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Abstract In this paper we aim at extending the non-derivable condensed
representation in frequent itemset mining to sequential pattern mining. We start by
showing a negative example: in the context of frequent sequences, the notion of non-
derivability is meaningless. Therefore, we extend our focus to the mining of conjunc-
tions of sequences. Besides of being of practical importance, this class of patterns has
some nice theoretical properties. Based on a new unexploited theoretical definition
of equivalence classes for sequential patterns, we are able to extend the notion of a
non-derivable itemset to the sequence domain. We present a new depth-first approach
to mine non-derivable conjunctive sequential patterns and show its use in mining asso-
ciation rules for sequences. This approach is based on a well known combinatorial
theorem: the Möbius inversion. A performance study using both synthetic and real
datasets illustrates the efficiency of our mining algorithm. These new introduced pat-
terns have a high-potential for real-life applications, especially for network monitoring
and biomedical fields with the ability to get sequential association rules with all the
classical statistical metrics such as confidence, conviction, lift etc.
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1 Introduction

In this paper we study the discovery of frequent sequences. Many algorithms have
been proposed for mining all frequent sequences, such as SPAM (Ayres et al. 2002),
SPADE (Zaki 2001). Even more than in the frequent itemset domain, however, frequent
sequence mining is suffering from the huge amount of patterns a mining operation
produces. It is not uncommon that mining a rather modest database results in a gigantic
number of frequent patterns. Given that the original aim of data mining is to discover
those precious little nuggets of knowledge hidden in a huge pile of data, this situation
is a contradictio in terminis. In this respect, for the frequent itemset domain (Calders
et al. 2006), many studies have been conducted which aim at reducing the redundancy
in the output set. A logical approach is to see to what extent condensed representations
and deduction in the context of frequent itemsets can be extended to the sequential
pattern domain. Up to now, only closed sequential patterns have already been studied as
a condensed representation for the sequential pattern domain (Yan et al. 2003). In this
paper, we look at non-derivable itemsets as a candidate to extend. Loosely speaking, a
derivable itemset is one of which the support is perfectly determined by the support of
its subsets. A derivable itemset can thus be considered as redundant and be removed
from the output set. This seemingly straightforward exercise, however, turns out to
be slightly harder than expected. We start our paper with a negative result for non-
derivable sequences: unlike in the frequent itemset domain, the notion of non-deriv-
ability is meaningless in the sequential pattern domain; except for some extremely
degenerated cases, every sequence is non-derivable.

This negative result motivated us to look at a slightly different problem: the mining
of conjunctions of sequential patterns. This extended class of patterns turns out to
have much nicer mathematical properties. For example, for this class of patterns we
are able to extend the notion of non-derivable itemsets in a non-trivial way, based
on a new unexploited theoretical definition of equivalence classes for sequential pat-
terns. As a side-effect of considering conjunctions of sequences as the pattern type,
we can easily form association rules between sequences. Compared to the unor-
dered structure of an itemset pattern, only few works (Balcázar and Garriga 2007)
focus on the association rule mining problem for sequential pattern. This is largely
due to the difficult formalization needed for these patterns compared to the set-the-
ory based formalization used in itemset mining. Furthermore, and as highlighted
by the authors in Xing et al. (2008), sequences are helpful in real-world critical
applications like medical diagnoses and disaster prediction by proposing sequence
rules associated with statistical metrics in order to build classifiers that efficiently
takes into account temporal order. We believe that building a theoretical framework
and an efficient approach for sequence association rules extraction problem is the
first step toward the generalization of association rules to all complex and ordered
patterns.

Our contributions in this article are twofold:
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1. We present a new equivalence relation and extend it to equivalence classes for
sequential patterns. We discuss the role of these classes in sequential patterns con-
cise representations and we exhibit a strong result for sequential pattern concise
representations that are based on frequency bounds.

2. We introduce a new mining task with a new type of pattern: the Conjunctive
Sequence Pattern based on the equivalence classes and investigate the algorithmic
aspects along with the possibility of computing a set of frequent non-redundant con-
junctive sequence patterns by using the combinatorial theorem of Möbius inversion
(Ireland and Rosen 1990).

The rest of the paper is presented as follows. In Sect. 2, the basic concepts of
sequential pattern mining are introduced. Section 3 presents the equivalences clas-
ses for sequential patterns along with their related properties. Section 4 introduces
the Conjunctive Sequence Pattern mining problem and discusses the computation of
a non-redundant set of frequent conjunctive sequence patterns. Section 5 introduces
CSPminer , our depth-first algorithm for mining conjunctive sequence patterns. An
experimental study is reported in Sect. 6 and we conclude our work in Sect. 7.

