
Data Min Knowl Disc (2009) 19:24–57
DOI 10.1007/s10618-009-0125-6

iSAX: disk-aware mining and indexing of massive time
series datasets

Jin Shieh · Eamonn Keogh

Received: 16 July 2008 / Accepted: 19 January 2009 / Published online: 27 February 2009
The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Current research in indexing and mining time series data has produced
many interesting algorithms and representations. However, the algorithms and the size
of data considered have generally not been representative of the increasingly massive
datasets encountered in science, engineering, and business domains. In this work, we
introduce a novel multi-resolution symbolic representation which can be used to index
datasets which are several orders of magnitude larger than anything else considered in
the literature. To demonstrate the utility of this representation, we constructed a simple
tree-based index structure which facilitates fast exact search and orders of magnitude
faster, approximate search. For example, with a database of one-hundred million time
series, the approximate search can retrieve high quality nearest neighbors in slightly
over a second, whereas a sequential scan would take tens of minutes. Our experimental
evaluation demonstrates that our representation allows index performance to scale well
with increasing dataset sizes. Additionally, we provide analysis concerning parameter
sensitivity, approximate search effectiveness, and lower bound comparisons between
time series representations in a bit constrained environment. We further show how to
exploit the combination of both exact and approximate search as sub-routines in data
mining algorithms, allowing for the exact mining of truly massive real world datasets,
containing tens of millions of time series.

Responsible editor: Bart Goethals.

J. Shieh (B) · E. Keogh
Department of Computer Science & Engineering, University of California, Riverside, CA, USA
e-mail: shiehj@cs.ucr.edu

E. Keogh
e-mail: eamonn@cs.ucr.edu

123

iSAX: disk-aware mining and indexing of massive time series datasets 25

Keywords Time series · Data mining · Representations · Indexing

1 Introduction

The increasing level of interest in indexing and mining time series data has
produced many algorithms and representations. However, with few exceptions,
the size of datasets considered, indexed, and mined seems to have stalled at the
megabyte level. At the same time, improvements in our ability to capture and store
data have lead to the proliferation of terabyte-plus time series datasets. In this work, we
show how a novel multi-resolution symbolic representation called indexable
Symbolic Aggregate approXimation (iSAX) can be used to index datasets
which are several orders of magnitude larger than anything else considered in cur-
rent literature.

The iSAX approach allows for both fast exact search and ultra-fast approximate
search. Beyond mere similarity search, we show how to exploit the combination of
both types of search as sub-routines in data mining algorithms, permitting the exact
mining of truly massive datasets, with tens of millions of time series, occupying up to
a terabyte of disk space.

Our approach is based on a modification of the SAX representation to allow exten-
sible hashing (Lin et al. 2007). That is, the number of bits used for evaluation of our
representation can be dynamically changed, corresponding to a desired resolution.
An increased number of bits can then be used to differentiate between non-identical
entries. In essence, we show how we can modify SAX to be a multi-resolution repre-
sentation, similar in spirit to wavelets (Chan and Fu 1999). It is this multi-resolution
property that allows us to index time series with zero overlap at leaf nodes as in
TS-tree (Assent et al. 2008), unlike R-trees (Guttman 1984), and other spatial access
methods.

As we shall show, our indexing technique is fast and scalable due to intrinsic
properties of the iSAX representation. Because of this, we do not require the use
of specialized databases or file managers. Our results, conducted on massive data-
sets, are all achieved using a simple tree structure which uses the standard Windows
XP NTFS file system for disk access. While it might have been possible to achieve
faster times with a sophisticated DBMS, we feel that the simplicity of this approach
is a great strength, and will allow easy adoption, replication, and extension of our
work.

A further advantage of our representation is that, being symbolic, it allows the use of
data structures and algorithms that are not well defined for real-valued data; including
suffix trees, hashing, Markov models, etc. (Lin et al. 2007). Furthermore, given that
iSAX is a superset of classic SAX, the several dozen research groups that use SAX
will be able to adopt iSAX to improve scalability (Keogh 2008).

The rest of the paper is organized as follows. In Sect. 2 we review related work and
background material. Section 3 introduces the iSAX representation, and Sect. 4 shows
how it can be used for approximate and exact indexing. In Sect. 5 we perform a com-
prehensive set of experiments on both indexing and data mining problems. Finally, in
Sect. 6 we offer conclusions and suggest directions for future work.

123

26 J. Shieh, E. Keogh

2 Background and related work

2.1 Time series distance measures

It is increasingly understood that Dynamic Time Warping (DTW) is better than Euclid-
ean Distance (ED) for most data mining tasks in most domains (Xi et al. 2006). It is
therefore natural to ask why we are planning to consider Euclidean distance in this
work. The well documented superiority of DTW over ED is due to the fact that in
small datasets it might be necessary to warp a little to match the nearest neighbor.
However, in larger datasets one is more likely to find a close match without the need to
warp. As DTW warps less and less, it degenerates to simple ED. This was first noted
in Ratanamahatana and Keogh (2005) and later confirmed in Xi et al. (2006) and else-
where. For completeness, we will show a demonstration of this effect. We measured
the leave-one-out nearest neighbor classification accuracy of both DTW and ED on
increasingly large datasets containing the CBF and Two-Pat problems, two classic
time series benchmarks. Both datasets allow features to warp up to 1/8 the length of
the sequence, so they may be regarded as highly warped datasets. Figure 1 shows the
result.

As we can see, for small datasets, DTW is significantly more accurate than ED.
However, as the datasets get larger, the difference diminishes, and by the time there
are mere thousands of objects, there is no measurable difference. In spite of this, and
for completeness, we explain in an online Appendix (Keogh and Shieh 2008) that we
can index under DTW with iSAX with only trivial modifications.

2.2 Time series representations

There is a plethora of time series representations proposed to support similarity search
and data mining. Table 1 shows the major techniques arranged in a hierarchy.

2000 3000 4000 5000 6000
0

0.1
0.2
0.3
0.4
0.5

0 1000

0
0.005
0.01

0.015
0.02

0.025
0.03

CBF Dataset

Two-Pat Dataset

Euclidean
DTW

Increasingly Large Training Sets

O
ut

-o
f-

Sa
m

pl
e

E
rr

or
 R

at
e

Fig. 1 The error rate of DTW and ED on increasingly large instantiations of the CBF and Two-Pat problems.
For even moderately large datasets, there is no difference in accuracy

123

iSAX: disk-aware mining and indexing of massive time series datasets 27

Table 1 A hierarchy of time
series representations

Model based

Markov Models

Statistical Models

Time Series Bitmaps (Kumar et al. 2005)

Data adaptive

Piecewise Polynomials

Interpolation* (Morinaka et al. 2001)

Regression (Shatkay and Zdonik 1996)

Adaptive Piecewise Constant Approximation* (Keogh et al. 2001b)

Singular Value Decomposition*

Symbolic

Natural Language (Portet et al. 2007)

Strings (Huang and Yu 1999)

Non-Lower Bounding (André-Jönsson and Badal 1997;
Huang and Yu 1999; Megalooikonomou et al. 2005)

SAX* (Lin et al. 2007), iSAX*

Trees

Non-data adaptive

Wavelets* (Chan and Fu 1999)

Random Mappings (Bingham and Mannila 2001)

Spectral

DFT* (Faloutsos et al. 1994)

DCT*

Chebyshev Polynomials* (Cai and Ng 2004)

Piecewise Aggregate Approximation* (Keogh et al. 2001a)

IPLA* (Chen et al. 2007)

Data dictated

Clipped Data* (Bagnall et al. 2006)

Those representations annotated with an asterisk have the very desirable property
of allowing lower bounding. That is to say, we can define a distance measurement on
the reduced abstraction that is guaranteed to be less than or equal to the true distance
measured on the raw data. It is this lower bounding property that allows us to use
a representation to index the data with a guarantee of no false dismissals (Faloutsos
et al. 1994). The list of such representations includes (in approximate order of intro-
duction) the discrete Fourier transform (DFT) (Faloutsos et al. 1994), the discrete
Cosine transform (DCT), the discrete Wavelet transform (DWT), Piecewise Aggregate
Approximation (PAA) (Keogh et al. 2001a), Adaptive Piecewise Constant Approxi-
mation (APCA), Chebyshev Polynomials (CHEB) (Cai and Ng 2004) and Indexable
Piecewise Linear Approximation (IPLA) (Chen et al. 2007). We will provide the first
empirical comparison of all these techniques in Sect. 5.

The only lower bounding omissions from our experiments are the eigenvalue anal-
ysis techniques such as SVD and PCA. While such techniques give optimal linear

123

28 J. Shieh, E. Keogh

dimensionality reduction, we believe they are untenable for massive datasets. For
example, while Steinbach et al. (2003) notes that they can transform 70,000 time
series in under 10 min, this assumes the data can fit in main memory. However, to
transform all the out-of-core (disk resident) datasets we consider in this work, SVD
would require several months.

There have been several dozen research efforts that propose to facilitate time series
search by first symbolizing the raw data (André-Jönsson and Badal 1997; Huang and
Yu 1999; Megalooikonomou et al. 2005). However, in every case, the authors intro-
duced a distance measure defined on the newly derived symbols. This allows false
dismissals with respect to the original data. In contrast, the proposed work uses the
symbolic words to internally organize and index the data, but retrieves objects with
respect to the Euclidean distance on the original raw data. This point is important
enough to restate. Although our proposed representation is an approximation to the
original data, and whose creation requires us to make a handful of parameters choices,
under any parameter set the exact search algorithm introduced in Table 6 is guaranteed
to find the true exact nearest neighbor.

