
Supporting Single and Multi-Core Resource Access
Protocols on Object-Oriented RTOSes
Lucas Matheus dos Santos

Universidade Federal de Santa Catarina
Giovani Gracioli (giovani@lisha.ufsc.br)

Universidade Federal de Santa Catarina
Tomasz Kloda

Technical University of Munich
Marco Caccamo

Technical University of Munich

Research Article

Keywords: Real-time resource access protocols, real-time operating systems, priority ceiling protocol,
priority inheritance protocol, stack resource policy, MrsP

Posted Date: September 7th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-2015516/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-2015516/v1
mailto:giovani@lisha.ufsc.br
https://doi.org/10.21203/rs.3.rs-2015516/v1
https://creativecommons.org/licenses/by/4.0/

Supporting Single and Multi-Core Resource Access

Protocols on Object-Oriented RTOSes

Lucas Matheus dos Santos† · Giovani

Gracioli† · Tomasz Kloda‡
· Marco

Caccamo‡

Received: date / Accepted: date

Abstract Real-time resource access protocols are fundamental to bound the
maximum delay a task can suffer due to priority inversions. Several real-
time protocols have been proposed, for both static and dynamic scheduling
approaches in single and multi-core processors. One of the main factors for
performance efficiency in such protocols is the way they are implement within
a real-time operating system (RTOS).

In this paper we present an object-oriented design of real-time access
protocols considering single and multi-core systems and also suspension- and
spin-based protocols (7 protocols in total). Our design aims at reducing the run-
time overhead and increasing code re-usability. By implementing the proposed
design in an RTOS and running the protocols in a modern multi-core processor,
we provide an analysis regarding the memory footprint, run-time overhead,
and the impact of the overhead into the schedulability analysis of synthetically
generated task sets. Our results indicate that proper implementation provides
low run-time overhead (up to 6.1 µs) and impact on the schedulability of
real-time tasks.

Giovani Gracioli was partially supported by Fundação de Desenvolvimento da Pesquisa
- Fundep Rota 2030/Linha V 27192.02.01/2020.09-00. Marco Caccamo was supported by
an Alexander von Humboldt Professorship endowed by the German Federal Ministry of
Education and Research.

This paper was originally published in the 2020 X Brazilian Symposium on Computing
Systems Engineering (SBESC) [1].

Authors contact
†Software/Hardware Integration Lab - Federal University of Santa Catarina
Florianópolis, Brazil
{lucasm,giovani}@lisha.ufsc.br

‡Technical University of Munich
Munich, Germany
{mcaccamo,tomasz.kloda}@tum.de

2 Lucas Matheus dos Santos† et al.

Keywords Real-time resource access protocols · real-time operating systems ·
priority ceiling protocol · priority inheritance protocol · stack resource policy ·
MrsP

1 Introduction

Any concurrent operating system (OS) must offer protocols to control the access
to resources shared (i.e., a piece of code, such as data structures, I/O devices,
buffers, and so on) by competing tasks, thus ensuring mutual exclusion in their
respective critical sections [2, 3]. Typically, mutual exclusion is guaranteed by
the use of binary semaphores, such as mutexes and suspension-based locks [4].
Therefore, a task willing to enter a critical section must wait until another task,
which holds the resource, exits the critical section. This is accomplished by
calling the semaphore operations p (or wait) and v (or signal) before entering
and after leaving each critical section, respectively.

Real-time embedded applications also use semaphores to synchronize access
to shared resources. However, specific resource access protocols are required to
avoid unbounded priority inversions [2–4]. For instance, consider a high-priority
task τ1 and a low-priority task τ3 that share a resource. It might happen that τ3
is holding the resource, but is preempted by τ1, as demonstrated by Figure 1.
Then, τ1 executes until it tries to enter the critical section. However, τ1 cannot
continue, because the resource is already in use by τ3. Thus, a high-priority
task is blocked by a low-priority task. Worse, if a task τ2 with a priority higher
than τ3 but lower than τ1 is released and allowed to preempt τ3 (as at the
instant t4 in Figure 1), the blocking delay can be unpredictable (for instance,
other medium-priority tasks could execute).

t0 t1 t2

τ1

τ2

τ3

Normal execution

Shared resource execution

Unbounded priority inversion

Blocking time

t3

Preemption of running task

Task arrival

t4 t5 t6 t7 Time

Fig. 1: Example of the priority inversion problem.

Priority inversion has caused many problems in real applications. The 1997
Mars Pathfinder mission is a well-known case. After landing on Mars, the
Pathfinder reset several times and experienced significant delays in capturing
scientific data [5] due to the priority inversion caused by an uncontrolled bus
sharing between high-, medium- and low-priority tasks.

Title Suppressed Due to Excessive Length 3

Several real-time resource protocols have been proposed to bound priority
inversion and consider the blocking time when performing schedulability analy-
ses. For uniprocessor systems, a set of mature protocols have been proposed
and studied, such as the xeiling- and priority inheritance-based protocols [6],
typically used in static scheduling, and the Stack Resource Policy (SRP) [7]
for both static- and dynamic-based schedulers. The bounded blocking time
ensured by those protocols are accounted for in standard schedulability tests,
as the Response Time Analysis (RTA) [8].

When it comes to a multiprocessor system, these protocols cannot be
applied directly, because several resource access requests can be issued simulta-
neous from different cores1. Thus, multiprocessor resource sharing protocols,
extending the uniprocessor ones, have been proposed, such as the Multipro-
cessor Priority Ceiling Protocol (MPCP) [9] and the Multiprocessor Stack
Resource Policy (MSRP) [10]. Both MPCP and MSRP assume a restricted
resource-accessing model, in which nested accesses to shared resources are
not allowed [11]. Later on, protocols exclusively proposed for multiprocessor
systems, such as the Multiprocessor resource sharing Protocol (MrsP) [12],
assume a more flexible resource-accessing model with nested resources allowed
and deadlocks avoided [12–14]. Moreover, there is still no consensus regarding
the best approach for multiprocessor systems [14, 15], mainly because the
characteristics of an application, like the length of critical sections, affect the
performance of such protocols [16].

One of the main challenges for any real-time OS (RTOS) is provide support
for all such variations of single- and multi-core resource access protocols.
Although most RTOSes provide at least one real-time resource access protocol,
there is no design and implementation discussion for both single- and multi-core
protocols that allow easy extensions, code reuse, and low run-time overhead.

Our previous paper was the first work to design and evaluate single- and
multi-core variations of real-time resource access protocols in an RTOS designed
from scratch, considering both static and dynamic scheduling approaches [1].
The proposed design is based on object-oriented techniques to maximize soft-
ware reuse and minimize run-time overhead. However, in that work, we provided
support only for the well-known single-core protocols – Priority Inheritance
Protocol (PIP) [6], Priority Ceiling Protocol (PCP) [6], Immediate Priority
Ceiling Protocol (IPCP), and SRP [7] – and the standard multi-core extensions
(MPCP and MSRP).

In this paper, we extended our previous object-oriented design to also
support resource access protocols exclusively proposed for multi-core systems
(i.e., the Multiprocessor resource sharing Protocol (MrsP) [12]) and based
on a spin lock mechanism (i.e., busy waiting instead of suspension-based).
MrsP is specially interesting, because it provides two desirable theoretical
properties: optimality and compliance to well-known uniprocessor response
time analysis [17]. In summary, we make the following new contributions:

1 In this paper we use the terms core and processor interchangeably.

4 Lucas Matheus dos Santos† et al.

– The modified the original design proposed in [1] to include the MrsP protocol.
Thus, the new design supports both single- and multi-core protocols and
also suspension- and spin-based protocols. To the best of our knowledge,
this is the first work to provide an RTOS-level design for such variation of
protocols;

– We implement the proposed design in an RTOS and measure the memory
footprint and run-time overhead of the implementation in a modern multi-
core processor. The maximum overhead for the MrsP is around 6.1 µs for p
and v operations and for the helping mechanism of the protocol (including
IPIs and scheduling overheads). Compared to related works [17, 18], our
implementation has presented better performance (up to 47% faster than
the implementation of [17] even with an older and slower processor);

– We present a new schedulability analysis considering the run-time overhead
obtained from the implementation of the new design. The low run-time
overhead applied in the schedulability analysis keeps the schedulability ratio
close to theoretical bounds indicate that the schedulability ratio remains,
proving the efficiency of the proposed object-oriented design.