2 Preliminary concepts and definitions

2.1 Frequent sequence mining

In this section we define the sequential pattern mining problem in large databases
and give an illustration. This description of sequence datasets was first introduced
in Agrawal and Srikant (1995) and extended in Srikant and Agrawal (1996). Let
I = {i1, i2, . . . , im} be the finite set of items. An itemset is a non-empty set of
items. A sequence S over I is an ordered list 〈i t1, . . . , i tk〉, with i t j itemsets over I,
j = 1, . . . , k.

T(I) will denote the (infinite) set of all possible sequences over I. A sequence
database D over I is a finite set of pairs (SI D, T ), called transactions, with SI D ∈
{1, 2, . . .} an identifier and T ∈ T(I) a sequence over I. For any two transaction
(SI D1, T1) �= (SI D2, T2) ∈ D, it must be that SI D1 �= SI D2.

Definition 1 (Inclusion) A sequence S′ = 〈is′1 is′2 . . . , is′n〉 is a subsequence of
another sequence S = 〈is1 is2 . . . , ism〉, denoted S′ � S, if there exist i1 < i2 <, . . . ,

i j , . . . , < in such that is′1 ⊆ isi1 , is′2 ⊆ isi2 , . . . , is′n ⊆ isin .

Example 1 Sequence 〈(a)(c)(d)〉 is included in 〈(ab)(c)(ab)(de)〉. We say that
sequence 〈(ab)(c)(ab)(de)〉 supports 〈(a)(c)(d)〉. However, 〈(a)(c)〉 is not included
in 〈(c)(a)〉.
Definition 2 (Support) The support of a sequence S in a transaction database D,
denoted Support(S,D), is defined as: Support(S,D) = |{(SI D, T ) ∈ D|S � T }|.
The frequency of S in D, denoted f D

S , is f D
S = Support(S,D)

|D| .
Given a user-defined minimal frequency threshold σ , the problem of sequential

pattern mining is the extraction of all the sequences S in D such that fS ≥ σ . The set
of all frequent sequences for a threshold σ in a database D is denoted FSeqs(D, σ ).
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FSeqs(D, σ ) := {S | f D
S ≥ σ }.

Example 2 Consider the following database over the items I = {a, b, c, d}. There
are 3 transactions, with identifiers 1, 2, and 3. Let the minimal frequency threshold
be σ = 2

3 , the frequent sequences in D are: 〈(a)〉, 〈(b)〉, 〈(c)〉, 〈(d)〉, 〈(ab)〉, 〈(ad)〉,
〈(a)(c)〉 and 〈(d)(c)〉. Notice that we use brackets to separate the different itemsets in
the sequences from each other.

D =
S1 (a, b, c, d)(a, c)
S2 (a, b)

S3 (a, d)(c)

2.2 Problem statement

The problem studied in this paper now is as follows: for many datasets D and thresh-
olds σ , the size of the set of frequent sequences FSeqs(D, σ ) is extremely large and
contains a lot of redundancies. It is the goal of this paper to study how we can reduce
this enormous set of frequent sequences using techniques of pattern condensation
from the frequent itemset domain. The closed itemsets have already been adopted
successfully in this domain, leading to the closed sequential patterns (Yan et al. 2003).
A sequence S in a database D is called closed if there does not exist a sequence
S′ �= S such that S � S′ and fS = fS′ . Only mining the closed sequences results in
a reduced set of patterns. In this paper we want to extend another class of condensed
representations, the k-free sets (Calders and Goethals 2003), to the frequent sequence
domain. This class includes the free sets, disjunction-free sets, and the non-derivable
itemsets. For an overview of condensed representations in the field of frequent item-
sets, see Calders et al. (2006). Central in the construction of these representation is
the deduction of frequencies. That is, for a given set of frequencies, we ask ourselves
the question: what can be derived for the frequency of other patterns? This problem is
formalized as follows: Let C = { fS1 , . . . , fSn ∈ [0, 1]} be the respective frequencies
of S1, . . . , Sn . A database is said to be consistent with C if and only if, for i = 1, . . . , n,
fSi ,D = fSi . Typically, for given frequencies there are many consistent databases. Let
now S be another sequence. The best bounds for fS given these n frequencies is then
defined as

[L BC(S), U BC(S)] := [min{fS,D | D consistent with fS1 , . . . , fSn },
max{fS,D | D consistent with fS1 , . . . , fSn }]

In the frequent itemset domain deduction rules that allow to compute these bounds
under some assumptions of the set C have been studied. For example, among oth-
ers, there are the following reasoning rules for itemsets: fabc ≤ fab and fabc ≥
fab + fac − fa . If now it happens that the lower bound fab equals the upper bound
fab + fac − fa , abc is redundant w.r.t. the itemsets a, ab, and ac. Hence, in this
situation we can remove abc from the output set of frequent itemset mining. In
general, this problem of deciding on the best bounds is NP-hard (Calders 2007),
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Mining conjunctive sequential patterns 81

but for the special case where we consider only a downwardly closed set C with a
single top element, the problem becomes tractable and forms the basis of the fre-
quent non-derivable itemset mining representation. This representation turns out to
be quite successful in reducing the output set in frequent itemset mining (Calders
and Goethals 2002, 2007). In the next section we start with extending these results
to the sequential domain. An important notion is that of equivalence classes for
sequences.

