Sequential Pattern Mining in Multi-Databases via Multiple Alignment

Hye-Chung (Monica) Kumf Joong Hyuk Chang Wei Wang
 University of North Carolina at Chapel Hiljkum, weiwang @cs.unc.edu
 Yonsei University, jnchang@amadeus.yonsei.ac.kr

Abstract

To efficiently find global patterns from a multi-database, information in each local database must first
be mined and summarized at the local level. Then only the summarized information is forwarded to the
global mining process. However, conventional sequential pattern mining methods based on support cannot
summarize the local information and is ineffective for global pattern mining from multiple data sources.

In this paper, we present an alternative local mining approach for finding sequential patterns in the local
databases of a multi-database. We propose the theagpobximate sequential pattern miningughly de-

fined adgdentifying patterns approximately shared by many sequerggsoximate sequential patterns can
effectively summerize and represent the local databases by identifying the underlying trends in the data. We
present a novel algorithrpproxMAP, to mine approximate sequential patterns, cati@alsensus patterns

from large sequence databases in two steps. First, sequences are clustered by similarity. Then, consensus
patterns are mined directly from each cluster through multiple alignment. We conduct an extensive and
systematic performance study over synthetic and real data. The results demonstrAfptbalAP is
effective and scalable in mining large sequences databases with long patterns. AfgrogMAP can
efficiently summarize a local database and reduce the cost for global mining. Furthremore, we present an
elegant and uniform model to identify bdtigh vote sequential patterasmdexceptional sequential patterns

from the collection of these consensus patterns from each local databases.

1 Introduction

Many large organizations have multiple data sources residing in diverse locations. For example, multi-
national companies with branches around the world have local data in each branch. Each branch can mine
its local data for local decision making using traditional mining technology. Naturally, these local patterns
can then be gathered, analyzed, and synthesized at the central headquarter for decision making at the central
level. Such post-processing of local patterns from multiple data sources is fundamentally different from tra-
ditional mono-database mining. Obviously, efficiency becomes a greater challenge that may only be tackled
via distributed or parallel data mining. More important, global patterns mined via distributed data mining

technology may offer additional insight than the local patterns. The problem formulation, difficulties, and

framework for multi-database mining has been addressed in [26]. Recently mining global association rules
from multiple data sources has been studied in [20, 25, 27]. However, to the best of our knowledge, no work
has been done in mining global sequential patterns from multiple data sources.

The goal of sequential pattern mining is to detect patterns in a database comprised of sequences of sets.
Conventionally, the sets are called itemsets. For example, retail stores often collect customer purchase
records in sequence databases in which a sequential pattern would indicate a customer’s buying habit. In
such a database, each purchase would be represented as a set of items purchased, and a customer sequence
would be a sequence of such itemsets. More formally, given a sequence database and a user-specified
minimum support threshold, sequential pattern mining is defined as finding all frequent subsequences that
meet the given minimum support threshold [2]. GSP [17], PrefixSpan [13], SPADE [24], and SPAM [1]
are some well known algorithms to efficiently find such patterns. However, such problem formulation of
sequential patterns has some inherent limitations that make it be inefficient for mining multi-databases as

follows:

e Most conventional methods mine the complete set of sequential patirasefore, the number of
sequential patterns in a resulting set may be huge and many of them are trivial for users. Recently,
methods for mining compact expressions for sequential patterns has been proposed [22]. However, in
a general sequence database, the number of maximal or closed sequential patterns still can be huge,
and many of them are useless to the users. We have found using the well known IBM synthetic data [2]
that, given 1000 data sequences, there were over 250,000 sequential patterns returnedwahen

was 5%. The same data gave over 45,000 max sequential patterngfomnp = 5% [10].

e Conventional methods mine sequential patterns with exact matchingequence in the database
supports a pattern if, and only if, the pattern is fully contained in the sequence. However, the exact
match based paradigm is vulnerable to noise and variations in the data and may miss the general trends
in the sequence database. Many customers may share similar buying habits, but few of them follow

exactly the same buying patterns.

e Support alone cannot distinguish between statistically significant patterns and random occurrences
Both theoretical analysis and experimental results show that many short patterns can occur frequently

simply by chance alone [10].

Table 1. Representing the underlying pattern

sequ {0) 0 | (BC) | (DE))
seqa (A | 0 | BCX) | (D)
seqs ((AE) | (B) | (BC) | (D))
seqa »w 10 (B8) | (DE))
Capprozpat | (& || ®0) | ©O) | |

For efficient global pattern mining from multiple sources, information from local databases must first be
mined and summarized at the local level. Then only the summarized information is forwarded to the global
mining process. However, the support model cannot accurately summarize the local database due to the
above mentioned inherent limitations. Rather, it generates many more short and trivial patterns than the
number of sequences in the original database. Thus, the support based algorithms not only have limitations
in the local data mining process, but also hinder the global mining process.

In this paper, we consider an alternative local pattern mining approach which can facilitate the global
sequential pattern mining. In general, understanding the general trends in the sequence database for natural
customer groups would be much more useful than finding all frequent subsequences in the database. Ap-
proximate sequential patterns can detect general trends in a group of similar sequences, and may be more
useful in finding non-trivial and interesting long patterns. Based on this observation, we introduce the notion
of approximate sequential pattern&pproximate sequential patteriase those patterns that are shared by
many sequences in the database but not necessarily exactly contained in any one of them. Table 1 shows a
group of sequences and a pattern that is approximately similar to them. In each sequence, the dark items
are those that are shared with the approximate patterq.has all items irepprox_pat, in the same order
and grouping, except missing itefnin the first itemset and having an additional it&nn the last itemset.
Similarly, seqs missesB in the third itemset and has an exEan the last itemset. In comparisastg, and
seqs have all items irapproxz_pat but each has a couple of extra items. These evidences strongly indicate
thatapprox_pat is the underlying pattern behind the data. Henggyrox_pat can effectively summarize
all four sequences by representing the common underlying patterns in them. We adopt this new model
for sequential pattern mining to identify local sequential patterns. It can help to summarize and represent
concisely the sequential patterns in a local database.

Given properly mined approximate local patterns, we are interested in mining global sequential pat-
terns from multiple data sources. In particular, we are interested in mining high vote sequential patterns

and exceptional sequential patterns [2d]gh vote patternsre those patterns common across many local

Table 2. Local Patterns
lpat,, | California | {diapers, crib, carsepfmobile, diapers, shogsbibs, spoon, diape}s
Ipatar Maine {diapers, crib,carsepfmobile, diaper}{bibs, spoon, diapers, shdes|
Ipatsy Alaska {diapers, cri{mobile, diaper¥{bibs, spoon, diapers, shdes
lpats> | Alaska | {eskimo barbie, iglop{sliegh, dog${boots, skie}

databases. They reflect the common characteristics among the data sByoeggional patternare those
patterns that hold true in only a few local databases. These patterns depict the special characteristics of
certain data sources. Such information is invaluable at the headquarter for developing customized policies
for individual branches when needed.

To illustrate our problem let us consider a toy retail chain as an example. Each local branch of the toy
retail chain collects customer purchase records in a sequence database. In the local mining phase, common
buying patterns of major client groups are mined in each local branch as shown in Table 2. Subsequently,
from the set of common buying patterns, high vote buying patterns and exceptional buying patterns can be

found, and they can help to answer the following questions:

e What client groups have similar patterns across most branches and what are the similar patterns?
Answer. expecting parents are a major group in most braches. The common buying patterns for

expecting parents ampati1, Ipatar, andlpats;.

e What are the differences in the similar patterdg®wer: It seems in CA, parents buy their first baby

shoes quicker than those in Maine.

e What client groups only exist in a few branches? Which branches are &resy?er: In AL, there is a

group of girls who buy eskimo barbie followed by assecaories for her.

No current mining method can answer these questions. In this paper, we investigate how to mine such
high vote sequential patterns and exceptional sequential patterns from multiple data sources. In short, this

paper makes the following contributions:

e We propose the theme approximate sequential pattern mininghe general idea is that, instead of
finding exact patterns, we identify patterns approximately shared by many sequences and cover many
short patterns. Approximate sequential patterns can effectively summarize and represent the local

data for efficient global sequential pattern mining.

Global High-vote patterns /
patterns Exceptional patterns ... etc

Global mining
? Analyzing
[M : set of local patterns] local patterns p=
Local / f
L L‘ " " "
patterns [!] [2] Local mining
? ? Finding
local patterns
MDB Dy Dy Dy =

Figure 1. MDB process

e We develop an efficient algorithmApproxMAP (for APPROXmate Multiple Alignment Rattern
mining), to mine approximate sequential patterns, called consensus patterns, from large databases.
ApproxMAP finds the underlying consensus patterns directly via multiple alignment. It is effective
and efficient for mining long sequences and is robust to noise and outliers. We conduct an extensive
and systematic performance study over synthetic and real data. The results shapptioxtMAP is

effective and scalable in mining large sequence databases with long patterns.

e We formulate an elegant and uniform post-processing model to find both high vote sequential patterns

and exceptional patterns from the set of locally mined consensus patterns.

The rest of the paper is organized as follows. Section 2 formulate the local approximate sequential
pattern mining and the global sequential pattern mining problem. Section 3 details the distance function
between sequences. Section 4 describes ppoxMAP algorithm for local pattern mining. Evaluation of
ApproxMAP is given in Section 5. Section 6 overviews the related work. Finally, Section 7 concludes with

a discussion of future work.

2 Problem Formulation

In [26], Zhang et al. define multi-database mining as a two level process as shown in Figure 1. It can
support two level decision making in large organizations: the branch decision (performed via local mining)
and the central decision (performed via global mining). In local applications, a branch manager needs to
analyze the local database to make local decisions. For global applications and for corporate profitability,

top executives at the company headquarter are more interested in global patterns rather than the original raw

data. The following definitions formally define local pattern mining and global pattern mining in sequence

databases.