The remainder of this paper is organized as follows. Section 2 presents the
considered task and resource model and reviews the resource sharing protocols
used in this work. Section 3 discusses the proposed design and implementation
of the protocols. Section 4 evaluates the proposed design in an RTOS and
real hardware platform. Section 5 presents the related work. Finally, Section 6
concludes the paper.

2 System Model and Background

2.1 Task and Resource Model

We consider a system with a finite set of synchronous periodic tasks. Each
task τi is characterized by two positive integers: a worst-case execution time
(WCET) ei and a period pi. All tasks are activated synchronously at the same
time. From that time on, a new instance of a task τi is released at every
period pi. Each instance of task τi requires ei processor time and must finish
before the release of its next instance (i.e., implicit deadlines). Tasks can
suspend their executions only when waiting for the shared resource access. Task
τi utilization factor is given by ui = ei/pi and the total system utilization U is
a sum of all tasks utilizations within the task set.

The system also contains a possibly empty set of nres shared resources.
Each task might require exclusive access to one or more resources within this
set and each shared resource might be used by at most one task instance at
a time (i.e., serially reusable resources). A part of the task code that uses a
shared resource is called a critical section. Li,r denotes the maximum length
of time that task τi might take to execute its critical section for the resource
r where 0 < r ≤ nres (all task critical sections are accounted for in the task
WCET). For the sake of simplicity, we assume only non-nested critical sections.

Title Suppressed Due to Excessive Length 5

Tasks are executed sequentially upon m identical processors with m ≥ 1
(in particular, for single-processor m = 1 and for multiprocessor m > 1). We
assume that tasks are statically partitioned to processors, that is, all instances
of a given task are executed only on one particular processor (i.e., tasks cannot
migrate among processors). Depending on the task allocation, a resource can
be local, when shared by the tasks from the same processor, or global, when
shared by the tasks from different processors. We assume that a task can access
all shared resources directly from the processor it is assigned to.

A priority-based scheduling algorithm assigns at each time instant the
processor to the task with the highest priority. Tasks’ priorities can be fixed
or dynamic. In this work, we consider the most common fixed- and dynamic-
priority algorithms, respectively, Fixed-Priority (FP) and Earliest Deadline
First (EDF), as well as their multi-core versions, Partitioned Fixed-Priority
Preemptive (P-FP) [19] and Partitioned Earliest Deadline First (P-EDF) [20].
For FP and P-FP, we assume that the tasks are indexed in the increasing
priority and we say that τj has a higher priority than τi iff j > i. In EDF and
P-EDF, tasks dynamic priorities are decided based on their absolute deadlines.
A set of tasks is said to be schedulable under a given scheduling algorithm
if this algorithm can always schedule all instances generated by the tasks on
the assigned processors without any deadline miss. Next, we review the major
single-core and multi-core real-time resource access protocols.

2.2 Single-Core Resource Access Protocols

This section presents an overview of the single-core real-time synchronization
protocols implemented in this work. The protocols are the Priority Inheritance
Protocol (PIP), the Priority Ceiling Protocol (PCP), the Immediate Priority
Ceiling Protocol (IPCP), and the Stack Resource Policy (SRP). For a complete
overview, please refer to [2, 3].

PIP is a classic mechanism for sharing resources in a single-processor with
FP scheduling [6]. It aims at avoiding priority inversion by elevating the
priority of the resource-holding task to the highest-priority among the tasks it
is currently blocking. Consequently, the protocol prevents the medium-priority
tasks from preempting the lower-priority task that is blocking a higher-priority
task. However, the protocol does not prevent the formation of chained blocking
(i.e., at task release, each task critical section can be held by a lower-priority
task) and deadlocks (i.e., two tasks can be waiting for each other).

PCP is another classic protocol for controlling priority inversion and bound-
ing blocking time for a task set with shared resources. PCP prevents the
formation of deadlocks and chained blocking [6]. In this protocol, as in PIP, a
higher-priority task, when blocked by a lower-priority task holding a resource,
transmits its priority to the lower-priority task. However, a task can be re-
fused to access an unused shared resource whenever there is a lower-priority
task holding a shared resource that might be requested at a later time by a
higher-priority task. This rule is imposed by the priority ceilings defined, for

6 Lucas Matheus dos Santos† et al.

each resource, as the maximum priority among all tasks that can access the
resource. A task can enter a critical section only if its priority is higher than
all priority ceilings of the currently held shared resources.

IPCP is a variant of PCP, aiming for performance and ease of implementa-
tion. The major difference is that the task owning the resource has its priority
raised to the ceiling immediately when it first acquires the resource, and not
when another task tries to lock the resource. The main effect of this change is
a reduction of context switching overhead.

SRP provides resource access control for dynamic scheduling policies (e.g.,
EDF) and supports multi-unit resources (e.g., run-time stack) [7]. To handle
dynamic priorities, SRP introduces preemption levels that, contrarily to the
dynamic priorities, are constant and statically assigned to each task instance
(e.g., in EDF, the preemption levels are assigned inversely to task relative
deadlines). The resource ceiling is defined by the highest preemption level of
the task that may be blocked on that resource. For the multi-unit resources, the
ceiling is a dynamic value equal to the highest preemption level of the task that
may request more resource units than currently available and, as a consequence,
be blocked on the resource. A task instance can start to execute when: i) its
priority is the highest among all ready tasks, and ii) its preemption level is
higher than the ceilings of all shared resources. We note that the above rules
can cause unnecessary blocking (e.g., if a task does not require any resource),
but at the same time and more importantly, they guarantee the absence of
chained blocking and deadlocks. Furthermore, due to the early blocking, the
context switch number is reduced.

2.3 Multi-Core Resource Access Protocols

MPCP [9] is an extension to multi-core partitioned scheduling of described
above single-core PCP. Both protocols apply the same policy for the local
resources shared by the tasks allocated to the same processor. However, when
acquiring a global resource shared by the tasks from different processors, a
job priority is raised above the priority level of any task in the system. More
precisely, a job within a global critical section Rk has its effective priority
raised to πH +maxi{i | τi uses Rk} where πH is the highest priority among all
tasks on all processors. If a global lock is already held on a different processor,
a task requesting the lock is suspended. In the suspension-based version of the
protocol that we consider in this work, other ready tasks can execute while
waiting for a global lock. Moreover, a task within a global critical section can
be preempted by another task assigned to the same processor if the latter task
is granted access to a global critical section whose effective priority is higher.

MSRP [10] is an extension of previously described single-core SRP to
partitioned multi-core scheduling. In MSRP, the local resource sharing is
handled in the same manner as in SRP whereas the global resource sharing
is controlled by the use of a first in first out (FIFO) queue-based approach.
Access to a global resource is granted accordingly to the order of task request

Title Suppressed Due to Excessive Length 7

arrivals. Tasks waiting for a global resource do not suspend and keep their
processors busy. After acquiring a global shared resource, the task executes
the corresponding critical section non-preemptively until completion.