2.3 Review of classic SAX

The SAX representation was introduced in 2003, since then it has been used by more
than 50 groups worldwide to solve a large variety of time series data mining problems
(Lin et al. 2007; Keogh 2008). For concreteness, we begin with a review of it (Lin
et al. 2007). In Fig. 2 (left) we illustrate a short time series T, which we will use as a
running example throughout this paper.

Figure 2 (right) shows our sample time series converted into a representation called
PAA (Keogh et al. 2001a). PAA represents a time series T of length n in a w-dimen-
sional space by a vector of real numbers, T̄ = t̄1, . . . , t̄w. The i th element of T̄ is
calculated by the equation:

t̄i = w

n

n
w

i∑

j= n
w

(i−1)+1

Tj

3

16
-3

-2

-1

0

1

2

4 8 12 160 4 8 120

A time series T PAA(T,4)

Fig. 2 (left) A time series T, of length 16. (right) A PAA approximation of T, with 4 segments

123

iSAX: disk-aware mining and indexing of massive time series datasets 29

In the case that n is not divisible by w; the summation can be modified to adopt
fractional values. This is illustrated in Lin et al. (2007).

PAA is a desirable intermediate representation as it allows for computationally fast
dimensionality reduction, provides a distance measure which is lower bounding, and
has been shown to be competitive with other dimensionality reduction techniques. In
this case, the PAA representation reduces the dimensionality of the time series, from
16 to 4. The SAX representation takes the PAA representation as an input and discret-
izes it into a small alphabet of symbols with a cardinality of size a. The discretization
is achieved by imagining a series of breakpoints running parallel to the x-axis and
labeling each region between the breakpoints with a discrete label. Any PAA value
that falls within that region can then be mapped to the appropriate discrete value.

While the SAX representation supports arbitrary breakpoints, we can ensure almost
equiprobable symbols within a SAX word if we use a sorted list of numbers,
Breakpoints = β1, . . . , βa−1 such that the area under a N(0,1) Gaussian curve from
βi to βi+1 = 1/a (β0 and βa are defined as −∞ and ∞, respectively). Table 2 shows
a table for such breakpoints for cardinalities from 2 to 8.

A SAX word is simply a vector of discrete symbols. We use a boldface letter to dif-
ferentiate between a raw time series and its SAX version, and we denote the cardinality
of the SAX word with a superscript:

SAX(T, w, a) = Ta = {t1, t2, . . . , tw−1, tw}

In previous work, we represented each SAX symbol as a letter or integer. Here
however, we will use binary numbers for reasons that will become apparent later. For
example, in Fig. 3 we have converted a time series T of length 16 to SAX words.
Both examples have a word length of 4, but one has a cardinality of 4 and the other
has a cardinality of 2. We therefore have SAX(T, 4, 4) = T4 = {11, 11, 01, 00} and
SAX(T, 4, 2) = T2 = {1, 1, 0, 0}.

The astute reader will have noted that once we have T4 we can derive T2 simply
by ignoring the trailing bits in each of the four symbols in the SAX word. As one can
readily imagine, this is a recursive property. For example, if we convert T to SAX with
a cardinality of 8, we have SAX(T, 4, 8) = T8 = {110, 110, 011, 000}. From this, we

Table 2 SAX breakpoints

βi a

2 3 4 5 6 7 8

β1 0.00 −0.43 −0.67 −0.84 −0.97 −1.07 −1.15

β2 0.43 0.00 −0.25 −0.43 −0.57 −0.67

β3 0.67 0.25 0.00 −0.18 −0.32

β4 0.84 0.43 0.18 0.00

β5 0.97 0.57 0.32

β6 1.07 0.67

β7 1.15

123

30 J. Shieh, E. Keogh

-3

-2

-1

0

1

2

3

4 8 12 160 4 8 12 160

Fig. 3 A time series T converted into SAX words of cardinality 4 {11, 11, 01, 00} (left), and cardinality 2
{1, 1, 0, 0} (right)

Table 3 It is possible to obtain
a reduced (by half) cardinality
SAX word simply by ignoring
trailing bits

SAX(T, 4, 16) = T16 = {1100, 1101, 0110, 0001}
SAX(T, 4, 8) = T8 = {110, 110, 011, 000}
SAX(T, 4, 4) = T4 = {11, 11, 01, 00}
SAX(T, 4, 2) = T2 = {1, 1, 0, 0}

can convert to any lower resolution that differs by a power of two, simply by ignoring
the correct number of bits. Table 3 makes this clearer.

As we shall see later, this ability to change cardinalities on the fly is a useful and
exploitable property.

Given two time series T and S, their Euclidean distance is:

D(T, S) ≡
√√√√

n∑

i=1

(Ti − Si)2

If we have a SAX representation of these two time series, we can define a lower
bounding approximation to the Euclidean distance as:

MINDIST
(

T2, S2
)

≡
√

n

w

√√√√
w∑

i=1

(dist (ti , si))
2

This function requires calculating the distance between two SAX symbols and can be
achieved with a lookup table, as in Table 4.

Table 4 A SAX dist lookup
table for a = 4

00 01 10 11

00 0 0 0.67 1.34

01 0 0 0 0.67

10 0.67 0 0 0

11 1.34 0.67 0 0

123

iSAX: disk-aware mining and indexing of massive time series datasets 31

The distance between two symbols can be read off by examining the corresponding
row and column. For example, dist (00, 01) = 0 and dist (00, 10) = 0.67.

For clarity, we will give a concrete example of how to compute this lower bound.
Recall our running example time series T which appears in Fig. 2. If we create a time
series S that is simply T’s mirror image, then the Euclidean distance between them is
D(T, S) = 46.06.

As we have already seen, SAX(T, 4, 4) = T4 = {11, 11, 01, 00}, and therefore
SAX(S, 4, 4) = S4 = {00, 01, 11, 11}. The invocation of the MINDIST function will
make calls to the lookup table shown in Table 4 to find:

dist (t1, s1) = dist (11, 00) = 1.34

dist (t2, s2) = dist (11, 01) = 0.67

dist (t3, s3) = dist (01, 11) = 0.67

dist (t4, s4) = dist (00, 11) = 1.34

Which, when plugged into the MINDIST function, gives:

MINDIST
(

T2, S2
)

=
√

16

4

√
1.342 + 0.672 + 0.672 + 1.342

…to produce a lower bound value of 4.237. In this case, the lower bound is quite
loose; however, having either more SAX symbols or a higher cardinality will produce
a tighter lower bound. It is instinctive to ask how tight this lower bounding function can
be, relative to natural competitors like PAA or DWT. This depends on the data itself
and the cardinality of the SAX words, but coefficient for coefficient, it is surprisingly
competitive with the other approaches. To see this, we can measure the tightness of the
lower bounds, which is defined as the lower bounding distance over the true distance
(Keogh et al. 2001a). Figure 4 shows this for random walk time series of length 256,
with eight PAA or DWT coefficients and SAX words also of length eight. We varied
the cardinality of SAX from 2 to 256, whereas PAA/DWT used a constant 4 bytes
per coefficient. The results have been averaged over 10,000 random walk time series
comparisons.

Cardinality of SAX words

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

SAX

PAA/DWT

T
ig

ht
ne

ss
 o

f l
ow

er
 b

ou
nd

Fig. 4 The tightness of lower bounds for increasing SAX cardinalities, compared to a PAA/DWT
benchmark

123

32 J. Shieh, E. Keogh

The results show that for small cardinalities the SAX lower bound is quite weak,
but for larger cardinalities it rapidly approaches that of PAA/DWT. At the cardinality
of 256, which take 8 bits, the lower bound of SAX is 98.5% that of PAA/DWT, but the
latter requires 32 bits. This tells us that if we compare representations, coefficient for
coefficient, there is little to choose between them; but if we do bit-for-bit comparisons
(cf. Sect. 5), SAX allows for much tighter lower bounds. This is one of the properties
of SAX that can be exploited to allow ultra-scalable indexing.

3 The iSAX representation

Because it is tedious to write out binary strings, previous uses of SAX had integers or
alphanumeric characters representing SAX symbols (Lin et al. 2007). For example:

SAX(T, 4, 8) = T8 = {110, 110, 011, 000} = {6, 6, 3, 0}

However, this can make the SAX word ambiguous. If we see just the SAX word {6,
6, 3, 0} we cannot be sure what the cardinality is (although we know it is at least 7).
Since all previous uses of SAX always used a single “hard-coded” cardinality, this has
not been an issue. However, the fundamental contribution of this work is to show that
SAX allows the comparison of words with different cardinalities, and even different
cardinalities within a single word. We therefore must resolve this ambiguity. We do
this by writing the cardinality as a superscript. For example, in the example above:

iSAX(T, 4, 8) = T8 = {68, 68, 38, 08}

Because the individual symbols are ordinal, exponentiation is not defined for them, so
there is no confusion in using superscripts in this context. Note that we are now using
iSAX instead of SAX for reasons that will become apparent in a moment.

We are now ready to introduce a novel idea that will allow us to greatly expand the
utility of iSAX.