Definition 1 (Multi-Sequence Database)Let] = {i1,...,i;} be asetof items. AnitemsEt= {i;,,...,;,}
is a subset of. Conventionally, itemseX = {i;,,...,4; } is also written agx;, - -- ;). A sequence
S = (Xi...X,)is an ordered list of itemsets, whekg, ..., X,, are all itemsets. Essentially, a sequence
is an ordered list of sets. hocal sequence databas®; is a set of such sequences. nAllti-sequence
databaseis a set of local sequence databades: - - D,,.

2.1 Local Sequential Pattern Mining

First, each local data has to be mined for common patterns of major groups. In our toy retail example,
each branch must identify the major client groups, and then, mine the common buying pattern for each
group. As shown in Table 1, a sequential pattern that is approximately similar to most sequences in the
group can summarize and represent the sequences in a particular group effectively. With this insight, we can

formulate the local sequential pattern mining problem as follows.

Definition 2 (Similarity Groups) Let D, be a local sequence database afidt(seg;, seq;) be the dis-
tance measure foseq; and seq; between 0 and 1. Theb, can be partitioned intsimilarity groups
Gz, .. Gy, suchthab’, . dist(seqia, seq;p) is maximized and,_; dist(seqia, seq;p) is minimized where
seqiq € Gz, andseq;p € Gy,

This is the classic clustering problem of maximizing the inter cluster distances and minimizing the intra
cluster distances. Given a reasonable distance méasistseq;, seq;), similarity groups identified via

clustering can detect all major groups in a local sequence database.

Definition 3 (Approximate Sequential Patterns) Given the similarity groupé:,, . .. G,,, for the local se-
quence databasP,, anapproximate sequential patternfor group G, denoted agpat,,, is a sequence
that minimizeslist(Ipats,, seq,) for all seq, in similarity groupGy, .

Ipat,, may or may not be an actual sequencelp. Basically,lpat,, is approximately similar to all
sequences id7,,. Therefore,lpat,, should effectively represent the common underlying pattern in all
sequences itr,,. Moreover, the set of all approximate patterns froin denoted ag.,., should accurately

represent the local databaBg. Thus, onlyL,. is forwarded to the global mining process.

We will investigate the distance measure in Section 3.

2.2 Analyzing Local Patterns

Let M be the collection of all local patterns,. - - - L,,. Note that a local pattern is again an ordered list
of sets. Hencel will be in a very similar format to that of a local databaBg except that the sequences
are labeled with the local database id. An important semantic difference is that in most\€asg#isbe
much smaller thaD,.. In our toy retail exampleD,. is the local database of all customers’ sequences in a
local branch. Howevel is the collection of all local patterns from all branches. Typically, the number of
branches multiplied by the average number of major client groups is far less than the number of customers
in any one branch. Furthermorg will have much less noise with local patterns forming natural distinct
groups.

Mining the high vote pattern of expecting parents is important. In our toy retail example, we cannot
expect the common buying patterns of expecting parents to be identical in all branches. Thus, when local
patterns from one branch is matched with those from another branch we cannot use exact match. However,
the common patterns should be highly similar. Hence, the local patterns representing the buying patterns of
expecting parents from each branch will naturally form a tight cluster. After grouping such highly similar
local patterns from each branch we can identify the high vote patterns by the large group size.

Similarly, exceptional patterns are those local patterns that are found in only a few branches. However,
if exceptional patterns were found based on exact match, almost all local patterns would be exceptional
patterns because most local patterns will not be identical to one another. Hence, as in the case of high vote
patterns, we must consider approximate match to accurately identify exceptional patterns. A true exceptional
pattern should be very distinct from most local patterns. Exactly how different the pattern needs to be is
dependant on the application, and should be controlled by the user.

In short, the key to identifying the high vote sequential patterns and exceptional sequential patterns is in
properly grouping the local patterns by the desired similarity level. Classification of local patterns by the
desired similarity allows one simple model for identifying both the high vote patterns and the exceptional
patterns. The notion of homogeneous set, defined below, provides an elegant and uniform model to specify

the desired similarity among the local patterns.

Definition 4 (Homogeneous Set)Given a set of local pattern&/, its subsetd S is a homogeneous set of
ranged when the similarity between any two pattefasindp; in HS is not less tham,
i.e.,pi € HS Npj € HS N\ sim(p;, pj) > 6, wheresim(p;, pj) = 1 — dist(p;, pj).

Table 3. High Vote Homogeneous Set and Pattern

3=100% {diapers, crip {mobile, diaper${bibs, spoon, diape}s
CA {diapers, crib, carsept {mobile, diapers, sho¢s {bibs, spoon, diape}s
MA {diapers, crib,carsept {mobile, diapers {bibs, spoon, diapers, shdes
AL {diapers, criy {mobile, diaper} {bibs, spoon, diapers, shdes

A homogenous set aof range is essentially the group of local patterns that are approximately similar
within ranged. The larger the), the more likely it is for the local patterns to be separated into different
homogenous sets. In the extreme case Whe®0% (i.e. a HS(100%) is a subset of all local patterns with
dist(Ipat;, lpat;) < 0 = 0), almost all local patterns will belong to its own homogeneous set. On the other
hand, too small & will lump different local patterns into one homogeneous set. The similarity betweegn
andseqs in Table 4 is 1-0.278=72%. Thus, they will be grouped into one homogeneous seti2%, but

separated if > 72%.

Definition 5 (Vote) The vote of a homogeneous sel S, is defined as the size of the homegenous set.
Vote(HS,d) = ||[HS(9)].

Definition 6 (High Vote Homogenous Set)Given the desired similarity leveél and threshold®, a high
vote homogenous seat a homogeneous sétS such thawote(H S, §) > O.

Definition 7 (Exceptional Homogenous Set)Given the desired similarity levéland threshold?, an ex-
ceptional homogenous set a homogeneous s&tS such thawote(H S, §) < Q.

For example, a user might look for high vote homogeneous sets that hold true in at least 80% of the local
databases with 90% similarity. An exceptional homogenous set of interest might be local patterns that are
true in at most 10% of the local databases with 60% similarity.

Once the highly similar patterns have been identified as a homogeneous set, we have to consider what
information will be of interest to the users as well as how to best present it. Given highly similar sequences,
the longest common subsequence can effectively provide the shared pattern among the sequences in the
group. That is the common pattern among all the expecting parent’s buying pattern can be detected by
constructing the longest common subsequence. This shared pattern can provide a reasonable representation
of the high vote homogenous set. Thus, we have defined high vote sequential patterns as the longest common

subsequence of all sequences in the high vote homogeneous set.

Definition 8 (High Vote Sequential Pattern) Given a high vote homogenous set, ltiigh vote sequential
pattern is the longest common subsequence of all local patterns in the set.

However, in most cases just presenting the high vote patterns will not be sufficient for the user. Users at
the headquarter would be interested to know what the different variations are among the branches. Some
variations might give hints on how to improve sales. For example, if we found that in warmer climate ex-
pecting parents buy the first walking shoes faster than those in colder climates, branches can introduce new
shoes earlier in the warmer climates. The variations in sequences are most accessible to people when given
in an aligned form as in Table 3. Table 3 depicts how a typical high vote pattern information should be pre-
sented. The longest common subsequence on top along with the percentage of branches in the homogeneous
set, will give the user a quick summary of the homogenous set. Then, the actual sequences aligned and the
branch identification gives the user access to more detailed information that could potentially be useful.

Unlike the high vote patterns, sequences grouped into one exceptional homogeneous set should not be
combined into one longest common subsequence. By the nature of the problem formulation, users will
look for exceptional patterns with a lowércompared to the high vote patterns. When the patterns in a
homogenous set are not highly similar, the longest common subsequence will be of little use. Rather, each
of the local patterns in the exceptional homogenous set is an exceptional pattern. Nonetheless, the results

will be more accessible to people when organized by homogenous sets.

Definition 9 (Exceptional Sequential Pattern) Each local pattern in an exceptional homogenous set is an
exceptional sequential pattern Exceptional sequential patterns are made more accessible to users by
organizing them by homogenous sets.

Given the desired similarity level, the homogeneous set of local patterns with rafigan be easily
identified by clustering the local patterns i using the complete linkage algorithm. The merging stops
when the link is greater thafi Both high vote homogeneous set and exceptional homogeneous set can
be easily identified by the same process. With the appropriate local pattern mining, detecting the global
sequential patterns from the homogeneous sets is simple. Hence, in the remainder of this paper, we focus

on efficiently detecting local approximate sequential patterns.

3 Distance Measure for Sequences of Sets

Both the local sequential pattern mining and the post-processing for global patterns rely on the distance
function for sequences. The functieim(seq;, seq;) = 1 — dist(seq;, seq;) should reasonably reflect the
similarity between the given sequences. In this section, we define a reliable distance measure for sequences

of sets.

In general, thaveighted edit distancis often used as a distance measure for variable length sequences
[6]. Also referred to as the Levenstein distance, the weighted edit distance is defined as the minimum cost of
edit operations (i.e., insertions, deletions, and replacements) required to change one sequence to the other.
An insertion operation ogeq; to change it towardseqgs is equivalent to a deletion operation &4y, towards
seqi. Thus, an insertion operation and a deletion operation have the samé&&d3f'L() is used to denote
an insertion or deletion operation aft¥? PL() is used to denote a replacement operation. Often, for two
setsX, Y the following inequality is assumeBEPL(X,Y) < INDEL(X) + INDEL(Y). Given two
sequenceseq; = (X1 --- X,) andseqy = (Y7 ---Y,,), the weighted edit distance betweefy; andseqs

can be computed by dynamic programming using the following recurrence relation.

