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Abstract
This work presents Memphis, which comprises a flexible EDA framework and a many-
core model for heterogeneous SoCs. The framework, together with the many-core model
supports the integration of processors, network interfaces, routers, and peripherals. A set of
tools enable a decoupled generation and compilation of the hardware, operating systems,
and applications. The hardware model is cycle-accurate, with a SystemC model to speed up
simulation time and a VHDLmodel enabling prototyping in FPGAs devices. The framework
provides a rich set of graphical debugging tools enabling an easy and intuitive understanding
of computation and communication events happening at runtime. The coupled integration
of the platform model to the EDA framework makes Memphis well suited to be employed
in research and teaching. As case studies, we provide a set of evaluations addressing the
many-core generation, simulation, and debugging.Different applications setswere employed,
enabling to characterize the computation and communication performance of the many-core,
as well as, evaluate an AES encryption application performance according to different levels
of parallelism.

Keywords Heterogeneous many-core · NoC · Architecture model · Debug framework

1 Introduction

The design of many-core SoCs became predominant for high-performance circuits, serving
as the base hardware platform to meet the heterogeneous computing profile of Internet-
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of-Things (IoT) and Cyber-Physical Systems [9]. Many-cores increase computing power
through parallel computation due to thread-level parallelism (at the system level) by splitting
an application into tasks that can run in parallel over several PEs.

This design methodology had a positive impact on the chip development process. The
efforts are centered on designing and testing a single processing element (PE) and then
replicate this consolidated design. The many-core design increasingly became widespread
over the semiconductor industry. Such design process can be divided into logical and physical
design phases [10]. The logical phase is concerned with functional requirements. In this
phase, the circuit is described in a hardware description language. The modules of each
PE are developed and integrated. The system is simulated using an RTL simulator, and the
results are used to validate the design according to the specifications. The physical phase is
concerned with the synthesis of the circuit according to the target technology. Non-functional
requirements related to frequency, power, energy, temperature are carefully measured and
evaluated according to the design kit provided by the foundry.

While the physical steps have a well-defined design flow provided by CAD tools [10], the
many-core logical design is an open field to frameworks aiming design space exploration,
automatic system generation, and validation.

The goal of this work is to present the Memphis many-core model and framework for
automatic generation and validation of many-cores at the logical level. Memphis stands for
Many-corE Modeling Platform for Heterogenous SoCs.

The original Memphis’ contribution is twofold. The first contribution is a framework for
NoC-based MPSoC generation that allows designing a platform model, which comprises a
homogeneous many-core region, surrounded by peripherals. The second contribution is the
coupled integration of the platform model with debugging tools, enabling to trace hardware
and software events simultaneously. This framework, coupled with the debugging tools,
enables the design space exploration of many-core architectures. Relevant features of the
proposal include:

– A modular logical design flow, allowing to generate the hardware, and compile the
operating systems and applications;

– A rich set of graphical debugging tools, aiming both the hardware (mapping, task schedul-
ing, NoC traffic) and application debugging (individual tracemessages for each executing
task in Memphis).

Memphis is an open-source framework derived from the HeMPS many-core [4]. Both
HeMPS and Memphis are available for download at https://www.inf.pucrs.br/hemps/index.
html.

This paper is organized as follows. Section 2 reviews frameworks for many-core gener-
ation. Section 3 details the hardware, the management, and the application models, as well
as the protocol for the admission of new applications. Section 4 describes the Memphis’
logical design flow. Section 5 complete the contributions of the paper, with the framework to
debug the many-core at runtime. Section 6 presents experimental results using the Memphis
framework and the many-core model. Section 7 concludes this paper and point-out direction
for future works.

2 Related work

Early works focused on the design space exploration of specific many-core system compo-
nents. For instance, Xu et al. [29] provide a comparison of communicationmodels, evaluating
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Table 1 Related works on many-core/MPSoC design frameworks

Work Architectural
detail level

Peripheral sup-
port

RTL validation Online support GUI

Xu et al. [29] NoC No Yes No No

Cheung et al. [7] Processor No Software No No

Monemi et al. [17] All (NoC, pro-
cessor, kernel)

As an IP Verilog OpenCores Generation

Elmohr et al. [8] All (NoC, pro-
cessor, kernel)

Inside PE Verilog No No

Busseuil et al.[2] All (NoC, pro-
cessor, kernel)

No VHDL No No

Zhang et al. [30] All (NoC, pro-
cessor, kernel)

No No No No

Balkind et al. [1] All (NoC, pro-
cessor, kernel)

Off chip Verilog Git, Own site No

Skalicky et al. [28] All (NoC, pro-
cessor, kernel)

No VHDL No No

This work All (NoC, pro-
cessor, kernel)

