology, systems, and applications (VLSI-TAS),
pp 184–187

3. Adiletta M, Rosenbluth M, Bernstein D, Wolrich G, Wilkinson H (2002) The next generation of In-
tel IXP network processors. In: INTEL Technology Journal, vol 6, Intel Communications Group, Intel
Corporation, Aug 2002

4. Moonen A, van den Berg R, Bekooij M, Bhullar H, van Meerbergen J (2005) A multi-core architecture
for in-car digital entertainment. In: Proceedings of the GSPx conference

5. Clements PC, Northrop L (2001) Software product lines: Practices and patterns. Addison-Wesley, Read-
ing

6. Meyer MH, Lehnerd AP (1997) The power of product platforms: building value and cost leadership.
Free Press, New York

7. Paulin PG, Pilkington C, Langevin M, Bensoudane E, Nicolescu G (2004) Parallel programming models
for a multi-processor soc platform applied to high-speed traffic management. In: CODES+ISSS ’04:
Proceedings of the 2nd IEEE/ACM/IFIP international conference on hardware/software codesign and
system synthesis. ACM Press, New York, pp 48–53

8. Cornea R, Dutt N, Gupta R, Krueger I, Nicolau A, Schmidt D, Shukla S (2003) Forge: A framework
for optimization of distributed embedded systems software. In: IPDPS ’03: Proceedings of the 17th
international symposium on parallel and distributed processing. IEEE Computer Society, Washington,
p 208.1

9. Cesario W, Baghdadi A, Gauthier L, Lyonnard D, Nicolescu G, Paviot Y, Yoo S, Jerraya AA, Diaz-Nava
M (2002) Component-based design approach for multicore socs. In: DAC ’02: Proceedings of the 39th
conference on design automation. ACM Press, New York, pp 789–794

10. Jalabert A, Murali S, Benini L, Micheli GD (2004) Pipescompiler: A tool for instantiating application
specific networks on chip. In: DATE, pp 884–889

11. Sangiovanni-Vincentelli A (2002) Defining platform-based design. EEdesign, EETimes
12. Balarin F, Watanabe Y, Hsieh H, Lavagno L, Passerone C, Sangiovanni-Vincentelli A (2003) Metropolis:

An integrated electronic system design environment. Computer 36(4):45–52
13. Theelen BD, Florescu O, Geilen M, Huang J, van der Putten PHA, Voeten J (2007) Software/hardware

engineering with the parallel object-oriented specification language. In: 5th ACM & IEEE international
conference on formal methods and models for co-design (MEMOCODE 2007), May 30–June 1st, Nice,
France, 2007, pp 139–148

14. Tibboel W, Reyes V, Klompstra M, Alders D (2007) System-level design flow based on a functional
reference for hw and sw. In: DAC ’07: Proceedings of the 44th annual conference on design automation.
ACM Press, New York, pp 23–28

15. van der Wolf P, de Kock E, Henriksson T, Kruijtzer W, Essink G (2004) Design and programming of
embedded multiprocessors: an interface-centric approach. In: CODES+ISSS ’04: Proceedings of the 2nd
IEEE/ACM/IFIP international conference on hardware/software codesign and system synthesis. ACM
Press, New York, pp 206–217

16. Reyes V, Kruijtzer W, Bautista T, Alkadi G, Nún̈ez A (2006) A unified system-level modeling and sim-
ulation environment for mpsoc design: Mpeg-4 decoder case study. In: DATE ’06: Proceedings of the
conference on design, automation and test in Europe, 3001 Leuven, Belgium, Belgium: European Design
and Automation Association, pp 474–479

17. Thiele L, Chakraborty S, Gries M, Kinzli S (2002) Design space exploration of network processor archi-
tectures. HPCA Workshop, February 2002

18. Gries M, Kulkarni C, Sauer C, Keutzer K (2003) Comparing analytical modeling with simulation for
network processors: A case study. In: DATE

19. Goossens K, Dielissen J, Gangwal OP, González Pestana S, Rădulescu A, Rijpkema E (2005) A design
flow for application-specific networks on chip with guaranteed performance to accelerate SOC design
and verification. In: DATE’05. IEEE CS, Washington, pp 1182–1187

A scheduler synthesis methodology for joint SW/HW design 103

20. Kumar A, Hansson A, Huisken J, Corporaal H (2007) Interactive presentation: an fpga design flow
for reconfigurable network-based multi-processor systems on chip. In: DATE ’07: Proceedings of the
conference on design, automation and test in Europe. ACM Press, New York, pp 117–122

21. Assayad I, Bertin V, Defaut F-X, Gerner P, Quévreux O, Yovine S (2005) JAHUEL: A formal framework
for software synthesis. In: ICFEM’05

22. Assayad I, Yovine S (2006) System platform simulation model applied to multiprocessor video encoding.
In: IEEE symposium on industrial embedded systems

23. Assayad I, Yovine S (2007) P-WARE: A precise and scalable component-based simulation tool for em-
bedded multiprocessor industrial applications. In: EUROMICRO DSD

24. Assayad I, Yovine S (2005) Compositional constraints generation for concurrent real time loops with
interdependent iterations. In: I2CS’05. LNCS. Springer, Berlin

25. Assayad I, Yovine S (2007) Modelling and exploration environment for application specific multiproces-
sor systems. In: HASE ’07. IEEE CS, Washington, pp 433–434

26. Assayad I, Gerner P, Yovine S, Bertin V (2005) Modelling, analysis and implementation of an on-line
video encoder. In: DFMA’05. IEEE Computer Society, Washington

27. Requirements for ip version 4 routers, United States, June 1995
28. IXP2800, Network processor hardware reference manual, http://www.intel.com/design/

network/manuals/278882.htm

http://www.intel.com/design/network/manuals/278882.htm
http://www.intel.com/design/network/manuals/278882.htm

	A scheduler synthesis methodology for joint SW/HW design exploration of SoC
	Abstract
	Introduction
	Related work
	Our approach
	Outline

	System model
	SW model
	HW model

	Big picture of the synthesis
	Synthesis steps and flow
	Kind of equations used in the synthesis
	The backward propagation
	Interaction equations
	How to compute constraints?

	Constraints synthesis
	Description
	Application to tasks
	Description
	Preliminary example
	Computing Psii
	Computing Phii
	Execution constraints

	Application to tasks
	Basic blocks, sequentials and conditionals
	Loops
	Or
	Parallels

	Complexity

	Example
	How to compute these constraints?

	Hardware-level scheduler
	Efficiency

	Video encoding SoC
	Description
	Constraints synthesis

	IPv4
	Practical overview
	Tasks executions
	Synthesis flow
	Scheduler executions

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