D(0,0)=0
D(i,0)=D(i — 1,0) + INDEL(X;) for (1 < i < n)
D(0,5)=D(0,j — 1) + INDEL(Y;) for (1 <j <m)

(1)

D(i —1,7) + INDEL(X;)
D(i,j) =min D(i,j — 1)+ INDEL(Y;) for(1<i<mn)and(l<j<m)
D(i—1,j — 1)+ REPL(X,,Y;)

To make the edit distance comparable between sequences of variable lengths, we normalize the results by
dividing the weighted edit distance by the length of the longer sequence in the pair, and calbitrttedized
edit distance That is,

D(seq;,seq;) (2)

max{|[seq;|l||seq; I}

dist(seq;, seq;) =
3.1 Cost of Edit Operations for Sets: Normalized Set Difference

To extend the weighted edit distance to sequences of sets, we need to define the cost of edit operations
(i.e., INDEL() and REPL() in Equation 1) for sets. The similarity of the two sets can be measured by how
many elements are shared or not. To do so, here we adopiotinealized set differencas the cost of

replacement of sets as follows. Given two séfsandY’,

_ IX-Y)ur =X _ XY I=20X0Y] _ 4 _ 2 XY _

REPLX.Y) = g = syl = L~ Ie=vev—xpzrxnvy = Ds(X0Y) 3)
R Lxav])

Dy(X,Y) =1~ 1307 = | — =y v —xIxav]

This measure is a metric and has a nice property that,REPL() < 1. Following equation 3, the cost of

an insertion/deletion is given in Equation 4 whefds a set.

INDEL(X) = REPL(X,()) = REPL((), X) = 1, @)

10

Table 4. Examples of normalized edit distance between sequences
seqo | ((1) (LM) () || seqsa |((A) (B) (DE))| segs |((AY) (BD) (B) (EY))
seqio |((V) (PW) (E))|| seq> [{(A) (BCX) (D)) seqz2 | ((A) () (BCX) (D))
REPL()| 1 1 1 ||REPL()| O % % REPL() % 1 % 1
dist() 3/3=1 dist() [(3+3)/3=0.278]] dist() (2+2)/4=0.708

Clearly, the normalized set differendBE P L(), is equivalent to the Sorensen coefficieDg, as shown
in Equation 3. The Sorensen coefficient is an index similar to the more commonly used Jaccard coefficient,
Dy, also defined in Equation 3 [12]. The difference is tidf' PL() gives more weight to the common
elements because in alignment what are shared by two sets is most important.

Note thatdist() inherits the properties of of thREPL(), i.e. dist() satisfies the metric properties and is
between 0 and 1. Table 4 illustrates some examples of the distance between sequences and itemsets. Given
an itemset A), the normalized set differend@EPL((A), (A)) = 0. Given itemsets that share no items
REPL((LM), (PW)) = 1. Given sets that share a certain number of iteRBPL() is a fraction between
0 and 1. Similarly, when two sequences do not share any items in commow; &.g:¢q9, seqip) = 1 since
each itemset distances is 1. The next example shows two sequences that share some items;\&hen
seqq are optimally aligned, three item&, B, D, can be lined up resulting ithist(seq4, seqga) = 0.278. In
comparison in the third example, wheey, andsegg are optimally aligned, only two item#\(andB) are
shared. There are many items that are not shared, which resdits {Reqg, seqa) = 0.708. Clearly, seqy

is more similar tosege thansegs. That is,dist(seqq, seqa) < dist(seqs, seqz).

4 Local Pattern Mining: ApproxMAP

In this section, we detail an efficient metho#lpproxMAP (for APPROXmate Multiple Alignment
Pattern mining), for multiple alignment sequential pattern mining. We will first demonstrate the method
through an example and then discuss the details of each step in later sections.

Table 5 is a sequence databd3e Although the data is lexically sorted it is difficult to gather much
information from the raw data even in this tiny example. The ability to view Table 5 is immensely improved
by using the alignment model — grouping similar sequences then lining them up to construct the consensus
patterns as in Tables 6 and 7. Note that the patt§iigB)(BC)(DE)) and((I3)(K)(LM)) do not match any
sequence exactly.

Given the input data shown in Table B/ (= 10 sequences)ApproxMAP (1) calculates theV x N

11

Table 5. Sequence databa%elexically sorted

ID Sequences
seqa | ((A) (B) (DE))
seqz | ((A) (BCX) (D))
seqs | (AE) (B) (BC) (D))
seqr | (AJ) (P) K) (™)
segs | (AX) (B) (BC) (2) (AE)
seqs | ((AY) (BD) (B) (EY))
seqr | ((BC) (DE))
seqo | ((I) (LM))
segs | ((ID) (KQ) (M)
seqo | (V) (PW) ()
Table 6. Cluster 1(§ = 40% A w > 3)
seqs @ 0 (BCX) 0 D))
seqs {(AB) E) (BC) 0 (D))
seqa @) 0 ®) 0 (DE))
seq 0 0 (BC) 0 (DE))
seqs (A ® (BC) @ (AE))
seqs ((AY) (BD) ®) 0 EY))
seqio (% 0 0 (PW) E)
Weighted Seq |(A:5, E:1,V:1, X:1,Y:1):6|(B:3, D:1):3|(B:6, C:4,X:1):6 | (P:1,W:1,2:1):2|(A:1,D:4, E:5,Y:1):7 |7
Consensus Pattern ((A) (B) (BC) (DE))
Table 7. Cluster 2(6 = 40% A w > 2)
seqs {9) 0 Q) D)
seqr (A ®) ® (D)
seqs (0 0 0 (™))
Weighted SequencéA:1,1:2,J:2):3|(P:1):1|(K:2,Q:1):2|(L:2,M:3):3|3
Consensus Pattern (1) (K) (LM))

sequence to sequence proximity matrix from the data, (2) partitions the data into two clistets ((3)
aligns the sequences in each cluster (Tables 6 and 7) — the alignment compresses all the sequences in each
cluster into one weighted sequence per cluster, and (4) summarizes the weighted sequences into consensus

patterns (Tables 6 and 7).

4.1 Clustering Sequences: Organize into Similarity Groups

The general objective of clustering methods that work on a distance function is to minimize the intra-
cluster distances and maximize the inter-cluster distance [7]. By clustering the sequences in the local
database); using the pairwise score between sequences (Equation 2), we can identify the similarity groups
in D;.

Density based methods, also called mode seeking methods, generate a single partition of the data in an
attempt to recover the natural groups in the data. Clusters are identified by searching for regions of high

density, called modes, in the data space. Then these clusters are grown to the valleys of the density function

12

[7]. These valleys can be considered as natural boundaries that separate the modes of the distribution [4]. In

short, density based clustering methods have many benefits for clustering sequences:

e The basic paradigm of clustering around dense points fits the sequential data best because the goal is

to form groups of arbitrary shape and size around similar sequences [3, 14].

¢ Density based: nearest neighbor clustering algorithms will automatically estimate the appropriate

number of clusters from the data.

e Users can cluster at different resolutions by adjusting

We found that in general the density badgedearest neighbor clustering methods worked well and was
efficient for sequential pattern mining. In fact, in recent years many variations of density based clustering
methods have been developed [3, 14]. Many kgearest neighbor or the Parzen window for the local
density estimate [14]. Recently, others have also used the shared neighbor list [3] as a measure of density.
Other clustering methods that can find clusters of arbitrary shape and size may work as well or better
depending on the data. Any clustering method that works well for the data can be uggaraxMAP. In
the absence of a better choice based on actual data, a reasonably good clustering algorithm that finds clusters
of arbitrary shape and size will suffice. For the purposes of demonsti@bpgpxMAP, the choice of a
density based clustering method was based on its overall good performance and simplicity. The following

sections detail the clustering method usedpproxMAP.

4.1.1 Uniform Kernel Density Basedk Nearest Neighbor Clustering

ApproxMAP uses uniform kernel density baskdearest neighbor clustering. In this algorithm, the user-
specified parametér specifies not only the local region to use for the density estimate, but also the number
of nearest neighbors that the algorithm will search for linkage. We adopt an algorithm from [15] based on

[19] as given in Algorithm 1. The algorithm has complexi¥yk - ||D||).

Algorithm 1 (Uniform kernel density based k-NN clustering)

Input: a set of sequencéd? = {seq; }, number of neighbor sequendes

Output: a set of cluster§C)}, where each cluster is a set of sequences;

Method: 1. Initialize every sequence as a clusterFor each sequenceeg; in clusterC.,,, set

Density(Cseq,) = Density(seq;, k).

13

2. Merge nearest neighbors based on the density of sequenceSor each sequenceeg;, let
segi,, - - ., seq;, be the nearest neighbor etg;, wheren = ny(seq;) as defined in Equation
5. For eachseq; € {seq;,,...,seq;,}, merge clusteiC,., containingseq; with a cluster
Cseq; CONtaiNingseq;, if Density(seq;, k) < Density(seq;, k) and there exists n@eq;- having
dist(seq;, seq}) < dist(seq;, seq;) and Density(seq;, k) < Density(seq}, k). Set the density
of the new cluster teax{ Density(Csey,), Density(Cseq,) }-

3. Merge based on the density of clusters - merge local maxima regiong-or all sequences
seq; such thatseq; has no nearest neighbor with density greater than thatgf, but has some
nearest neighbogeg;, with density equal to that akg;, merge the two clustelS;.,; andCseq,
containing each sequencelifensity(Cseq,) > Density(Cseg,).

