
Effective Elimination of Redundant

Association Rules

James Cheng Yiping Ke Wilfred Ng

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong, China
{csjames, keyiping, wilfred}@cse.ust.hk

Abstract. It is well-recognized that the main factor that hinders the
applications of Association Rules (ARs) is the huge number of ARs re-
turned by the mining process. In this paper, we propose an effective
solution that presents concise mining results by eliminating the redun-
dancy in the set of ARs. We adopt the concept of δ-Tolerance to define
the set of δ-Tolerance ARs (δ-TARs), which is a concise representation
for the set of ARs. δ-Tolerance is a relaxation on the closure defined on
the support of frequent itemsets, thus allowing us to effectively prune the
redundant ARs. We then devise a set of inference rules, with which we
prove that the set of δ-TARs is a non-redundant representation of ARs.
In addition, we prove that the set of ARs that is derived from the δ-TARs
by the inference rules is sound and complete. We also develop a compact
tree structure called the δ-TAR tree, which facilitates the efficient gener-
ation of the δ-TARs and derivation of other ARs. Experimental results
verify the efficiency of using the δ-TAR tree to generate the δ-TARs and
to query the ARs. The set of δ-TARs is also shown to be drastically
smaller than the state-of-the-art concise representations of ARs.

Keywords: Association Rules, Redundancy Elimination, Concise Rep-
resentation

1 Introduction

Association Rule (AR) Mining (Agrawal et al., 1993) is recognized as one
of the fundamental data mining tasks and has a wide range of applications
(Geurts et al., 2003; Yang et al., 2004; Fonseca et al., 2005; Thabtah and
Cowling, 2007; Kumar et al., 2007). Over the last decade, many efficient
algorithms have been proposed for mining ARs (see (Ceglar and Roddick,
2006) for a comprehensive survey on AR mining). However, an intrinsic
problem of mining ARs is that a prohibitively large number of rules can
be easily generated, even in the case of a relatively high minimum support
threshold, σ. The massive size of the mining result makes further analysis

very difficult, thus severely restricting the practical usage of ARs. For
example, on mining the dataset pumsb* (FIMI Dataset Repository, 2003)
at σ = 30% and ς = 80%, where σ and ς are the minimum support and
confidence thresholds respectively, we obtain 213,274,268 ARs. When we
slightly lower σ to 20%, the problem already becomes intractable. Based
on the number of frequent itemsets, we estimate that the space required
to hold the ARs will be more than 140TB.

Previous work (Zaki, 2004; Li and Hamilton, 2004; Goethals et al.,
2005) has shown that the majority of the ARs are redundant and proposed
to remove the redundant ARs. However, the set of ARs returned by these
proposals is still large and inefficient for more advanced analysis.

In our prior work (Cheng et al., 2006), we propose δ-Tolerance Fre-
quent Itemsets (δ-TCFIs), which is a concise representation for the set of
Frequent Itemsets (FIs). In this paper, we adopt the concept of δ-TCFI
to define a concise representation for the set of ARs, called δ-Tolerance
Association Rules (δ-TARs). We illustrate the concept of δ-TAR by the
following example.

Example 1. Figure 1 shows 15 FIs (represented as nodes) that are gen-
erated from a database excerpt, where abcd is the abbreviation of the
itemset {a, b, c, d} and the number following “:” is the frequency of
abcd.

abcd:100

abd:103
abc:103
 acd:104
 bcd:107

ab:106
 ac:108
 ad:107
 bc:110
 bd:130
 cd:111

a:111
 b:139
 c:115
d:134

0.029

0.029
 0.038

0.065

0.028
 0.037
 0.028

0.027

0.177

0.036

1-(108/111)=0.027
 0.065
 0.030
 0.035

Fig. 1. Frequent Itemsets and Their Frequency

The number on each edge is computed as d = (1 − frequency of Y
frequency of X),

where Y is X’s smallest proper superset that has the greatest frequency.
The concept of δ-TCFI is to prune X if d ≤ δ. For example, if we set
δ = 0.04, then the set of δ-TCFIs is {abcd, bcd, bd, b}, i.e., the bold
nodes in Figure 1.

abcd:100

bcd:107

bd:130

a:111 b:139 c:115d:134

Fig. 2. A Condensed Tree of the Tree in Figure 1

The 15 FIs generate 50 ARs of confidence no less than 75%; however,
the majority of these ARs carries similar information and are hence re-
dundant. By adopting the concept of δ-TCFI, we can convert the tree in
Figure 1 into a much smaller tree as shown in Figure 2. From this con-
densed tree, we obtain a very concise set of ARs, i.e., the set of δ-TARs,
which consists of only 6 ARs, as defined by the 6 edges in Figure 2. The
rest of the 44 ARs can be derived from the δ-TARs if the user demands.
�

In many applications (Zaki, 2004; Li and Hamilton, 2004; Goethals
et al., 2005), the set of all ARs is too large to be handled by the user.
Thus, it is more beneficial to give a small and concise set of ARs and allow
the user to derive extra information when needed. For this purpose, we
propose a set of inference rules to allow other ARs to be derived from the
δ-TARs on demand. With the inference rules, we also prove that the set
of δ-TARs is non-redundant, which means that no δ-TAR can be derived
from other δ-TARs by applying the inference rules. More importantly, we
show that the set of ARs derived from the δ-TARs is sound and complete
with respect to the set of all ARs (at a given minimum support threshold),
that is, the two sets of ARs are equivalent.

To efficiently generate the set of δ-TARs, we propose the δ-TAR tree,
the set of edges of which defines the set of δ-TARs. The δ-TAR tree also
serves as the supporting data structure for the efficient derivation of ARs
by the inference rules. In addition, we can obtain the set of δ-TCFIs as
well as recover the set of all FIs by traversing the δ-TAR tree only once.
An example of a δ-TAR tree is shown in Figure 2, from which we can
not only obtain the set of δ-TARs and derive all other ARs efficiently by
following the paths, but can also obtain the set of δ-TCFIs (which is the
bold nodes) and recover all FIs.

We devise an efficient algorithm to construct the δ-TAR tree from the
set of δ-TCFIs. In addition, we design an inverted index to facilitate the

querying of the δ-TAR tree. With the inverted index, we can efficiently
recover the FIs and ARs, with their support and confidence, relevant to
some δ-TCFIs and δ-TARs that are of interest to the user.

We compare our algorithm of mining δ-TARs with the algorithms
for mining the following state-of-the-art concise representations of ARs:
Closed ARs (Zaki, 2004), Basic ARs (Li and Hamilton, 2004), and Non-
Derivable ARs (Goethals et al., 2005). While the algorithms are all effi-
cient (there are no clear winners), the set of δ-TARs is one to two orders
of magnitude smaller than the other three sets of rules (and is five to six
orders of magnitude smaller than the set of all ARs). We also demon-
strate that using the δ-TAR tree to derive the ARs and to query the
δ-TCFIs/FIs returns the results instantly.

Organization. The rest of the paper is organized as follows. We give the
related work and some preliminaries of mining FIs and ARs in Sections
2 and 3. Section 4 defines the notion of δ-TCFI. Section 5 defines the δ-
TAR tree and the δ-TARs. Section 6 presents the algorithms for building
and querying the δ-TAR tree. Then, Section 7 reports the experimental
results and Section 8 concludes the paper.

2 Related Work

There are a number of proposals that address the redundancy problem of
ARs. Kryszkiewicz (1998) and Bastide et al. (2000) define non-redundant
ARs to be those that have minimal antecedents and maximal consequents.
However, this type of ARs may not be useful to applications that aim at
finding all possible causes of some phenomenons. Moreover, the number
of such ARs can still be very large. Aggarwal and Yu (2001) defines a
set of ARs to be redundant if they can be derived from an AR that has
lower support and confidence. However, the support and confidence of the
derived ARs cannot be recovered.

Zaki (2004) defines a set of non-redundant ARs, called Closed ARs,
based on the set of closed FIs. The number of Closed ARs is linear to the
number of CFIs, which can be large for sparse and large datasets. Li and
Hamilton (2004) define an AR, X ⇒ Y , to be a Basic AR if ∄X ′ ⊂ X,
such that, ∀X ′′, where X ′ ⊆ X ′′ ⊆ X, conf (X ′′ ⇒ Y) = conf (X ⇒
Y). Basic ARs are restricted to have only one item in the consequent.
Recently, Goethals et al. (2005) proposes non-derivable ARs using the
same inclusion-exclusion principle of the non-derivable FIs (Calders and
Goethals, 2002). The confidence of a derivable AR is obtained from the

confidence and support of all its proper subrules. As shown in our exper-
iments, the three sets of rules mentioned above are still much larger than
the set of δ-TARs.