The Multiprocessor Resource Sharing Protocol (MrsP) [12] aims to achieve
an effective schedulability analysis by mixing properties from two other pro-
tocols, MSRP and SPEPP [21]. Using suspension-based protocols queues can
take longer than the defined cost, because more than one task at the same
processor could be in the blocked queue affecting the desired schedulability
analysis results. Thus, MrsP uses spinlocks to handle mutual exclusion of the
resources. MrsP establishes that tasks waiting to gain access to a resource must
service the resource on behalf of other preempted tasks waiting for the resource.
Meaning that tasks can use their time spinning (waiting for the resource)
to decrease overall finishing time of other tasks that were preempted while
running in the resource. This is accomplished by migrating the preempted
resource owner to a core where there are tasks spinning waiting to get access
to the critical section. The migrated task raises its priority to the global ceiling
of the resource, and after finishing its execution, returns to its original core
and restores its priority. The migrated task owning the resource is preempted
outside its original processor, it should search for another helper core to migrate
and continue to execute.

3 Design and Implementation of the Protocols

In our previous work, we have analyzed the common characteristics related
to the suspension-based resource access protocols (i.e., PIP, PCP, IPCP, SRP,
MPCP, and MSRP) [1]. In this work, we have included the MrsP protocol
(spin-based protocol) into the proposed design. Figure 2 presents an overview
of the updated design, representing the common structure for all protocols.

The Synchronizer Base class offers support for operations common to all
synchronization primitives, including, for instance, atomic increment and decre-
ment (finc and fdec), test and set lock (tsl), and interrupt enabling/disabling
(begin atomic and end atomic). The parameterized class Synchronizer Com-

mon implements an interface for common thread operations, such as sleep,
wakeup, and wakeup all. These thread operations put a thread to sleep into
the synchronization queue (the queue attribute), wakeup a thread that was
sleeping in the queue, and wakeup all threads that were sleeping in the queue.
All operations are protected, which means that they are only accessible by
its subclasses. The boolean parameter defines the type of the queue (either a
priority- or FIFO-based). The use of template avoids the overhead of choosing
the appropriate queue at run-time (MSRP, for instance, uses a FIFO-based
queue, while ceiling-based protocols use a priority-based queue) and allows the
use of different protocols in the same system.

The Semaphore class implements the traditional p and v semaphore oper-
ations [22]. The class has an integer (value) as attribute, which is used to
count the signals issued by the p and v (decrement and increment, respectively)

8 Lucas Matheus dos Santos† et al.

Synchronizer_Base

tsl(lock: bool &): bool
finc(number: int &): int
fdec(number: int &): int
begin_atomic(): void
end_atomic(): void

Sem aphore

- _value: int

+ Semaphore(v: int = 1)
+ p(locked: bool): void
+ v(locked: bool): void

Sem aphore_RT

- _owner: Thread *
- _priority: int *

+ Semaphore_RT(v: int = 1)
+ owner(): Thread *
+ owner(own: Thread *): void
+ priority(): int
+ priority(priority: int): void
+priorityCPU (cpu: int): int
+priorityCPU (priority: int,
 cpu: int): void
currentThread(): Thread *
nextThread(): Thread *

<<inter face>>
Stat ic_Ceil ing

+ Static_Ceiling(ceiling: int,
 v: int = 1)
+ Static_Ceiling(cpu: int,
 ceiling: int * , v: int = 1)
+ toCeiling() = 0

Synchronizer_Com m on

_queue: Queue

sleep(): void
wakeup(): void
wakeup_all(): void

T: boolT: bool

T: bool, Q:bool

T: bool, Q: bool

Sim ple_Spin

- _locked: bool

+ acquire(): void
+ release(): void

BaseLock

+ p(): void
+ v(): void

Sem aphore_Ceil ing

- _cpu: const int
- _ceiling: int *

+ Semaphore_Ceiling(cpu: int,
 ceiling: int * , v: int = 1)
+ Semaphore_Ceiling(ceiling: int,
 v: int = 1)
+ ceiling(cpu: int = 0): int
+ ceiling(ceiling: int, cpu: int): void
+ ceiling(ceiling: int *): void

<<inter face>>
D ynam ic_Ceil ing

+Dynamic_Ceiling(ceiling: int,
 value: int = 1)
+Dynamic_Ceiling(cpu: int,
 ceiling: int * , value: int = 1)
+ updateCeiling() = 0T: bool, Q:bool

T: bool, Q:bool
T: bool, Q: bool

Fig. 2: Common structure of base classes.

through the fdec and finc operations implemented in the base class. It also
uses the sleep, wakeup, and wakeup all operations from the base class. The
boolean class parameter is passed to Synchronizer Common to define the type
of the queue.

Comparing to the previous design, the common base classes structure has
four new classes: BaseLock, Simple Spin, Dynamic Ceiling, and Static -

Ceiling. The BaseLock class is a parameterized class that chooses between a
suspension- or spin-based protocol. If the T parameter is true, then the used
protocol is a spin-based one and the class inherits from Simple Spin, which
implements a traditional spin lock. Otherwise, the BaseLock class inherits from
Semaphore and follows the structure described above. The second parameter
received by BaseLock is the choice of the queue type (either a priority- or
FIFO-based).

The Semaphore RT class is common to all real-time resource access protocols.
It has two attributes, owner and priority that represent, respectively, the
current thread that owners the semaphore (i.e., a thread that has entered a
critical section through the p operation) and the priority it had when entering
the critical section. The class offers public methods to set and get attributes.
Also, it has two protected methods, current thread and next thread, that
returns the current thread being executed (note that it can be different from the
owner) and the next thread that is the head of the semaphore’s queue. These
two operations are required by the PIP, PCP, IPCP, and MPCP protocols.

The Semaphore Ceiling class is common to all ceiling-based protocols, such
as IPCP and PCP. It adds an integer attribute (ceiling), which represents

Title Suppressed Due to Excessive Length 9

the semaphore’s ceiling, and a new attribute cpu that represents the current
assigned CPU of a thread. It also has the set and get methods for the attribute.
We added two new interface classes, Dynamic Ceiling, and Static Ceiling,
that inherit from Semaphore Ceiling and offer support for those protocols
that need to update the ceiling (SRP and MRSP) and those protocols that use
static ceilings (PCP, IPCP, MPCP, and MrsP).

Figure 3 shows the new proposed design for the protocols. The Semaphore -

PIP, Semaphore PCP, Semaphore IPCP, Semaphore MPCP, Semaphore SRP, and
Semaphore MSRP classes remains basically the same as in the original design
proposed in [1], the only difference is that they now implement the respective
interface (either static or dynamic ceiling). These classes implement the behavior
of each protocol and a complete description of each of them can be found in [1].

Sem aphore_IPCP

+ Semaphore_IPCP(ceiling: int,
 value: int = 1)
+ toCeiling(): void
+ p(): void
+ v(): void

Sem aphore_PCP

+ Semaphore_PCP(ceiling: int,
 value: int = 1)
+ toCeiling(): void
+ p(): void
+ v(): void

Sem aphore_M PCP

- _pg: int

+ Semaphore_M PCP(ceiling: int = 0,
 value: int = 1)
+ toCeiling(): void
+ p(): void
+ v(): void

Sem aphore_SRP

+ M AX_TASKS: const int = 8
+ M AX_RESOU RCES: const int = 8
_tasks: Thread * *
_nt: int
_system_ceiling: int
_nr: int
_resources: Semaphore_SRP<T> * *

+ Semaphore_SRP(cpu: int,
 ceiling: Priority* , value: int = 1)
+ Semaphore_SRP(tasks: Thread* * ,
 levels: int* , n_tasks: int, value: int = 1)
+ p(): void
+ v(): void
+ updateCeiling(): void
systemCeiling(): int
updateSystemCeiling(): void