Intuitively, a sequence isdensé if there are many sequences similar to it in the database. A sequence
is “spars¢’ or “isolated” if it is not similar to any others, such as an outlier. Formally, we measure the
density of a sequence by a quotient of the number of similar sequences (nearest neighbaga)nst
the space occupied by such similar sequengedn particular, for each sequeneeg; in a databasé®,
p(seq;) = I Since||D|| is constant across all sequences, for practical purposes it can be omitted.

Therefore, givenk, which specifies thé-nearest neighbor regio®pproxMAP defines the density
of a sequenceeg; in a databaseD as follows. Letdy,...,d; be thek smallest non-zero values of

dist(seq;, seq;) (defined in equation 2), wheeeq; # seq;, andseg; is a sequence i®. Then,

Density(seqi, k) = k(s (5)

disty (seq;)?

wheredist,(seq;) = max{di,...,d;} andny(seq;) = ||[{seq; € Dl|dist(seq;,seq;) < disty(seq;)}|.
nk(seq;) is the number of sequences including all ties in theearest neighbor space for sequeseg,
anddisty(seq;) is the size of thé-nearest neighbor region for sequenee;. ny(seg;) is not always equal
to k because of ties.

Theoretically, the algorithm is similar to the single linkage method. In fact, the normal single linkage
method is a degenerate case of the algorithm ith 1. The single linkage method builds a tree with each
point linking to its closest neighbor. In the density bagatkearest neighbor clustering, each point links to
its closest neighbor, but (1) only with neighbors with greater density than itself, and (2) onl\tupetrest
neighbors. Thus, the algorithm essentially builds a forest of single linkage trees (each tree representing a

natural cluster), with the proximity matrix defined as follows,
dist(seqi, seq;) If dist(seqi, seq;) < disti(seq;) N Density(seq;, k) < Density(seg;, k)
dist' (seqi, seq;) = MAX _DIST if dist(seq:, seq;) < distr(seq;) A Density(seq;, k) = Density(seq;, k) (6)

oo otherwise

14

wheredist(seq;, seq;) is defined in Equation 2Density(seq;, k) anddisty(seq;) are defined in Equation

5, and M AX_DIST = max{dist(seq;,seq;)} + 1 for all 4,j. Note that the proximity matrix is no
longer symmetric. Step 2 in Algorithm 1 builds the single linkage trees with all distances smaller than
MAX _DIST. Thenin Step 3, the single linkage trees connectedilbyX _DIST are linked if the density

of one tree is greater than the density of the other to merge any local maximal regions. The density of a tree
(cluster) is the maximum density over all sequence densities in the cluster. We use Algorithm 1 because it
is more efficient than implementing the single linkage based algorithm.

The uniform kernel density basédNN clustering has major improvements over the regular single link-
age method. First, the use bfnearest neighbors in defining the density reduces the instability due to ties
or outliers wherk > 1 [3]. In density base& nearest neighbor clustering, the linkage is based on the local
density estimate as well as the distance between points. That is, the linkage to the closest point is only made
when the neighbor is more dense than itself. This still gives the algorithm the flexibility in the shape of the
cluster as in single linkage methods, but reduces the instability due to outliers.

Second, use of the input parameteais the local influential region provides a natural cut of the linkages
made. An unsolved problem in the single linkage method is how to cut the one large linkage tree into
clusters. In this density based method, by linking only up tdithearest neighbors, the data is automatically
separated at the valleys of the density estimate into several linkage trees.

Obviously, different: values will result in different clusters. However, this does not imply that the natural
boundaries in the data change withRather, different values @&f determine the resolution when locating
the valleys. That is, ak becomes larger, more smoothing occurs in the density estimates over a larger local
area in the algorithm. This results in lower resolution of the data. It is similar to blurring a digital image
where the boundaries are smoothed. Practically speaking, the final effect is that some of the local valleys are
not considered as boundaries anymore. Therefore, as the valugets larger, similar clusters are merged
together resulting in fewer number of clusters. The benefit of using a ¢mallue is that the algorithm
can detect more patterns. The tradeoff is that it may break up clusters representing strong patterns (patterns
that occur in many sequences) to generate multiple similar patterns [3]. As shown in the performance study

(section 5.3.1), in many applications, a value:ah the range fron3 to 9 works well.

15

Table 8. Alignment of segs and seqs
seqa ™ 0 (BCX) (D))
seqs ((AE) (B) (BC) (D))
Edit distance] REPL((A), (AE)) | INDEL((B)) | REPL((BCX),(BC)) | REPL((D), (D))

4.2 Multiple Alignment: Compress into Weighted Sequences

Once sequences are clustered, sequences within a cluster are similar to each other. Now, the problem
becomes how to summarize the general pattern in each cluster and discover the trend. In this section, we
describe how to compress each cluster into one weighted sequence through multiple alignment.

The global alignment of sequences is obtained by inserting empty itemset§)Jiietp sequences such
that all the sequences have the same number of itemsets. The empty itemsets can be inserted into the front
or the end of the sequences, or between any two consecutive itemsets [6].

As shown in Table 8, finding the optimal alignment between two sequences is mathematically equivalent
to the edit distance problem. The edit distance between two sequefigeand seq, can be calculated by
comparing itemsets in the aligned sequences one by oreyfindseg, haveX andY as theiri*" aligned
itemsets respectively, whef& # ()) and(Y # ()), thenaREPL(X,Y') operation is required. Otherwise,

(i.e., seq, andseq, have X and() as theiri’* aligned itemsets respectively) & DEL(X) operation is
needed. The optimal alignment is the one in which the edit distance between the two sequences is minimized.
Clearly, the optimal alignment between two sequences can be calculated by dynamic programming using
the recurrence relation given in Equation 1.

Generally, for a clustet’ with n sequenceseqy, . . ., seqy, finding theoptimal global multiple alignment
that minimizesy~7'_, 377" dist(seq;, seq;) is an NP-hard problem [6], and thus is impractical for mining
large sequence databases with many sequences. Hence in practice, people have approximated the solution
by aligning two sequences first and then incrementally adding a sequence to the current alignmemt of
sequences until all sequences have been aligned. At each iteration, the goal is to find the best alignment
of the added sequence to the existing alignment ef1 sequences. Consequently, the solution might not
be optimal because ongesequences have been aligned, this alignment is permanent even if the optimal
alignment ofp + ¢ sequences requires a different alignment ofitlsequences. The various methods differ
in the order in which the sequences are added to the alignment. When the ordering is fair, the results are

reasonably good [6].

16

seqz |((A) 0 (BCX) (D))
seqs |((AE) (B) (BC) (D))
wseqi|((A:2, E:1):2 (B:1):1 (B:2,C:2,X:1):2 (D:2):2))|2

Figure 2. seq» andsegs are aligned resulting inseqi 1

4.2.1 Representation of the Alignment : Weighted Sequence

To align the sequences incrementally, the alignment results need to be stored effectively. Ideally the result
should be in a form such that the next sequence can be easily aligned to the current alignment. This will
allow us to build a summary of the alignment step by step until all sequences in the cluster have been aligned.
Furthermore, various parts of a general pattern may be shared with different strengths, i.e., some items are
shared by more sequences and some by less sequences. The result should reflect the strengths of items in
the pattern.

Here, we propose a new representation for aligned sequences. A weighted sequence, denoted as

wseq = (WXy 1vy,...,WX;:v) : n, carries the following information:

1. the current alignment hassequences, andis called theglobal weightof the weighted sequence;

2. in the current alignment; sequences have a non-empty itemset aligned in*thposition. These

itemset information is summarized into the weighted iteni&eX;, where(1 < i <1);

3. a weighted itemset in the alignment is in the form\BfX; = (z;, : w;,,..., 2, : w;j,), which

means, in the current alignment, there arg sequences that have itery, in theit" position of the

alignment, wherg¢l < </[)and(1 <k <m).

We illustrate how to use weighted sequences to do multiple alignment using the example given in Table 6.
Cluster 1 has seven sequences. The density descending order of these sequengejs-seqs-seqi-
seqs-seqg-seqio. Therefore, the sequences are aligned as follows. First, sequegeesdseqs are aligned

as shown in Figure 2. Here, we usevaighted sequenaeseq; to summarize and compress the information
about the alignment. Since the first itemsetsaf, andseqs, (A) and(AE), are aligned, the first itemset in

the weighted sequeneeseq; is (A:2,E:1):2. It means that the two sequences are aligned in this position,
andA andE appear twice and once respectively. The second itemsetdt , (B:1):1, means there is only

one sequence with an itemset aligned in this position, andBeppears once.

17

wseq: | (A2, E:1):2 (B:1):1 (B:2,C:2,X:1):2 (D:2):2)) 2
seqs | ((A) 0 (B) (DE))
wseqy | ((A3,E:1):3 (B:1):1 (B:3,C:2,X1):3 (D:3BE1)I) | 3

Figure 3. Weighted sequenceseq; andseqy are aligned

wseqs | ((A:3,E:1):3 (B:1):1 (B:3,C:2,X:1):3 (D:3,E:1):3)) 3
seqr |0 0 (BC) (DE))

wseqs | ((A:3,E:1):3 (B:1):1 (B:4,C:3,X:1):4 (D:4,E:2):4)) 4
seqs | ((AX) (B) (BC) (2) (AE))

wseqq | (A:4,E:1,X:1):4 (B:2):2 (B:5,C:4,X:1):5 (Z:1):1 (A:1,D:4,E:3):5)) 5
segs | ((AY) (BD) (B) 0 (EY))

wseqs | (A:5,E:1,X:1,Y:1):5 (B:3,D:1):3 (B:6,C:4,X:1):6 (Z:1):1 (A:1,D:4,E:4,Y:1):6)) |6
seqo |((V) 0 0 (PW) ()

wseqs | (A:5,E:1,V:1,X:1,Y:1):6 (B:3,D:1):3 (B:6,C:4,X:1):6 (P:1, W:1, Z:1):2 (A:1,D:4,E:5,Y:1):7)) |7

Figure 4. The alignment of remaining sequences in cluster 1

4.2.2 Sequence to Weighted Sequence Alignment

After this first step, we need to iteratively align other sequences with the current weighted sequence. How-
ever, the weighted sequence does not explicitly keep information about the individual itemsets in the aligned
sequences. Instead, this information is summarized into the various weights in the weighted sequence. These
weights need to be taken into account when aligning a sequence to a weighted sequence. Thus, instead of

usingREPL() directly, we adopt aveighted replace costs follows.