Pasquier et al. (2005) also discusses the generation of non-redundant
ARs using the concept of closed FIs (Pasquier et al., 1999). In addition,
they propose non-redundant ARs having minimal antecedent and maxi-
mal consequent. We are also aware of the recent work by Palshikar et al.
(2007), which reduces the number of ARs by the concept of heavy item-
sets, where an itemset is heavy if all possible ARs (for given support and
confidence values) made up of the items only in the itemset are present.

The concept of δ-TCFI is proposed in our previous work (Cheng
et al., 2006). This concept has been successfully applied to query graph
databases (Cheng et al., 2007a) and other possible applications include
redundancy elimination in mining time series data (Mörchen and Ultsch,
2007) and data stream mining (Cheng et al., 2007b). This paper applies
the concept to effectively remove the redundancy in the set of ARs. In
addition, the δ-TAR tree proposed can also be used to efficiently query
the δ-TCFIs and recover all or part of the FIs on the demand of the user,
which are not discussed in (Cheng et al., 2006).

Using concise representations for interactive AR mining is also pro-
posed in (Jeudy and Boulicaut, 2002), which applies free-sets (Boulicaut
et al., 2003) to achieve a much smaller cache for optimizing AR queries in
an interactive process. While caching can also be applied using δ-TCFIs,
this paper proposes the δ-TAR tree to support efficient interactive AR
querying. It is also possible to further reduce the number of rules by
pruning non-actionable rules as proposed by Liu et al. (2001).

3 Preliminaries

Let I = {x1, x2, . . . , xN
} be a set of items. An itemset (also called a

pattern) is a non-empty subset of I. A transaction is an itemset. We say
that a transaction Y supports an itemset X if Y ⊇ X. For brevity, an
itemset {xk1

, xk2
, . . . , xkm

} is written as xk1
xk2

. . . xkm
in this paper.

Let D be a database of transactions. The frequency of an itemset
X, denoted as freq(X), is the number of transactions in D that support

X. The support of X, denoted as supp(X), is defined as freq(X)
|D| , where

|D| is the number of transactions in D. X is a Frequent Itemset (FI) if
supp(X) ≥ σ, where σ (0 ≤ σ ≤ 1) is a user-specified minimum support
threshold.

Let F be the set of all FIs. An itemset X is a Maximal Frequent
Itemset (MFI) (Bayardo, 1998) if X ∈ F and ∄Y ∈ F such that Y ⊃ X.
X is a Closed Frequent Itemset (CFI) (Pasquier et al., 1999) if X ∈ F
and ∄Y ∈ F such that Y ⊃ X and supp(Y) = supp(X).

An Association Rule (AR) is defined as an implication of the form
X ⇒ (Y −X), where X and Y are itemsets, X 6= ∅ and X ⊂ Y . Let r =
(X ⇒ (Y −X)). We call X the antecedent of r and (Y −X) the consequent
of r. The support of r, denoted as supp(r), is defined as supp(Y) and the

confidence of r, denoted as conf (r), is defined as supp(Y)
supp(X) . Given F , it is

straightforward to generate the set of ARs that have support no less than
σ. Similar to the use of σ, a user-specified minimum confidence threshold,
ς, where 0 ≤ ς ≤ 1, is also used to generate ARs with confidence no less
than ς.

4 δ-Tolerance Closed Frequent Itemsets

In this section, we first define the notion of δ-Tolerance Closed Frequent
Itemsets (δ-TCFIs), which is essential for the definition of δ-TAR in Sec-
tion 5.

Definition 1 (δ-Tolerance Closed Frequent Itemset) An itemset
X is a δ-Tolerance Closed Frequent Itemset (δ-TCFI) if and only if X ∈
F and ∄Y ∈ F such that Y ⊃ X and supp(Y) ≥ ((1 − δ) · supp(X)),
where δ (0 ≤ δ ≤ 1) is a user-specified support tolerance factor. Let
T (δ), or simply T when δ is clear in the context, be the set of δ-TCFIs.

We now define a few terms which help to define the concept of δ-TAR.

Definition 2 (Closest Superset) Given X ∈ (F −T), let YX = {Y :
Y ⊃ X, |Y | = |X| + 1, and supp(Y) ≥ ((1 − δ) · supp(X))}. Y ∈ YX is
the closest superset of X if supp(Y) = MAX {supp(Y ′) : Y ′ ∈ YX} and
∀Y ′ ∈ YX , where Y ′ 6= Y and supp(Y ′) = supp(Y), Y is lexicographically
ordered before Y ′.

Given X ∈ (F − T), we can follow a path of closest supersets and
finally reach the closest superset that is a δ-TCFI. We define this δ-TCFI
superset as the closest δ-TCFI superset of X as follows.

Definition 3 (Closest δ-TCFI Superset) Let X1, . . . , Xn ∈ F , where
for 1 ≤ i < n, Xi ⊂ Xi+1 and |Xi+1| = |Xi| + 1. Xn is the closest δ-
TCFI superset of X1, if Xn ∈ T and, for 1 ≤ i < n, Xi ∈ (F − T) and
Xi+1 is the closest superset of Xi.

With Definition 3, we further define the closure of a δ-TCFI as follows.

Definition 4 (Closure of δ-TCFI) Given Y ∈ T , the closure of Y ,
denoted as CLOS (Y), is defined as CLOS (Y)={X : Y is the closest δ-
TCFI superset of X}. We also define clos(Y, i) = {X : X ∈ CLOS (Y)
and |X| = |Y | − i}.

The following example illustrates the concept of the closure of a δ-
TCFI.

Example 2. Referring to Figure 1, when δ = 0.04, the closest superset of
a is ac, that of ac is acd and that of acd is abcd. Thus, a, ac and acd are
recursively bounded by δ and included in the closure of abcd. For the two
supersets of ab that have the same frequency, abc is the closest superset
of ab since abc is ordered before abd.

The FI abcd is the closest δ-TCFI superset of all FIs in S = {a, ab,
ac, ad, abc, abd, acd}; in other words, CLOS (abcd) = S, clos(abcd, 3) =
{a}, clos(abcd, 2) = {ab, ac, ad}, and clos(abcd, 1) = {abc, abd, acd}.
Similarly, we have CLOS (bcd) = {c, bc, cd}. �

Given Y ∈ T , we define the support extension of Y in order to give a
clearer view of the closeness, in terms of support, between Y and the FIs
in CLOS (Y).

Definition 5 (Support Extension) Given Y ∈ T , the support exten-
sion of Y , denoted as EXT (Y), is defined as a list (ext(Y, 1), . . . , ext(Y, m)),
where m = MAX {i : clos(Y, i) 6= ∅} and ext(Y, i), for 1 ≤ i ≤ m, is given
by

ext(Y, i) =

∑
X∈clos(Y,i) (

supp(X)
supp(Y)

)

|clos(Y, i)|
.

The size of EXT (Y) is given by |EXT (Y)| = m.

The support extension provides an accurate mechanism for the esti-
mation of the support of the FIs recovered from a δ-TCFI. We define the
support estimation of an FI as follows.

Definition 6 (Estimated Support) Given Y ∈ T and X ∈ CLOS (Y),
the estimated support of X is defined as (supp(Y) · ext(Y, |Y | − |X|)).

Example 3. Referring to Example 2, we have ext(abcd, 1)=(103
100+103

100+104
100)/3 =

1.03, ext(abcd, 2) = (106
100+108

100+107
100)/3 = 1.07, and ext(abcd, 3) = 111

100/1 =
1.11.

Thus, the support of abc, abd and acd are estimated as (supp(abcd) ·
ext(abcd, 1)) = (1.03 × supp(abcd)), and the support of ab, ac and ad

are estimated as (supp(abcd) · ext(abcd, 2)) = (1.07 × supp(abcd)). �

5 δ-Tolerance Association Rules

In this section, we present the δ-Tolerance Association Rules (δ-TARs).
First, in Section 5.1 we present a set of ARs, RTF

, which is generated
from an FI tree, TF . We define three inference rules and apply them to
show that the set of ARs derived from RTF

is sound and complete. Next,
in Section 5.2 we present the δ-TAR tree, Tδ, which generates the set of
δ-TARs, Rδ. We then define the fourth inference rule which is specifically
for the derivation of ARs from Rδ. Then, in Section 5.3 we employ the
result of Section 5.1 to prove that Rδ is non-redundant, and the set of ARs
derived from Rδ is sound and complete. Finally, in Section 5.4 we analyze
the error bound of the support and confidence of the derived ARs.

5.1 FI Tree and FI-Tree-Based Association Rules

We first define the term FI-parent, which will be used in the definition of
the FI tree. Given X ∈ F , let YX = {Y : Y ∈ F , Y ⊃ X, and ∄Y ′ ∈
F such that Y ′ ⊃ X and |Y ′| < |Y |}. Y ∈ YX is the FI-parent of X if
supp(Y) = MAX {supp(Y ′) : Y ′ ∈ YX} and ∀Y ′ ∈ YX , where Y ′ 6= Y
and supp(Y ′) = supp(Y), Y is lexicographically ordered before Y ′.

We define the FI tree as follows.