Chip borders VHDL, Sys-
temC

Git, Own site Debugging

bus and crossbar infrastructures in an SoC architecture. The work adopts a telecom system
simulator named OPNET, which simulates the system at a cycle accuracy level. This work
targets only the communication infrastructure. Cheung et al. [7] proposes the INSIDE system
with the goal of design space exploration of extensible processors. The work assumes as con-
straints the area and performance of embedded applications. The framework allows designers
to rapidly select the right combination of a processor core and the extensible instruction set.
Results show that the design space exploration is equivalent of on average 2% o the design
space exploration time in a full simulation of benchmarks, with an average application exe-
cution time reduced 2.03× compared to the base processor core. The work is focused only
on the processor context.

Table 1 summarizes related works for generating many-core systems, including the above
discussed early works, positioning our work in the last table row.

Monemi et al. [17] propose an automated system integration tool for NoC-based MPSoCs
aided by a graphical interface for rapid system configuration and FPGA prototyping. A
graphical interface allows easy integration of components as IPs (including peripherals), and
the connection between a PE and the NoC. The peripherals can be inserted as a given IP
connected to any router of the NoC.

Elmohr et al. [8] present an MPSoC framework based on the RISC-V Instruction Set
Architecture and a configurable flit-based router for interconnecting cores. The framework
enables a set of configurations at theNoC level (topology, buffer size, routing algorithm), with
limited information about the software and application environment control. The environment
enables the peripheral connection using the AXI bus within a PE. The system support RTL
level debugging. Results present the PE area without peripherals and latency results for
distinct NoC configurations.

Busseuil et al. [2] describe a complete Open-Source framework for academic research and
development of NoC-based MPSoC called OpenScale. OpenScale also provides simulation
and synthesis scripts, which can be used for design space exploration.
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Zhang et al. [30] propose a NoC-based homogeneous many-core framework with x86
processor architecture and distributed shared memory. The framework uses the GEMS sim-
ulator [14] to memory and processor simulation and the Booksim [12] for NoC simulation.
The environment does not run at the RTL level and does not have debugging tools available.

Balkind et al. [1] present an open source, general-purpose, multithreaded, many-core
processor and framework, named OpenPiton. The hardware can be synthesized to FPGAs
and run an OS and applications. The OpenPiton project is configurable, including core count,
cache sizes, and NoC topology, enabling it to adapt to different use cases. The support in
OpenPiton for peripherals is only enabled through off-chip connections, using an external
NoC (chip bridge). The chip bridge connects the tile array to the chipset. Multiple many-
core chips are connected together with chipset logic and networks to build large scalable
many-core systems. Thus, OpenPiton assumes a homogeneous on-chip architecture.

Skalicky et al. [28] propose a framework for hardware and software co-design ofMPSoCs
whit focus on FPGA prototyping. The framework automatically compiles, synthesize and
generate heterogeneous systems. The framework is divided into stages tomodel the processor
and hardware cores, connect them to the NoC and peripherals, and set up the application and
scheduling. These phases are written using an API where the developer specifies system
properties. In the end, a configuration information file is generated as input to scripts that
automatically generate the bitstream and binaries files according to the FPGA vendor.

Features of our proposal include: (1) a scalable many-core SoC with a hierarchical orga-
nization (i.e., decentralized resource management), allowing the evaluation of large systems
(e.g., 16x16); (2) support to the connection with peripherals at the chip borders; (3) an Sys-
temC and RTL model enabling to capture detailed performance figures, as frequency and
energy consumption; (4) set of graphical debugging tools providing views as packet paths in
the NoC, tasks’ mapping, tasks’ scheduling, tasks’ messages.

As can be observed, our proposal stands out from other works in two aspects, a frame-
work assuming on-chip peripherals, and a debugging environment that allows simultaneous
evaluation of the architecture layers (hardware, operating system, and applications). The
proposed organization of the hardware architecture is well suited to design systems as Field-
Programmable System-On-Chip (FPSoC), which combines the high processing power of
many-cores and the reconfigurable logic flexibility of FPGAs, following the new demands
of flexibility and computing power of the IoT market [16].

3 Memphis many-coremodel

This section details the platform model of Memphis. The first three subsections describe the
Memphis hardware, the management, and the application models. The last subsection details
the protocol for the admission of new applications into the system.

3.1 Hardwaremodel

Many-core systemsmay be classified as: (i) homogeneous and symmetric, where all PEs have
the same architecture and organization; (ii) homogeneous and asymmetric [19], where all PEs
share the same ISA (instruction-set architecture) but can have different power/performance
characteristics (e.g., big.LITTLE); (iii) heterogeneous, with different PEs, as processors and
hardware accelerators. The Memphis system falls in the third class. It contains two regions:
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(a) (b)

Fig. 1 Overview of the Memphis hardware model, with peripherals connected at the unused south ports of the
NoC mesh

the General Purpose Processing Core (GPPC), and peripherals. Figure 1a overviews the
hardware components.