Let WX = (z1 : wy,...,zm @ wy) : v be aweighted itemset in a weighted sequence, while-
(y1---y) is an itemset in a sequence in the databasen et the global weight of the weighted sequence.
The replace cost is defined as

m
Qi w230y wi

— Rlvin—v ’_ 7
REPLw(WX,Y) =y whereR ST v (7)

Accordingly, we have
INDEL(WX) = REPLw(WX,()) =1andINDEL(Y) = REPLw (Y, () = 1 (8)

We firstillustrate this in our running example. The weighted sequeneg, and the third sequenceq,
are aligned as shown in Figure 3. Similarly, the remaining sequences in cluster 1 can be aligned as shown
in Figure 4.

Now let us examine the example to better understand the notations and ideas. Table 9 depicts the situation
after the first four sequencese(,, seqs, seqa, seqi) in cluster 1 have been aligned into weighted sequence

wsegqs, and the algorithm is computing the distance of aligning the first itemsee@f s51 =(AX), to

18

Table 9. An example ofREP L ()

sequence IDitemset ID itemset distance
seqs 851 (AX) R = 7(44{513‘2)*_3)2*3 = % = %
wseqs wsz1 | (ABE1):3-n=4] REPLw = [(£)*3+1]/4= 3t = &
seqa S21 (A) REPL((A), (AX)) = = '
seqs 531 (AE) REPL((AE), (AX)) = 3 |Avg = {5 = 22
seqa 541 (A) REPL((A), (AX)) = 3
seq. | INDEL 0 INDEL((AX)) = 1

Actual avg distance over the four sequenceg = 2=

the first position {s31) in the current alignmentwss;=(A:3,E:1):3 because there are thréés and one
E aligned into the first position, and there are three non-null items in this position. Now, using Equation
7, R =% = 3% andREPLy = % = 5 as shown in the first two lines of the table. The next four
lines calculate the distance of each individual itemset aligned in the first positiogegf with s5; =(AX).
The actual average over all non-null itemset@%sand the actual average over all itemsetg%%s In this
example, R’ and RE'P Ly, approximate the actual distances very well.

The rationale oREPLyy () is as follows. After aligning a sequence, its alignment information is incor-

porated into the weighted sequence. There are two cases.

e A sequence may have a non-empty itemset aligned in this positiem, R’ is the estimated average
replacement cost for all sequences that have a non-empty itemset aligned in this position. There are

in total v such sequences. In Table®, = 35 which well approximates the actual averagetdf

e A sequence may have an empty itemset aligned in this itefisst, we need ahN D EL() operation
(whose cost id) to change the sequence to the one currently being aligned. There are mtota)

such sequences.

Equation 7 estimates the average of the cost in the two cases. Used in conjuncti&iiby, (W X, Y),
weighted sequences are an effective representation afdligned sequences and allow for efficient multiple
alignment.

The distance measufeE P Ly (W X, Y) has the same useful propertiesREPL(X,Y)— it is a met-
ric and ranges from 0 to 1. Now we simply use the recurrence relation given in Equation 1 replacing
REPL(X,Y)with REPLy (WX,Y) to align all sequences in the cluster.

The result of the multiple alignment is a weighted sequence. A weighted sequence records the information

of the alignment. The alignment result for all sequences in cluster 1 and 2 are summarized in the weighted

19

sequences shown in Tables 6 and 7. Once a weighted sequence is derived, the sequences in the cluster will
not be visited anymore in the remainder of the mining. Hence, after the alignment, the individual sequential

data can be discarded and only the weighted sequences need to be stored for each cluster.

4.2.3 Order of the Alignment

In incremental multiple alignment, the ordering of the alignment should be considered. In a cluster, in
comparison to other sequences, there may be some sequences that are more similar to many other sequences.
In other words, such sequences may have many close neighbors with high similarity. These sequences are
most likely to be closer to the underlying patterns than the other sequences. Hence, It is more likely to get
an alignment close to the optimal one, if we start the alignment with ssebd'sequences.

Intuitively, thedensitydefined in Equation 5 measures the similarity between a sequence and its nearest
neighbors. Thus, a sequence with high density means that it has some neighbors very similar to it, and it is
a good candidate for ested sequence in the alignment. Based on the above observatidpgproxMAP,

we use the following heuristic to apply multiple alignment to sequences in a cluster.

Heuristic 1 If sequences in a cluste&r are aligned in the density-descending order, the alignment result
tends to be near optimal.

The ordering works well because in a cluster, the densest sequence is the one that has the most similar
sequences - in essence the sequence with the least noise. The alignment starts with this point, and then
incrementally aligns the most similar sequence to the least similar. In doing so, the weighted sequence
forms a center of mass around the underlying pattern to which sequences with more noise can easily attach
itself. ConsequentlyApproxMAP is very robust to the massive outliers in real data because it simply
ignores those that cannot be aligned well with the other sequences in the cluster. The experimental results
show that the sequences are aligned fairly well with this ordering.

But most importantly, although aligning the sequences in different order may result in slightly different
weighted sequences, it does not change the underlying pattern in the cluster. To illustrate the effect, Table
10 shows the alignment result of cluster 1 using a random order(reverseje); seqs-seqs-seqa-seqs-
seqa-seqy. Interestingly, the two alignment results are quite similar, only some items shift positions slightly.
Compared to Table 6, the first itemset and second itemsetjin, (V) and(PW), and the second itemset

in seqq, (B), each shifted one position. This causes the item weights to be reduced slightly. Yet the con-

20

Table 10. Aligning sequences in cluster 1 using a random order

seqio (0) (PW) 0 (E))
seqe ((AY) (BD) (B) 0 (EY))
seqs ((AX) (B) (BC) 2 (AE))
s€qa (™) (B) 0 0 (DE))
seqs ((AE) (B) (BC) 0 (D))
seqa ((A) 0 (BCX) 0 (D))
seqi (0 0 (BC) 0 (DE))
Weighted Seq|(A:5, E:1,X:1,Y:1):5((B:4, D:1, V:1):5|(B:5, C:4,P:1,W:1,X:1):6|(Z:1):1|(A:1,D:4, E:5,Y:1):7|7
ConSeq{ > 3)) ®) (BC) (DE))

sensus patterns from both ordef@)(B)(BC)(DE)), are identical. As verified by our extensive empirical

evaluation, the alignment order has little effect on the underlying patterns.
4.3 Summarize into Consensus Patterns

Intuitively, a pattern can be generated by picking up parts of a weighted sequence shared by most se-

guences in the cluster. For a weighted sequeNnse= ((zi1 : wit, ..., Timy @ Wimy) V1, .-, (T 2 Wi, - v vy Tim, -
wim,) : 1) : n, thestrengthof item z;; : w;; in theit® itemset is defined aféni -100%. Clearly, an item with
a larger strength value indicates that the item is shared by more sequences in the cluster.

Motivated by the above observation, a user can speafyeagth threshold0 < min_strength < 1). A
consensus patterR can be extracted from a weighted sequence by removing items in the sequence whose
strength values are lower than the threshold.

In our running examplenin_strength = 40%. Thus, the consensus pattern in cluster 1 selected all items
with weight greater than 3 sequencesX* 40% x 7 = 2.8) while the consensus pattern in cluster 2 selected

all items with weight greater than 1 sequeneeX 40% * 3 = 1.2).
5 Empirical Evaluations

It is important to understand the approximating behavioApbroxMAP. The accuracy of the approxi-
mation can be evaluated in terms of how well it finds the real underlying patterns in the data and whether or
not it generates any spurious patterns. However, it is difficult to calculate analytically what patterns will be
generated because of the complexity of the algorithm.

As an alternative, we have developed a general evaluation method that can objectively evaluate the quality
of the results produced by any sequential pattern mining algorithm. Using this method, one can understand

the behavior of an algorithm empirically by running extensive systematic experiments on synthetic data with

21

Table 11. Parameters and the default configuration for the data generator.

Notation | Original Notation | Meaning Default value

I 1]| N # of items 1000

[IA]l N # of potentially frequent itemsets 5000
Neq ID|| # of data sequences 10000
Npat Ng # of base pattern sequences 100

Lseq Ic| Avg. # of itemsets per data sequence 20

Lpat 1Sl Avg. # of itemsets per base pattern 0.7 - Lseq
Tseq 17 Avg. # of items per itemset in the databage 2.5

Ipat [11]] Avg. # of items per itemset in base patterns 0.7 - Iseq

known base pattern [9].
5.1 Evaluation Method

Central to the evaluation method is a well designed synthetic dataset with known patterns. The well
known IBM data generator takes several parameters and outputs a sequence database as well as a set of base
patterns [2]. The sequences in the database are generated in two stephab@rsiatternsre generated
randomly according to the user’s specification. Then, these base patterns are corrupted (drop random items)
and merged to generate the sequences in the database. Thus, base patterns are the underlying template
behind the database. By matching the results of the sequential pattern mining methods back to these base
patterns, we are able to determine how much of the base patterns have been found as well as how much
spurious patterns have been generated. We summarize the parameters of the data generator and the default
configuration in Table 11. The default configuration was used in the experiments unless otherwise specified.