3 Equivalence classes for sequential patterns

Previous works in sequential pattern mining (Zaki 2001) introduced sequential pat-
terns equivalence classes based on a prefix equivalence relation in order to decompose
the mining task in smaller easily-solvable problems. In this section, we introduce the
concept of sequential patterns equivalence classes based on a support equivalence rela-
tion. We discuss complexity issues associated with these equivalence classes and show
that these equivalence classes definition can be used to prove an important theorem
on the lower bound of sequential patterns frequency.

3.1 Definitions

Definition 3 Let S be a set of sequences. Two sequences T1 and T2 are said to be
S-equivalent, denoted T1 ≡S T2, if, for all S ∈ S it holds that S � T1 if and only if
S � T2. The set of all sequences equivalent to T under ≡S is denoted [T ]S .

Let IN and OUT be sets of sequences. E(IN ,OUT ) denotes the following set
of sequences:

E(IN ,OUT ) := {T ∈ T | ∀S ∈ IN : S � T,∀S ∈ OUT : S �� T }.

Hence, E(IN ,OUT ) denotes the set of all sequences that support all sequences in
IN , and none of the sequences in OUT .

Example 3 Let I = {a, b, c}, and let

S =
⎧
⎨

⎩

〈(a)(b)(c)〉
〈(b)(c)〉
〈(a)(b)〉

⎫
⎬

⎭

We then have: 〈(abc)(abc)(abc)〉 ≡S 〈(a)(bc)(abc)〉 and 〈(b)(c)〉 �≡S 〈(a)(bc)〉.
Consider now E(IN ,OUT ) for:

– IN = {〈(a)(b)(c)〉 , 〈(ac)〉}, OUT = {〈(bc)〉}. E(IN ,OUT ) contains, among
others, the sequences 〈(ac)(b)(c)〉, 〈(ac)(c)(ab)(c)〉, but not 〈(abc)〉.

– IN = {〈(ab)〉 , 〈(ac)〉}, OUT = {〈(c)〉}. E(IN ,OUT ) is empty, as every
sequence that contains 〈(ac)〉 must also contain 〈(c)〉.

– IN = {〈(a)(c)〉 , 〈(b)〉}, OUT = {〈(a)(b)〉 , 〈(b)(c)〉}. E(IN ,OUT ) is also
empty, as every sequence T that contains 〈(a)(c)〉 and 〈(b)〉 must also contain
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either 〈(a)(b)〉 or 〈(b)(c)〉; since T contains 〈(a)(c)〉, the first occurrence of a in T
must come before the last occurrence of c. As such, the first occurrence of (b) in
T either comes after the first occurrence of a or before the last occurrence of c.

The following lemma is immediate given the definition of equivalence of sequences.

Lemma 1 Let S be a set of sequences.≡S is an equivalence relation on the set of all
sequences T. The number of equivalence classes |T/ ≡S | is at most 2|S|.

Proof This follows easily from the fact that for every transaction T ∈ T,

[T ]S = E({S ∈ S | S � T }, {S ∈ S | S �� T }). �


Furthermore, equivalence classes can be written, without loss of generality, by
only using the top elements present in the sets IN and the bottom elements in OUT .
Semantically, E(IN ,OUT ) = ∅means that no sequences can be built supporting all
sequences from set IN and not supporting any sequence from the set OUT . Here a
first divergence with the itemset domain emerges; whereas the structure of the equiv-
alence classes is extremely simple in the itemset case, for sequences this is not at all
true. For itemsets, E(IN ,OUT ) is non-empty if and only if every set in OUT has
at least one item that is not in any of the sets in IN ; e.g., E({ab, ac}, {bc}) is empty
as every transaction that contains the itemsets ab and ac, also contains bc. As such,
deciding non-emptiness of an equivalence class is trivial for itemsets as this test can be
performed in linear time. For sequences, this problem turns out to be much harder. Con-
sider, e.g., the example E({〈(a)(b)〉 , 〈(a)(c)〉}, {〈(b)(c)〉}). This class is non-empty,
as it contains, among others, the sequence 〈(a)(c)(b)〉. The following lemma states
exactly how much more complex this problem becomes. The importance of this lemma
will become apparent later on in the paper, where we introduce deduction rules for the
frequency of (conjunctions of) sequences.