Definition 7 (FI Tree) Given F , we define an FI tree, TF = (VF , EF),
as follows:

– VF is the set of vertices, defined as VF = F ∪ {γ}, where the root
γ = {x : x ∈ I and supp(x) ≥ σ}.

– EF is the set of edges, defined as EF = {(Y, X) : X, Y ∈ F and Y is
the FI-parent of X} ∪ {(γ, X) : X ⊂ γ and ∄Y ∈ F such that Y ⊃
X}.

The root γ, which represents the set of frequent items, is needed to
connect the disconnected components in TF , if the set of frequent items
is not an FI. In the following discussion, we also show that γ is needed to
ensure the completeness of the AR derivation.

Example 4. If F is the set of 15 FIs shown in Figure 1, then TF is the
tree in Figure 1, where γ = abcd. �

From TF , we generate the following set of ARs, denoted as RTF
.

Definition 8 (FI-Tree-Based Association Rules) Given an FI tree
TF , the set of FI-Tree-Based ARs, RTF

, is defined as RTF
= {X ⇒

(Y − X) : (Y, X) ∈ EF}, where the support and confidence of each r =
(X ⇒ (Y − X)) ∈ RTF

are defined as follows:

supp(r) = supp(Y) ,

conf (r) =
supp(Y)

supp(X)
.

We set supp(Y) = κ when Y = γ and γ /∈ F , where κ is a non-zero

number which is used to preserve the value of supp(X) in supp(Y)
supp(X) for the

derivation of other ARs (by Rule 2 defined below).
Let R be the set of all ARs that have support no less than σ. When

γ ∈ F , then RTF
⊆ R. Let Rγ = {X ⇒ Y : (X ∪ Y) = γ and γ /∈ F}.

When γ /∈ F , then (RTF
−Rγ) ⊆ R. The support and confidence of the

ARs in Rγ are not correct since supp(γ) is defined as a special value κ.
Thus, Rγ is regarded as a set of auxiliary ARs, which are only used as
intermediate ARs to derive the ARs in R.

In the following discussion, we first define three inference rules to
derive R from RTF

. Then, we prove in Theorem 1 that the set of ARs
derived from RTF

excluding those ARs in Rγ is sound and complete with
respect to R.

Rule 1 (Transitivity Derivation) Given two ARs r1 = (X ⇒ Y)
and r2 = ((X ∪ Y) ⇒ Z), transitivity derivation generates an AR, r =
(X ⇒ (Y ∪ Z)), where the support and confidence of r are defined as
follows:

supp(r) = supp(r2) ,

conf (r) = (conf (r1) · conf (r2)) .

Lemma 1. Referring to Rule 1, let r1, r2 ∈ (RTF
∪ R). Then, supp(r)

and conf (r) are correctly defined, and r ∈ R or r ∈ Rγ.

Proof. First, supp(r) = supp(X ∪ Y ∪ Z) = supp(r2) and conf (r) =
supp(X∪Y ∪Z)

supp(X) = (supp(X∪Y)
supp(X) · supp(X∪Y ∪Z)

supp(X∪Y)) = (conf (r1) · conf (r2)).

Next, if r2 ∈ R, then supp(r) = supp(r2) ≥ σ, which implies r ∈ R. If
r2 ∈ RTF

and r2 /∈ Rγ , then supp(r) = supp(X ∪ Y ∪ Z) ≥ σ and hence
r ∈ R. If r2 ∈ RTF

and r2 ∈ Rγ , then (X ∪Y ∪Z) = γ and hence r ∈ Rγ .

Lemma 1 shows that r1 and r2 can be in either R or RTF
. This is

because the inference rules are first applied on ARs from RTF
and then

recursively applied on the derived ARs to generate the complete set of
ARs.

To apply transitivity derivation, we start with r1, r2 ∈ RTF
. Since

r1 and r2 are defined by two adjacent edges, (X∪Y, X) and (X∪Y ∪Z,
X∪Y), in TF , we can follow a path in TF and apply transitivity derivation
recursively to generate more ARs, as illustrated by the following example.

Example 5. Referring to Example 4, let r1 = (b ⇒ d), r2 = (bd ⇒ c)
and r3 = (bcd ⇒ a). We can derive r4 = (b ⇒ cd) from r1 and r2, where
supp(r4) = supp(r2) = supp(bcd) and conf (r4) = (conf (r1) · conf (r2)) =

(supp(bd)
supp(b) · supp(bcd)

supp(bd)) = supp(bcd)
supp(b) . From r4 and r3, we can further derive

r5 = (b ⇒ acd), where supp(r5) = supp(r3) = supp(abcd) and conf (r5) =

(conf (r4) · conf (r3)) = (supp(bcd)
supp(b) · supp(abcd)

supp(bcd)) = supp(abcd)
supp(b) . �

Rule 2 (Pseudo-Transitivity Derivation) Given two ARs r1 = (X ⇒
Y) and r2 = (Z ⇒ W), where X ⊂ Z and (X ∪ Y) = (Z ∪ W), pseudo-
transitivity derivation generates an AR, r = (X ⇒ (Z − X)), where the
support and confidence of r are defined as follows:

supp(r) =
supp(r1)

conf (r2)
,

conf (r) =
conf (r1)

conf (r2)
.

Lemma 2. Referring to Rule 2, let r1, r2 ∈ (RTF
∪ R). Then, supp(r)

and conf (r) are correctly defined, and r ∈ R.

Proof. First, supp(r)=supp(Z)=(supp(Z)
supp(Z∪W) · supp(X ∪ Y))=(1

conf (r2) ·

supp(r1)) and conf (r) = supp(Z)
supp(X) = (supp(Z)

supp(Z∪W) · supp(X∪Y)
supp(X)) = (1

conf (r2) ·

conf (r1)).
Next, since r2 ∈ (RTF

∪ R), Z ∈ F and hence supp(Z) ≥ σ, which
implies that supp(r) ≥ σ and r ∈ R.

The condition (X ∪ Y) = (Z ∪ W) suggests that pseudo-transitivity
derivation is not applied on ARs formed from edges on the same path.
Instead, pseudo-transitivity allows us to derive an AR from edges on two
different paths that share the same root. The condition (X∪Y) = (Z∪W)
is satisfied by applying transitivity derivation on the edges on each path
up to the common root of the two paths. This also explains the need of
the common root γ as to ensure all ARs can be generated.

Example 6. Consider the derivation of the AR r = (b ⇒ ac). We first
apply transitivity derivation from b up to abcd to obtain r1 = (b ⇒
acd) as done in Example 5. Then, we obtain r by applying pseudo-
transitivity derivation on r1 and r2, where r2 = (abc ⇒ d), and we

have supp(r) = supp(r1)
conf (r2) = supp(abcd)

supp(abcd)/supp(abc) = supp(abc) and conf (r) =
conf (r1)
conf (r2) = supp(abcd)/supp(b)

supp(abcd)/supp(abc) = supp(abc)
supp(b) . �

To ensure the completeness of AR derivation, we also need the follow-
ing inference rule.

Rule 3 (Reflexivity Derivation) Given an AR r = (X ⇒ Y), re-
flexivity derivation generates r itself, where supp(r) and conf (r) remain
unchanged.

Lemma 3. Referring to Rule 3, let r ∈ (RTF
∪ R). Then, supp(r) and

conf (r) are correctly defined, and r ∈ R or r ∈ Rγ.

Proof. It is trivial that supp(r) and conf (r) are correctly defined. If r ∈
RTF

and r /∈ Rγ , then supp(r) = supp(X ∪Y) ≥ σ and hence r ∈ R. For
the other cases, r ∈ R or r ∈ Rγ .

We now prove that the set of ARs derived from RTF
excluding those

ARs in Rγ is sound and complete with respect to R.

Theorem 1 Given R = {Rule 1, Rule 2, Rule 3}, let R+
TF

be the set of all

ARs derived from RTF
by recursively applying R. Let R′ = (R+

TF
−Rγ).

Then, R′ is sound and complete with respect to R, that is, R′ = R.

Proof. According to Lemmas 1 to 3, ∀r ∈ R+
TF

, r ∈ R or r ∈ Rγ , which

implies that ∀r ∈ (R+
TF

−Rγ), r ∈ R. Thus, R′ is sound with respect to
R, i.e., R′ ⊆ R.

To prove the completeness, i.e., R ⊆ R′, let r = (X ⇒ Y) ∈ R. Since
X and (X ∪ Y) are in F , it follows that X and (X ∪ Y) are also in VF . If
(X∪Y) is an ancestor of X in TF , we can derive r by applying transitivity
derivation on the path from X to (X∪Y). Otherwise, a common ancestor
(X ∪ Y ∪ Z) must exist. We first apply transitivity derivation on the
two paths, 〈X, . . . , X ∪ Y ∪ Z〉 and 〈X ∪ Y, . . . , X ∪ Y ∪ Z〉, to derive
r1 = (X ⇒ (Y ∪ Z)) and r2 = ((X ∪ Y) ⇒ Z). Then, we obtain r by
applying pseudo-transitivity derivation on r1 and r2. If r ∈ RTF

, then
we obtain r by applying reflexivity derivation. Since ∀r ∈ R, r can be
derived from RTF

by applying R, the result R ⊆ R′ thus follows.