The GPPC contains a set of homogeneous and symmetric PEs, which execute general
purpose applications. Each PE of the GPPC region (Fig. 1b) contains:

– Processor This work adopts the Plasma processor (MIPS-like architecture) [22]. A low
integration effort is required to replace this processor with a different architecture. Exam-
ples of architectures include RISC-V, ARM,MB-Lite. Besides the connection to the local
memory, the processor has a connection to a Direct Memory Network Interface (DMNI),
enabling the management of the data transfers using the NoC and memory.

– LocalMemory The local memory is a true dual-port scratchpadmemory, storing code and
instructions. The goal of using this memory model is to reduce the power consumption
related to cache controllers and NoC traffic (transfer of cache lines). If some application
requires a larger memory space than the one available in the local memory, it is possible
to have shared memories connected to the system, as peripherals.

– DMNI (Direct Memory Network Interface) The DMNI [24] merge two hardware mod-
ules: NI (Network Interface) and DMA (Direct Memory Access). The advantage of the
DMNI compared to the traditional PE implementation (NI+DMA) is a specialized mod-
ule that directly connects the NoC router to the internal memory. The DMNI supports
simultaneous packet reception and transmission, managed by a memory access arbiter,
which interleaves memory accesses. A programming interface exposes the DMNI ser-
vices to the software layer.
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Table 2 HeMPS and MEMPHIS features

Feature Hemps [4] Memphis

CPU RISC, 32 bits

Memory Local scratchpad memory

NI Dedicated NI Direct Memory Network
Interface (DMNI) [24]

DMA Dedicated DMA

Router HERMES packet-switching router [18]

Support to peripherals No support At the chip borders, proposed
in this work (Sect. 3.1.1)

Hardware models Clock-cycle accurate RTL (SystemC and VHDL)

Application Admission Protocol Ad-hoc, with an external
memory with all
applications’ codes

Well defined protocol,
proposed in this work (Sect.
3.4)

Debugging options Waveforms, log files Waveforms, log files, and a
set of graphical debugging
tools

Operating system Ad-hoc, without a
standardization of the
services provided by the
kernel

Modular, standardization for
all services provided by the
kernel, task migration [26],
hierarchical management
[6]

– NoCrouter Thiswork adopts theHermesNoC[18] as the communication infrastructure—
PS (Packet Switching) router in Fig. 1. The main features of the wormhole PS router are:
XY routing, round-robin arbitration, input buffering, credit-based flow control.

As stated in the Introduction, Memphis is derived from the HeMPS many-core [4]. Mem-
phis differentiates from HeMPS in several features. Table 2 presents the main features of
both platforms.

3.1.1 Peripherals

Peripherals provide I/O interface or hardware acceleration for tasks running on the GPPC
region. Examples of peripherals include shared memories, accelerators for image process-
ing, communication protocols (e.g., Ethernet, USB), and Application Injectors (AppInj).
The system requires at least one peripheral, the AppInj . This peripheral is responsible for
transmitting applications to be executed in the GPPC.

The connection of peripherals in a NoC-based SoC may occur at any location of the
system, at buses within PEs (e.g., [8]), as an IP (e.g., [17]), at external routers (as Intel [11]),
or at unused ports of the mesh NoC (as Tile-Gx [15]), e.g., south ports of bottom routers.
We adopted the last option, peripherals connected at the mesh NoC boundary ports, due to
the benefits of regular floorplanning for the GPPC region, easing the physical synthesis, with
peripherals distributed along the GPPC boundary.

The NoC router was modified in such a way to enable the communication with boundary
ports. Our NoC differentiates data packets from peripheral packets, as depicted in Fig. 2.

Data packets are those exchanged by tasks running in PEs, and peripheral packets are those
transferred between a task and a peripheral. A peripheral packet arriving in a boundary PE
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Fig. 2 Packet and message structures—a flag (D/P) in the target address field differentiates data packets from
peripheral packets

goes to the peripheral, and not to the DMNI. A data packet, from the NoC point of view, has
a header and a payload. The packet header contains the target router address and the payload
size. From the task point of view, a message contains: (i) message header: encapsulates the
packet and service header (e.g., message reception, task mapping, request for a message);
(ii) message payload: optional field. It may contain, for example, user data or object code of
a task.