Lemma 2 Let IN and OUT be sets of sequences. Deciding if E(IN ,OUT ) is non-
empty is an NP-complete problem.

Proof The inclusion in NP is straightforward; if E(IN ,OUT ) is nonempty, then it
contains at least 1 sequence T with si ze(T ) at most

∑
S∈IN si ze(S), where si ze

(〈is1, . . . , isk〉) denotes
∑k

j=1 |is j |. Indeed, let T be a sequence in E(IN ,OUT ).
Then, for every S ∈ IN , there exists a set of indices i1 < i2 <, . . . , < i|S|, such
that the j th set in S is a subset of the i j th subset of T . Fix for every S ∈ IN
one such set of indices i[S]. Let now T ′ be the following subsequence of T : let
1 ≤ t1 <, . . . , < tm ≤ |T | be the set of indices ∪S∈S ′ i[S].

T ′ =
〈

⋃

S∈IN
t j=ik∈i[S]

S[k]
〉m

j=1

�
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Since T ′ � T , for all S ∈ OUT , S �� T ′. Furthermore T ′ is constructed in such a
way that for all S ∈ IN , S � T ′. si ze(T ′) ≤ ∑

S∈IN si ze(S). Such a sequence T ′
is a succinct certificate for the non-emptiness of E(IN ,OUT ).

For the completeness, we reduce the following variant equal-3COL of the 3COL
problem to the problem of deciding on the non-emptiness of E(IN ,OUT ): Given a
graph G with 3k vertices, does there exist a coloring of the vertices that uses only 3 col-
ors, and every color exactly k times? This problem is equivalent to the 3COL problem.
On the one hand we can reduce 3COL to it as follows: a graph G is three-colorable
if and only if the graph consisting of 3 separate copies of G is in equal-3COL. On
the other hand, if a graph is in equal-3COL the coloring itself is clearly a succinct
certificate and thus equal-3COL is in NP.

So, let G be a graph with 3k edges. We show how we can reduce the 3COL prob-
lem for a graph G with 3k vertices to a non-emptiness problem E(IN ,OUT ). Let
V = {v1, . . . , v3k} be the set of vertices, and E be the set of edges of G. The set of items
is {i1, i2, . . . , in, i3k+1, R, G, B}. The sets IN and OUT will be constructed in such a
way that the only sequences in E(IN ,OUT ) are of the form 〈i1C1, . . . , i3kC3ki3k+1〉
with Ci either R, G, or B, and such that C(vi ) = Ci , for all i = 1, . . . , 3k is a valid
coloring of G. We first describe the sequences in the set IN :

1. 〈(i1)(i2), . . . , (i3k)(i3k+1)〉, all markers must be present in the right order.

2.

〈 k×
︷ ︸︸ ︷
(C)(C), . . . , (C)

〉

, for C = R, G, B every color occurs at least k times.

We now describe the sequences in OUT :

1. 〈(i, j)〉, ∀i �= j ∈ I, all sets in the sequence are singletons.
2.

〈
(i j )(i j )

〉
, j = 1, . . . , 3k + 1, no marker occurs twice.

3.

〈 k+1×
︷ ︸︸ ︷
(C)(C), . . . , (C)

〉

, for ∀C ∈ {R, G, B}, no color occurs k + 1 times.

4.
〈
(i j )(C1)(C2)(i j+1)

〉
, j = 1, . . . , 3k,∀C1, C2 ∈ {R, G, B}. there are no two colors

between two subsequent markers.
5.

〈
(i j )(C)(i j+1)(ik)(C)(ik+1)

〉
, ∀(v j , vk) ∈ E , ∀C ∈ {R, G, B}. no adjacent verti-

ces can have the same color C with C = R, G, B.

Every sequence in E(IN ,OUT ) encodes a 3-coloring of G as described above.

Notice that the high complexity of this seemingly simple problem also indicates
that deducing bounds [L BC(S), U BC(S)] on the frequency of a sequence S, given the
frequencies of other sequences C, is at least as hard as NP. This can be seen as follows:
the equivalence class E(IN ,OUT ) is empty if and only if for any sequence S in IN ,
given the frequencies fS′ = 1 for all S′ ∈ IN \ {S}, and fS′ = 0 for all S ∈ OUT , the
best bound is [0, 0]. Nevertheless, low complexity for the equivalence class problem
does not guarantee efficient algorithms for computing bounds.

The NP-completeness of this problem motivates the study of special cases that
could be interesting from a practical point of view. The special case we consider is
the following: suppose that the set of given constraints C contains the frequency fS′ of
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every strict subsequence S′ ≺ S. This is a useful subcase as it reflects exactly the infor-
mation we have in Apriori-like algorithms. However, as shown in the next subsection,
in this case, the lower bound will always be trivial.