5.2 δ-Tolerance Association Rule Tree and δ-Tolerance

Association Rules

Although we can derive R from RTF
, the size of RTF

is the same as
the size of F . We next show that the majority of the vertices in VF that
correspond to the FIs in (F − T) are redundant. Since T is orders of mag-
nitude smaller than F , we can significantly compress TF if the redundant
vertices and their corresponding edges are concisely represented. Thus,
we define a new tree based on T instead of F .

The new tree is called the δ-Tolerance Association Rule tree (δ-TAR
tree), as from which we derive the set of δ-Tolerance Association Rules.

We first define the term δ-TCFI-parent, which will be used in the def-
inition of the δ-TAR tree. Given X ∈ T , let YX = {Y : Y ∈ T , Y ⊃
X, and ∄Y ′ ∈ T such that Y ′ ⊃ X and |Y ′| < |Y |}. Y ∈ YX is the
δ-TCFI-parent of X if supp(Y) = MAX {supp(Y ′) : Y ′ ∈ YX} and
∀Y ′ ∈ YX , where Y ′ 6= Y and supp(Y ′) = supp(Y), Y is lexicograph-
ically ordered before Y ′.

Definition 9 (δ-Tolerance Association Rule Tree) The δ-Tolerance
Association Rule tree (δ-TAR tree), denoted as Tδ = (Vδ, Eδ), where
Vδ = VT ∪ {γ} ∪ Vb and Eδ = ET ∪ Eγ ∪ Eb, are defined as follows:

– VT = T .

ET = {(Y, X) : X, Y ∈ T and Y is the δ-TCFI-parent of X}.

– γ is the root of Tδ, where γ = {x : x ∈ I and supp(x) ≥ σ}.

Eγ = {(γ, X) : X ⊂ γ and ∄Y ∈ T such that Y ⊃ X}.

– Vb =
⋃

Y ∈T {X : X ∈ CLOS (Y) and ∄X ′ ∈ CLOS (Y) such that X ′ ⊂
X}.

Eb = {(Y, X) : X ∈ Vb, Y ∈ VT , and X ∈ CLOS (Y)}.

Tδ consists of both δ-TCFIs and FIs, i.e., VT and Vb. For each edge
(Y, X) ∈ ET , X’s parent, Y , is X’s smallest superset in T that has the
greatest support and is lexicographically ordered before all other X’s
supersets in T that have the same support and size as Y .

The set of vertices Vb is called the set of border vertices, since given
Y ∈ T , all X ∈ CLOS (Y) are contained between Y ’s border vertices and
Y . Therefore, given X which is a border vertex of Y , then all X ′, where
X ⊂ X ′ ⊂ Y , are redundant because they are FIs contained between X
and Y and can be easily enumerated.

We note that in some rare cases, there may be some X ′ between X
and Y that is not in CLOS (Y). This causes a problem, since X ′ may
be enumerated more than once and the support of the X ′ enumerated
elsewhere may be different. In such a case, we may choose the greater
support as the estimated support of X ′.

Compared with TF , a huge number of redundant vertices in TF , as well
as their incident edges, are eliminated from Tδ. Thus, Tδ is a significantly
smaller tree than TF . The following example helps illustrate the idea of
Tδ.

Example 7. Let δ = 0.04, Figure 3 shows the δ-TAR tree, Tδ, of our
running example (the root γ = abcd). Referring to Example 2, only
a ∈ CLOS (abcd) is a border vertex. The FIs in (CLOS (abcd) − {a}),
i.e., {ab, ac, ad, abc, abd, acd}, are redundant and can be represented
concisely by the edge (abcd, a). We can also find another border ver-
tex c in CLOS (bcd); thus, from the edge (bcd, c) we can enumerate the
redundant FIs bc and cd. �

abcd:100

bcd:107

bd:130

a:111 b:139 c:115d:134

(1, 1.03, 1.07, 1.11)

(1, 1.03, 1.07)

1r

2r

3r

4r 5r

6
r

Fig. 3. The δ-TAR Tree Tδ

The δ-TAR tree is the supporting data structure for the efficient ap-
plication of the inference rules, which allow users to derive more ARs on

demand. We can also obtain all δ-TCFIs as well as recover all FIs with
only one scan of Tδ. Most importantly, the δ-TARs are directly generated
from Tδ.

Definition 10 (δ-Tolerance Association Rules) Given Tδ, we de-
fine the set of δ-Tolerance Association Rules (δ-TARs) as Rδ = {X ⇒
(Y − X) : (Y, X) ∈ Eδ}, where the support and confidence of each
r = (X ⇒ (Y − X)) ∈ Rδ are defined as follows:

supp(r) = supp(Y) ,

conf (r) =





supp(Y)
supp(X)

if X ∈ VT ,

1
ext(Y, |Y | − |X|)

otherwise.

The following example shows the set of δ-TARs of our running exam-
ple.

Example 8. Given Tδ in Figure 3, we obtain Rδ = {r1 = (a ⇒ bcd), r2 =
(bcd ⇒ a), r3 = (bd ⇒ c), r4 = (b ⇒ d), r5 = (d ⇒ b), r6 = (c ⇒ bd)}.

We have supp(r1) = supp(r2) = supp(abcd), and conf (r2) = supp(abcd)
supp(bcd) =

100
107 . Since a /∈ VT , conf (r1) = 1

ext(abcd,|abcd|−|a|) = 1
1.11 . �

As shown in Definition 10 and Example 8, if X ∈ (F−T), we shall es-
timate the support (or frequency) of X from X’s closest δ-TCFI superset
Y . Thus, similar to the way we define the support extension of a δ-TCFI
to estimate the support of an FI, we also define the support extension of
a δ-TAR in order to compute the support and confidence of the ARs.

Definition 11 (Support Extension) Given r = (X ⇒ (Y −X)) ∈ Rδ,
where X ∈ Vb, the support extension of r, denoted as EXT (r), is a list
(ext(r, 0), ext(r, 1), . . . , ext(r, m)), where m = (|Y | − |X|) and ext(r, i) is
defined as follows:

ext(r, i) =

{
1 if i = 0,

ext(Y, i) if 1 ≤ i ≤ m.

We remark that rule analysis is often processed with the help of an
efficient data structure such as Tδ; thus, the support extension is not ex-
plicitly required, since we can simply compute the support and confidence
of an AR using the frequency extension of the δ-TCFIs in Tδ.

Given Rδ, we now can apply transitivity derivation and pseudo-transitivity
derivation to derive more ARs when demanded. However, a large number
of redundant edges in TF are eliminated and not present in Tδ. Thus, we
need one more inference rule to derive the ARs that are generated from
these eliminated edges in TF .

Rule 4 (Closure Derivation) Given r1 = (X ⇒ (Y − X)) ∈ Rδ,
where X ∈ Vb, closure derivation generates an AR, r = (Z ⇒ (W − Z)),
where X ⊆ Z ⊂ W ⊆ Y . The support and confidence of r are defined as
follows:

supp(r) = supp(r1) · ext(r1, |Y | − |W |) ,

conf (r) =
ext(r1, |Y | − |W |)

ext(r1, |Y | − |Z|)
.

Lemma 4. Referring to Rule 4, let r1 ∈ Rδ ∪ R. Then, supp(r) and
conf (r) are correctly defined, and r ∈ R.

Proof. First, supp(r) = supp(W) = (supp(Y) · ext(Y, |Y | − |W |)) =

(supp(r1) · ext(r1, |Y |−|W |)) and conf (r) = supp(W)
supp(Z) = supp(Y) · ext(Y,|Y |−|W |)

supp(Y) · ext(Y,|Y |−|Z|) =
ext(r1,|Y |−|W |)
ext(r1,|Y |−|Z|) .

Next, since supp(r1) = supp(Y) ≥ σ and ext(Y, |Y | − |W |)) ≥ 1,
supp(r) ≥ σ and hence r ∈ R.

We illustrate closure derivation by the following example.

Example 9. In Figure 3, the numbers in the two brackets on the two
edges, (a, abcd) and (c, bcd), are the support extensions of the two ARs
r1 and r6 (defined in Example 8), respectively.

By closure derivation, we can derive 18 ARs of the form (Z ⇒ (W −
Z)) from r1 = (a ⇒ bcd), where a ⊆ Z ⊂ W ⊆ abcd. Consider two of
these derived ARs, r11 = (ab ⇒ cd) and r12 = (ab ⇒ c).

For r11, we estimate supp(r11) = (supp(r1) · ext(r1, 0)) = (supp(r1) ×

1) = supp(abcd) and conf (r11) = ext(r1,0)
ext(r1,2) = 1

1.07 ≈ supp(abcd)
supp(ab) = 100

106 .