3.2 Managementmodel

Scalability at the hardware level comes from PEs executing several tasks in parallel, using
the NoC to transmit concurrently multiple flows. However, large systems require high-level
management for controlling the deployment of new applications,monitoring resources usage,
manage task mapping and migration, and execute self-adaptive actions according to sys-
tems constraints [27] (as power cap [21]). Thus, to achieve a scalable design, Memphis
adopts cluster-based decentralized management [6]. Clusters are virtual regions in the GPPC
(depicted by the dotted lines of Fig. 1), with a set of slave processors (SPE) and one manager
PE (MPE) [6,20]. SPEs execute applications’ tasks, while MPEs manage the clusters.

The management occurs at the MPE and SPE levels, executed by the operating systems
(kernels) running in those PEs, as depicted in Fig. 3.

At the MPE level, Fig. 3a, the local memory is reserved to the kernel, without executing
user’s tasks. The MPE executes heuristics as task mapping, task migration, monitoring, and
reclustering. Reclustering is a protocol enabling to modify the cluster shape at runtime. An
MPE can borrow resources from other clusters when a given application needs a PE to execute
a task, and the cluster SPEs of the application is already full.

(a) (b)

Fig. 3 Overview of the kernels running on Memphis: a MPE kernel manages the system and do not execute
users’ tasks; b SPE kernel manage users’ tasks
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At the SPE level, Fig. 3b, a multi-task kernel acts as a operating system. This work adopts
a paged memory scheme to simplify the kernel design. Examples of actions executed by the
kernel include multitasking task scheduling, inter-task communication (message passing),
deadlines monitoring.

Both manager kernels are written in C language, easing the portability to other architec-
tures. Only a small part of the code is written in assembly language, responsible for executing
context saving and handling hardware and software interruptions.

3.3 Applicationmodel

Acyclic communication task graphs model the applications, where edges represent com-
munication between tasks, and vertices represent the computation of each task. Tasks use
non-blocking Send() and blocking Receive()MPI-like primitives to communicate. The SPE
task scheduler supports real-time (RT) and best-effort tasks (BE). RT tasks have constraints:
deadline, execution time and period. The adopted task scheduler is the Least Slack Time
algorithm [13], which gives higher priority to the task closest to its deadline. BE tasks use
the slack time of RT tasks to execute. If a given RT task misses deadlines, the task scheduler
generates deadline miss messages to the cluster MPE, which executes a heuristic that can
migrate the affected task to an SPE with enough slack time to meet the constraints. Such
behavior corresponds to a hybrid scheduler [25], mixing local and global scheduling.

Figure 4 presents the flow to send and to receive a packet between two different PEs. The
Send() primitive generates a system call, send_packet(), that programs the DMNI to send
the packet, copying the data from memory and transmitting it to the NoC. At the consumer
side, when the DMNI receives a packet it interrupts the processor. The interruption handler
calls the read_packet(), which programs the DMNI to read the packet copying it from
the NoC to memory. Once the packet is completely received, the kernel executes functions
related to the contents of the packet. For example, if the packet has data to a user task t , the
packet is written in the t memory space, the Receive() call is unlocked, and t is scheduled
to execute.

Fig. 4 Inter-PE communication flow [24]
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3.4 Dynamic application injection protocol

Applications may start at any moment in Memphis, characterizing a dynamic workload
behavior. To support the dynamic injection of new applications, it is necessary to deploy a
protocol enabling the admission of new applications into the system. This subsection details
this protocol, which is executed between an AppInj and an MPE. Note that this protocol
is generic, and may be implemented by other entities other than an AppInj , as an Ethernet
core. Figure 5 depicts the sequence diagram of the protocol.

The process beginswith AppInj requesting the execution of a new application, by sending
a “NEW APP REQUEST” message to an MPE with the application’s tasks number. The
following steps come in the sequence:

– Step 1 the “NEWAPP REQUEST” message is addressed to the cluster zeroMPE, which
handles this message and selects a cluster to execute the incoming application (thisMPE

alsomanages cluster zero). Only oneMPE handle those requests because it is necessary to
have a global knowledge of the resources’ usage to select where to execute the application
requesting execution.

– Step 2 theMPE selects the cluster according to some criterium (e.g., number of available
resources or temperature), sending an “APP ACK” message to AppInj , with the MPE

address selected to receive the application.
– Step 3 the AppInj sends an “APP DESCRIPTOR” message, with the application task

graph in its payload. Upon the reception of this message, the MPE executes the applica-
tion task mapping. It may be necessary to execute the reclustering protocol before task
mapping if the number of the application tasks is greater than the available free pages in
the cluster.

– Step 4 after task mapping, theMPE sends an “APP ALLOCATION REQUEST” message
to the AppInj , with the tuples {task ID, SPE address}.