3.2 Lower bound on the frequency of sequential patterns

Based on the notion of equivalence classes, we can give a negative result effectively
eliminating all hope for an easy extension of the notion of non-derivable itemsets to
the sequential pattern domain.

Lemma 3 For any non-empty sequence S, the equivalence class E({S′ | S′ ≺ S}, {S})
is nonempty.

Theorem 1 Set S be a sequence, and let C be a set of given frequencies that has the
frequency for every S′ ≺ S. If there exists a database that is consistent with C, the
lower bound L BC(S) is 0.

Proof Let D be a database consistent with C . As E({S′ | S′ ≺ S}, {S}) is non-empty
(Lemma 3), we can replace every transaction in D that supports S by a transaction
of E({S′ | S′ ≺ S}, {S}). This transformation does not affect the frequency of any
of the strict subsequences of S, hence the transformed database still satisfies C. The
frequency of S in the transformed database, however, is 0, and hence L BC(S) is 0. �

Example 4 Let D be a sequence database containing the sequence S = 〈(a)(b)(c)〉.
We can always exhibit a database D′ that gives the same frequency to every strict
subsequence of S but reduces the frequency of S itself to 0.

D =
S1 (a)(b)(c)
S2 (a)(b)(c)
S3 (c)(a)

S4 (b)(c)

D′ =
S1 (b)(c)(a)(c)(a)(b)

S2 (b)(c)(a)(c)(a)(b)

S3 (c)(a)

S4 (b)(c)

This theorem is very important from the concise representations point of view as
it clearly states that condensed representations based on support computations like
non-derivable representation (Calders and Goethals 2002) and all the other k-free
representations like 0-free-sets or disjunct-free-sets (Boulicaut et al. 2003; Calders
and Goethals 2003) are meaningless for sequential patterns; only sequences with a
frequency of 0 are derivable and thus requiring that a sequence is non-derivable will
not reduce the set of frequent sequences at all.

4 Conjunctive sequence patterns

In the previous section we introduced equivalence classes for sequential patterns and
discussed their theoretical usefulness. In this section we introduce a more practical
approach in order to mine a more specific subset of equivalence classes: the downward
closed equivalence classes regardless of their emptiness or not.
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Definition 4 A conjunctive sequence pattern (CSP) is a subset C of T such that all
S �= S′ ∈ C , S and S′ are incomparable; i.e., neither S �� S′, nor neither S′ �� S. The
set of all CSPs is denoted C.

A sequence T ∈ T is said to support a CSP C if for all S ∈ C , S � T . The
support of a CSP C in a database D, denoted SupportD(C), is defined as the number
of sequence transactions in D that satisfies C .

Let C1, C2 ∈ C. C1 is said to be a subpattern of C2, denoted C1 � C2 if and only
if for all S1 ∈ C1 there exists a S2 ∈ C2 such that S1 � S2.

Example 5 Let C1 = {〈(a)(b)〉 , 〈(a, c)〉} and C2 = {〈(b)〉 , 〈(c)〉} conjunctive
sequence patterns. And D defined as:

D =
S1 (a)(b)(a, c)
S2 (a, b)(c)
S3 (c)(a)

– C2 is a subpattern of C1 (C2 � C1) as 〈(b)〉 � 〈(a)(b)〉 and 〈(c)〉 � 〈(a, c)〉.
– SupportD(C1) = 1 as only the sequence S1 = 〈(a)(b)(a, c)〉 supports C1.
– SupportD(C2) = 2 as S1 and S2 support C2.

The following lemma is immediate:

Lemma 4 (Anti-monotonicity) Let C1, C2 be CSPs. If C1 � C2, then, for all dat-
abases D, Support(C1) ≥ Support(C2).

Hence, for mining frequent CSPs we can exploit the anti-monotonicity for pruning
the search space. Next we show how we can generate all direct specializations of a
pattern.

Let P ⊆ T. �P� denotes the CSP {S ∈ P | � ∃S′ ∈ P : S′ ≺ S}. On the other hand,
↓ P denotes the downward closure of P; i.e., the set {S ∈ T | ∃S′ ∈ P : S � S′}.

A CSP C2 is said to cover a CSP C1, denoted C1 → C2, if C1 ≺ C2, and there
does not exist a CSP C3 such that C1 ≺ C3 ≺ C2; i.e., C2 is a direct specialization of
C1, and C1 a direct generalization of C2. For the sequences case, the computation of
all direct specializations is straightforward: given a sequence S = 〈I1, . . . , In〉. The
direct generalizations of S, denoted dg(S), are the sequences:

n⋃

j=1
|I j |>1

{〈I1, . . . , I j−1, I j \ {i}, I j+1, . . . , In
〉 | i ∈ I j } ∪

n⋃

j=1
|I j |=1

{〈I1, . . . , I j−1, I j+1, . . . , In
〉 | i ∈ I j }.