3.1 Comparing different cardinality iSAX words

It is possible to compare two iSAX words of different cardinalities. Suppose we have
two time series, T and S, which have been converted into iSAX words:

iSAX(T, 4, 8) = T8 = {110, 110, 011, 000} = {68, 68, 38, 08}
iSAX(S, 4, 2) = S2 = {0, 0, 1, 1} = {02, 02, 12, 12}

We can find the lower bound between T and S, even though the iSAX words that
represent them are of different cardinalities. The trick is to promote the lower cardi-
nality representation into the cardinality of the larger before giving it to the MINDIST
function.

We can think of the tentatively promoted S2 word as S8 = {0∗∗
1 , 0∗∗

2 , 1∗∗
3 , 1∗∗

4 },
then the question is simply what are correct values of the missing ∗∗i bits? Note that

123

iSAX: disk-aware mining and indexing of massive time series datasets 33

both cardinalities can be expressed as the power of some integer. This guarantees an
overlap in the breakpoints used during SAX computation. More concretely, if we have
an iSAX cardinality of X, and an iSAX cardinality of 2X, then the breakpoints of the
former are a proper subset of the latter. This is shown in Fig. 3.

Using this insight, we can obtain the missing bit values in S8 by examining each
position and computing the bit values at the higher cardinality which are enclosed by
the known bits at the current (lower) cardinality and returning the one which is closest
in SAX space to the corresponding value in T8.

This method obtains the S8 representation usable for MINDIST calculations:

S8 = {011, 011, 100, 100}

It is important to note that this is not necessarily the same iSAX word we would
have gotten if we had converted the original time series S. We cannot undo a lossy
compression. However, using this iSAX word does give us an admissible lower bound.

Finally, note that in addition to comparing iSAX words of different cardinalities,
the promotion trick described above can be used to compare iSAX words where
each word has mixed cardinalities. For example, we can allow iSAX words such as
{111, 11, 101, 0} = {78, 34, 58, 02}. If such words exist, we can simply align the two
words in question, scan across each pair of corresponding symbols, and promote the
symbol with lower cardinality to the same cardinality as the larger cardinality symbol.
In the next section, we explain why it is useful to allow iSAX words with different
cardinalities.

4 iSAX indexing

4.1 The intuition behind iSAX indexing

As it stands, it may appear that the classic SAX representation offers the potential to
be indexed. We could choose a fixed cardinality of, say, 8 and a word length of 4, and
thus have 84 separate labels for files on disk. For instance, our running example T maps
to {68, 68, 38, 08} under this scheme, and would be inserted into a file that has this
information encoded in its name, such as 6.8_6.8_3.8_0.8.txt. The query answering
strategy would be very simple. We could convert the query into a SAX word with the
same parameters, and then retrieve the file with that label from disk. The time series
in that file are likely to be very good approximate matches to the query. In order to
find the exact match, we could measure the distance to the best approximate match,
then retrieve all files from disk whose label has a MINDIST value less than the value
of the best-so-far match. Such a methodology clearly guarantees no false dismissals.

This scheme has a fatal flaw, however. Suppose we have a million time series to
index. With 4,096 possible labels, the average file would have 244 time series in it, a
reasonable number. However, this is the average. For all but the most contrived data-
sets we find a huge skew in the distribution, with more than half the files being empty,
and the largest file containing perhaps 20% of the entire dataset. Either situation is
undesirable for indexing, in the former case, if our query maps to an empty file, we

123

34 J. Shieh, E. Keogh

would have to do some ad-hoc trick (perhaps trying “misspellings” of the query label)
in order to get the first approximate answer back. In the latter case, if 20% of the data
must be retrieved from disk, then we can be at most five times faster than sequential
scan. Ideally, we would like to have a user defined threshold th, which is the maximum
number of time series in a file, and a mapping technique that ensures each file has
at least one and at most th time series in it. As we shall now see, iSAX allows us to
guarantee exactly this.

iSAX offers a multi-resolution, bit aware, quantized, reduced representation with
variable granularity. It is this variable granularity that allows us to solve the prob-
lem above. Imagine that we are in the process of building the index and have chosen
th = 100. At some point there may be exactly 100 time series mapped to the iSAX
word {24, 34, 34, 24}. If, as we continue to build the index, we find another time series
maps here, we have an overflow, so we split the file. The idea is to choose one iSAX
symbol, examine an additional bit, and use its value to create two new files. In this case:

Original File: {24, 34, 34, 24} splits into…

Childfile1 :{48, 34, 34, 24}
Childfile2 :{58, 34, 34, 24}

Note that in this example we split on the first symbol, promoting the cardinality
from 4 to 8. For some time series in the file, the extra bit in their first iSAX symbol
was a 0, and for others it was a 1. In the former case, they are remapped to Child
1, and in the latter, remapped to Child 2. The child files can be named with some
protocol that indicates their variable cardinality, for example 5.8_3.4_3.4_2.4.txt and
4.8_3.4_3.4_2.4.txt.

The astute reader will have noticed that the intuition here is very similar to the
classic idea of extensible hashing. This in essence is the intuition behind building an
iSAX index, although we have not explained how we decide which symbol is chosen
for promotion and some additional details. In the next sections, we formalize this
intuition and provide details on algorithms for approximately and exactly searching
an iSAX index.

4.2 iSAX index construction

As noted above, a set of time series represented by an iSAX word can be split into two
mutually exclusive subsets by increasing the cardinality along one or more dimen-
sions. The number of dimensions d and word length, w, 1 ≤ d ≤ w, provide an upper
bound on the fan-out rate. If each increase in cardinality per dimension follows the
assumption of iterative doubling, then the alignment of breakpoints contains overlaps
in such a way that hierarchical containment is preserved between the common iSAX
word and the set of iSAX words at the finer granularity. Specifically, in iterative dou-
bling, the cardinality to be used after the i th increase in granularity is in accordance
with the following sequence, given base cardinality b : b∗2i . The maximum fan-out
rate under such an assumption is 2d .

123

iSAX: disk-aware mining and indexing of massive time series datasets 35

{ } [] []

root

{ } []

{ } []

{ } { }

Internal nodes

Terminal nodes

Fig. 5 An illustration of an iSAX index

The use of iSAX allows for the creation of index structures that are hierarchical,
containing non-overlapping regions (Assent et al. 2008) (unlike R-trees etc., Faloutsos
et al. 1994), and a controlled fan-out rate. For concreteness, we depict in Fig. 5 a sim-
ple tree-based index structure which illustrates the efficacy and scalability of indexing
using iSAX.

The index is constructed given base cardinality b, word length w, and threshold
th (b is optional; it can be defaulted to 2 or be set for evaluation to begin at higher
cardinality). The index structure hierarchically subdivides the SAX space, resulting
in differentiation between time series entries until the number of entries in each sub-
space falls below th. Such a construct is implemented using a tree, where each node
represents a subset of the SAX space such that this space is a superset of the SAX
space formed by the union of its descendents. A node’s representative SAX space is
congruent with an iSAX word and evaluation between nodes or time series is done
through comparison of iSAX words. The three classes of nodes found in a tree and
their respective functionality are described below:

4.2.1 Terminal node

A terminal node is a leaf node which contains a pointer to an index file on disk with raw
time series entries. All time series in the corresponding index file are characterized by
the terminal node’s representative iSAX word. A terminal node represents the coarsest
granularity necessary in SAX space to enclose the set of contained time series entries.
In the event that an insertion causes the number of time series to exceed th, the SAX
space (and node) is split to provide additional differentiation.

4.2.2 Internal node

An internal node designates a split in SAX space and is created when the number
of time series contained by a terminal node exceeds th. The internal node splits the
SAX space by promotion of cardinal values along one or more dimensions as per
the iterative doubling policy. A hash from iSAX words (representing subdivisions of
the SAX space) to nodes is maintained to distinguish differentiation between entries.

123

36 J. Shieh, E. Keogh

Time series from the terminal node which triggered the split are inserted into the
newly created internal node and hashed to their respective locations. If the hash does
not contain a matching iSAX entry, a new terminal node is created prior to insertion,
and the hash is updated accordingly. For simplicity, we employ binary splits along a
single dimension, using round robin to determine the split dimension.

4.2.3 Root node

The root node is representative of the complete SAX space and is similar in func-
tionality to an internal node. The root node evaluates time series at base cardinality,
that is, the granularity of each dimension in the reduced representation is b. Encoun-
tered iSAX words correspond to some terminal or internal node and are used to direct
index functions accordingly. Un-encountered iSAX words during inserts result in the
creation of a terminal node and a corresponding update to the hash table.

4.2.4 Index insertion

Pseudo-code of the insert function used for index construction is shown in Table 5.
Given a time series to insert, we first obtain the iSAX word representation using the
respective iSAX parameters at the current node (line 2). If the hash table does not yet
contain an entry for the iSAX word, a terminal node is created to represent the relevant
SAX space, and the time series is inserted accordingly (lines 22–24). Otherwise, there
is an entry in the hash table, and the corresponding node is fetched. If this node is an

Table 5 iSAX index insertion function

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Function Insert(ts)
iSAX_word = iSAX(ts, this.parameters)

if Hash.ContainsKey(iSAX_word)
 node = Hash.ReturnNode(iSAX_word)

 if node is terminal
if SplitNode() == false

 node.Insert(ts)
else

 newnode = new internal
 newnode.Insert(ts)

foreach ts in node
 newnode.Insert(ts)

end
 Hash.Remove(iSAX_word, node)
 Hash.Add(iSAX_word, newnode)

endif
elseif node is internal

 node.Insert(ts)
endif

else
 newnode = new terminal
 newnode.Insert(ts)
 Hash.Add(iSAX_word, newnode)

endif

123

iSAX: disk-aware mining and indexing of massive time series datasets 37

internal node, we call its insert function recursively (line 19). If the node is a terminal
node, occupancy is evaluated to determine if an additional insert warrants a split (line
7). If so, a new internal node is created, and all entries enclosed by the overfilled
terminal node are inserted (lines 10–16). Otherwise, there is sufficient space and the
entry is simply added to the terminal node (line 8).