T: bool

Sem aphore_PIP

+ Semaphore_PIP(ceiling: int,
 value: int = 1)
+ p(): void
+ v(): void

T: bool Sem aphore_M SRP

_cpu: const int
_globalCeiling[_cpu]: int
_systemCeiling[_cpu]: int
_globalResources[M AX_RESOU RCES]:
 Semaphore_M SRP<true> *
_nGR: int

+ Semaphore_M SRP(tasks: Thread* * ,
 levels: int* , n_tasks: int, value: int = 1)
+ p(): int
+ v(): int
+ systemCeiling(cpu: int): int
updateCeiling(cpu: int): void
updateSystemCeiling(): void

Sem aphore_M rsP

- _resourceAffinities: Thread * *
- _mrsp_owner: Thread *
- _helperTask: Thread *
- _originalCore: int
- _wasPreempted: bool *

+ Semaphore_M rsP(ceiling: int *)
+ p(): void
+ v(): void
+ ownerM igrated(prev: Thread* ,
 next: Thread*): bool
+ mrspOwner(): Thread*
+ mrspHelper(): Thread*
+ mrspOriginalCPU (): int
+ mrspHelperCPU (): int
- toCeiling(): void
- toCeiling(cpu: int): void
- toGlobalCeiling(cpu: int): void
- affinitiesInsert(t: Thread*): void
- affinitiesRemove(): void
- affinitiesClear(): void
- clearPreemptions(): void
- updateHelper(): void

Semaphore_RT

Semaphore_Ceiling

<<interface>>

Static_Ceiling

<<interface>>

Dynamic_Ceiling

T: bool

Fig. 3: Design representation of the resource access protocols.

The main difference between our design and implementation and other
implementations [17, 18, 23] is the use of object-orientation and templates that
allow code reuse, extensibility, low memory footprint and overhead (as will
be demonstrated in Section 4. For instance, the Semaphore MPCP expects a
boolean value that represents the type of the critical section. If the resource is

10 Lucas Matheus dos Santos† et al.

a local one, the user should create a class instance passing false as a template
argument. Otherwise, the user should pass true as the class template argument
to represent a global resource. When a local resource is used, then Semaphore -

MPCP behaves as the IPCP protocol. When guarding a global critical section,
on a p operation, the class raises the owner priority to the highestPriority

instead of ceiling priority. The highestPriority attribute is defined at
compile-time and stores the highest priority of all tasks that use global resources
among all cores.

At a similar way, Semaphore MSRP also expects a boolean to indicate pro-
tection of a local or global critical section (GCS). When true is passed, the
class implements p and v operations for MSRP. Otherwise, the protocol works
as SRP. Moreover, Semaphore MSRP defines the type of queue as template
argument as well (true to indicate a queue ranked by priority, whenever a local
critical section is going to be guarded, and false to use a FIFO-based queue).

Finally, the Semaphore MrsP class provides the resources for the implemen-
tation of the MrsP protocol, such as references to the owner and current helper
of the resource through the attributes mrsp owner and helperTask. Those
references are updated in the p and v methods, which uses the acquire and
release methods defined in Simple Spin base class, inherited by BaseLock.
The resource acquire and release procedures also updates the core affinities,
stored in resourceAffinities. If the active task cannot access the resource,
its core is added to be one of the affinities, a helper candidate whenever the
owner is preempted.

The ownerMigrated method checks if the current owner was preempted
and if there is an available core (affinity) to help it to continue its execution.
If there exists a helper core, the original core is stored in originalCore and
the method returns true, meaning that the owner task can migrate to the
helper task core. In this process, an array containing the cores in which the
owner was already preempted is also updated (wasPreempted). In this way,
the algorithm migrates the owner to a core where it was not preempted before.

3.1 Implementation in an RTOS

We have implemented the described design in the Embedded Parallel Operating
System (EPOS) [24]. EPOS is a multi-platform, object-oriented, component-
based, embedded system framework implemented in C++. It is the first open-
source RTOS designed from scratch that supports partitioned, global, and
clustered versions of EDF, RM, LLF, and DM scheduling policies [25]. A
complete review of the real-time support on EPOS can be found in [25]. We
choose EPOS, because it supports static and dynamic scheduling, it is written
in an object-oriented language, and it was used in our previous paper with
the original proposed design [1]. We believe that the proposed design can be
replicated in any object-oriented RTOS written in C++ and that has EDF,
RM, P-EDF, and P-RM schedulers. Moreover, EPOS until this work did not

Title Suppressed Due to Excessive Length 11

have support for the MrsP. We have modified the implementation in [1] to
reflect the changes in the software design described above.

To exemplify how we adapt a class at compile-time, the code in Figure 4
illustrates part of the implementation of the Semaphore MSRP class. In the
line 3, the class inherits from Semaphore SRP passing the queue choice (a
boolean) as parameter to handle local resources. In the lines 9 and 10, the
p and v operations of the Semaphore SRP are called. When Semaphore MSRP

must handle GCS, then a template specialization (line 15) is used. In this case,
note that after calling p or v, there is an extra call to update the ceiling (lines
20 and 21).

1 //MSRP implementation when the resource is local
2 template<bool T>
3 class Semaphore MSRP: protected Semaphore SRP<T> {
4 private:
5 typedef Semaphore SRP<T> Base;
6 // SRP inherits from Dynamic Ceiling<T, true>
7 public:
8 //constructor here
9 void p() { Base::p(); }

10 void v() { Base::v() ; }
11 };
12
13 //MSRP specialization when the resource is global
14 template<>
15 class Semaphore MSRP<true>: protected Semaphore SRP<false> {
16 private:
17 typedef Semaphore SRP<false> Base;
18 public:
19 //constructor here
20 void p() { Base::p(); updateCeiling(); }
21 void v() { Base::v() ; updateCeiling(); }
22 };

Fig. 4: Example of template specialization of the Semaphore MSRP.

4 Experimental Evaluation

This section describes the experimental evaluation of the previously described
implementation. Our objectives are: i) to measure the memory consumption
of the implementation; ii) to evaluate the run-time overhead of the imple-
mentation; iii) to verify the impact of the run-time overhead into the system
schedulability; and iv) to compare the overheads of the MrsP implementation
with related works to validate the proposed design and implementation.. The
next subsections show the obtained results for the objectives.

4.1 Memory Footprint

For measuring the memory consumption of our implementation, we have
executed EPOS on top of an Intel i7-2600 processor (clock of 3.4 Ghz, 8 logical

12 Lucas Matheus dos Santos† et al.

cores, 8 MB L3 cache). We used the GNU gcc compiler at version 7.5.0 to
generate the code. For measuring the memory footprint, we used the GNU

objdump tool at version 2.30.
Table 1 shows the obtained memory footprint for each class depicted in

Figures 2 and 3. The table also shows the total lines of code, just to correlate
the memory footprint with the implementation. Memory usage is split into code,
data, and static data sections. Data represents the memory consumed by an
instance of the corresponding semaphore type, not including the footprint of the
base classes. The total memory consumption describes the memory consumed by
the implementation of the semaphore subclass and a single corresponding object
instance. For instance, the total memory consumption of the Semaphore PIP

is 876 bytes, which represents its own 580 bytes summed with Semaphore and
Semaphore RTmemory consumption. It is important to highlight that code from
the Synchronizer Base, Synchronizer Common Simple Spin and BaseLock

classes are not represented in the Table 1, because it is inlined into the methods
that use the base class. This is also true for the interfaces Static Ceiling and
Dynamic Ceiling, meaning that the code of these classes are implemented in
the header file to improve the run-time overhead by avoiding explicitly method
calls. MPCP local has the same memory footprint as IPCP and MSRP local
has the same memory footprint as SRP due to the template class parameter as
discussed in Section 3 and exemplified in Figure 4. The MrsP implementation
consumes 1.6 KB of memory, including code and static data. The number of
lines in the Table confirms the code reuse and extensibility of our design.