Lemma 5 (Generalization and specialization) Let C be a CSP. The set of direct
generalizations of C is:

{�(C \ S) ∪ dg(S)� | S ∈ C}
and the set of direct specializations of C is:
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{C ∪ {S} | S �∈ C, dg(S) ⊆ C}

Proof The proof is based on the simple fact that if C1 is a generalization of C2
if and only if ↓ C1 ⊆↓ C2 and that ↓ C1 =↓ C2 implies that C1 = C2. E.g.,
for the set of direct generalizations, it can easily be checked that for all S ∈ C ,
↓ (C \ S) ∪ dg(S) ⊆↓ C , and that ↓ C\ ↓ (C \ S) ∪ dg(S) = {S}. �


The generalization and specialization lemma allows for generating the set of all
patterns from general to specific, thus exploiting the anti-monotonicity of support as
much as possible.

4.1 Support bounding and Möbius inversion

The next theorem shows that the set of all CSPs equipped with the partial order �
forms a lattice. This in contrast to the set of sequences without conjunctions, on which
the structure is a partial order. E.g., the sequences 〈(a, b)(a)〉 and 〈(a)(a, b)〉 do not
have a unique meet; both 〈(a), (a)〉 and 〈(a, b)〉 are meets. In the set of all CSPs, the
meet is unique: {〈(a), (a)〉 , 〈(a, b)〉}.
Theorem 2 The partial order (C,�) forms a lattice.

Proof Let C1, C2 ∈ C. It is easy to see that the following two sets are respectively the
unique meet and the join of C1 and C2:

�↓ C1∩ ↓ C2� and �C1 ∪ C2� �


The fact that (C,�) is a lattice opens up a whole mathematical toolbox of useful
properties that can be applied. Most importantly, we can use the technique of Möbius
inversion to get rules bounding the support of sequences in much the similar way as
was done for the Non-Derivable Itemsets, as we will explain next.

Let C be a C S P . With every element C ′ ∈ ↓ C in the lattice, we can associate two
numbers: s(C ′) = Support(C ′,D), and a(C ′) = A(C ′), with

A(C ′) := |{T ∈ D | ∀C ′′ ∈↓ C : T |� C ′′ ⇔ C ′′ � C ′}|

Hence, s(C ′) is the normal support in the database D, and a(C ′) denotes the number
of transactions that support exactly C ′, and nothing more. For all transactions that are
counted in a(C ′ they support a pattern only if that pattern is more general than C ′.

Then, the following relation between a and s holds:

Lemma 6 For all C ′ � C,

s(C ′) =
∑

C ′�C ′′
a(C ′′)

From this lemma the following theorem follows quite easily:
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Theorem 3 Let, for all C ′ � C, an integer sC be given. There exists a database D
with for all C ′ � C, Support(C ′,D) = sC if and only if the following system of
inequalities and equalities in the variables a(C ′), C ′ � C has a solution:

⎧
⎨

⎩

a(C ′) = 0 ∀C ′: E(C ′,↓ C \ C ′) = ∅
a(C ′) ≥ 0 ∀C ′: E(C ′,↓ C \ C ′) �= ∅∑

C ′�C ′′ a(C ′′) = s′C ∀C ′ � C

Moreover, for every database that satisfies for all C ′ � C, Support(C ′,D) = sC ,
a(C ′) = a(C ′,D) is a solution to the system.

The theory on Möbius inversion, which can be thought of as a generalization of
the inclusion-exclusion principle, now learns us that under this condition there always
exists a function µ, the so-called Möbius inverse, that allows us to express the a(C ′)
in function of the s(C ′); i.e.:

Lemma 7 There exists a function µ(·, ·) that maps a pair of CSPs C ′, C ′′ � C to a
integer µ(C1, C2), such that for all databases D, the following holds:

a(C ′) =
∑

C ′�C ′′
µ(C ′, C ′′)s(C ′′)

Hence, a(C ′) can be expressed as a simple linear combination of the supports of the
CSPs.