The deletion function is obvious and omitted for brevity.

4.3 Approximate search

For many data mining applications, an approximate search may be all that is required.
An iSAX index is able to support very fast approximate searches; in particular, they
only require a single disk access. The method of approximation is derived from the
intuition that two similar time series are often represented by the same iSAX word.
Given this assumption, the approximate result is obtained by attempting to find a
terminal node in the index with the same iSAX representation as the query. This is
done by traversing the index in accordance with split policies and matching iSAX
representations at each internal node. Because the index is hierarchical and without
overlap, if such a terminal node exists, it is promptly identified. Upon reaching this
terminal node, the index file pointed to by the node is fetched and returned. This file
will contain at least 1 and at most th time series in it. A main memory sequential scan
over these time series gives the approximate search result.

In the (very) rare case that a matching terminal node does not exist, such a traversal
will fail at an internal node. We mitigate the effects of non-matches by proceeding
down the tree, selecting nodes whose last split dimension has a matching iSAX value
with the query time series. If no such node exists at a given junction, we simply select
the first, and continue the descent.

4.4 Exact search

Obtaining the exact nearest neighbor to a query is both computationally and I/O inten-
sive. To improve search speed, we use a combination of approximate search and lower
bounding distance functions to reduce the search space. The algorithm for obtaining
the nearest neighbor is presented as pseudo-code in Table 6.

The algorithm begins by obtaining an approximate best-so-far (BSF) answer, using
approximate search as described in Sect. 4.3 (lines 2–3). The intuition is that by quickly
obtaining an entry which is a close approximation and with small distance to the near-
est neighbor, large sections of the search space can be pruned. Once a baseline BSF
is obtained, a priority queue is created to examine nodes whose distance is poten-
tially less than the BSF. This priority queue is first initialized with the root node
(line 6).

Because the query time series is available to us, we are free to use its PAA represen-
tation to obtain a tighter bound than the MINDIST between two iSAX words. More
concretely, the distance used for priority queue ordering of nodes is computed using

123

38 J. Shieh, E. Keogh

Table 6 Expediting exact search using approximate search and lower bounding distance functions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Function [IndexFile] = ExactSearch(ts)
BSF.IndexFile = ApproximateSearch(ts)
BSF.dist = IndexFileDist(ts, BSF.IndexFile)

PriorityQueue pq
pq.Add(root)

while !pq.IsEmpty
 min = pq.ExtractMin()

if min.dist >= BSF.dist
 break

endif
if min is terminal

 tmp = IndexFileDist(ts, min.IndexFile)
if BSF.dist > tmp

 BSF.dist = tmp
 BSF.IndexFile = min.IndexFile

endif
elseif min is internal or root

foreach node in min.children
 node.dist = MINDIST_PAA_iSAX(ts,node.iSAX)
 pq.Add(node)

end
endif

end
return BSF.IndexFile

MINDIST_PAA_iSAX, between the PAA representation of the query time series and
the iSAX representation of the SAX space occupied by a node.

Given the PAA representation, TPAA of a time series T and the iSAX representation,
SiSAX of a time series S, such that |TPAA| = |SiSAX| = w, |T | = |S| = n, and recalling
that the j th cardinal value of SiSAX derives from a PAA value, v between two break-
points βL , βU , βL < v ≤ βU , 1 ≤ j ≤ w we define the lower bounding distance as:

MINDIST_PAA_iSAX (TPAA, SiSAX)=
√

n

w

√√√√√
w∑

i=1

⎧
⎨

⎩

(βLi−TP AAi)
2 i f βLi>TP AAi

(βUi−TP AAi)
2 i f βUi<TP AAi

0 otherwise

Recall that we use distance functions that lower bound the true Euclidean distance.
That is, if the BSF distance is less than or equal to the minimum distance from the
query to a node, we can discard the node and all descendants from the search space
without examining their contents or introducing any false dismissals.

The algorithm then repeatedly extracts the node with the smallest distance value
from the priority queue, terminating when either the priority queue becomes empty
or an early termination condition is met. Early termination occurs when the lower
bound distance we compute equals or exceeds the distance of the BSF. This implies
that the remaining entries in the queue cannot qualify as the nearest neighbor and can
be discarded.

If the early termination condition is not met (line 10), the node is further evaluated.
In the case that the node is a terminal node, we fetch the index file from disk and com-

123

iSAX: disk-aware mining and indexing of massive time series datasets 39

pute the distance from the query to each entry in the index file, recording the minimum
distance (line 14). If this distance is less than our BSF, we update the BSF (lines 16–17).

In the case that the node is an internal node or the root node, its immediate descen-
dents are inserted into the priority queue (lines 20–23). The algorithm then repeats by
extracting the next minimum node from the priority queue.

Before leaving this section, we note that we have only discussed 1NN queries.
Extensions to KNN and range queries are trivial and obvious, and are omitted for
brevity.

4.4.1 Extension with time series wedges

Extensions to the index are readily facilitated as meta-information can be held in nodes.
This allows the index to supplant or be used in concert with external techniques. For
experimental purposes, and to expedite exact search, we modified index terminal nodes
by storing meta-data which are used to obtain a lower bounding distance to the set
of contained time series at each terminal node. This distance is a potentially tighter
bound than that of MINDIST_PAA_iSAX.

Specifically, terminal nodes in the index now maintain a record of the minimum
and maximum value per dimension from the set of contained time series as an upper
and lower wedge, a technique described in Wei et al. (2005) and illustrated in Fig. 6.
Given that a terminal node in a non-trivial tree is essentially a grouping of similar
time series, we expect the wedges to be tight; making them an advantageous addition
for search space pruning. When exact search encounters a terminal node and early
termination conditions are not met, we compute a second lower bounding distance
using LB_Keogh (Wei et al. 2005) from the recorded wedges. As the upper and lower
wedge is saved as meta-data in each terminal node, the LB_Keogh computation does
not require additional disk accesses. If this distance is greater or equal to the BSF, we
can safely discard the terminal node from consideration without fetching its index file
from disk. Given that repeated disk accesses can become prohibitively expensive; the
addition of wedges has significant utility.

U

0 50 100 150 200 250
-2

-1

0

1

2

3

0 50 100 150 200 250 0 50 100 150 200 250

L

Q

Fig. 6 (left) A set of time series which all map to the iSAX word {28, 18, 18, 18, 18, 18, 18, 18, 38,

58, 24, 34, 34, 34, 34, 34}. (center) The maximum/minimum values for the set can be used to define
upper/lower wedges. (right) The square root of the sum of squared lengths of the hatch lines is a lower
bound to the Euclidean between Q and any within the set

123

40 J. Shieh, E. Keogh

5 Experiments

We begin by discussing our experimental philosophy. We have designed all experi-
ments such that they are not only reproducible, but easily reproducible. To this end,
we have built a webpage which contains all datasets used in this work, together with
spreadsheets which contain the raw numbers displayed in all the figures (Keogh and
Shieh 2008). In addition, the webpage contains many additional experiments which
we could not fit into this work; however, we note that this paper is completely self-
contained.

We have used random walk datasets for much of our experimental work because it
is known to model stock market data very well, and for the simple pragmatic reason
that it is easy to create arbitrarily large datasets, which can be exactly recreated by
others who only need to know the seed value. We note, however, that in this work we
also test on heartbeat and insect data, which are very different from random walks,
and in the website built to support this work we show results on 30 diverse datasets.

Experiments are conducted on an AMD Athlon 64 X2 5600+ with 3GB of memory,
Windows XP SP2 with /3GB switch enabled, and using version 2.0 of the .NET Frame-
work. All experiments used a 400GB Seagate Barracuda 7200.10 hard disk drive with
the exception of the 100M random walk experiment, which required additional space,
there we used a 750GB Hitachi Deskstar 7K10000.

5.1 Tightness of lower bounds

It is important to note that the rivals to iSAX are other time series representations, not
indexing structures such as R-Trees, VP-Trees, etc. (Ding et al. 2008). We therefore
begin with a simple experiment to compare the tightness of lower bounds of iSAX
with the other lower bounding time series representations, including DFT, DWT, DCT,
PAA, CHEB, APCA and IPLA. We measure TLB, the tightness of lower bounds
(Keogh et al. 2001a). This is calculated as:

TLB = LowerBoundDist (T, S)/TrueEuclideanDist (T, S)

Because DWT and PAA have exactly the same TLB (Keogh et al. 2001a) we show
one graphic for both. We randomly sample T and S (with replacement) 1,000 times
for each combination of parameters. We vary the time series length [480, 960, 1440,
1920] and the number of bytes per time series available to the dimensionality reduction
approach [16, 24, 32, 40]. We assume that each real valued representation requires 4
bytes per coefficient, thus they use [4, 6, 8, 10] coefficients. For iSAX, we hard code
the cardinality to 256, resulting in [16, 24, 32, 40] symbols per word.