In [9], we present a comprehensive set of evaluation criteria to use in conjunction with the IBM data
generator to measure how well the results match the underlying base patterns. Weatdneitemsas
those items in the result pattern that can be mapped back to the base pattern. Tddratieous items
are the remaining items in the results. The mix of pattern items and extraneous items in the result patterns
determine the recoverability and precision of the results. Recoverability is a weighted measure that provides
a good estimation of how much of the items in the base patterns were detected. Precision, adopted from ROC
analysis, is a good measure of how many extraneous items are mixed in with the correct items in the result
patterns. Both recoverability and precision are measured at the item level. On the other hand, the numbers
of max patterns, spurious patterns, and redundant patterns along with the total number of patterns returned
give an overview of the result at the sequence level. The evaluation criteria are summarized in Table 12.

The details of each criteria can be found in [9] as well as the appendix. In summary, a good paradigm would

22

Table 12. Evaluation criteria

criteria| Meaning Level Unit

R Recoverability: the degree of the base patterns detected (See Appendix)item %

P | Precision: 1-degree of extraneous items in the result patterns (See Appeitelix) %
Npaz | # of base patterns found seq | # of patterng
Ngpur | # of spurious patternSNeztrar > Npatr) seq | # of patterng
Nyequn | # of redundant patterns seq | # of patterng
Niotal | Total # of result patterns returneg= Nyaz + Nopur + Nredun) seq | # of patterng

produce (1) high recoverability and precision, with (2) small number of spurious and redundant patterns,

and (3) a manageable number of result patterns.
5.2 Effectiveness oApproxMAP

In [10], we published a through comparison study of the support model and the alignment model for
sequential pattern mining. In this section, we summarize the important results on the effectiveness of
ApproxMAP under a variety of randomness and noise level.

Figure 5 demonstrates how 7 of the most frequent 10 base patterns were uncovered from 1000 sequences
using ApproxMAP. Clearly, each of the 8 consensus patterns match a base pattern well. In general, the
consensus patterns recover major parts of the base patterns with high expected frequency in the database.
The recoverability is quite good a1.16%.

Precision is excellent & =1 — % = 97.17%. Clearly all the consensus patterns are highly shared by
sequences in the database. In all the consensus patterns, there is only three items (8§& R@rend58
in the first part ofPatConSeqg) that do not appear on the corresponding position in the base pattern. These
items are not random items injected by the algorithm, but rather repeated items, which clearly come from
the base patterBase P;. These items are still classified as extraneous items because the evaluation method
uses the most conservative definition for pattern items.

There were no spurious patterns and only one redundant pattern. It is interesting to note that a base
pattern may be recovered by multiple consensus patterns. For exakppiexMAP forms two clusters
whose consensus patterns approximate base paddiesral,. This is becaus@aseP; is long (the actual
length of the base pattern28 items and the expected length of the pattern in a data sequen®@eésns)
and has a high expected frequent§.(%). Therefore, many data sequences in the database are generated
usingBase P, as a template. In the IBM data generator, sequences are generated by removing various parts

of the base pattern and combining them with items from other base patterns. Thus, two sequences using the

23

E(Fg) | E(Lg) | Len| 10 Base Patterns

BaseP:1 | 21% | 66% | 14 |<(15 16 17 66) (15) (58 99) (2 74) (31 76) (66) (62) (93) >

BaseP, [16.1%]| 83% | 22 |<(22 50 66)(16)(29 99)(94)(45 67)(12 28 36)(50)(96)(51)(66)(2 22 58)(63 74 99)>
BasePs [14.1%| 82% | 14 |<(22) (22) (58) (2 16 24 63) (24 65 93) (6) (11 15 74) >

BasePs [13.1%]| 90% | 15 |<(31 76) (58 66) (16 22 30) (16) (50 62 66) (2 16 24 63) >

BasePs [12.3%]| 81% | 14 |<(43) (2 28 73) (96) (95) (2 74) (5) (2) (24 63) (20) (93) >

BasePs [12.1%| 77% | 9 |<(63) (16) (2 22) (24) (22 50 66) (50) >

BaseP; |5.4% | 60% | 13 |<(70) (58 66) (22) (74) (22 41) (2 74) (31 76) (2 74) >

BasePs |3.8% | 78% | 7 |<(88) (24 58 78) (22) (58) (96) >

BasePy |1.4% | 91% | 17 |< (20 22 23 96) (50) (51 63) (58) (16) (2 22) (50) (23 26 36) (10 74) >
BasePi1o | 0.8% | 66% | 17 |<(16) (2 23 74 88) (24 63) (20 96) (91) (40 62) (15) (40) (29 40 99) >

IBM Synthetic Data Generator

Local Database D;= 1000 sequences Evaluation
Recoverability: 91.16%
ApproxMAP L Precision: 97.17%
(=1-3/106)
Len Local Patterns : Consensus Sequences Extraneous ltems: 3/106

ConSeq:| 13 |< (15 16 17 66) (15) (58 99) (2 74) (31 76) (66) (62) >
ConSeq,| 19 |< (22 50 66) (16) (29 99) (94) (45 67) (12 28 36) (50) (96) (51) (66) (2 22 58) >
ConSeqs| 15 |< (22 50 66) (16) (29 99) (94) (45 67) (12 28 36) (50) (96) (51) > 7 max patterns
ConSeqs| 11 |<(22) (22) (58) (2 16 24 63) (24 65 93) (6) > 1 redundant pattern
ConSeqs| 11 |< (31 76) (58 66) (16 22 30) (16) (50 62 66) > 0 spurious patterns
ConSeqs| 13 [< (43) (2 28 73) (96) (95) (2 74) (5) (2) (24 63) (20) > 8 consensus patterns
ConSeq;| 8 |<(63) (16) (2 22) (24) (22 50 66) >
ConSegs| 16 |< (70) (58) (22 58 66) (22 58) (74) (22 41) (2 74) (31 76) (2 74) >

Figure 5. Effectiveness oApproxMAP

same long base pattern as the template are not necessarily similar to each other. As a result, the sequences
generated from a long base pattern can be partitioned into multiple clustégspogxMAP. One cluster
with sequences that have almost all of #xeitems fromBase P, (PatConSeqs) and another cluster with
sequences that are shorté&laf ConSeqs). The one which shares less with the base pattei('onSeqs,
is classified as a redundant pattern in the evaluation method.

In summary, the evaluation results reveal thaproxMAP returns a succinct yet accurate summary of
the base patterns with few redundant patterns and no spurious patterns. Further experiments demonstrate
thatApproxMAP is also robust to both noise and outliers in the data [10].

In comparison, in the absence of noise in the data the support model can find the underlying patterns in
the data. However, the real patterns are buried under the huge number of spurious and redundant sequences.

In the presence of noise in the data, the recoverability degrades quickly in the support model [10].

24

Redundant Patterns —+— 100 |

Spurious Patterns --->¢---
90 | W

80

of patterns
(2]
o

70

40 g 40 + 4 L
20 + 1 20 b E 60 |-

Total Consensus Patterns —+— Recoverability R —+—

L) _ Max Patterns - 4 0k) . - - P | Precision P ——

50 !
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

k : for KNN clustering k : for KNN clustering k : for kNN clustering

(@) Niotar & Npaz WL K (0) Nyedun & Nepur WL K (C)R& Pw.rt. k

of patterns
[o2]
o
Evaluation Criteria(%)

Figure 6. Effects ofk
5.3 Parameters inApproxMAP

5.3.1 kin k-Nearest Neighbor Clustering

Here, we study the influence and sensitivity of the user input pararhetfe fix other settings and vary

the value oft from 3 to 10, wherek is the nearest neighbor parameter in the clustering step. The results
are shown in Figure 6. There were no extraneous items (i.e. Precision=100%) or spurious patterns. As
expected, a larger value &f produces less number of clusters, which leads to less humber of patterns.
Hence, wherk increases in Figure 6(a), the total number of consensus patterns decreases. However most
of the reduction in the consensus patterns are redundant pattefns=fér.9 as seen in Figure 6(b). That

is the number of max patterns are fairly stable foe 3..9 at around 75 patterns (Figure 6(a)). Thus, the
reduction in the total number of consensus patterns returned does not have much effect on recoverability
(Figure 6(c)). Wherk is too large thoughk = 10), there is a noticeable reduction in the number of max
patterns from 69 to 61 (Figure 6(a)). This causes loss of some weak base patterns and thus the recoverability
decreases somewhat as shown in Figure 6(c). Figure 6(c) demonstrates that there is a widekrdmage of

give comparable results. In this experiment, the recoverability is sustained with no change in precision for
arange ofc = 3..9. In short,ApproxMARP is fairly robust tok. This is a typical property of density based

clustering algorithms.

5.3.2 The Strength Cutoff Pointmin_strength

In ApproxMAP, the strength cutoff pointin_strength is used to filter out noise from weighted sequences.
Here, we study the strength cutoff point to determine its properties empirically. We ran several experiments

on different databases. The data was generated with the same parameters given in Table 11 dxgept for

25

100 F L e

Evaluation Criteria (%)

Evaluation Criteria (%)
Evaluation Criteria (%)

10 F Recoverability R —— i 10 Recoverability R —— | 10 | Recoverability R ——
Precision P --->¢--- Precision P --->¢--- Precision P --->¢---
0 PRttt R R . 0 PRIttt R S S 0 PRIttt R S S
0 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Theta : Sthrength threshold (%) Theta : Sthrength threshold (%) Theta : Sthrength threshold (%)
(@) Lyeq = 10 (0) Lgeq = 30 () Lieq = 50

Figure 7. Effects ofmin_strength

L., was varied from 10 to 50. We then studied the change in recoverability and precision agrength
is changed for each database. Selected results are given in Figure 7. Without a doubt, the general trend is
the same in all databases.