For r12, we estimate supp(r12) = (supp(r1) · ext(r1, 1)) = (supp(abcd) ×

1.03) = supp(abc) and conf (r12) = ext(r1,1)
ext(r1,2) = 1.03

1.07 ≈ supp(abc)
supp(ab) = 103

106 .

Likewise, we can derive 4 ARs from r6 = (c ⇒ bd) by closure deriva-
tion. �

5.3 Non-Redundancy, Soundness and Completeness

In this subsection, we prove that Rδ is non-redundant and that the set
of all ARs derived from Rδ by Rules 1 to 4 excluding those ARs in Rγ

is sound and complete with respect to R. We first define non-redundancy
as follows.

Definition 12 (Non-Redundancy) Given a set of ARs, R, R is non-
redundant if ∀r ∈ R, r cannot be derived by applying Rules 1 to 4 on
any other ARs in R.

Let Rγ = {X ⇒ Y : (X ∪Y) = γ and γ /∈ F} with respect to γ in Tδ.

Theorem 2 Given R = {Rule 1, Rule 2, Rule 3, Rule 4}, let R+
δ be

the set of all ARs derived from Rδ by recursively applying R. Let R′ =
(R+

δ −Rγ). Then, Rδ is non-redundant, and R′ is sound and complete
with respect to R.

Proof. We first prove that Rδ is non-redundant.
Suppose to the contrary that ∃r ∈ Rδ such that r can be derived from

some other ARs in Rδ. Let r = (X ⇒ Y). Since r ∈ Rδ, we have X ∈ Vδ

and X is unique in Vδ. Thus, if we can derive r from other ARs in Rδ

without using r (and hence X in Vδ), then we must first generate an AR,
r′, with X as its antecedent by closure derivation. Then, we generate r by
applying R on r′ and other ARs in Rδ. However, X ∈ Vδ means that X is
in the closure of a δ-TCFI only if X is a border vertex, which implies that
no AR with X as its antecedent can be generated by closure derivation
(unless from r itself). Thus, r cannot be generated from other ARs in Rδ

and this leads to a contradiction.
Now, we prove that R′ is sound and complete with respect to R.
First, according to Lemma 4, all ARs derived from Rδ by closure

derivation are in R. Since ∀r ∈ Rδ, r ∈ R or r ∈ Rγ , it follows from
Lemmas 1 to 3 that R′ is sound with respect to R.

We prove the completeness by applying the result of Theorem 1. We
first show that RTF

can be derived from Rδ. Let r = (X ⇒ (Y − X)) ∈
RTF

. If X, Y /∈ Vδ, then X and Y must be in the closure of some δ-
TCFIs, X ′ and Y ′, and we can apply closure derivation to derive the
ARs X ⇒ (X ′ − X) and Y ⇒ (Y ′ − Y). Then, we can derive r by
applying transitivity derivation and pseudo-transitivity derivation on the
paths from X ′ and Y ′ to the common ancestor of (X ′ ∪ Y ′) in Tδ. In
a similar way, we can derive r from Rδ for the other three cases: only
X /∈ Vδ, only Y /∈ Vδ, or X, Y ∈ Vδ. In Theorem 1, we have shown

that R ⊆ (R+
TF

− Rγ). Since we can obtain RTF
from Rδ, the result

R ⊆ R′ = (R+
δ −Rγ) follows.

Rδ is significantly smaller than R since the majority of the ARs in R
are redundant. As shown in Example 8, there are only 6 ARs in Rδ while
there are 50 ARs in R. We derive a bound on the size of Rδ with respect
to that of R as follows.

Theorem 3 Let l be the size of the largest FI in F . Then, |R|
|Rδ |

≥ O(2l).

Proof. In the worst case, F = T and Tδ becomes as big as TF , which
implies that |Rδ| = |F|. Since |R| is O(|F| · 2l), we obtain the bound.

Theorem 3 gives the worst-case upper bound on the number of δ-
TARs. However, this worst case is extremely rare. In the average case,
|Rδ| = O(|T |) and thus |R|

|Rδ |
≥ O(2l · |F|

|T |). It should also be noted that

|T | is already orders of magnitude smaller than |F| in most cases.

5.4 Error Bound of Support and Confidence of δ-TARs and

Derived ARs

In this subsection, we analyze the error bound of the support and the
confidence of a δ-TAR and of a derived AR. For clarity of presentation,
up to now we have not distinguished between the exact and the estimated
support and confidence of a δ-TAR/AR. To derive the error bound, we use
supp(r) and conf (r) as the exact support and confidence of a δ-TAR/AR,

r, and s̃upp(r) and c̃onf (r) as the estimated support and confidence of r.
To avoid confusion, we may assume that the support and confidence of
the δ-TARs/ARs discussed before this subsection are all estimated.

We first give the error bound of the estimated support and confidence
of a δ-TAR.

Theorem 4 Given r = (X ⇒ (Y − X)) ∈ (Rδ − Rγ). Let φ = (1 −
δ)|Y |−|X|. Then, the following expressions are true.

(a)
s̃upp(r)− supp(r)

supp(r)
= 0 ,

(b)





c̃onf (r)− conf (r)
conf (r)

= 0 if X ∈ VT ,

(φ − 1) ≤
c̃onf (r)− conf (r)

conf (r)
≤ (1

φ − 1) otherwise.

Proof. Since Y ∈ T , s̃upp(Y) = supp(Y). Thus, s̃upp(r) = supp(Y) =
supp(r), from which follows the result of Part (a).

We now prove Part (b). If X ∈ VT , then X ∈ T and hence s̃upp(X) =

supp(X). Thus, c̃onf (r) = supp(Y)
s̃upp(X)

= supp(Y)
supp(X) = conf (r).

If X /∈ VT , then X ∈ Vb. By Lemma 5 of (Cheng et al., 2006), (φ ·

supp(X)) ≤ s̃upp(X) ≤ supp(X)
φ . Thus, (φ · supp(Y)

supp(X)) ≤ supp(Y)
s̃upp(X)

≤ (1
φ ·

supp(Y)
supp(X)). Since conf (r) = supp(Y)

supp(X) and c̃onf (r) = supp(Y)
s̃upp(X)

, we have φ ≤

c̃onf (r)
conf (r) ≤

1
φ . Hence, (φ − 1) ≤ c̃onf (r)−conf (r)

conf (r) ≤ (1
φ − 1).

Next, we give the error bounds of the estimated support and confi-
dence of a derived AR.

Theorem 5 Given r = (X ⇒ (Y − X)) ∈ R, where X, Y /∈ T . Let
φs = (1− δ)i and φc = (1− δ)i+j, where i = (|Y ′|− |Y |), j = (|X ′|− |X|),
and X ′ and Y ′ are the closest δ-TCFI superset of X and Y . Then, the
following expressions are true.

(a) (φs−1) ≤
s̃upp(r)− supp(r)

supp(r)
≤ (

1

φs
−1) ,

(b) (φc−1) ≤
c̃onf (r)− conf (r)

conf (r)
≤ (

1

φc
−1) .

Proof. The error bound on the estimated support of r is the same as
the error bound on the estimated frequency of Y defined in Lemma 5 of
(Cheng et al., 2006). Thus, the result of Part (a) follows.

The estimated confidence of r is s̃upp(Y)
s̃upp(X)

. Let φ = (1 − δ). By Lemma

5 of (Cheng et al., 2006), we have φi · supp(Y)
supp(X)/φj ≤ s̃upp(Y)

s̃upp(X)
≤ supp(Y)/φi

φj · supp(X)
.

Thus, (φi+j · supp(Y)
supp(X)) ≤

s̃upp(Y)
s̃upp(X)

≤ (1
φi+j · supp(Y)

supp(X)), which is equivalent

to (φc · conf (r)) ≤ c̃onf (r) ≤ (1
φc

· conf (r)). The result of Part (b) thus
follows.

Theorem 5 gives the worst-case bounds and does not consider the
cases that X ∈ T and/or Y ∈ T , for which the error bounds on the
estimated support and confidence of r are much lower since supp(X)
and/or supp(Y) are exact when X ∈ T and/or Y ∈ T .

6 Constructing and Querying δ-TAR Tree

Given Tδ, it is straightforward to generate Rδ as well as to derive R. We
can also recover F by traversing Tδ only once. In this section, we present
an efficient algorithm to construct Tδ.

Algorithm 1 BuildTree

Input: The set of δ-TCFIs T .
Output: The δ-TAR tree Tδ.