Recall that, for TLB, larger values are better. If the value of TLB is zero, then any
indexing technique is condemned to retrieving every object from the disk. If the value
of TLB is one, then there is no search, we could simply retrieve one object from disk
and guarantee that we had the true nearest neighbor. Figure 7 shows the result of one
such experiment with an ECG dataset.

123

iSAX: disk-aware mining and indexing of massive time series datasets 41

48
0

96
0

14
40

19
20

16 bytes
24 bytes

32 bytes
40 bytes

0
0.2
0.4
0.6
0.8

iSAX, DCT, ACPA, DFT, PAA/DWT, CHEB, IPLA

0 500 1000

Koski ECG

T
LB

Fig. 7 The tightness of lower bounds for various time series representations on the Koski ECG dataset.
Similar graphs for thirty additional datasets can be found at Keogh and Shieh (2008)

4809601440192048096014401920
4

6
8

10

0

0.1

0.2

0.3
0.4

0.5

0.6
0.7

iSAX
DCT

Length of Time Series
T

L
B

Fig. 8 The experiment in the previous figure redone with the iSAX word length equal to the dimensionality
of the real valued applications (just DCT is shown to allow a “zoom in”)

Note that the speedup obtained is generally non-linear in TLB, that is to say if
one representation has a lower bound that is twice as large as another, we can usually
expect a much greater than two-fold decrease in disk accesses.

In a sense, it may be obvious before doing this experiment that iSAX will have a
smaller reconstruction error, thus a tighter lower bound, and greater indexing efficiency
than the real valued competitors. This is because iSAX is taking advantage of every bit
given to it. In contrast, for the real valued approaches it is clear that the less significant
bits contribute much less information than the significant bits. If the raw time series
is represented with 4 bytes per data point, then each real valued coefficient must also
have 4 bytes (recall that orthonormal transforms are merely rotations in space). This
begs the question, why not quantize or truncate the real valued coefficients to save
space? In fact, this is a very common idea in compression of time series data. For
example, in the medical domain it is frequently done for both the wavelet (Chen and
Itoh 1998) and cosine (Batista et al. 2001) representations. However, recall that we are
not interested in compression per se. Our interest is in dimensionality reduction that
allows indexing with no false dismissals. If, for the other approaches, we save space
by truncating the less significant bits, then at least under the IEEE Standard for Binary
Floating-Point Arithmetic (IEEE 754) default policy for rounding (RoundtoNearest)
it is possible the distance between two objects can increase, thus violating the no false

123

42 J. Shieh, E. Keogh

dismissals guarantee. We have no doubt that an indexable bit-adjustable version of the
real valued representations could be made to work, however, none exists to date.

Even if we naively coded each iSAX word with the same precision as the real valued
approaches (thus wasting 75% of the main memory space), iSAX is still competitive
with the other approaches; this is shown in Fig. 8. Before leaving this section, we
note that we have repeated these experiments with thirty additional datasets from very
diverse domains with essentially the same results (Keogh and Shieh 2008).

5.2 Sensitivity to parameters

For completeness, we conduct experiments which evaluate the sensitivity of iSAX
indexing to parameter values. Recall that an iSAX index is constructed given the fol-
lowing: base cardinality b, word length w, and a threshold th (the maximum number
of entries in a leaf node). Our analysis focuses on the parameters w and th. We exclude
the evaluation of b, which is used during computation of new cardinal values, as this
is a procedure which inherently conforms to the size and skew of the indexed data.
For b, any low value will suffice. The following analysis identifies the characteristics
of an iSAX index containing 1 million random walk time series of length 256 from
the averaged results of 1000 approximate queries, with respect to a range of th and
w values. The quality of index performance can be gauged by consideration of both
the number of index files created as well as the rank of approximate search results.
For approximate search rankings, we measure the percentage of queries which returns
an entry which is the true nearest neighbor, an entry which ranks within the top 10
nearest neighbors, an entry which ranks within the top 100 nearest neighbors, and an
entry which ranks outside the top 1000 nearest neighbors. Increases in the first three
measures or a decrease in the final, indicate a favorable trend with respect to the quality
of index results. The experimental analysis below validates our choice of parameter
values used in later sections.

In Figs. 9 and 10 we vary the th value between [25, 50, 100, 200, 400, 800, 1600]
while keeping w and b stationary at 8 and 4, respectively. As illustrated by the grad-
ually sloped curves in Fig. 9, index performance is not sharply affected by th values.
Therefore, the determination of an adequate th value rests on the tradeoff between
possible entries retrieved (th), and the number of index files created. Our choice of

25 50 100 200 400 800 1600
0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 Q

ue
rie

s

Threshold

Outside top 1000
True nearest
neighbor
1 from top 10
1 from top 100

Fig. 9 Approximate search rankings for increasing threshold values

123

iSAX: disk-aware mining and indexing of massive time series datasets 43

25 50 100 200 400 800
20000

30000

40000

50000

60000

70000

80000

In
de

x
F

ile
s

90000

1600

Threshold

Fig. 10 Index files created across varying threshold values

4 5 6 7 8 9 10 11 12

Word Length

3
0

20

40

60

80

Outside top 1000

True nearest neighbor

1 from top 10

1 from top 100100

P
er

ce
nt

ag
e

of
 Q

ue
rie

s

Fig. 11 Approximate search rankings for increasing word length

th = 100 in Sect. 5.3 is affirmed as a suitable choice as this is characterized by both
a low number of entries examined and by having the number of index files created
approach the bottom of the curve in Fig. 10.

In Figs. 11 and 12, we vary the value of w between [3–12] while keeping th and
b stationary at 100 and 4, respectively. The results indicate that index performance is
not highly dependent on the selection of very precise w values. In Fig. 11, there exists
a range of values, [6–9], where approximate search rankings maintain a high level of
performance. We observe some degradation in performance with increasingly longer
word lengths, though this is expected as smaller segments result in increased sensi-
tivity to noise. We also examined the number of index files created and showed that
this number increases with w (though for low values of w, there may be a minimum
number of index files necessary to support the dataset, given th). This increase in index
files is an expected trend, as an increase in w corresponds to an increase in the set of
possible iSAX words (which are used for index filenames). Our analysis affirms our
choice of w = 8 in Sect. 5.3 as a suitable value, falling in the range of w which returns

123

44 J. Shieh, E. Keogh

3 4 5 6 7 8 9 10 11 12
0

50000

100000

150000

200000

250000

300000
In

de
x

F
ile

s

Word Length

Fig. 12 Index files created across varying word lengths

At least 1 from top 100

1 2 4 8
0

20

40

60

80

100

At least 1 from top 10

1 from top 1 (true nearest neighbor)
Outside top 1000

Size of Random Walk Database

Fig. 13 The percentage of cutoffs for various rankings, for increasingly large databases with approximate
search

quality results while also at the lower end of the spectrum with regards to index files
created.

Our analysis of index characteristics across a range of parameter values have shown
that parameters should be selected in consideration of both search performance as well
as the number of index files constructed. The selections of these key parameters, while
critical, have been shown to be generally flexible and competitive across a range of
values and without the need for exact tuning.

5.3 Indexing massive datasets

We tested the accuracy of approximate search for increasingly large random walk dat-
abases of sequence length 256, containing [one, two, four, eight] million time series.
We used b = 4, w = 8, and th = 100. This created [39,255; 57,365; 92,209; 162,340]
files on disk. We generated 1,000 queries, did an approximate search, and then com-
pared the results with the true ranking which we later obtained with a sequential scan.
Figure 13 shows the results.

The figure tells us that when searching one million time series, 91.5% of the time
approximate search returns an answer that would rank in the top 100 of the true nearest
neighbor list. Furthermore, that percentage only slightly decreases as we scale to eight

123

iSAX: disk-aware mining and indexing of massive time series datasets 45

million time series. Likewise, again, for one million objects, more than half the time
the approximate searches return an object that would rank in the top 10, and 14% of
the time it returns the true nearest neighbor. Recall that these searches require exactly
one disk access and at most 100 Euclidean distance calculations, so the average time
for a query was less than a second.

We also conducted exact search experiments on 10% of the queries. Figure 14 shows
the estimated wall clock time and Fig. 15 shows the average disk I/O for exactly find-
ing the nearest neighbor using the iSAX index. Sequential scan is used as a baseline
for comparison.

To push the limits of indexing, we considered indexing 100,000,000 random walk
time series of length 256. To the best of our knowledge, this is as least two orders

Est. Wall Time for Exact Search

0

50

100

150

200

250

300

350

8421

Time Series (Millions)

T
im

e
(M

in
u

te
s)

iSAX Index Sequential Scan

Fig. 14 Estimated wall clock time for exact search averaged over 100 queries

Avg. Disk I/O for Exact Search

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 2 4 8

Time Series (Millions)

D
is

k
I/O

iSAX Index Sequential Scan

Fig. 15 Average disk I/O for exact search averaged over 100 queries

123

46 J. Shieh, E. Keogh

of magnitude larger that any other dataset considered in the literature (Assent et al.
2008; Cai and Ng 2004; Faloutsos et al. 1994; Megalooikonomou et al. 2005). Since
the publication of Don Quixote de la Mancha in the 17th century, the idiom, “a needle
in a haystack” has been used to signify a near impossible search. If each time series
in this experiment was represented by a piece of hay the size of a drinking straw, they
would form a cube shaped haystack with 262 meter sides.