In all databases, asin_strength is decreased fro0%, recoverability increases quickly until it levels
off at & = 50%. Precision stays high at close to 100% untiln_strength becomes quite small. Clearly,
whenf = 50%, ApproxMAP is able to recover most of the items from the base pattern without picking up
any extraneous items. That means that items with strength greatei(t¥taare all pattern items. Thus, as
a conservative estimate, the default valuerfan_strength is set at 50%.

On the other side, whemin_strength is too low precision starts to drop. Furthermore, in conjunc-
tion with the drop in precision, there is a point at which recoverability drops again. This is because,
min_strength is too low the noise is not properly filtered out. As a result too many extraneous items
are picked up. This in turn has two effects. By definition, precision is decreased. Even more damaging, the
consensus patterns with more than half extraneous items now become spurious patterns and do not count
toward recoverability. This results in the drop in recoverability. In the databaselwith= 10 this occur at
6 < 10%. WhenL,., > 10, this occurs whefl < 5%. The drop in precision starts to occur wher: 30%
for the database witlh,., = 10. In the databases of longer sequences, the drop in precision starts near
6 = 20%. This indicates that items with strength greater than 30% are probably items in the base patterns.
Moreover, in all databases, whén< 10%, there is a steep drop in precision. This indicates, that many
extraneous items are picked up whert 10%. These results indicate that most of the items with strength
less thanl0% are extraneous items, because recoverability is close to 100%6nheld %.

In summaryApproxMAP is also robust to the strength cutoff point. This experiment indicateQ5at

50% is in fact a good range for the strength cutoff point for a wide range of databases.

26

Table 13. Results for different ordering

Order RecoverabilityNeatrar | Npatr | Neommon 1 |PreCISIONNspur | Nredun | Ntotai
Descending Density 92.17% 0 2245| 2107 [100.00% O 18 94
Ascending Density 91.78% 0 2207| 2107 |100.00% O 18 94

Random (ID) 92.37% 0 2240/ 2107 |100.00% O 18 94
Random (Reverse ID)) 92.35% 0 2230/ 2107 |100.00% O 18 94

Density Descending

Random (IDRandom (R-ID)

Figure 8. Comparison of pattern items found for different ordering

5.3.3 The Order in Multiple Alignment

Now, we study the sensitivity of the multiple alignment results on the order of sequences in the alignment.
We compare the mining results using the density-descending order, density-ascending order, and two random
orders (sequence-id ascending and descending order). As expected, although the exact alignment changes
slightly depending on the orders, it has very limited effect on the consensus patterns. The results show that
(Table 13), all four orders generated the exact same number of patterns that were very similar to each other.
The number of pattern items detected that were identical in all four orders, calyp.onr, Was 2107.
In addition, each order found an additional 100 to 138 pattern items. Most of these additional items were
found by more than one order. Therefore, the recoverability is basically identical at 92%.

While aligning patterns in density descending order tends to improve the alignment quality (the number of
pattern items foundy,.s, is highest for density descending order at 2245 while lowest for density ascend-
ing order at 2207)ApproxMAP itself is robust with respect to alignment orders. In fact, the two random
ordering tested gave comparable number of pattern items as the density descending order. Figure 8 gives a
detailed comparison of the pattern items detected by the two random orders and the density descending or-
der. Essentially, a random order detected about 9B8341(/2245 = 98% ~ 2187/2245) of the pattern items
detected by the density descending order plus a few more pattern items (rdQghly4 + 5 ~ 34 +9)

not detected by the density descending order.
5.4 Scalability

Finally, the default configuration of the synthetic data was altered to test the effects of the parameters of

the database. The details can be found in [9]. Limited by space, we briefly summarize the results.

27

100 ‘ s ‘ ‘ ‘ ‘ 21600
//P/"" 216000 [1

18000 -
90 - 180000 -

14400 -

80 |- 144000 -

108000 | 10800 -

70

Run Time (sec)
Run Time (s)

72000 |- 7200

Recoverability (%)

0 36000 |- 1 3600

50

. . . . 0 H . . . 0 . . .
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000 0 10 20 30 40 50
Nseq : # of sequences Nseq : # of sequences Lseq : avg # of itemsets per sequence

(a) Recoverability W.r.tNye, (b) Running Time W.r.t Ny, (c) Running Time wW.r.tL.,
Figure 9. Select results

In general, we found that the larger the dataset, the better the effectiverfggsrokMAP. For example,
with respect taV,.,, the more the sequences in the database, the better the recoverability. Figure 9(a) is the
recoverability with respect toV,., given 100 base patterns. In large databases, there are more sequences
approximating the patterns. For example, if there are only 1000 sequences, a base pattern thatidécurs in
of the sequences will only have 10 sequences approximately similar to it. However, if thai@apéo
sequences, then there wouldh®00 sequences similar to the the base pattern. It would be much easier for
ApproxMAP to detect the general trend from000 sequences than froi) sequences. We observe similar
effects from factord,.,, the average number of itemsets in a sequence /apdthe average number of
items per itemset in the sequences.

Moreover, we observe thapproxMAP is scalable w.r.t. database size, as shown in Figures 9(b) and 9(c).
ApproxMAP has total time complexity b (N2, - L2, Lseg+ k- Noeg) = O(NZ, - L2, - Lseq) WhereNy.,
is the total number of sequencds,, is the average length of the sequenig, is the maximum number of
items in an itemset, anklis the number of nearest neighbors considered. The complexity is dominated by
the clustering step which has to calculate the proximity ma@iYZ,, - L2, - Iscq)) and build thek nearest
neighbor list O(k - Ngeq))-

Practically speaking, the running time is constant with respect to most other dimensions except the size
of the database. That i8pproxMAP scales well with respect th and the length and number of patterns.

The length and number of patterns in the data do not affect the running time bégarseMAP finds all

the consensus patterns directly from the data without having to build the patterns.

5.5 Case Study:Mining The Welfare Services DB

The above analysis strongly indicates tAaiproxMAP can efficiently summarize a local database and

reduce the cost for global mining. The next step is to evalAmigroxXMAP on real data. However, real

28

sequential data is difficult to find. Most real data available in data repositories are too small for mining

sequential data. Even the unusually la@gzelladata set from KDD-CUP 2000 only has an average of less

than 2 itemsets per sequence [8]. Hence, the dataset cannot be used to mine sequential patterns.
Nonetheless, we were able to access a private sequence data. Due to confidentiality issues, we breifly

report the result on a real database of welfare services accumulated over a few years in North Carolina State.

The services have been recorded monthly for children who had a substantiated report of abuse and neglect,

and were placed in foster care. There we9d2 such sequences. In summary we fodadnterpretable and

useful patterns.
As an example, in total19 sequences were grouped together into one cluster which had the following
consensus pattern.

1
(RPT)(INV, FO)(FC)- - (FO))

In the pattern,RPT stands for a Reportf NV stands for an Investigation, addC' stands for a Foster
Care Service. The pattern indicates that many children who are in the foster care system after getting a
substantiated report of abuse and neglect have very similar service patterns. Within one month of the report,
there is an investigation and the child is put into foster care. Once children are in the foster care system,
they stay there for a long time. This is consistent with the policy that all reports of abuse and neglect
must be investigated withiB0 days. It is also consistent with our analysis on the length of stay in foster
care. Interestingly, when a conventional sequential algorithm is applied to this database, variations of this
consensus pattern overwhelm the results, because roughly half of the sequences in this database followed
the typical behavior approximately.

The rest of the sequences in this data set split into clusters of various sizes. One cluster formed around
the 57 children who had short spells in foster care. The consensus patteffRRagINV, FC)(FC)(FC)).
There were several consensus patterns from very small clusters withidbaitthe sequences. One such
pattern of interest is shown below.

8

———
((RPT)(INV,FC, T)(FC,T)(FC,HM)(FC)(FC,HM))

where H M stands for Home Management Services dhdtands for Transportation. There were 39 se-
guences in the cluster. Our clients were interested in this pattern because foster care services and home

management services were expected to be given as an "either/or” service, but not together to one child at the

29

same time. Thus, this led us to go back to the original data to see if indeed many of the children received
both services in the same month. Our investigation found that this was true, and lead our client to investigate
this further in real practice. Was this a systematic data entry error or was there some components to home
management services (originally designed for those staying at home with their guardian) that were used in
conjunction with foster care services on a regular basis? Which counties were giving these services in this
manner? Such an important investigation would not have been triggered without our analysis because no
one ever suspected there was such a pattern. It is difficult to achieve the same results using the conven-
tional sequential analysis methods because with_sup set t020%, there is more thaih00, 000 sequential

patterns and the users just cannot identify the needle from the straws.

6 Related Work

Multi-database mining has been widely researched in previous works [20, 21, 25, 26, 27, 28]. The
overview of multi-database mining is introduced in [26] and [28]. They introduce the difference between
multi-database mining and mono-database mining, and present novel significant patterns that are found in
multi-database mining but not in mono-database mining. Wu et al. [21] proposes a database classifica-
tion technique for multi-database mining. Local databases in the multi-database are classified into several
groups based on their similarity between each other. This can reduce the search cost in the multi-database.
To find more valuable information in a multi-database, techniques to synthesize local patterns to find excep-
tional patterns and high vote patterns are presented in [20, 25, 27]. These previous researches for mining
multi-database have focused on finding global patterns from frequent itemsets or association rules in local
databases. In this paper, we expand the research in multi-database mining to identify high vote sequential
patterns and exceptional sequential patterns.