Table 1: Memory footprint (in bytes) and lines of code of the implemented
classes.

Class Code Data Static Data Total Mem. Lines of Code
Consum. Header Source

Semaphore 272 16 0 288 9 22
Sem. RT 0 8 0 296 29 0
Sem. Ceiling 0 4 0 292 8 0
PIP 580 0 0 876 6 31
PCP 634 0 0 926 6 31
IPCP 624 0 0 916 6 28
SRP 644 168 53 1157 80 31
MPCP Global 666 0 4 1586 10 40
MSRP Global 412 32 73 1674 81 22
MrsP 1552 0 60 1624 105 138

4.2 Run-time Overhead

For measuring the run-time overhead of the implementations, we used the
processor’s Time Stamp Counter (TSC). For each single-core protocol, a set
of 20 tasks tried to acquire the same resource in a cascade, being delayed by
the system Alarm in 1 ms after that, and subsequently releasing the resource.
After the acquire and release, the task waits for its next period (50 ms). For

Title Suppressed Due to Excessive Length 13

multi-core protocols, the test consisted of up to 8 tasks, each one assigned to a
different core, trying to acquire the same global resource in a cascade, releasing
the resource after that, using the same task flow, period and computation time
from single-core protocols.

For measuring the run-time overhead of the MrsP implementation, a differ-
ent application was built to force preemption of tasks executing in a critical
section. In this application, one main task arrives first and gains access to the
shared resource, after this, other tasks are launched in different cores, trying
to access the same resource and end up being kept spinning without gaining
access to the shared resource. Those tasks are the helpers, which borrows
their processors for the task executing in the critical section. The owner of
the resource is then preempted to force the helping mechanism of the MrsP to
happen. In different test runs, the number of helpers was increased, varying
from 1 to 8, with each possible helper task assigned to its own core.

The p and v methods of every semaphore type and spinlock (for MrsP)
were instrumented, as well as the system code responsible for performing
queuing/dequeuing and rescheduling of tasks, and inter-processor interruptions
(IPIs), which is used by the base semaphore implementation. These sections
were timed with a small helper utility, that wraps the code, setups the TSC,
and uses it to count the amount of time consumed by the code section. Each
task acquired and released the resource 1000 times, and the worst-case run-time
overhead was extracted from the execution.

Figure 5 presents the obtained worst-case run-time overhead for each
protocol in ns to perform p and v operations as a function of the number of
tasks waiting on the semaphore, while Table 2 presents the obtained results
exclusively for the MrsP protocol. The overheads in Figure 5 depend on the
number of tasks, since whenever a task blocks it is queued in a linked list. As
the queue grows, the operations take more time. The queue overhead overcomes
the overhead of the protocols. However, we can note a very small difference
when no tasks are waiting on the semaphore (PCP, PIP, and IPCP have mostly
the same behavior).

Although the dequeuing operation performed at every v operation touches
the head of the queue, we can note a decrease as the number of tasks increases.
This is mainly caused by concurrent events (i.e., the alarm that handles the
task releases shares internal data structures with the rescheduling operation).
The v operation of the SRP is the worst, because it demands an updating of
the system ceiling, which is performed in a loop (its size is equal to the number
of tasks that use the resource, 20 in our experiments). The case of tasks being
blocked on a semaphore under SRP should never happen in principle. This is
because of the preemption test, that disables a task from starting execution if
one of its resource accesses would cause it to block. However, in our practical
implementation, non-real-time tasks do not have an assigned preemption level
and are unaffected by SRP. Therefore, in the case of a soft real-time application
that makes mixed-use of task types, tasks may still block on a resource.

The MSRP and MPCP v operations clearly show the effects of having more
than one core accessing the same global resource. The p operation in the MPCP

14 Lucas Matheus dos Santos† et al.

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

Number of Threads

R
u

n
−

ti
m

e
 O

ve
rh

e
a

d
 (

in
 n

s
)

Run−time Overhead of the Implemented Protocols

1 2 3 4 5 6 7 8 9 11 13 15 17 19

PIP p

PIP v

PCP p

PCP v

IPCP p

IPCP v

SRP p

SRP v

MPCP p

MPCP v

MSRP p

MSRP v

Fig. 5: Obtained run-time overhead (on the Intel i7 processor).

is the same as in IPCP (just uses a defined global ceiling). That is the reason
why it presents a slightly higher overhead than IPCP. Another important source
of run-time overhead is the time to switch the context between two tasks. Since
the number of context switches may change depending on the protocol, we
also use the worst-case context switch (0.3 µs), as measured in [25], in the
schedulability impact discussed next.

We consider the overheads for MrsP (depicted in Table 2) in three different
sections of the code, lock, unlock, and helping, as also done in [17, 18]. The
lock column presents the overhead of the acquire operation, responsible for
storing the current owner and updating the core affinities when the access to
the resource is denied. The unlock column presents the overhead of the resource
release operation, which takes more time due to the reorganization of tasks:
unlocking the resource outside its original core demands a task migration back
to its original core, requires an update in the owner and helper task references,
and in affinities and preemption arrays. The helping column contains the
overhead for the preemption detection, task migration and inter-processor
interruption (IPI). Note that due to our MrsP experiment organization, there
is no IPI when we have only one core (there is no migration – the overhead in
this case is only the preemption detection).

Title Suppressed Due to Excessive Length 15

For the unlock operation, we see a different behavior with 4 cores. This
was due to the absence of a preemption of the resource owner or no helper was
available when the owner was preempted. Both cases would result in an unlock
operation with less overhead, since the owner did not migrate to another core
and it was executing in its original core. The helping mechanism overhead
stays practically the same in all the cases, since this code section does not have
many conditionals forks and possible time variants besides the IPI.

Table 2: MrsP overhead (in nanoseconds).

Cores Lock Unlock Helping
1 315 196 48
2 345 3098 1737
3 860 2962 1726
4 509 246 1726
5 679 3049 1726
6 552 3052 1724
7 1451 2580 1760
8 803 2682 1726

4.3 Schedulability Impact

For measuring the impact of the implemented locking protocols overheads on the
system schedulability, we performed the experiments with randomly generated
task sets. The experimental setup is similar to the previous works [4, 26].

A task period pi was randomly chosen from a log-uniform distribution
ranging over [10 ms, 100 ms] (homogeneous periods) or [1 ms, 1000 ms] (hetero-
geneous periods). A task utilization ui was randomly chosen from an exponential
distribution with a mean 0.1 (light), 0.25 (medium) or 0.5 (heavy).

Tasks share a number of resources within a set nres ∈ {1, 2, 4, 8, 16}. For
each task and for each resource, the task to resource assignment is given with a
probability pacc ∈ {0.25, 0.5, 0.75, 1}. The critical sections lengths were chosen
uniformly from [1 µs, 25 µs] (short), [25 µs, 100 µs] (medium), or [100 µs,
500 µs] (long). Each task’s instance accesses a resource only once per activation,
all resources are single-unit and all critical sections are non-nested.

Tasks run on m processors with m ∈ {1, 2, 4, 8}. We assumed partitioned
scheduling where the tasks are assigned to the processors using the worst-fit
decreasing heuristic [20]. We acknowledge that better results could be achieved
with specialized resource-sharing-aware heuristics [27]. We analyzed the tasks
schedulability under P-FP and P-EDF policy. To verify the schedulability,
we implemented Response Time Analysis for the former, processor demand
criterion for the later, and the respective polynomial-time utilization-based
tests [3, 28]. For the fixed-priority scheduling, the task priorities were assigned
by Rate Monotonic [28] (RM and P-RM).