Because of the larger size of data, we increased th to 2,000, and used w of 16. This
created 151,902 files occupying a half terabyte of disk space. The average occupancy
of index files is approximately 658.

We issued ten new random walk approximate search queries. Each query was
answered in an average of 1.15 s. To find out how good each answer was, we did
a linear scan of the data to find the true rankings of the answers. Three of the queries
did actually discover their true nearest neighbor, the average rank was 8, and the worst
query “only” managed to retrieve its 25th nearest neighbor. In retrospect, these results
are extraordinarily impressive. Faced with one hundred million objects on disk, we
can retrieve only 0.0013895% of the data and find an object that is ranked the top
0.0001%. As we shall see in Sects. 5.5 and 5.6, the extraordinary precision and speed
of approximate search combined with fast exact search allows us to consider mining
datasets with millions of objects.

We also conducted exact searches on this dataset; each search took an average of
90 min to complete, in contrast to a linear scan taking 1,800 min.

5.4 Approximate search evaluation

Approximate search, being orders of magnitude faster than exact search, is inherently
attractive for many problems. Because the returned results are approximate in nature,
it is necessary for us to ascertain the general quality and effectiveness of said results.
We have seen in Sect. 5.3 some measure of this and we reaffirm its utility here with
additional visual and quantitative evaluations.

In the arid to semi-arid regions of North America, the Beet leafhopper (Circulifer
tenellus) is the only known vector (carrier) of curly top virus, which causes major
economic losses in a number of crops including sugarbeet, tomato, and beans Kaffka
et al. (2000). In order to mitigate these financial losses, entomologists at the Univer-
sity of California, Riverside are attempting to model and understand the behavior of
this insect. It is known that the insects feed by sucking sap from living plants; much
like how mosquitoes suck blood from mammals and birds. In order to understand the
insect’s behaviors, entomologists’ glue a thin wire to the insect’s back, complete the
circuit through a host plant, and then measure fluctuations in voltage level to create an
Electrical Penetration Graph (EPG), a time series, which can then be mined for clues
to insect behavior. The problem facing the entomologists is that these experiments
have left them with massive data collections which are difficult to search.

We indexed the entire insect data archive of 4,232,591 subsequences of length 150
using b = 4, w = 8, th = 100.

We asked the entomologist Dr. Greg Walker to draw a query time series. He was
interested in knowing if the database contained any examples of a pattern called

123

iSAX: disk-aware mining and indexing of massive time series datasets 47

0 50 100 150

Approximate
Search Result
Query

5

4

3

2

1

0

-1

-2

Fig. 16 Approximate search result on insect dataset

“Waveform A”, which he noted is characterized by “an almost vertical increase in the
voltage level from baseline. Immediately after this spike, there is a gradual decline in
voltage level which occurs as a smooth downward curve”. This pattern is produced
during the initial penetration of the plant tissue through the epidermis.

The idealized query time series and corresponding approximate search result is
shown in Fig. 16. As shown by the figure, a simple approximate search is capable of
retrieving a matching shape and corresponding location to researchers for further anal-
ysis. Although this experiment searched a database of over four million time series,
the result was returned in less than a second, allow rapid interaction and hypothesis
testing for the scientist.

Section 5.3 identified characteristics of approximate search in the form of nearest
neighbor rankings. In this section, we quantify the effectiveness of approximate search
results via comparison with actual nearest neighbors. We indexed 9,999,745 random
walk time series subsequences of length 256 with parameters b = 4, w = 8, th = 150.
100 random walk queries were generated and the approximate search result of each
was obtained. To quantify the quality of approximate search results we formulate a
distance ratio which compares the true nearest neighbor distance and the approximate
search distance. Let time series Q, A, T be the query, the approximate result, and the
true nearest neighbor, respectively. Calculate:

DistanceRatio = EuclideanDist (Q, T)/ EuclideanDist (Q, A)

This distance ratio is an indicator of how similar the approximate result is, relative to
that of the true nearest neighbor. Figure 17 shows the distance ratio for each of the
100 queries, sorted in ascending order. All ratios are above 0.69, which indicates no
approximate result deviates significantly from the actual nearest neighbor. For addi-
tional illustration on the quality of approximate results, the Q, A, T set of time series
corresponding to the lower median of distance ratios (0.907) is shown in Fig. 18. In
fact, it is extremely hard to make any visual determination as to which plot is the
approximate result and which corresponds to the actual nearest neighbor (without the
aid of a legend).

123

48 J. Shieh, E. Keogh

0 10 20 30 40 50 60 70 80 90 100
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Query

D
(Q

,T
)

/ D
(Q

,A
)

Fig. 17 Sorted distance ratios of 100 random walk queries

0 50 100 150 200 250 300
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Query

Approximate Result

Nearest Neighbor

Fig. 18 Plot showing the random walk query, approximate result, and true nearest neighbor. Together they
correspond to the lower median of distance ratios computed

5.5 Time series set difference

In this section, we give an example of a data mining algorithm that can be built on
top of our existing indexing algorithms. The algorithm is interesting in that it uses
both approximate search and exact search to compute the ultimate (exact) answer to a
problem.

123

iSAX: disk-aware mining and indexing of massive time series datasets 49

Suppose we are interested in contrasting two collections of time series data. For
example, we may be interested in contrasting telemetry from the last Shuttle launch
with telemetry from all previous launches, or we may wish to contrast the 10 min of
electrocardiograms just before a patient wakes up with the preceding seven hours of
sleep.

To do this, we define the Time Series Set Difference (TSSD):

Definition Time Series Set Difference (A,B). Given two collections of time series A
and B, the time series set difference is the time series in A whose distance from its
nearest neighbor in B is maximal.

Note that we are not claiming that this is the best way to contrast two sets of time
series; it is merely a sensible definition we can use as a starting point.

We tested this definition on an electrocardiogram dataset. The data is an overnight
polysomnogram with simultaneous three-channel Holter ECG from a 45 year old male
subject with suspected sleep-disordered breathing. We used the first 7.2 h of the data as
the reference set B, and the next 8 min 39 s as the “novel” set A. The set A corresponds
to the period in which the subject woke up. After indexing the data with an iSAX
word length of 9 and a maximum threshold value of 100, we had 1,000,000 time series
subsequences in 31,196 files on disk, occupying approximately 4.91GB of secondary
storage. Figure 19 show the TSSD discovered.

We showed the result to UCLA cardiologist Helga Van Herle. She noted that the
p-waves in each of the full heartbeats look the same, but there is a 21.1% increase in the
length of the second one. This indicated to her that this is almost certainly an example
of sinus arrhythmia, where the R-R intervals are changing with the patients breathing
pattern. This is likely due to slowing of the heart rate with expiration and increase
of the heart rate with inspiration, given that it is well known that respiration patterns
change in conjunction with changes in sleep stages (Scholle and Schäfer 1999).

An obvious naive algorithm to find the TSSD is to do 20,000 exact searches, one for
each object in A. This requires (“only”) 325,604,200 Euclidean distance calculations,
but it requires approximately 5,676,400 disk accesses, for 1.04 days of wall clock
time. This is clearly untenable.

We propose a simple algorithm to find the TSSD that exploits the fact that we can
do both ultra-fast approximate search and fast exact search. We assume that set B is
indexed and that set A is in main memory. The algorithm is sketched out in Table 7.

The algorithm begins by obtaining the approximate nearest neighbor in B for each
time series in A (lines 5–10). A priority queue is created to order each time series in A
according to the distance to its approximate nearest neighbor. Given that approximate

2500 50 100 150 200

-4

0

4

 10990

Fig. 19 The Time Series Set Difference discovered between ECGs recorded during a waking cycle and
the previous 7.2 h

123

50 J. Shieh, E. Keogh

Table 7 An outline of an algorithm to find the TSSD

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Function [IndexFile] = TimeSeriesSetDifference(A,B)
// sort priority queue by entry dist
PriorityQueue pq

foreach ts in A
 IndexFile = B.ApproximateSearch(ts)
 entry.dist = IndexFileDist(ts,IndexFile)
 entry.ts = ts;
 pq.Add(entry)
end

while !pq.IsEmpty
 entry = pq.ExtractMax()
 nextDist= pq.FindMax().dist

 // exact search is suspended if the best-so-far
 // becomes greater than nextDist
 IndexFile = B.ExactSearch(entry,nextDist)

 // IndexFile returns null when search is suspended
 if IndexFile == null
 pq.Add(entry)

else
 return Indexfile

endif
end

search results are generally close to the exact answer, examining priority queue entries
in order of descending distance is likely to be an effective heuristic in finding the entry
which has the maximum nearest neighbor distance. The algorithm makes a minor
addition to the exact search algorithm described previously. An additional parameter,
nextDist, is required and denotes the distance value of the next entry at the top of
the priority queue. If at any point during the exact search, the best-so-far falls below
nextDist we suspend the search and return null. We can determine the state of exact
search by checking the IndexFile for value (line 21). If the search was suspended, we
reinsert the entry with its partially suspended state and updated distance back into the
priority queue (line 22). Otherwise, if the IndexFile contains a search result, then we
have obtained an exact answer whose nearest neighbor is larger than any other entry
remaining in the priority queue, the TSSD (line 24).