Many papers have proposed methods for finding frequent subsequences in a mono-database [1, 13, 17,
24]. There are three works in particular, that extend the support model to find more useful patterns. [16]
extends the framework to find rules of the form "if A then B” using the confidence framewaork. [23] presents
a probabilistic model to handle noise in mining strings. However, it cannot be easily generalized to sequence
of sets. [22] proposes a method for mining frequent closed subsequences using several efficient search space
pruning methods. However, all these methods do not address the issue of generating huge number of patterns

that share significant redundancy.

30

There is a rich body of literature on string analysis in computer science as well as computational biology
that can be extended to this problem domain. In particular, multiple alignment has been studied extensively
in computational biology [5, 6, 18] to find common patterns in a group of strings. In this paper, we have

generalized string multiple alignment to find patterns in sequences of sets.

7 Future Work and Conclusion

7.1 Conclusion

Recently, global mining from multiple sources has received much attention. A key factor in efficient
global mining is to summarize the local information in the local data mining process, and then to forward
only the summary to the global mining process. However, conventional sequential pattern mining methods
using the support model have inherent limitations that make it inefficient for mining multi-databases. In
this paper, we have presented an alternative magbgdroximate sequential pattern mininfgr accurately
summarizing each local database, which can reduce the cost for global mining. An efficient algorithm,
ApproxMAP, is proposed to find approximate sequential patterns, cabedensus patternsia multiple
alignment. Extensive study on synthetic and real data demonstrat&pgpadxMAP (1) can effectively
summarize the local data (2) is robust to noise and outliers in the data, and (3) is robust to the input parame-
tersk andmin_strength as well as the order of alignment. In shakpproxMAP is effective and scalable
in mining large sequence databases with long patterns.

Furthermore, local consensus patterns mined u&pgoxMAP can be collected and processed to find
global patterns from multiple sources. We present an elegant and uniform rhodebgeneous sett
detect both the high vote sequential patterns and exceptional sequential patterns. By grouping local patterns
by the desired similarity level, homogeneous sets can easily identify global patterns that are supported by

most local databases as well as global patterns that are rare.

7.2 Future Work

One practical improvement #pproxMAP would be to automatically detect the best strength threshold,
0, for each cluster of sequences. An interesting approach could be analyzing the distribution of the item
weights dynamically. Initial investigation seems to suggest that the item weights may follow the Zipf dis-

tribution. Closer examination of the distribution might give hints for automatically detecting statistically

31

Potential Global Base Patterns
BaseP,, BaseP,, ... , BaseP,, D E—

ra v

BaseP,, BaseP,, ... , BaseP,, |4

-
o
IBM Synthetic Data Generatori 8
m
S
Local Database D; = ®
2 =)
Local Mining i S g
0
Local Pattern Results — Qci
2
\ S
\
\ \
CER AR

M : Set of Local Patterns

Global Miningi

Global Pattern Results

Figure 10. Evaluation of Global Mining Algorithms

significant cutoff values customized for each cluster. When presenting an initial overview of the data, such
approach could be quite practical.

A larger research question for future study would be the evaluation of global sequential pattern mining.
Evaluation of global sequential pattern mining is still an open problem. Access to real sequential data that
have useful global patterns is difficult with most data available in data repositories being too small even for
local sequential pattern mining. In [9], we have proposed an effective evaluation method for assessing local
sequential pattern mining methods using the IBM synthetic data generator. A similar approach can be taken
for evaluating global pattern mining methods as shown in Figure 10. The additional layer of selecting local
base patterns from the set of potential global base patterns can ensure that global patterns exit in the multi-
database. As a preliminary study, we tested our algorithm on a multi-database with 10 local databases. We
first generated 100 potential global base patterns. Then each of the 10 local databases randomly selected 10
unique base patterns from the 100 global base patterns to use as a template for its local database. To model
the variation and noise in the real data, the selected base patterns were randomly perturbed so that each of the
local databases did not have any base patterns that were identical. We then manually identified the high vote

and exceptional patterns that were embedded into the mutli-database by analyzing the base patterns used in

32

each of the 10 local databases. Finally, we could assess whether these embeded global patterns were found
by reviewing the global result patterns returned from our algorithm. Indeed, we confirmed that all global
patterns were properly detected via homogenous sets. For a more systematically evaluation of global mining
algorithms, further research is needed on how to generate realistic multi-databases with known embedded

global patterns, as well as good evaluation criteria to apply to the synthetic data.

References

[1] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern mining using a bitmap representation. In
Proceedings of the ACM International Conference on Knowledge discovery and data mining (SIGKDD)
pages 429-435, July 2002.

[2] R. Agrawal and R. Srikant. Mining sequential patternsPhoc. of International Conference on Data
Engineering (ICDE)pages 3-14, Taipei, Taiwan, March 1995.

[3] L. Ertoz, M. Steinbach, and V. Kumar. Finding Clusters of Different Sizes, Shapes, and Densities in
Noisy, High Dimensional Data. Ifihird SIAM International Conference on Data Mining(SDMages
47-58 San Fransico. CA, 2003.

[4] K. K. Fukunaga and P. M. Narendra. A branch and bound algorithm for computing k-nearest neigh-
bours. INIEEE Transactions on Computeiol 24, pages 750-753, 1975.

[5] Osamu Gotoh. Multiple sequence alignment: Algorithms and application&dnBiophys.Vol. 36,
pages 159-206. 1999.

[6] D. Gusfield. Algorithms on strings, trees, and sequences: Computer Science and Computational Biol-
ogy. Cambridge Univ. Press, Cambridge, England. 1997.

[7] A. K. Jain, M. N. Murty, and P. J. Flynn. Data Clustering: A Review.A@M Computing Surveys
Vol. 31(3), pages 264-323, Sep 1999.

[8] R. Kohavi, C. Brodley, B. Frasca, L. Mason, and Z. Zheng. KDD-CUP 2000 Organizers’ Report:
Peeling the Onion. IiProc. SIGKDD Explorationsvol 2, pages 86—98, 2000.

[9] H. C. Kum Approximate Mining of Consensus Sequential PatteRtsD. Dissertation. University of
North Carolina at Chapel Hill. 2004.

[10] H. C. Kum, S. Paulsen, and W. Wang Comparitive Study of Sequential Pattern Mining Méxdiets
ICDM Workshop on The Foundation of Data Mining and Discovétgebashi, Japan, Dec 2002. To be
published as Lecture Series in Computer Science.

[11] H. C. Kum, J. Pei, W. Wang, and D. Duncan. ApproxMAP : Approximate Mining of Consensus
Sequential Patterns. [fhird SIAM International Conference on Data Mining(SOMages 311-315
San Fransico. CA, 2003.

[12] G.R. McPherson and S. DeStefakqplied Ecology and Natural Resource Managem€ambridge
University Press, Cambridge, England. 2002.

33

[13] J. Pei, J. Han, et al. PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern
growth. InProc. of International Conference on Data Engineering (ICDiEgges 215-224, April 2001.

[14] J. Sander, M. Ester, H. P. Kriegel, and X. Xu. Density based clustering in spatial databases: The
algorithm gdbscan and its applications. Data Mining and Knowledge Discoveryol 2(2), pages
169-194, 1998.

[15] Sas Institute. Proc Modeclust. 8BAS/STAT User Guide: Sas online Docum2000

[16] Myra Spiliopoulou. Managing interesting rules in sequence miningPrbt. European Conf. on
Principles and Practice of Knowledge Discovery in Databagages 554-560, 1999.

[17] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and performance improve-
ments. InProc. 6th Intl. Conf Extending Database Technology (EDB&pes 3—17. March 1996.

[18] J. Thompson, F. Plewniak, and O. Poch. A comprehensive comparison of multiple sequence align-
ment programs. INucleic Acids Researchol. 27(13), pages 2682—-2690. Oxford Univ. Press. 1999.

[19] M. A. Wong and T. Lane. A kth Nearest Neighbor Clustering Procedurelotmnal of the Royal
Statistical SocietySeries B, 45, pages 362—-368, 1983.

[20] X. Wu and S. Zhang. Synthesizing High-Frequency Rules from Different Data Solietes. Trans.
Knowledge Data Engineerints(2): pages 353—367. 2003.

[21] X. Wu, C. Zhang, and S. Zhang. Database classification for multi-database minilmgorimation
Systen80(1): pages 71-88. 2005.

[22] X. Yan, J. Han, and R. AfshacCloSpan: Mining Closed Sequential Patterns in Larege Datasets. In
Third SIAM International Conference on Data Mining (SOMages 166—177, San Fransico. CA, 2003.

[23] J. Yang, P. S. Yu, W. Wang, and J. Han. Mining long sequential patterns in a noisy environment. In
Proc. of ACM Int'l Conf. On Management of Data (SIGMQPages 406-417, Madison, WI, 2002.

[24] M. J. Zaki. Efficient enumeration of frequent sequence&tininternational Conference Information
and Knowledge Managememages 68—75. Nov 1998.

[25] C. Zhang, M. Liu, W. Nie, and S. Zhang. Identifying Global Exceptional Patterns in Multi-database
Mining. In IEEE Computational Intelligence BulletB(1): pages 19-24. Feb 2004.

[26] S. Zhang, X. Wu, and C. Zhang. Multi-Database Mining. IHEE Computational Intelligence
Bulletin2(1): pages 5-13. June 2003.

[27] S. Zhang, C. Zhang, and J. X. Yu. An efficient strategy for mining exceptions in multi-databases In
Information Systeri65(1-2): pages 1-20. 2004.

[28] N. Zhong, Y. Yao, and S. Ohsuga. Peculiarity oriented multi-database miningrotreedings of
PKDD, pages 136—-146. 1999.

34