16 Lucas Matheus dos Santos† et al.

We analyzed four resource access protocols on a single-core platform (m = 1)
with the associated analyses for blocking: PIP [6], PCP and IPCP [6] (all for
FP) and SRP [7] (for EDF). On multi-core platforms (m > 1), we studied
MPCP [27] and MrsP [12,16] under P-RM and MSRP [10] under P-EDF. Task
set generation and schedulability tests were implemented in SchedCAT [29].
In our experiments for MsrP, we considered the length of the non-preemptive
critical section equal to ten times its incurred migration overhead (see Helping

in Table 2).

For each combination of the described above parameters, we generated
1000 task sets increasing the task set utilization cap (i.e., utilization limit of a
generated task set) by 0.05 at each step. The schedulability of each task set
was then verified (solid lines on Figures 6 – 9). Additionally, we considered
the overheads (dotted lines) by inflating each task’s WCET with the obtained
run-time overheads (see Figure 5 and Table 2) and context-switch penalties
incurred by each protocol [7] (dotted lines on Figures 6 – 9). The experiments
covered more than 2500 cases. Here, we report on our main findings2.

The first batch of experiments focused only on the single-processor lock
sharing protocols (m = 1). The tasks were generated with heterogeneous periods
and long critical sections. Figures 6 and 7 show the impact of shared resource
number and task number on the schedulability (utilization heavy means that
task number is low and vice versa). PIP performance degrades significantly with
the number of shared resources due to the chained blocking. Early blocking in
IPCP reduces the number of context switches but its benefit compared to PCP
is barely discernible. We note that for high utilizations, the large overhead of
SRP degrades its theoretical performance more than other protocols. The main
reason for this is that SRP handles multi-unit resources and thus its overhead
is higher.

0 0.2 0.4 0.6 0.8 1
0%

20%

40%

60%

80%

100%

Utilization cap

S
ch

ed
u
la
b
il
it
y

PIP

PIP-ov

PCP

PCP-ov

IPCP-ov

SRP

SRP-ov

0 0.2 0.4 0.6 0.8 1
0%

20%

40%

60%

80%

100%

Utilization cap

S
ch

ed
u
la
b
il
it
y

PIP

PIP-ov

PCP

PCP-ov

IPCP-ov

SRP

SRP-ov

a. heavy, pacc = 0.25, nres = 4 b. medium, pacc = 0.5, nres = 8

Fig. 6: Selected results for single-processor setup (periods heterogeneous, long
critical sections).

2 All graphs are available at www.lisha.ufsc.br/Giovani.

Title Suppressed Due to Excessive Length 17

0 0.2 0.4 0.6 0.8 1
0%

20%

40%

60%

80%

100%

Utilization cap

S
ch

ed
u
la
b
il
it
y

PIP PIP-ov PCP PCP-ov IPCP-ov SRP SRP-ov

Fig. 7: Single-processor setup using periods heterogeneous, long critical sections,
light utilization, pacc = 0.75 and nres = 16

The second part of our experiment covers three protocols for multi-processor:
MPCP and MrsP under P-RM and MSRP under P-EDF . Figures 8 and 9 show
the results for the task sets generated with medium utilization, heterogeneous
periods, pacc = 0.75, short critical section and m = 8 processors. For the sake
of completeness, we also show the schedulability of the same task sets without
any shared resources under P-RM and P-EDF. In the experiment, we vary the
number of shared resources nres. As expected, having more shared resources
leads to lower schedulability. In particular, MSRP performance is degraded
and worse than MPCP. This is due to the preemption levels and system ceiling
management that demands a loop to iterate over the tasks and preemption
levels for each processor. The best schedulability performance is achieved by
MrsP. Having short critical sections, as assumed in the experiments, results in
low blocking. The increase in the schedulability performance in Figure 9 may
appear counter-intuitive, but can result from the worst-fit task-to-processor
allocation. Indeed, for low utilizations, the tasks are distributed among the
processors and there is a high probability of having most of the resources on
different processors (i.e., global resources). With the increase of utilization,
more tasks are allocated to the same processors and the resources tend to
become local and do not incur additional delay due to the parallel access.
Moreover, we can note that MrsP performance tends to the theoretical P-RM
and P-EDF bounds when increasing the utilization cap, which confirms the
better schedulability test of the MrsP over MPCP and MSRP.

We derived the following observations from the experiments: i) PIP is less
sensitive to the run-time overhead than PCP and IPCP; ii) schedulability is
higher in task sets with medium utilizations (there are less tasks); iii) homo-
geneity of task periods has a major effect on the schedulability ratio (short
period tasks were more affected by blocking-time bound terms on the schedu-
lability analyses); iv) critical section sizes heavily impact schedulability for
light-utilization task sets; v) due to higher overhead, even with better schedu-

18 Lucas Matheus dos Santos† et al.

lability, MSRP can be worse than MPCP; vi) our design and implementation
provides low overhead, specially for the multi-core protocols; and vii) MrsP is
the best protocol among the analyzed ones for multi-core processors.

Our study shows that the locking overheads are non-negligible, especially
when the system load is close to theoretical upper bounds and the number
of shared resources is high. However, in the great majority of cases, our
design/implementation does not adversely impact the system schedulability.

0 2 4 6 8
0%

20%

40%

60%

80%

100%

Utilization cap

S
ch

ed
u
la
b
il
it
y

MPCP

MPCP-ov

MSRP

MSRP-ov

MrsP

MrsP-ov

RM

EDF

0 2 4 6 8
0%

20%

40%

60%

80%

100%

Utilization cap

S
ch

ed
u
la
b
il
it
y

MPCP

MPCP-ov

MSRP

MSRP-ov

MrsP

MrsP-ov

RM

EDF

a. nres = 2 b. nres = 4

Fig. 8: Selected results for multi-processor setup (utilization medium, periods
heterogeneous, pacc = 0.75, short critical sections, m = 8 processors).

0 2 4 6 8
0%

20%

40%

60%

80%

100%

Utilization cap

S
ch

ed
u
la
b
il
it
y

MPCP MPCP-ov MSRP MSRP-ov

MrsP MrsP-ov P-RM P-EDF

Fig. 9: Multi-processor setup using medium utilization, heterogeneous periods,
pacc = 0.75, short critical sections, m = 8 processors and nres = 8.

Title Suppressed Due to Excessive Length 19

5 Related Work

Uniprocessor resource access protocols. Suspension-based resource access
protocols for uniprocessor real-time systems were first proposed by Sha et
al. [6]. The authors have proposed PCP and PIP and the work has served as a
basis for much other research. SRP was proposed by Baker in 1991 [7] and it
was also a seminal work, mainly for providing resource access protection for
dynamic scheduling.

Several general-purpose OSes and RTOSes implement some of the analyzed
real-time resource access protocol. For instance, FreeRTOS employs PIP in
the mutex primitive [30] and also supports SRP [31]. LITMUSRT supports
PCP, SRP, and several multiprocessor resource access protocols [23]. The L4
microkernel [32] and Linux support priority inheritance. Linux also implements
IPCP, under the name PRIO PROTECT in the pthreads library. Lee and Kim
implemented PIP in the µC/OS-II kernel and measured the run-time overhead
running the implementation on top of the CalmRISC16 evaluation board [33].
The observed run-time overhead for the p and v semaphore operations was
30.5 µs. Researchers also proposed to move the mechanisms to control the
priority inheritance [34] or the semaphore structures [35] to the hardware in
order to reduce the run-time overhead.

Wang et al. implemented multi-resource versions of PIP and PCP in a
component-based OS for controlling the access to shared stacks [36]. In their
experimental evaluation considering the schedulability of generated tasks, PIP
has performed better than PCP. Thus, they have concluded that PIP has the
potential to provide a high-degree of schedulability [36]. In our experimental
evaluation, however, PIP has presented a similar performance in terms of
overhead when compared to PCP but had worse schedulability ratios. Caccamo
et al. [37] proposed a scheduling framework for soft- and hard-real time tasks
that share the same resources.