To find the discordant heartbeats shown in Fig. 19, our algorithm did 43,779 disk
accesses (20,000 in the first approximate stage, and the remainder during the refinement
search phase), and performed 2,365,553 Euclidean distance calculations. The number
of disk accesses for a sequential scan algorithm is somewhat better; it requires only
31,196 disk reads, about 71% of what our algorithm required. However, sequential
scan requires 20,000,000,000 Euclidean distance calculations, which is 8,454 times
greater than our approach and would require an estimated 6.25 days to complete. In
contrast, our algorithm takes only 34 min.

Our algorithm is much faster because it exploits the fact that that most candidates
in set A can be quickly eliminated by very fast approximate searches. In fact, of the
20,000 objects in set A for this experiment, only two of them (obviously including the
eventual answer) had their true nearest neighbor calculated. Of the remainder, 17,772

123

iSAX: disk-aware mining and indexing of massive time series datasets 51

were eliminated based only on the single disk access made in phase one of the algo-
rithm, and 2,226 required more than one disk access, but less than a compete nearest
neighbor search.

5.6 Batch nearest neighbor search

We consider another problem which can be exactly solved with a combination of
approximate and exact search. The problem is that of batch nearest neighbor search.
We begin with a concrete example of the problem before showing our iSAX-based
solution. Here the context of DNA is used to provide a real world dataset with results
which can be easily verified.

It has long been known that all the great apes except humans have 24 chromosomes.
Humans, having 23, are quite literally the odd man out. This is widely accepted to
be a result of an end-to-end fusion of two ancestral chromosomes. Suppose we do
not know which of the ancestral chromosomes were involved in the fusion, we could
attempt to efficiently discover this with iSAX.

We begin by converting DNA into time series. There are several ways to do this;
here we use the simple approach shown in Table 8.

We converted Contig NT_005334.15 of the human chromosome 2 to time series in
this manner, and then indexed all subsequences of length 1024 using a sliding win-
dow. There are a total of 11,246,491 base pairs (approximately 2,100 pages of DNA
text written in this paper’s format) and a total of 5,622,734 time series subsequences
written to disk.

We converted 43 randomly chosen subsequences of length 1024 of chimpanzee’s
(Pan troglodytes) DNA in the same manner. We made sure that the 43 samples included
at least one sample from each of the chimps 24 chromosomes.

We performed a search to find the chimp subsequence that had the nearest nearest-
neighbor in the human reference set. Figure 20 shows the two subsequences plotted
together. Note that while the original DNA strings are very similar, they are not iden-
tical.

Once again, this is a problem where a combination of exact and approximate search
can be useful. To speed up the search we use batch nearest neighbor search. We define
this as the search for the object O in a (relatively small) set A, which has the smallest
nearest neighbor distance to an object in a larger set B. Note that to solve this problem,
we really only need one exact distance, for object O, to be known. For the remaining

Table 8 An algorithm for
converting DNA to time series

T1 = 0;

For i = 1 to length(DNAstring)

If DNAstringi = A, then Ti+1= Ti + 2

If DNAstringi = G, then Ti+1= Ti + 1

If DNAstringi = C, then Ti+1= Ti − 1

If DNAstringi = T, then Ti+1= Ti − 2

End

123

52 J. Shieh, E. Keogh

1000

Human 2:

Chimp 2A:

0 200 400 600 800

Zoom-In

Section 710 to 890

Fig. 20 Corresponding sections of human and chimpanzee DNA

Table 9 Batch nearest neighbor algorithm

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Function [IndexFile] = BatchNearestNeighbor(A, B)
PriorityQueue pq

min.dist = inf
foreach ts in A
 IndexFile = B.ApproximateSearch(ts)
 dist = IndexFileDist(ts,IndexFile)

if min.dist > dist
 min.dist = dist
 min.ts = ts

endif

 entry.dist = dist
 entry.ts = ts;
 pq.Add(entry)
end

pq.Remove(min.ts)
IndexFile = B.ExactSearch(min.ts)
min.dist = IndexFileDist(IndexFile)
min.IndexFile = IndexFile;

while !pq.IsEmpty
 IndexFile = B.ExactSearch(pq.ExtractMin(), min.dist)

if IndexFile != null
 min.dist = IndexFileDist(IndexFile)
 min.IndexFile = IndexFile;

endif
end

return min.IndexFile;

objects in A, it suffices to know that a lower bound on their nearest neighbors is greater
than the distance from O to its nearest neighbor. With this in mind, we can define an
algorithm which is generally much faster than performing exact search for each of the
objects in A. Table 9 outlines the algorithm.

The algorithm begins by obtaining the approximate search result for each time
series in A (lines 5–16). Exact search is then performed on the query time series with

123

iSAX: disk-aware mining and indexing of massive time series datasets 53

the minimum approximate distance as an initial batch nearest neighbor candidate (line
19). We then perform exact search on the remaining time series in A using the cur-
rent candidate as the initial distance to use during exact search (this requires a simple
modification of lines 2–3 in the exact search algorithm detailed previously). By using
the current batch nearest neighbor candidate as the initial distance value, we begin
exact search immediately with a reduced distance value, increasing the likelihood of
search space pruning from the very onset. If exact search returns a value, then a nearest
neighbor less than the current best-so-far was found, and we update the best-so-far
accordingly (lines 26–27). Once all time series are examined, the current best-so-far
is returned as the batch nearest neighbor.

We can see this algorithm as an anytime algorithm (Xi et al. 2006; Zilberstein and
Russell 1995). Recall that an anytime algorithm has the advantage that the quality
of results increases monotonically with time and that execution is interruptible (after
initial setup). Now considering the effect of diminishing returns and possible temporal
constraints, it may be desirable to return an answer prior to the complete execution of
the algorithm. An algorithm under the anytime framework facilitates this. For example,
after the first phase, our algorithm has an approximate answer that we can examine. As
the algorithm continues working in the background to confirm or adjust that answer,
we can evaluate the current answer and make a determination of whether to terminate
or allow the algorithm to persist.

In this particular experiment, the first phase of the algorithm returns an answer
(which we later confirm to be the exact solution) in just 12.8 s, finding that the ran-
domly chosen substring of chimp chromosome 2A, beginning at 7,582 of Contig
NW_001231255 is a stunningly close match to the substring beginning at 999,645 of
the Contig NT_005334.15 of human chromosome 2. The full algorithm terminates in
21.8 min. In contrast, a naive sequential scan takes 13.54 h.

5.7 Mapping the rhesus monkey chromosomes

In our final experiment we demonstrate the utility of ultra-fast approximate search by
conducting a large scale indexing experiment on a real world dataset. In particular we
will attempt to discover, and then align the rhesus macaque (Macaca mulatta) chro-
mosomes that are homologous to the human chromosome 2 we encountered in the
last section. Note that while the chimpanzee and human diverged only 6 million years
ago, the human and macaque diverged 25 million years ago. We should therefore not
expect that the matches will be as strikingly similar as the matches shown in Fig. 20.
Instead, our approach will be to abandon any notion of exact searches, and conduct
many approximate searches. We will then use the distributions of distances discov-
ered for our approximate solutions to guide our hunt for homology, and to produce
the alignment.

As we noted before, we are not claiming iSAX has a particular utility for such
biological problems. It is merely a very large dataset for which we can obtain ground
truth by other methods (Ijdo et al. 1991; Rogers et al. 2006).

To begin, we would like to determine some baseline which identifies the level of
similarity we should expect between two chromosomes which are not related. This

123

54 J. Shieh, E. Keogh

0 1000 2000 3000 4000 5000

0.01

0.03

0.05

0.07

Euclidean distances between approximate nearest neighbors

Fig. 21 The distribution of the Euclidean distances from subsequences in Rhesus Monkey chromosome
19 to their approximate nearest neighbor in Human chromosome 2. The distribution is normalized such that
the area under the curve is one

could be done analytically, or with experiments on synthetic DNA. As we happen to
known from external sources that the macaque chromosome 19 is unrelated to our
target human chromosome 2, we will use that.

We converted human chromosome 2 to time series in the manner described in
Sect. 5.6 and down sampled the time series by 4. Non-zero subsequences of length
1024 were extracted using a sliding window and indexed. From a total of 242,951,149
base pairs, 59,444,792 time series subsequences were indexed.

We then converted the macaque chromosome 19 to DNA time series using the same
process and used each subsequence of 1024 as a query. Because DNA subsequences
may have become been inverted some time in the last 25 million years (i.e. ..TTG-
CAT.. becomes ..TCAGTT..) we search for each time series, and its mirror image. In
Fig. 21 we show the distribution of the Euclidean distance values from subsequences
in macaque chromosome 19 and their approximate nearest neighbor in Human chro-
mosome 2.

This distribution tells us that the average distance between nearest neighbors is
approximately 1,774 with a standard deviation of 301. There are very few distances
less than 1,000 or greater than 4,000. If we repeat the experiment with randomly gen-
erated data or other non-related DNA sequences we find nearly identical distributions
is every case. We therefore can use this distribution as a baseline for a systematic
search through the remaining 19 macaque chromosomes. While we could use a sta-
tistical test such as the Kullback–Leibler divergence (Fuglede and Topsøe 2004), we
simply visually inspected the distributions. Two of the monkey chromosomes, 12 and
13, produce significantly different distributions. In Fig. 22 we show a comparison of
the distributions for macaque chromosome 19 and 12.