1. Sort the δ-TCFIs in T first in ascending order of their size,
then in descending order of their support and finally in lexicographic order;

2. Create an empty Hashtable and an empty Inverted δ-TCFI Index (ITI);
3. for each X ∈ T according to the sorted order do

4. Create a new node X;
5. Add X to Hashtable and ITI;
6. Create the root, γ, of Tδ;
7. for each X ∈ T do

8. Find X’s parent, Y , and create the edge (Y, X);
9. B ← ComputeBorder(X);
10. for each Z ∈ B do

11. Create a new node Z and an edge (X, Z);
12. Add Z to Hashtable;
13. return Tδ;

The algorithm for constructing Tδ, BuildTree, is shown in Algorithm
1. Lines 3-4 create VT and Line 6 creates the root γ. Then, Line 8 finds
the parent of each vertex in VT as defined in Definition 9 and creates ET

and Eγ . Line 9 computes the set of border vertices for each δ-TCFI and
Line 11 creates Vb and Eb.

The algorithm is straightforward except Lines 8 and 9, which also
determine the efficiency of the construction of Tδ. To efficiently process
Lines 8 and 9, we use a hashtable, Hashtable, and an inverted index in the
construction of Tδ. All vertices are hashed into Hashtable (Lines 5 and
12) based on the set of items of the FIs/δ-TCFIs, so that the vertices can
be located in Tδ instantly. However, Lines 8 and 9 also involve searching
the superset of a δ-TCFI and the closest δ-TCFI superset of an FI, which
cannot be processed with a hashtable. For this purpose, we introduce an
inverted index to facilitate the efficient processing of the search operation.

Definition 13 (Inverted δ-TCFI Index) The Inverted δ-TCFI Index
(ITI) consists of the following components:

– An array, called the Node-Link Array (NLA), stores the pointers to
all δ-TCFIs in Tδ, except the size-1 δ-TCFIs (since they do not have
non-empty subsets). The δ-TCFI whose pointer is stored in NLA[i] is
assigned an ID i.

– An array, called the Item Array (IA), stores the set of frequent items.
– Each item in the IA is associated with a list of arrays called ID-arrays.

Each ID-array in the list stores a set of IDs, which are the IDs of those
δ-TCFIs of the same size. Thus, an ID-array that stores the IDs of
the size-n δ-TCFIs is called a size-n ID-array.

The construction of the ITI is straightforward and efficient. Given
X ∈ T , where X = x1 · · ·xn, we add the pointer to the vertex X in Tδ

to the end of the NLA. Then, we add X’s ID to the end of the size-n ID-
array of each item xi, for 1 ≤ i ≤ n. We can keep the IA in a hashtable
so that we can access each xi in the IA instantly.

The ID of X is simply assigned as the position of X’s pointer stored
in the NLA. Thus, the sorting of T performed at Line 1 of Algorithm 1 is
to ensure an ordering on the IDs of the δ-TCFIs, so that the IDs in each
ID-array are also automatically ordered. An example of an ITI is shown
as follows.

Example 10. If δ = 0.03, then T = {b, c, bd, cd, ac, bcd, acd, abcd} (sorted).
Figure 4 shows the corresponding ITI. For example, the pointer of acd is
stored at NLA[5]; thus, we have “5” in the size-3 ID-arrays of the items
a, c and d, respectively. �

I
t
e
m

A
r
r
a
y

a

b

c

d

2

3

2
 {
2
,

3
}

2
 {
1
,

2
}

S
i
z
e
-
2

I
D
-
a
r
r
a
y

S
i
z
e
-
3

I
D
-
a
r
r
a
y

S
i
z
e
-
4

I
D
-
a
r
r
a
y

2

{
1
}

{
3
}
 {
5
}

3
 {
4
}

3
 {
4
,

5
}

3
 {
4
,

5
}

4
 {
6
}

4
 {
6
}

4
 {
6
}

4
 {
6
}

b
d

c
d

a
c

b
c
d

a
c
d

a
b
c
d

N
o
d
e
-
L
i
n
k

A
r
r
a
y

1

2

3

4

5

6

Fig. 4. Inverted δ-TCFI Index of Example 10

Given the ITI and X ∈ F , where X = x1 · · ·xn, we can efficiently find
X’s superset in T that has the highest support among all X’s supersets in
T . As shown in Procedure 1, we can find the superset of X by intersecting
the size-j ID-arrays of each item xi, where j > n. According to the way

that T is sorted and that the ID of a δ-TCFI is added to the ID-arrays,
the first ID obtained by the intersection of the size-j ID-arrays is X’s size-
j superset that has the greatest support and is lexicographically ordered
before all other X’s size-j supersets with the same support. X’s closest δ-
TCFI superset is the superset that gives X the greatest estimated support
(Line 5 of Procedure 1).

Procedure 1 GetClosestSupset(X = x1 · · ·xn)

1. Y ← ∅;
2. for each j = n + 1, n + 2, . . . do

3. Intersect the size-j ID-array of xi, for 1 ≤ i ≤ n;
4. Y ′ ← NLA[ID], where ID is the first ID obtained by the intersection (if any);
5. if((supp(Y ′) · ext(Y ′, j − n)) > (supp(Y) · ext(Y, |Y | − n)))
6. Y ← Y ′;
7. return Y ;

When X is a δ-TCFI, we can also find X’s smallest superset that
has the greatest support among all other X’s smallest supersets (Line
8 of Algorithm 1) by simply returning the first δ-TCFI obtained by the
intersection.

The following example further illustrates how Procedure 1 is pro-
cessed.

Example 11. Referring to the ITI in Example 10, if we want to find the
closest δ-TCFI superset of ad, we intersect the size-3 ID-arrays of a and d

and obtain the ID “5”. Thus, we access acd in Tδ via its pointer stored at
Position 5 of the NLA. In the same way, we access abcd by intersecting the
size-4 ID-arrays of a and d. Let N be the total number of transaction in the
database we are referring to. Since (supp(acd) · ext(acd, 1)) = (104/N ×
1.03) = 107/N > (supp(abcd) · ext(abcd, 2)) = (100/N × 1.06) = 106/N ,
acd is found to be the closest δ-TCFI superset of ad.

If we want to find the closest δ-TCFI superset of ab, we first intersect
the size-3 ID-arrays of a and b. Since the intersection obtains no ID, we
continue with the size-4 ID-arrays of a and b and obtain the ID “6”. Thus,
abcd is returned. �

With Procedure 1, ComputeBorder (invoked at Line 9 of Algorithm
1), is presented in Procedure 2 as follows. For all X ⊂ Y starting from
|X| = (|Y |− |EXT (Y)|), where (|Y |− |EXT (Y)|) is the size of a smallest
FI in CLOS (Y), GetClosestSupset is invoked to determine whether Y is

Procedure 2 ComputeBorder(Y)

1. B ← ∅;
2. for each i = |EXT (Y)|, . . . , 1 do

3. for each X ⊂ Y , where |X| = (|Y | − i), do

4. if(GetClosestSupset(X) = Y and ∄X ′ ∈ B such that X ′ ⊂ X)
5. B ← B ∪ {X};
6. if(∄X ∈ B such that |X| = (|Y | − i))
7. return B;

the closest δ-TCFI superset of X. If Y is the closest δ-TCFI superset of
X and X has no proper subset X ′ such that Y is also the closest δ-TCFI
superset of X ′, then X is a border vertex and included in B.

If no X, where |X| = (|Y | − i), is a border vertex (Line 6), then X
must have some proper subsets which are in CLOS (Y). This also implies
that X’s supersets that are in CLOS (Y) also have proper subsets which
are in CLOS (Y). Thus, no X’s supersets can be border vertices and hence
we can stop processing Y ’s subsets of size greater than |X|.

Example 12. Referring to the ITI in Example 10, we show how to compute
the set of border vertices B of the δ-TCFI abcd. We start with the smallest
subsets in CLOS (abcd), i.e., the size-2 subsets of abcd (δ = 0.03). We
find that ac, bd and cd are δ-TCFIs using Hashtable and that ad and
bc are in CLOS (acd) and CLOS (bcd) using the ITI. Thus, only ab is
included in B. For the size-3 subsets of abcd, acd and bcd are found to be
δ-TCFIs. The other two size-3 subsets of abcd, i.e., abc and abd, are also
not included in B, since they are supersets of ab, which is already in B.
Thus, only ab is returned as a border vertex of abcd. �

6.1 Efficiency of ComputeBorder and GetClosestSupset

The bottom-up computation for the border vertices in ComputeBorder
terminates in two or three levels in most cases. Since the number of bor-
der vertices is small, the cost of the subset testing in Line 4 of Procedure
2 is also small, while we keep the itemsets in B using a bit array to allow
efficient subset testing. Thus, the most costly operation is still GetClos-
estSupset.

The efficiency of GetClosestSupset depends on the size of the ID-
arrays to be intersected. The size of an ID-array is small in most cases,
because the number of δ-TCFIs is small and each ID-array consists of
only a local set of δ-TCFI supersets of an item of a specific size. Since
the ID-arrays are ordered, we can employ binary search, instead of linear

scan, for matching the IDs during the intersection. In our implementation,
binary search is used only when the size of an ID-array is larger than a
preset threshold. Moreover, since each intersection only needs to return
the first ID, the process terminates early in most cases. The intersection
also terminates when the end of any ID-array is reached. Thus, we can
speed up the process by first sorting the ID-arrays to be intersected in
ascending order of their size.