– Step 5 the AppInj transfers the tasks’ object code to the SPEs, sending a “TASK ALLO-
CATION” message with the task object code in its payload. When a given SPE receive a
“TASK ALLOCATION” message, it configures the DMNI to copy the task object code
to a selected memory page.

Fig. 5 Sequence diagram of the Dynamic Application Injection Protocol
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– Step6 once received the taskobject code, theSPE sends a “TASKALLOCATED”message
to its MPE. Such message is used by the MPE to control when all application tasks were
loaded.

– Step 7 after receiving an amount of “TASK ALLOCATED” messages equal to the appli-
cation task number, the MPE releases the application to execute by sending a “TASK
RELEAS” message to each SPE.

To illustrate the typical cost of this protocol, consider the admission of the MPEG appli-
cation with five tasks. This protocol took approximately 40,000 clock cycles from the
application request up to its execution release (40µs in a system running at 1GHz). Thus,
this protocol presents a low overhead to admit new applications.

4 Memphis logical design flow

This Section describes the Memphis’ logical design flow, detailed in Fig. 6. This section
demonstrates the flexibility of the proposed framework by automatically generating hardware
and software for different many-core instances. The logical design flow is divided into steps
that comprise the many-core platform modeling (steps 1–5), application modeling (steps 6–
8), system execution (step 9), and debugging (step 10), providing a complete design flow to
model a many-core design at the logical level.

The Memphis distribution (stored inMEMPHIS_PATH location) contains five directories
(Fig. 6-2): (i) applications, with a standard set of applications previously developed for the
system, including benchmarks as MPEG, DTW, DIJKSTRA, AES; (ii) build_env, with the
scripts and tools required for the many-core generation; (iii) docs, with Memphis documen-
tation; (iv) hardware, with the VHDL and SystemC models of each Memphis component;
(v) kernel, with the operating systems’ code.

The framework provides three tools to automatically generate the many-core: memphis-
gen, to generate the platform; memphis-app, to generate applications; memphis-run, to call
the simulator, to run the many-core, and to open the graphical debugger. These tools read
configuration files described in YAML markup language: testcase and scenario files.

The testcase file defines features of the platform (Fig. 6-3). Table 3 details the testcase file
parameters. The definition of the memory size is a function of the page size and the number
of tasks per PE. For instance, for a page size equal to 16 KB, and three tasks per PE, the local
memory size is 64 KB (one page for the kernel and three pages for tasks). The testcase file
also defines the set of peripherals connected to the GPPC, by specifying the peripheral name
and the address and port of the border router where the peripheral is connected.

Once defined the platform parameters, the tool memphis-gen creates the platform (Fig.
6-4). The memphis-gen creates a directory with the testcase name, using the locationMEM-
PHIS_HOME defined by the user. The testcase directory (Fig. 6-5) contains five directories:
(i) applications, where applications will be stored. This directory is created empty waiting
for the insertion of new applications by the user; (ii) hardware, where the source code of the
hardware directory from MEMPHIS_PATH is copied and compiled; (iii) kernel, where the
source code of the kernel directory is copied and compiled; (iv) include, where the include
files of hardware and software (based on the testcase parameters) are inserted and linked dur-
ing the compilation phase; (v) base_scenario, where the executable of the compiled platform
is placed (for GCC SystemC hardware description), or the simulation scripts (for VHDL
hardware description).
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Fig. 6 Memphis’ Logical Design Flow

After generating the many-core, the user can compile applications on it. Each application
task is implemented as a single C file andmust be inserted inside a folder with the name of the
application. Figure 6-6 presents the application my_app, with two tasks, producer (prod.c)
and consumer (cons.c).

The toolmemphis-app compiles a given application for a given testcase (Fig. 6-7). The first
action of this tool is to search the application passed as the argument in the testcase directory.
If the application does not exist, the tool searches it in the MEMPHIS_PATH application
directory, coping it to the testcase. This mechanism enables to use existing applications as
a start point for the development of new ones. Finding the application, the next action is
to compile the application and generate an application descriptor file. This file contains
information related to the application, as the number of tasks, the size of each task object
code, and dependences between tasks. The AppInj transmits the contents of this file at
step 4 of the application injection protocol (Fig. 5). The memphis-app tool is invoked for all
applications used during the execution of a given scenario.
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Table 3 Testcase file parameters

Parameter Description

model_description: Description language used during generation
(sc, scmod, vhdl)

tasks_per_PE: Maximum number of tasks supported by a PE

page_size_KB: Size of each SPE page

noc_buffer_size: Size of each input port buffer on the PS router

mpsoc_dimension: Size in XY dimension of the many-core

cluster_dimension: Size in XY dimension of each cluster

manager_location: Location of the MPE relative to the cluster
shape (LB, CC, TR, TL, LB, RB)