Multiprocessor resource access protocols. Resource access protocols
for multiprocessors have been the subject for many researchers recently. Flexible
Multiprocessor Locking Protocols is a collection of protocols for global and
partitioned scheduling [38]. It was designed to efficiently deal with short non-
nested access and to allow unrestricted critical section nesting. Parallel Priority
Ceiling Protocol extends PIP to avoid unfavorable blocking situations but
increases the run-time overhead [39]. Biondi and Brandenburg [26] have revisited
four synchronization protocols under P-EDF scheduling and compared them
in terms of schedulability. They concluded that the lock-free synchronization
approach offers advantages on asymmetric multiprocessing platforms. Recently,
Teixeira and Lima [40] proposed a task allocation heuristic for global scheduling
that leverages the concept of servers [41]. Yang et al. proposed new more precise
schedulability analyses based on linear programming for several multiprocessor
semaphore-based locking approaches [4]. The authors claim that the new
analyses are more accurate than prior approaches.

Brandenburg surveys multiprocessor real-time locking protocols, from 1988
until 2018 [42]. Robb and Brandenburg propose two multiprocessor protocols to

20 Lucas Matheus dos Santos† et al.

support fine-grained nested locking, to guarantee independence preservation for
fine-grained nested locking, and to ensure optimal priority-inversion bounds [43].
However, there is no implementation nor measurement of run-time overheads.
Lock server paradigms were investigated as an alternative to decrease the
blocking time caused by nested locking in multi-core processors [44].

In the preemptive resource sharing approach (PWLP), a task spins waiting
for a shared resource with its original priority. If this task is preempted, its
resource access request is canceled. When the task is rescheduled, it is placed
at the end of the resource FIFO queue. The task becomes non-preemptable
once it gets the resource lock [45].

The O(m) Locking Protocol (OMLP) combine the use of two queues, a
priority and FIFO queue [15]. Tasks first contend for the acquiring a common
m-exclusion priority lock (in the priority queue) and then are suspended in the
FIFO queue to wait for the associated resource. When the task accesses the
resource, it becomes non-preemptable under OMLP.

The Flexible Multiprocessor Locking Protocol (FMLP) requires the division
of the resources by the programmer into long and short resources [38]. Then, it
groups the resources according to its class (short or long), creating a resource
group. Each resource group has a different mechanism of management. A group
containing short resources uses a non-preemptive FIFO queue to handle the
lock operation, while for a group containing long resources is protected by a
semaphore lock. Groups are organized in such a way that resources can be
nested, so a task can hold more than one resource at a time [12]. Resources that
are used in a non nested fashion are grouped individually. As mentioned in [12],
group locks reduce the parallelism and are an impediment to composability.
FMLP can be used in global and partitioned-based systems.

The Real-time Nested Locking Protocol (RNLP) [13] extends the notion
of fine-grained blocking bounds for nested resources firstly introduce in [46].
RNLP limits concurrency by a k-exclusion and access granting mechanisms.
However, the algorithm provides sub-optimal results under different system
configurations, limiting its applicability in real-world scenarios [14].

Several works have proposed improvements over the original MrsP [12],
focusing on providing new features and improving the existing ones. For instance,
Garrido et al. proposed the support of fine-grained nested resources [11]. Zhao
and Wellings proposed a modified helping mechanism [47]. Zhao et al. proposed
an analysis of the migration costs and an improved schedulability test based on
RTA in [16], while in [14] the same authors extended the MrsP schedulability
test to support nested resource accesses and run-time costs (creating a complete
run-time overhead-aware schedulability analysis for MrsP).

Considering the implementation of MrsP in real systems, Catellani et al. im-
plemented the MrsP in two OSes, a real-time one (RTEMS) and LITMUSRT [17].
The authors measured the run-time overhead in both OSes, obtaining around
13 µs and 52.3 µs, for RTEMS and LITMUSRT , respectively. The authors
claim that the increased kernel overhead, when compared to other protocols, is
compensated by the improved RTA offered by MrsP.

Title Suppressed Due to Excessive Length 21

Shi et al. also implemented the MrsP in LITMUSRT and measured its
related overhead in an Intel i7-5600U processor running at 2.6 GHz [18]. The
authors only presented the average running overhead, not the worst-case. The
obtained average overhead for MrsP was 7.1 µs. As proved in [25], the worst-case
running overheads in LITMUSRT are quite significant and must be accounted
for a valid run-time overhead analysis. Using average time is not fair and may
hide the inherent non real-time behavior of Linux-based systems. Moreover,
neither [17] nor [18] discussed the design choices and the integration of MrsP
in RTOSes that provide other real-time resource access protocols, focusing on
providing code reuse, easy usability, and low run-time worst-case overhead. We
have shown in our evaluation lower overheads than both works [17,18], even
running our system in an older and slower processor (for instance, Shi et al
used a 5th generation of the i7, while we used an i7 of the 2nd generation).

6 Conclusion

In this paper we presented an object-oriented design of 7 real-time resource pro-
tocols for single and multi-core processors. The design supports both suspension-
and spin-based protocols (PIP, PCP, IPCP, and SRP for single-core systems
and MPCP, MSRP and MrsP for multi-core systems. MrsP is the only spin-
based protocol). To the best of our knowledge, this work is the first to support
such variation of resource access protocols in an RTOS.

Our design recalls on a clean class hierarchy and template specialization to
allow code reuse, extensibility, low memory footprint and run-time overhead.
We implemented the proposed design in a modern multi-core processor and
measured the memory footprint (from 876 to 1674 bytes, depending on the
protocol) and run-time overhead (less than 4 µs for 20 tasks and around
6.1 µs for the MrsP protocol). Moreover, we used the run-time overhead to
analyze how it affects the system schedulability and proved that efficient RTOS
implementation of resource access protocols has few impacts on the system
schedulability. As future work, we want to extend the experiments for nested
locks.

Compliance with Ethical Standards

Conflict of Interest: The authors declare that they have no conflict of interest.

References

1. L. M. dos Santos, G. Gracioli, T. Kloda, and M. Caccamo, “On the design and imple-
mentation of real-time resource access protocols,” in 2020 X Brazilian Symposium on
Computing Systems Engineering (SBESC), 2020, pp. 1–8.

2. J. Liu, Real-Time Systems, 1st ed. Upper Saddle River, NJ, USA: Prentice Hall PTR,
2000.

22 Lucas Matheus dos Santos† et al.

3. G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling Algorithms
and Applications, 3rd ed. Springer, 2011.

4. M. Yang, A. Wieder, and B. Brandenburg, “Global real-time semaphore protocols: A
survey, unified analysis, and comparison,” in RTSS, 2015, pp. 1–12.

5. M. Jones. (1997, Dec) What really happened on mars? [Online]. Available: http://
research.microsoft.com/en-us/um/people/mbj/Mars Pathfinder/Mars Pathfinder.html

6. L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols: an approach
to real-time synchronization,” IEEE Transactions on Computers, vol. 39, no. 9, pp.
1175–1185, Sep 1990.

7. T. P. Baker, “Stack-based scheduling for realtime processes,” Real-Time Syst., vol. 3,
no. 1, pp. 67–99, Apr. 1991.

8. N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings, “Applying new
scheduling theory to static priority pre-emptive scheduling,” Software Engineering
Journal, vol. 8, pp. 284–292(8), September 1993.

9. R. Rajkumar, “Real-time synchronization protocols for shared memory multiprocessors,”
in 10th ICDCS, May 1990, pp. 116–123.

10. P. Gai, G. Lipari, and M. Di Natale, “Minimizing memory utilization of real-time task
sets in single and multi-processor systems-on-a-chip,” in 22nd IEEE RTSS, 2001, pp.
73–83.