6.2 Querying δ-TAR Tree

In practice, F and R are too large to be generated, to be kept in disk,
and to be analyzed. Given T and Rδ, applications may not actually de-
mand to recover the whole sets of F and R. Instead, only a small portion
of relevant FIs/ARs is required to be recovered each time. The δ-TAR
tree Tδ offers a practical way of generating and analyzing the FIs/ARs on
demand: given some δ-TCFIs/δ-TARs of interest, we can efficiently re-
trieve/derive relevant patterns and rules from Tδ for further analysis. In
cases that an application demands the whole sets of ARs/FIs, we can also
generate them from Tδ. The δ-TAR tree, together with its two supporting
structures, Hashtable and the ITI, provides very efficient and effective re-
trieval of relevant patterns and rules and allows the user to analyze the
mining results in a more interactive way.

We note that the ITI can also be used to obtain all the subsets and
supersets of an FI. Efficient processing of this operation is important for
retrieving useful information such as, given X ∈ F , find the set of ARs
in which X is the antecedent or the consequent. We can process this by
modifying slightly Procedure 1. To obtain all δ-TCFI supersets of X, we
do not terminate after we obtain the first ID but continue until the end
of an ID-array is reached. To obtain all δ-TCFI subsets of X, for each
j < |X|, the intersection returns the IDs that appear in the size-j ID-
arrays of j items in X. Then, we can access the δ-TCFIs to derive other
supersets and subsets of X that are not δ-TCFIs.

7 Experimental Evaluation

In this section, we verify the effectiveness of δ-TARs as a concise repre-
sentation of ARs, as well as the efficiency of our algorithm for mining
δ-TARs. We run all experiments on an AMD Opteron 248 with 8GB
RAM, running Linux 64-bit.

Datasets. We conduct our experiments on the popularly used real
datasets from (FIMI Dataset Repository, 2003). We choose three datasets
with the following representative characteristics, which are true for a wide
range of values of σ.

– pumsb*: the number of CFIs is orders of magnitude smaller than that
of FIs, but is orders of magnitude larger than that of MFIs.

– accidents (Geurts et al., 2003): the number of CFIs is almost the
same as that of FIs, and is orders of magnitude larger than that of
MFIs.

– mushroom: the number of CFIs is orders of magnitude smaller than
that of FIs, but is only a few times larger than that of MFIs.

Among the real datasets, pumsb* and mushroom are dense datasets
while accidents is a sparser dataset. Other information of the datasets
is shown in Table 1.

Dataset Number of Number of Max. Size of Avg. Size of
Name Unique Items Transactions A Transaction A Transaction

pumsb* 7,117 49,046 63 50

accidents 469 340,183 51 34

mushroom 120 8,124 23 23

Table 1. Real and Synthetic Datasets

Experimental Settings. For all the experiments, we use our algorithm
BuildTree to first construct the δ-TAR tree Tδ and then generate the set
of δ-TARs from Tδ. The input to BuildTree, i.e., the set of δ-TCFIs, is
computed by the algorithm MineTCFI proposed in (Cheng et al., 2006).
We set δ to be 0.05, 0.05 and 0.2 for pumsb*, accidents and mushroom,
respectively, as recommended by (Cheng et al., 2006).

We compare our δ-TARs with the following state-of-the-art concise
representations of ARs: Closed ARs (Zaki, 2004), Basic ARs (Li and
Hamilton, 2004), and Non-Derivable ARs (NDARs) (Goethals et al.,
2005).

7.1 Performance at Different Minimum Confidence

Thresholds

We first report the results for the different values of ς, from 0 to 1.

0 0.2 0.4 0.6 0.8 1
10

1

10
2

10
3

10
4

10
5

10
6

Minimum Confidence Threshold ς

N
um

be
r

of
 A

R
s

ClosedAR
NDAR
δ−TAR

Fig. 5. Number of Rules at Varying ς (pumsb* at σ = 0.3)

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Minimum Confidence Threshold ς

N
um

be
r

of
 A

R
s

BasicAR
ClosedAR
NDAR
δ−TAR

Fig. 6. Number of Rules at Varying ς (accidents at σ = 0.3)

0 0.2 0.4 0.6 0.8 1
10

3

10
4

10
5

10
6

Minimum Confidence Threshold ς

N
um

be
r

of
 A

R
s

ClosedAR
NDAR
δ−TAR

Fig. 7. Number of Rules at Varying ς (mushroom at σ = 0.03)

Number of Rules. Figures 5 to 7 report the number of rules returned
by each of the approaches. The results show that the number of δ-TARs
is almost two orders of magnitude smaller than the number of Closed

ARs, Basic ARs and NDARs for both pumsb* and accidents, and is
up to an order of magnitude smaller for mushroom. For accidents at
ς = 1 as shown in Figure 6, we do not record any δ-TAR, Closed AR, or
NDAR, although there are 16 ARs of confidence 1, which can be derived
from other ARs. For reference, we remark that the number of δ-TARs
is approximately six, three, and six orders of magnitude smaller than
the number of all ARs, for the three datasets pumsb*, accidents, and
mushroom, respectively.

We are not able to obtain the Basic ARs for both pumsb* and mushroom.
However, as reported in (Goethals et al., 2005), the number of Basic ARs
is larger than that of NDARs for the same set of datasets used (but at
much larger σ). Thus, we believe the number of Basic ARs is also orders
of magnitude larger than that of δ-TARs. We report the number of Basic
ARs for accidents in Figure 6 as a reference.

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

Minimum Confidence Threshold ς

R
un

ni
ng

 T
im

e
(s

ec
)

ClosedAR
NDAR
δ−TAR

(a) Running Time

0 0.2 0.4 0.6 0.8 1
10

1

10
2

10
3

Minimum Confidence Threshold ς

M
em

or
y

C
on

su
m

pt
io

n
(M

B
) ClosedAR

NDAR
δ−TAR

(b) Memory Consumption

Fig. 8. Running Time and Memory Consumption at Varying ς (pumsb* at σ = 0.3)

Running Time and Memory Consumption. Figures 8 to 10 report
the time and memory consumption for generating the respective rules.
Since Closed ARs and NDARs are generated from the raw datasets di-
rectly instead of from the CFIs and NDIs, we also include the time and
memory used to mine the δ-TCFIs.

As shown in the figures, there is no clear winner for both running
time and memory usage. Mining δ-TARs is the fastest for pumsb* and
accidents but is the slowest for mushroom, while the memory consump-
tion of mining δ-TARs is the least for accidents but is the greatest for
pumsb* and mushroom. However, the difference in the running time and
the memory consumption is small and all the three algorithms are effi-

0 0.2 0.4 0.6 0.8 1
10

1

10
2

10
3

Minimum Confidence Threshold ς

R
un

ni
ng

 T
im

e
(s

ec
)

ClosedAR
NDAR
δ−TAR

(a) Running Time

0 0.2 0.4 0.6 0.8 1
10

2

10
3

Minimum Confidence Threshold ς

M
em

or
y

C
on

su
m

pt
io

n
(M

B
) ClosedAR

NDAR
δ−TAR

(b) Memory Consumption

Fig. 9. Running Time and Memory Consumption at Varying ς (accidents at σ = 0.3)

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

Minimum Confidence Threshold ς

R
un

ni
ng

 T
im

e
(s

ec
)

ClosedAR
NDAR
δ−TAR

(a) Running Time

0 0.2 0.4 0.6 0.8 1
10

1

10
2

10
3

Minimum Confidence Threshold ς

M
em

or
y

C
on

su
m

pt
io

n
(M

B
) ClosedAR

NDAR
δ−TAR

(b) Memory Consumption

Fig. 10. Running Time and Memory Consumption at Varying ς (mushroom at σ = 0.03)

cient in general. We also find that the time taken to generate the δ-TARs
is roughly proportional to the number of δ-TCFIs, which is the input to
build Tδ. Since we first build Tδ and then generate the δ-TARs, the time
and the memory used for the different settings of ς is basically the same.

Error Rate. We also use Tδ to derive all ARs of confidence greater
than 0.6 for each of the three datasets. We then compute the error rate
of the confidence and support of the derived ARs as (|true conf (or supp)
− estimated conf (or supp)|)/(true conf (or supp)). The error rates for
the individual ARs are then averaged. The average error rates of the esti-
mated confidence (support) of the derived ARs are computed to be 0.09
(0.02), 0.07 (0.03) and 0.07 (0.02) for pumsb*, accidents and mushroom,
respectively. The error rate of the estimated confidence is greater than
that of the estimated support because the computation of confidence is

based on the support of the antecedent and the consequent of an AR,
both of which may be estimated.