Peripherals: Peripheral parameters

–name: name identifier (for macro reference)

–pe: PE address where peripheral is attached

–port: port of PE where peripheral is attached
(N,S,W,E)

Table 4 Scenario file parameters

Parameter Description

name: Application name, the same as its directory
name

start_time_ms: Application start time in milliseconds

cluster: (Optional) Cluster where the application will
be statically mapped

static_mapping: (Optional) Field used to store static mapping
information of tasks passing the X and Y
addresses where it must be mapped

task1:

task2:

An scenario is defined as file which contains the set of applications that will execute in
Memphis during a simulation. Figure 6-8 shows an example of a scenario file. For each
application there are a set of optional parameters, as: (i) start time, defines when AppInj
will make the “NEW APP REQUEST”; (ii) mapping type, static or dynamic [5]. Table 4
presents the scenario file parameters and its description.

With the platform and applications already compiled, it is possible to simulate the platform
(Fig. 6-9), with the tool memphis-run. Memphis-run invokes a simulator and the graphical
debugger. The execution of the many-core by memphis-run impacts in the creation of a
scenario directory inside the testcase directory, where are placed all log and debugging files
generated during execution. Thememphis-run tool calls different simulators depending upon
the systemmodel description. If the model is GCC SystemC, the tools just run the executable
file resulted from the platform compilation.Otherwise, the toolwill open theVHDL simulator
(e.g., ModelSim). In parallel to the system execution, the tool also calls the GUI debugger.
The debugger provides a set of tools (Fig. 6-10) that read logs generated during the simulation,
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Fig. 7 Memphis’ Debugging Flow using a graphical tool with several windows for computation and commu-
nication event debugging

process the data, and show graphical information, providing high-level debug facilities. The
debugging tools are further explained in Sect. 5.

An important feature of the presented flow is the separation between the platform and
the application generation. Different scenarios may run on the same platform, enabling, for
example, evaluate the performance of different applications for the same platform configu-
ration, or evaluate the effectiveness of mapping heuristics assuming a different applications
set.

5 Memphis debugging

Figure 7 overviews theMemphis debugging flow. Traditional debugging can be done through
GDB, waveforms, or/and manually observing raw data of log files generated by simulators.
Increasing the number of the many-core components, low-level debugging with waveforms
and logs becomes unfeasible.Memphis supports the integration of simulatorswith an intuitive
debugging framework [23], composedby aDataExtractionLayer (DEL) and a set of graphical
tools, enabling developers to trace high-level system events during simulation.

Themany-core description receives amodule namedData ExtractionLayer (DEL) respon-
sible for capturing communication and computation events. It is important to mention that the
DEL is non-intrusive, i.e., it only captures data, storing them in a database and not affecting
the applications’ performance. DEL captures all packets arriving at any PE local port, storing
the packet information in a database, corresponding to the communication events. DEL also
captures software events, by sniffing the CPU buses, enabling to trace specific OS and task
functions.

WhileDELextracts andwrites simulation data, the graphical tool reads such information at
runtime, converting the raw data into meaningful information that is graphically represented
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to the user. In this sense, the debugging tool acts as a graphical interface,with severalwindows,
which details the behavior of the simulated many-core.

At the communication level, the main window provides an overview of each router and
interconnection, displaying the percentage of the links’ utilization, corresponding to the con-
sumed bandwidth. When a packet travels from a source PE to a target PE, the path taken
by the packet is highlighted, allowing to validate, e.g., routing algorithms and to detected
deadlocks [3]. Another window shows in a color spectrum the communication load on each
router since the beginning of the simulation. The communication load can be filtered accord-
ing to the packet service. Another window shows the task mapping, displaying applications
with different colors, and for each task its name. It is also possible to filter the running and
finished applications.

At the computation level, the tool provides awindowdetailing theCPUscheduling for each
task. Thus it is possible to verifywhen theOS and tasks are running, or when an interruption is
handled. This set of tools enables concurrent hardware and software debugging. For example,
inserting breakpoints at the interruption handler, it is possible to trace the packets that generate
the interruption event.

The platform developer can use the graphical tools to validate heuristics such as task
mapping, routing algorithms, operating system functions (as send and receive primitives).
For whom is developing applications, assuming a given platform instance, a specific tool
enables to filter the messages per application, allowing to validate parallels applications that
use message passing.

This debugging framework is not coupled with this specific platform. The framework
requires three configuration files: the platform description (my_testcase. yaml); the packet
configuration filewith the information related to the packets’ services; theCPU configuration
file with the CPU addresses to monitor and extract the computation events. Each packet has
in its payload a service identifier, which corresponds to the action executed by the packet.
With this service identifier, it is possible to monitor the operations executed by the messages
exchanged between PEs and display them as high-level events.