Combining the lemma with the theorem give us:

Theorem 4 Let, for all C ′ � C, an integer sC be given. There exists a database D
with for all C ′ � C, Support(C ′,D) = sC if and only if:

{∑
C ′�C ′′ µ(C ′, C ′′)s(C ′′) = 0 ∀C ′: E(C ′,↓ C \ C ′) = ∅

∑
C ′�C ′′ µ(C ′, C ′′)s(C ′′) ≥ 0 ∀C ′: E(C ′,↓ C \ C ′) �= ∅

Example 6 Let ε = 1 and let D be defined as:

D = S1 (a)(b)(c)

Suppose that we are trying to compute support bounds for the conjunctive sequence
pattern csp = {〈(a)〉 ; 〈(b)〉} and suppose that all frequencies are already known for
the set of sub-conjunctions P = { {〈〉}, {〈a〉}, {〈b〉} } . The lattice (L,�) based on the
set P ∪ {csp} can be represented as a matrix and the inverse matrix µ contains the
values needed to compute the bounds :

ζ =

⎛

⎜
⎜
⎝

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎞

⎟
⎟
⎠ , µ =

⎛

⎜
⎜
⎝

1 −1 −1 1
0 1 0 −1
0 0 1 −1
0 0 0 1

⎞

⎟
⎟
⎠

From µ, we get the 4 possible rules for support bounding:
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Algorithm 1: CSP miner Algorithm
Data: Sequence Database: D; minimal frequency threshold ε

Result: The set of frequency CSPs : C
begin1

k ← 1;2
C ← ∅;3
F1 ← mine_sequence(k);4
C ← F1;5
while Fk not empty do6

foreach s ∈ Fk do7
foreach x <inv pre f i x s with x �� s do8

generate_C S P(x, s, C);9

k++;10
Fk ← mine_sequence(k);11

return C;12
end13

1. s({〈〉})− s({〈a〉})− s({〈b〉})+ s({〈a〉 , 〈b〉}) ≥ 0
2. s({〈a〉})− s({〈a〉 , 〈b〉}) ≥ 0
3. s({〈b〉})− s({〈a〉 , 〈b〉}) ≥ 0
4. s({〈a〉 , 〈b〉}) ≥ 0

With this rules it is trivial to see that s(csp) ∈ [1, 1]. Thus, the support of this
conjunction can be derived from its subconjunctions.

5 Algorithm

In this section we give a depth-first algorithm for the conjunctive sequence pattern
mining problem. The basic idea of the algorithm is to alternate between a sequence
mining task and a generation of all possible conjunctions. The algorithm exploits two
properties: (i) in order to compute the frequency of conjunctions, we only need to
compute the cardinal of the intersection set of the tidlists present in every sequence
contained in the conjunction, (i i) to compute frequency bounds for a CSP Y , all fre-
quencies for conjunction X such that {〈()〉} � X ≺ Y must be known. Since we are
using a depth-first algorithm, many of these frequencies may be unavailable. In order
to solve this problem we invert the order in which we traverse the research space as
previously described in Calders and Goethals (2005). If the algorithm runs with the
derivability on, the bounds are computed for each candidate CSP.

The algorithm is illustrated with a toy database in Fig. 1. Suppose ε = 1, first
all sequences of length 1 are mined, then CSPs are generated while traversing in an
inverted depth-first manner the research space. When there is no more possible CSP
generation, the algorithm generates level 2 sequences and restart CSP generation with
the newly added sequences. The algorithm returns when there are no more frequent
sequences to be mined.
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Fig. 1 Algorithm trace for database D = {(a)(b)(c)} The generations of CSPs is first done for sequences
of size 1 then for sequences of size 2

Table 1 Details on data sets used in the different experiments

Data set # of sequences # of items # it / trans. # trans. / sequence

C200T2.5S10 I10K 200K 10K 2.5 10
UNIX User Data 11,116 2,016 1 39

# it / trans.: average number of items per transaction; # trans. / sequence: average number of transactions
per sequence

6 Experimentations

We have performed tests using the CSP miner algorithm on synthetic and real-world
datasets. The goal of the experimentations are: (i) to verify the validity and feasibility
of our CSP mining approach in the case of normal extraction and non-derivability and
(i i) to compare our algorithm results with a naive mining approach.

6.1 Experimental method

All experiments were performed on a Core-Duo 2.16 GHz MacBook Pro with 2 Gb
of main memory, running Mac OS× 10.5.2. The conjunctive sequence pattern miner
is implemented in C++ and based on the DMTL library1 and the SPADE algorithm.
We used two data sets in our experiments: a synthetic data set that was generated with
QUEST2 software and a real-world dataset containing 8 UNIX computer users logs
from Purdue University over the course of up to 2 years.

The synthetic data set C200T2.5S10 I10K that was generated for our performance
studies contains 200,000 sequences based on 10,000 items.

The UNIX User Data data set contains 9 sets of sanitized user data drawn from
the command histories of 8 UNIX computer users at Purdue University. For this data
set, mining CSPs and then extracting sequential association rules could be very help-
ful in this case for network intrusion systems. Details of the data sets are given in
Table 1.