11. J. Garrido, S. Zhao, A. Burns, and A. Wellings, “Supporting nested resources in mrsp,”
in Reliable Software Technologies – Ada-Europe 2017, J. Blieberger and M. Bader, Eds.
Springer International Publishing, 2017, pp. 73–86.

12. A. Burns and A. J. Wellings, “A schedulability compatible multiprocessor resource
sharing protocol – mrsp,” in ECRTS, July 2013, pp. 282–291.

13. B. C. Ward and J. H. Anderson, “Supporting nested locking in multiprocessor real-time
systems,” in 24th Euromicro Conference on Real-Time Systems (ECRTS 2012). Los
Alamitos, CA, USA: IEEE Computer Society, jul 2012, pp. 223–232.

14. S. Zhao, J. Garrido, R. Wei, A. Burns, A. Wellings, and J. A. de la Puente, “A com-
plete run-time overhead-aware schedulability analysis for mrsp under nested resources,”
Journal of Systems and Software, vol. 159, p. 110449, 2020.

15. B. B. Brandenburg and J. H. Anderson, “Optimality results for multiprocessor real-time
locking,” in 2010 31st IEEE Real-Time Systems Symposium, 2010, pp. 49–60.

16. S. Zhao, J. Garrido, A. Burns, and A. Wellings, “New schedulability analysis for mrsp,”
in 2017 IEEE 23rd International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2017, pp. 1–10.

17. S. Catellani, L. Bonato, S. Huber, and E. Mezzetti, “Challenges in the implementation
of mrsp,” in Reliable Software Technologies – Ada-Europe 2015, J. A. de la Puente and
T. Vardanega, Eds. Cham: Springer International Publishing, 2015, pp. 179–195.

18. J. Shi, K.-H. Chen, S. Zhao, W.-H. Huang, J.-J. Chen, and A. Wellings, “Implementation
and evaluation of multiprocessor resource synchronization protocol (mrsp) on litmusRT ,”
in 13th Workshop on Operating Systems Platforms for Embedded Real-Time Applications,
2017.

19. S. K. Dhall and C. L. Liu, “On a real-time scheduling problem,” Oper. Res., vol. 26,
no. 1, p. 127–140, Feb. 1978. [Online]. Available: https://doi.org/10.1287/opre.26.1.127

20. J. M. Lopez, M. Garcia, J. L. Diaz, and D. F. Garcia, “Worst-case utilization bound for
edf scheduling on real-time multiprocessor systems,” in 12th ECRTS, 2000, pp. 25–33.

21. H. Takada and K. Sakamura, “A novel approach to multiprogrammed multiprocessor
synchronization for real-time kernels,” in Proceedings Real-Time Systems Symposium,
1997, pp. 134–143.

22. E. W. Dijkstra, “Cooperating sequential processes,” in Programming Languages: NATO
Advanced Study Institute, F. Genuys, Ed. Academic Press, 1968, pp. 43–112.

23. B. B. Brandenburg and J. H. Anderson, “An implementation of the pcp, srp, d-pcp,
m-pcp, and fmlp real-time synchronization protocols in litmusrt,” in 14th IEEE RTCSA.
USA: IEEE, 2008, pp. 185–194.

24. EPOS. (2020, Aug) Website. [Online]. Available: http://epos.lisha.ufsc.br
25. G. Gracioli, A. A. Fröhlich, R. Pellizzoni, and S. Fischmeister, “Implementation and

evaluation of global and partitioned scheduling in a real-time OS,” Real-Time Systems,
vol. 49, no. 6, 2013.

Title Suppressed Due to Excessive Length 23

26. A. Biondi and B. B. Brandenburg, “Lightweight real-time synchronization under p-edf
on symmetric and asymmetric multiprocessors,” in Proc. of the ECRTS 2016, 2016, pp.
1–11.

27. K. Lakshmanan, D. d. Niz, and R. Rajkumar, “Coordinated task scheduling, alloca-
tion and synchronization on multiprocessors,” in 2009 30th IEEE Real-Time Systems
Symposium, 2009, pp. 469–478.

28. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard-real-
time environment,” J. ACM, vol. 20, no. 1, p. 46–61, 1973.

29. (2020, Aug) Schedcat: Schedulability test collection and toolkit. [Online]. Available:
http://www.mpi-sws.org/bbb/projects/schedcat

30. (2016, Jul) Freertos web-site. [Online]. Available: http://www.freertos.org/
31. R. Inam, J. Mäki-Turja, M. Sjödin, and M. Behnam, “Hard real-time support for

hierarchical scheduling in freertos,” in OSPERT, 2011, pp. 51–60.
32. J. Liedtke, “On micro-kernel construction,” in 15th SOSP. ACM, 1995, pp. 237–250.
33. J.-H. Lee and H.-N. Kim, “Implementing priority inheritance semaphore on uc/os real-

time kernel,” in IEEE Workshop on Software Technologies for Future Embedded Systems,
2003, May 2003, pp. 83–86.

34. B. E. S. Akgul, V. J. M. III, H. Thane, and P. Kuacharoen, “Hardware support for
priority inheritance,” in 24th IEEE Real-Time Systems Symposium, 2003. RTSS 2003,
Dec 2003, pp. 246–255.

35. H. Marcondes and A. A. Fröhlich, A Hybrid Hardware and Software Component Archi-
tecture for Embedded System Design. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 259–270.

36. Q. Wang, J. Song, and G. Parmer, “Execution stack management for hard real-time
computation in a component-based os,” in IEEE 32nd RTSS, Nov 2011, pp. 78–89.

37. M. Caccamo, G. Lipari, and G. Buttazzo, “Sharing resources among periodic and
aperiodic tasks with dynamic deadlines,” in Proc. 20th IEEE RTSS, 1999, pp. 284–293.

38. A. Block, H. Leontyev, B. B. Brandenburg, and J. H. Anderson, “A flexible real-
time locking protocol for multiprocessors,” in 13th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA 2007), 2007,
pp. 47–56.

39. A. Easwaran and B. Andersson, “Resource sharing in global fixed-priority preemptive
multiprocessor scheduling,” in 30th RTSS, 2009, pp. 377–386.

40. R. Teixeira and G. Lima, “Improved task packing for shared resources in multiprocessor
real-time systems scheduled by run under sblp,” in 2019 IX Brazilian Symposium on
Computing Systems Engineering (SBESC), 2019, pp. 1–8.

41. P. Regnier, G. Lima, E. Massa, G. Levin, and S. Brandt, “Run: Optimal multiprocessor
real-time scheduling via reduction to uniprocessor,” in 2011 IEEE 32nd Real-Time
Systems Symposium, 2011, pp. 104–115.

42. B. B. Brandenburg, “Multiprocessor real-time locking protocols: A systematic review,”
CoRR, vol. abs/1909.09600, 2019.

43. J. Robb and B. B. Brandenburg, “Nested, but separate: Isolating unrelated critical
sections in real-time nested locking,” in 32nd ECRTS, 2020, pp. 6:1–6:23.

44. C. E. Nemitz, T. Amert, and J. H. Anderson, “Using Lock Servers to Scale Real-Time
Locking Protocols: Chasing Ever-Increasing Core Counts,” in 30th ECRTS, 2018, pp.
25:1–25:24.

45. T. Craig, “Queuing spin lock algorithms to support timing predictability,” in 1993
Proceedings Real-Time Systems Symposium, 1993, pp. 148–157.

46. H. Takada and K. Sakamura, “Real-time scalability of nested spin locks,” in Proceedings
Second International Workshop on Real-Time Computing Systems and Applications,
1995, pp. 160–167.

47. S. Zhao and A. J. Wellings, “Investigating the correctness and efficiency of mrsp in
fully partitioned systems,” in 10th York Doctoral Symposium on Computer Science and
Electronic Engineering, 2017.