6 Experimental results

This Section presents experimental results using the Memphis framework and the many-core
model previously presented.

6.1 Generic case-study

This subsection presents a case-study showing a scenario with two applications (communi-
cation and MPEG), and a many-core with 36 PEs (6× 6), with 4 clusters (3× 3 each one).
Figure 8a details the applications’ task graphs. The communication application is a parallel
sort, and MPEG implements a pipeline MPEG decoder. Figure 8b presents the scenario file.
The AppInj is connected at PE 0× 1 at the west port. The platform is configured to execute
one task per PE, and the MPE is placed at the LB (left-bottom) position of each cluster.

Executing the commandmemphis-gen 6× 6_3× 3_sc.yaml the directory 6×6_3×3_sc
is created, with file structure presented in Fig. 6. After generating the platform, applica-
tions are compiled and saved at the 6 × 6_3 × 3_sc/application directory, by executing
memphis-app 6× 6_3× 3_sc.yaml communication mpeg.
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(a) (b) (c)

Fig. 8 Applications’ task graphs, and configuration files for the platform and the software

Figure 8c presents scenario1, which lists the applications and its properties. Application
communication is injected into the system at 1 ms, being statically mapped at cluster 0 (each
cluster is identified with a unique number), with tasks A, B and C statically mapped on SPE
1 × 1, 2 × 1, and 0 × 1, respectively. Application MPEG will be injected at 2 ms, being
dynamically mapped.

Finally, the execution of the commandmemphis-run 6×6_3×3_sc.yaml scenario1. yaml
50 starts the platform simulation, wich will execute for 50 ms.

Figure 9 shows a set ofwindows of the debug framework,where it is possible to observe the
system and applications behavior. Figure 9a depicts an overview of the many-core, allowing
to trace the packets and see the link utilization during the simulation. Figure 9b shows the
mapping of the two tasks of scenario, communication in green (staticallymapped) andMPEG
in brown (dynamically mapped). Each SPE executes one task as specified. The number after
the task name is its unique ID assigned by theMPE during application admission. Figure 9c
shows the communication load map view, where is possible to analyze the communication
load distribution due to a color spectrum representation. As expected, the routers where
application communication was mapped present a higher communication load. The SPEs
where MPEG tasks execute present a lower communication load due to the mixed profile of
MPEG related to its time in computation and communication. Finally, Figure 9d shows the
CPU of SPE 2× 1 executing task B. The green slices are related to the kernel execution, and
blue slices are related to the task execution. It is possible to observe that taskB have periods
of execution and idle periods. The idle periods are due the task is waiting for a message from
taskA.

6.2 Computation and communication performance

The goal of this subsection is to evaluate communication and computation performance in
such a way to determine the offered bandwidth by the NoC and the execution time of simple
benchmarks.

The NoC adopts 32-bit flits, running at 100 MHz, resulting in a bandwidth per link equal
to 3.2 Gbps. To evaluate the amount of bandwidth a given application may consume, we run
a producer-consumer application (with two tasks, prod and cons), with each task mapped
at different processors. The prod task sends messages to the cons task, without any other
computation. Since this application has a communication-intensive profile, it is possible to
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Fig. 9 Windows extracted from Debugging Tool for testcase 6 × 6_3 × 3_sc in scenario1. a Main view of
many-core, b task mapping view, c communication load map view, d CPU utilization view

measure the injection rate (percentage of the link bandwidth utilization) and the bandwidth
at the application level, considering the software stack.

Each message exchanged between tasks corresponds to a packet injected into the NoC.
We run different scenarios changing the message size at the application level, which results
in different packet sizes. For packet sizes varying from 40 to 140 flits the average injection
rate was 17.4% (14.62% up to 19.4%) of the NoC bandwidth, corresponding in an average
throughput of 556.64 Mbps. The reason explaining this throughput comes from the fact that
the software must treat the packet at both the producer and consumer sides. The producer
kernel copies the message to a memory region before sending the message, enabling the
producer task to continues its execution without waiting for a transmission request (non-
blocking send). At the consumer kernel side, the task first sends a request asking data, and
when the packet arrives at the consumer task SPE, the DMNI generates an interruption for
the kernel to handle the packet (the kernel must stop a given task execution, save its context,
and program the DMNI to read the packet). The kernel programs the DMNI twice, one to
read the packet service to determine the packet function, and the other one to read the packet
payload (as depicted in Fig. 2), transferring the packet data to the corresponding memory
region. If the packet data carries an application task message, the kernel copies the payload
to the corresponding consumer task page. The time for the kernel to handle a packet is, on
average, 200 clock cycles for packet carrying application task messages.