1 http://sourceforge.net/projects/dmtl.
2 http://www.almaden.ibm.com/cs/projects/iis/hdb/Projects/data_mining/.
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Fig. 2 Runtime experiments carried out on the data set C200T2.5S10 I10K

6.2 Results

6.2.1 Synthetic dataset, validity and feasibility

We first studied the effects of support values on the number of extracted CSPs, the
overall runtime for our algorithm and the number of extracted sequential association
rules with confidence = 1. The effects of low support values on the overall runtime
are exposed in Fig. 2. The runtime is still very acceptable: for a support of 1.15%, the
CSP miner algorithm needs 10 minutes to complete the extraction. Furthermore, our
method seems to be rather immune to small support values and is still able to mine CSP
until value 0.35% with acceptable overall runtime as 1 hour and 4 minutes are needed
to complete the task. Figure 3a illustrates the number of extracted CSPs and show that
our algorithm is capable of generating a very large set of frequent CSPs. The number
of extracted sequential association rules with confidence = 1 w.r.t to the frequent
CSPs is presented in Fig. 3b. There is no rules until reaching support value 0.95%.
The explanation is that until this support values, the only frequent CSPs are of length
1 (simple sequences) which cannot be used to generate sequential association rules.

6.2.2 UNIX user data set and non-derivability

We used the UNIX User Data in these experiments to compare our approach with
a naive method. The idea is to make a post-processing step after classical sequence
mining. Every frequent sequence is associated with an item value and the original
data set is transformed in order to keep only frequent sequences as items making the
problem solvable by itemset mining. We did 2 types of itemset mining, (i) plain fre-
quent itemset mining (using the Apriori algorithm) and (i i) Frequent Non-Derivable
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Fig. 3 Experiments carried out on the data set C200T2.5S10 I10K

itemset mining.3 Figure 4a illustrate the difference between our mining approach and
the naive method. The worst case is when we are mining at a frequency of 8.54%,
the CSP miner extracts 5211 CSPs while the naive method extracts more than 17

3 The implementations were taken from http://www.adrem.ua.ac.be/~goethals/software/.
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Fig. 4 Experiments carried out on the data set UNIX User Data

Table 2 Details on UNIX User Data data set with derivability ratios for CSP miner and the naive method

Frequency (%) # CSP # Conj. # NDCSP # NDconj. CSP ratio (%) Conj. ratio (%)

11.69 80 984 16 115 20 88.31
11.24 108 2,840 25 156 23.14 94.50
10.79 174 4,784 110 217 36.78 95.46
10.34 282 16,146 126 336 44.68 97.91
9.89 466 68,991 218 503 53.21 99.27
9.44 858 385,107 306 816 64.29 99.78
8.99 1,856 1,677,387 447 1,435 75.92 99.91
8.54 5,211 17,127,924 690 2,947 86.75 99.98

# CSP: number of frequent CSPs; # Conj.: number of frequent conjunctions (naive method).# NDCSP:
number of frequent non-derivable CSPs. # NDconj.: number of frequent non-derivable conjunctions (naive
method)

million conjunctions. This is due to the fact that the naive method do not make any
comparison between every sequence in the conjunction sets extracted while our CSP
miner do this kind of comparison in order to cope with the definition 4. For example
conjunction {〈(a)(b)〉 , 〈(a)〉}will be mined and considered valid by the naive method
while discarded by the CSP miner because 〈(a)〉 � 〈(a)(b)〉. Non-derivability issues
for this data set are presented in Fig. 4b and in Table 2, comparing these derivability
results with the mined CSPs from Fig. 4a nicely shows the improvements caused by
the deduction rules and the high ratio shows that the non-derivable CSP representation
is indeed a good condensed representation. However, the derivability ratio stays higher
for the naive method for two reasons: first, this is mainly due to the high number of
frequent conjunctions mined by the naive method (more than 1 million conjunctions
starting from frequency 9%), second, the incompleteness of anti-monotonicity for de-
rivability for CSPs, discussed in Sect. 4, make it very hard to compete with the full
anti-monotonicity of derivability for itemsets as used in the naive method.
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7 Conclusions

We have introduced a new definition of equivalence classes for Sequential Patterns
and investigated its computational complexity. We used these classes to exhibit a the-
orem stating that the lower bound for the frequency of sequential patterns is always
equal to 0. This result underlay that any frequency-based condensed representation
is impossible for sequential patterns. Furthermore, we used the equivalence classes
definition to define a new mining problem: the Conjunctive Sequence Pattern mining
problem. We have also shown that unlike for sequences, we can compute lower and
upper bounds on the pattern frequency leading to a concise representation close to the
non-derivable itemsets representation. Furthermore, this new pattern is appealing as
it can be used to exhibit sequential association rules.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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