7.2 AR Derivation and Querying δ-TAR Tree

We compute the average time (i.e., total time divided by the number of
ARs derived) taken to derive an AR, which is 5×10−12sec, 56×10−12sec
and 8×10−12sec for pumsb*, accidents and mushroom, respectively. The
time is longer for accidents because accidents is sparser and hence
more traversals on Tδ are needed to derive the ARs.

To show the efficiency of querying Tδ, we also compute the time for
finding all ARs in which X is the antecedent or the consequent, for each
X ∈ F . The average time taken to process each FI is recorded as 0sec
for all the three datasets. The result is surprising since a set of ARs is
actually returned for each FI, but the processing time is smaller than that
of deriving a single AR tested earlier. The main reason for the shorter
running time is because we do not need to traverse Tδ to find the subsets
and supersets of X to determine whether X is the antecedent or the con-
sequent; instead, we can very efficiently obtain the subsets and supersets
of X using the ITI and then access the corresponding nodes in Tδ directly.
The result of this experiment thus reveals the efficiency of using the ITI
and querying Tδ.

7.3 Performance at Different Minimum Support Thresholds

This experiment studies the effect of different values of σ on the perfor-
mance of mining δ-TARs. We fix ς = 0 and vary σ for each dataset as
shown in Figures 11 to 13, which report the number of the three types of
rules. The figures clearly show that for all settings of σ and all datasets,
the number of δ-TARs is consistently one or nearly two orders of magni-
tude smaller than that of Closed ARs and NDARs.

The running time and memory consumption recorded for this experi-
ment is consistent with the trend observed in the experiment in Section
7.1 and in overall, all the three approaches are efficient and there is no
clear winners. Same as the previous experiment, the running time and
memory consumption of mining δ-TARs is roughly proportional to the
number of δ-TCFIs. Thus, we omit the detailed figures.

8 Conclusions

In this paper, we study an effective technique for eliminating the redun-
dancy in the set of ARs. We propose a concise set of ARs, called the

0.10.20.30.40.5
10

2

10
3

10
4

10
5

10
6

10
7

10
8

Minimum Support Threshold σ

N
um

be
r

of
 A

R
s

ClosedAR
NDAR
δ−TAR

Fig. 11. Number of Rules at Varying σ (pumsb*)

0.10.20.30.40.5
10

3

10
4

10
5

10
6

10
7

10
8

Minimum Support Threshold σ

N
um

be
r

of
 A

R
s

ClosedAR
NDAR
δ−TAR

Fig. 12. Number of Rules at Varying σ (accidents)

0.010.020.030.040.05
10

4

10
5

10
6

Minimum Support Threshold σ

N
um

be
r

of
 A

R
s

ClosedAR
NDAR
δ−TAR

Fig. 13. Number of Rules at Varying σ (mushroom)

δ-TARs, which we prove to be non-redundant and able to derive all ARs
by three inference rules. In addition, we develop the δ-TAR tree that pro-

vides a practical way of allowing users to query the mining results and
derive relevant knowledge on demand. Experiments verify that the set of
δ-TARs is up to orders of magnitude smaller than the state-of-the-art ap-
proaches (Zaki, 2004; Li and Hamilton, 2004; Goethals et al., 2005). We
also show that the δ-TAR tree is a very efficient supporting structure for
generating the set of δ-TARs, deriving the ARs and querying the δ-TCFIs
and FIs.

For future work, we seek to optimize the performance of AR querying
by considering a caching system (Jeudy and Boulicaut, 2002), as well as
to further reduce the number of rules by pruning the non-actionable ARs
(Liu et al., 2001).

Acknowledgements. The authors thank Dr. Bart Goethals and Mr.
Juho Muhonen for providing us the algorithm for mining NDARs, Prof.
Howard Hamilton and Mr. Guichong Li for providing us the algorithm
for mining Basic ARs, and Prof. Mohammed Javeed Zaki for providing
us the algorithm for mining Closed ARs.

Bibliography

Charu C. Aggarwal and Philip S. Yu. A new approach to online genera-
tion of association rules. IEEE Transactions on Knowledge and Data
Engineering, 13(4):527–540, 2001.

Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining asso-
ciation rules between sets of items in large databases. In Proc. of the
ACM Conference on the Management of Data (SIGMOD), 1993.

Yves Bastide, Nicolas Pasquier, Rafik Taouil, Gerd Stumme, and Lotfi
Lakhal. Mining minimal non-redundant association rules using frequent
closed itemsets. In Computational Logic, pages 972–986, 2000.

Roberto Bayardo. Efficiently mining long patterns from databases. In
Proc. of the ACM Conference on the Management of Data (SIGMOD),
pages 85–93, 1998.

Jean-François Boulicaut, Artur Bykowski, and Christophe Rigotti. Free-
sets: A condensed representation of boolean data for the approximation
of frequency queries. Data Mining and Knowledge Discovery (DMKD),
7(1):5–22, 2003.

Toon Calders and Bart Goethals. Mining all non-derivable frequent item-
sets. In Proc. of the European Conference on Principles of Data Mining
and Knowledge Discovery (PKDD), pages 74–85, 2002.

Aaron Ceglar and John F. Roddick. Association mining. ACM Computing
Surveys (CSUR), 38(2):5, 2006.

James Cheng, Yiping Ke, and Wilfred Ng. δ-Tolerance Closed Frequent
Itemsets. In Proc. of the 6th IEEE International Conference on Data
Mining (ICDM), 2006.

James Cheng, Yiping Ke, and Wilfred Ng. FG-Index: Towards
verification-free query processing on graph databases. To appear in
Proc. of the 26th ACM Conference on the Management of Data (SIG-
MOD), 2007a.

James Cheng, Yiping Ke, and Wilfred Ng. Maintaining frequent closed
itemsets over a sliding window. To appear in Journal of Intelligent
Information Systems (JIIS), 2007b.

FIMI Dataset Repository. The FIMI frequent itemset mining dataset
repository. http://fimi.cs.helsinki.fi/data/, 2003.

Bruno M. Fonseca, Paulo Braz Golgher, Bruno Pôssas, Berthier A.
Ribeiro-Neto, and Nivio Ziviani. Concept-based interactive query ex-
pansion. In Proc. of the ACM CIKM International Conference on In-
formation and Knowledge Management, pages 696–703, 2005.

Karolien Geurts, Geert Wets, Tom Brijs, and Koen Vanhoof. Profiling
high frequency accident locations using association rules. In Proc. of
the 82nd Annual Transportation Research Board, page 18, 2003.

Bart Goethals, Juho Muhonen, and Hannu Toivonen. Mining non-
derivable association rules. In Proc. of the SIAM International Con-
ference on Data Mining (SDM), 2005.

Baptiste Jeudy and Jean-François Boulicaut. Using condensed represen-
tations for interactive association rule mining. In Proc. of the 6th Eu-
ropean conferences on Principles and practice of Knowledge Discovery
in Databases (PKDD), pages 225–236, 2002.

Marzena Kryszkiewicz. Representative association rules and minimum
condition maximum consequence association rules. In Proc. of the Eu-
ropean Conference on Principles of Data Mining and Knowledge Dis-
covery (PKDD), pages 361–369, 1998.

Navin Kumar, Aryya Gangopadhyay, and George Karabatis. Support-
ing mobile decision making with association rules and multi-layered
caching. Decision Support Systems, 43(1):16–30, 2007.

Guichong Li and Howard J. Hamilton. Basic association rules. In Proc.
of the SIAM International Conference on Data Mining (SDM), 2004.

Bing Liu, Wynne Hsu, and Yiming Ma. Identifying non-actionable associ-
ation rules. In Proc. of the 7th ACM SIGKDD international conference
on Knowledge discovery and data mining, 2001.

Fabian Mörchen and Alfred Ultsch. Efficient mining of understandable
patterns from multivariate interval time series. To appear in Data
Mining and Knowledge Discovery (DMKD), 2007.

Girish K. Palshikar, Mandar S. Kale, and Manoj M. Apte. Association
rules mining using heavy itemsets. Data and Knowledge Engineering,
61(1):93–113, 2007.

Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Discov-
ering frequent closed itemsets for association rules. In Proc. of the
International Conference on Database Theory (ICDT), 1999.

Nicolas Pasquier, Rafik Taouil, Yves Bastide, Gerd Stumme, and Lotfi
Lakhal. Generating a condensed representation for association rules.
Journal of Intelligent Information Systems (JIIS), 24(1):29–60, 2005.

F. A. Thabtah and P. I. Cowling. A greedy classification algorithm based
on association rule. Applied Soft Computing, 7(3):1102–1111, 2007.

Qiang Yang, Tianyi Li, and Ke Wang. Building association-rule based
sequential classifiers for web-document prediction. Data Mining and
Knowledge Discovery (DMKD), 8(3):253–273, 2004.

Mohammed Javeed Zaki. Mining non-redundant association rules. Data
Mining and Knowledge Discovery, 9(3):223–248, 2004.