It is important to differentiate the network throughput from the application throughput. At
the network level, the throughput ranges from 467 to 620 Mbps, for packets from 40 to 120
flits, respectively. At the network level, the transmission is blocked for some periods because
the kernel needs to treat the incoming packet. Thus, the network throughput is not proportional
to the packet size because it is necessary to add idle periods during the packet transmission.
At the application level, the throughput ranges from 72.56 (40-flit packets) to 213.23 Mbps
(140-flit packets). The smaller application throughput is due to the protocol stack related
to the communication protocol. With small packets, the overhead of the communication
protocol is more pronounced than for large packets.

This average network bandwidth for one application, 17.4%, cannot be considered as a
NoC sub-utilization. In a many-core system, parallel flows are frequent, and such bandwidth
utilization allows avoiding congestion effects.

The computation evaluation used five sorting algorithms (selection, insertion, bubble,
quick, and merge), implemented each one as one task. Each task was mapped alone in a
free PE. The execution time for each sorting algorithm assuming an array of 1000 elements
sorted in reverse order and without repeated values. Figure 10 presents the execution time in
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Fig. 10 Performance results of sort algorithms executing in Memphis

thousands of clock cycles. The merge sort is faster due to its complexity – O(n log n), while
the other algorithms have a complexity O(n2). These values reflect the performance of the
current CPU adopted in Memphis, the Plasma CPU [22].

Both communication and computation results can be used in future works as benchmarks
to evaluate changes in many-core architecture.

6.3 Hardware and software overheads

This subsection evaluates the time spent by the software (kernel) and the hardware (DMNI
and NoC) to exchange messages, varying the message size and the number of hops between
tasks. The goal is to evaluate the behavior of the architecture, considering the components’
stack involved in the transaction.

Figure 11 shows the time spent by each component. The largest overhead is in the operating
system (kernel). The send_packet function invokes a system call that: (i) transfers the
message contents from the task memory space to the kernel area; (ii) creates the packet
structure (packetization process); and (iii) programs the DMNI. Next, the packet is injected
into the network, with a small overhead due to a dedicated memory port that enables the
injection of one flit per clock cycle (this overheadmay increase in scenarioswith congestion in
the NoC). Finally, at the receiver side occurs the reverse process, with themessage transferred
to the task memory space.
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Fig. 11 a Hardware and software overheads of the simulated scenarios, b average overheads
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Although the software is responsible for the most significant overhead in the communica-
tion process, the total time spent to transfer the packets varies between 2082 (1 hop, 15 flits)
and 5256 clock cycles (10 hops, 256 flits). These values show the high-performance of the
message exchanging mechanism. The NoC should present a low overhead in such a way to
minimize the variation in the latency due to congestion effects.

6.4 Multitasking performance: AES encryption application

This subsection evaluates a real application, AES encryption, by partitioning it into a variable
number of tasks distributed across multiple processors. The primary goal of this session is to

(a)

(b)
Fig. 12 AES Decryption Application Performance. a Speedup over a single-core execution, b execution time
assuming different parallelism levels
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demonstrate the platform’s ability to run parallel applications using the message exchange
paradigm.

The AES application contains one master task and a set of slave tasks (the number of
slaves is parameterizable at design time). Each slave task is in charge to encrypt a data array
block. The master splits the data array equally according to the number of slaves sending one
block for each slave. Figure 12a shows the speedup results w.r.t the number of slaves (from
1 up to 20 slaves). The speedup follows a logarithm curve. The speedup difference is higher
in executions with a lower number of slaves since the amount of the problem to be divided is
higher at the beginning of the parallelization and decreases according to more slaves are used
to work at the same problem. Figure 12b shows the execution time reduction according to
the number of slaves increases. As well as in the speedup graph, the gains in execution time
are higher for a lower number of slaves, execution time start to stabilize after eight slaves
showing a trade-off between execution time improvement and resource utilization.

7 Conclusion

This work proposed an open-source framework and a many-core model suitable for
researchers and parallel applications’ developers. This work showed how to build a heteroge-
neous multi-core divided into two regions: a homogeneous processing core with distributed
management for processing user applications, and a set of peripherals connected at the bound-
aries of this core. Such architecture model considers physical constraints (floorplanning).
Architecture models where peripherals can be connected anywhere in the NoC are not feasi-
ble to be physically implemented. Associated with this model, this work also presented the
hardware and software generation flow. It is possible to generate only the hardware and keep
the same software, allowing the design space exploration of different optimizations at the
hardware level. Likewise, it is possible to maintain the same hardware and develop different
applications’ sets for this particular platform. Thus, the final system is flexible and easily
customized by designers.

Future work include: (i) developing a peripherals library; (ii) prototype the system in
FPGAs; (iii) make available other processor models (such as RISC-V).
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