Because both chromosome 12 and 13 from the macaque have a suspicious diver-
gence from the expected distribution, we can create a dot plot to see which sequences
in the monkey, map closely to which sequences in the human. We need to set some
threshold, because we are not interested in knowing where the nearest neighbor to a
subsequence is, if that nearest neighbor happens to be relatively far away. We observe
from Fig. 23 that the two distributions start to diverge (reading right to left) at about
1,250, so we use that value as the cutoff distance for dot plot construction.

This figure suggests that essentially all of human chromosome 2 can be explained
by a fusion of Rhesus Monkey chromosome 12 and 13 (or vice versa). Of course, it has
been suspected that that human chromosome 2 is a recent species-specific fusion of

123

iSAX: disk-aware mining and indexing of massive time series datasets 55

0 1000 2000 3000 4000 5000

0.01

0.03

0.05

0.07

Rhesus Monkey

chromosome 19

Rhesus Monkey
chromosome 12

divergence

Euclidean distances between approximate nearest neighbors

Fig. 22 The distribution of the Euclidean distances from subsequences in Rhesus Monkey chromosomes
19 and 12, to their approximate nearest neighbor in Human chromosome 2

0 40 80 120 160 200 240

× million base pairs

0

40

80

0

40

80

120

Human chromosome 2

R
hesus M

onkey chrom
osom

e 12
R

hesus M
onkey chrom

osom
e 13

Fig. 23 A dot plot showing the alignment of Human chromosome 2 with both chromosome 12 and 13 of
the Rhesus Monkey. Each dot represents a location where a subsequence in the monkey (row) is less than
1,250 from a subsequence in a human (column)

123

56 J. Shieh, E. Keogh

two ancestral primate chromosomes for several decades (Ijdo et al. 1991). More recent
studies (Rogers et al. 2006) have confirmed that the mapping above is correct, and the
section that the rhesus macaque 12 and 13 maps to are called 2q and 2p, respectively.

In total, we performed 119,400 approximate queries taking slightly little over 4 h,
whereas a naive method of scanning subsequences of one chromosome across the
other would result in nearly 119,400 * 59,444,792 distance computations, requiring
well over a year, a duration which is clearly unacceptable for such applications.

6 Conclusions

We introduced iSAX, a representation that supports indexing of massive datasets, and
have shown it can index up to one hundred million time series. We have also provided
examples of algorithms that use a combination of approximate and exact search to
ultimately produce exact results on massive datasets. Other time series data mining
algorithms such as motif discovery, density estimation, anomaly discovery, joins, and
clustering can similarly take advantage of combining both types of search, especially
when the data is disk resident. We plan to consider such problems in future work.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

André-Jönsson H, Badal DZ (1997) Using signature files for querying time-series data. In: Proceedings of
the 1st PKDD, pp 211–220

Assent I, Krieger R, Afschari F, Seidl T (2008) The TS-Tree: efficient time series search and retrieval. In:
Proceedings of the 11th EDBT

Bagnall AJ, Ratanamahatan C, Keogh E, Lonardi S, Janacek GJ (2006) A Bit Level Representation for time
series data mining with shape based similarity. Data Min Knowl Disc 13(1):11–40

Batista LV, Melcher EUK, Carvalho LC (2001) Compression of ECG signals by optimized quantization of
discrete cosine transform coefficients. Med Eng Phys 23(2):127–134

Bingham E, Mannila H (2001) Random projection in dimensionality reduction: applications to image and
text data. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge dis-
covery and data mining, San Francisco, California, August 26–29, 2001. KDD ‘01, ACM, New York,
NY, pp 245–250

Cai Y, Ng R (2004) Indexing spatio-temporal trajectories with Chebyshev polynomials. In: Proceedings of
the ACM SIGMOD, pp 599–610

Chan K, Fu AW (1999) Efficient time series matching by wavelets. In: Proceedings of 15th international
conference on data engineering, pp 126–133

Chen J, Itoh S (1998) A wavelet transform-based ECG compression method guaranteeing desired signal
quality. IEEE Trans Biomed Eng 45(12):1414–1419. doi:10.1109/10.730435

Chen Q, Chen L, Lian X, Liu Y, Yu JX (2007) Indexable PLA for efficient similarity search. In: Proceedings
of the 33rd international conference on very large data bases

Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E (2008) Querying and mining of time series data:
experimental comparison of representations and distance measures. In: Proceedings of the VLDB
endow, 1, 2 (Aug 2008), pp 1542–1552

Faloutsos C, Ranganathan M, Manolopoulos Y (1994) Fast subsequence matching in time-series databases.
In: Proceedings of the ACM SIGMOD

Fuglede B, Topsøe F (2004) Jensen-Shannon divergence and hilbert space embedding. In: Proceedings of
the international symposium on information theory

123

http://dx.doi.org/10.1109/10.730435

iSAX: disk-aware mining and indexing of massive time series datasets 57

Guttman A (1984) R-trees: a dynamic index structure for spatial searching. SIGMOD Rec 14(2):47–57.
doi:10.1145/971697.602266

Huang Y, Yu PS (1999) Adaptive query processing for time-series data. In: Proceedings of the 5th ACM
SIGKDD, pp 282–286

Ijdo J, Baldini A, Ward DC, Reeders ST, Wells RA (1991) Origin of human chromosome 2: an ancestral
telomere–telomere fusion. Proc Natl Acad Sci USA 88:9051–9055. doi:10.1073/pnas.88.20.9051

Kaffka S, Wintermantel B, Burk M, Peterson G (2000) Protecting high-yielding sugarbeet varieties from
loss to curly top. http://sugarbeet.ucdavis.edu/Notes/Nov00a.htm

Keogh E (2008) www.cs.ucr.edu/~eamonn/SAX.htm
Keogh E, Shieh J (2008) iSAX home page. www.cs.ucr.edu/~eamonn/iSAX/iSAX.htm
Keogh E, Chakrabarti K, Pazzani MJ, Mehrotra S (2001a) Dimensionality reduction for fast similarity

search in large time series databases. KAIS 3(3):263–286. doi:10.1007/PL00011669
Keogh E, Chakrabarti K, Pazzani M, Mehrotra S (2001b) Locally adaptive dimensionality reduction for

indexing large time series databases. In: Proceedings of ACM SIGMOD conference on management
of data, May, pp 151–162

Kumar N, Lolla N, Keogh E, Lonardi S, Ratanamahatana CA, Wei L (2005) Time-series bitmaps: a practical
visualization tool for working with large time series databases. In: Proceedings of SIAM international
conference on data mining

Lin J, Keogh E, Wei L, Lonardi S (2007) Experiencing SAX: a novel symbolic representation of time series.
Data Min Knowl Disc 15:107–144

Megalooikonomou V, Wang Q, Li G, Faloutsos C (2005) A multiresolution symbolic representation of time
series. In: Proceedings of the 21st ICDE

Morinaka Y, Yoshikawa M, Amagasa T, Uemura S (2001) The L-index: an indexing structure for efficient
subsequence matching in time sequence databases. In: Proceedings of Pacific-Asian conference on
knowledge discovery and data mining

Portet F, Reiter E, Hunter J, Sripada S (2007) Automatic generation of textual summaries from neonatal
intensive care data. In: Proceedings of AIME 2007

Ratanamahatana CA, Keogh E (2005) Three myths about dynamic time warping. In: Proceedings of SIAM
international conference on data mining (SDM ‘05), pp 506–510

Rogers J et al (2006) An initial genetic linkage map of the rhesus macaque (Macaca mulatta) genome using
human microsatellite loci. Genomics 87(1):30–38. doi:10.1016/j.ygeno.2005.10.004

Scholle S, Schäfer T (1999) Atlas of states of sleep and wakefulness in infants and children. Somnologie -
Schlafforschung und Schlafmedizin 3(4):163

Shatkay H, Zdonik SB (1996) Approximate queries and representations for large data sequences.
In: Su SY (ed) Proceedings of the 12th international conference on data engineering, ICDE, IEEE
Computer Society, Washington, DC, February 26–March 01, 1996, pp 536–545

Steinbach M, Tan P, Kumar V, Klooster S, Potter C (2003) Discovery of climate indices using clustering.
In: Proceedings of the ninth ACM SIGKDD, pp 446–455

Wei L, Keogh E, Van Herle H, Mafra-Neto A (2005) Atomic wedgie: efficient query filtering for streaming
times series. In: Proceedings of the fifth IEEE international conference on data mining, pp 490–497

Xi X, Keogh E, Shelton C, Wei L, Ratanamahatana CA (2006) Fast time series classification using numer-
osity reduction. In: Proceedings of the 23rd ICML, pp 1033–1040

Zilberstein S, Russell S (1995) Approximate reasoning using anytime algorithms. In: Imprecise and approx-
imate computation. Kluwer Academic Publishers

123

http://dx.doi.org/10.1145/971697.602266
http://dx.doi.org/10.1073/pnas.88.20.9051
http://sugarbeet.ucdavis.edu/Notes/Nov00a.htm
www.cs.ucr.edu/~eamonn/SAX.htm
www.cs.ucr.edu/~eamonn/iSAX/iSAX.htm
http://dx.doi.org/10.1007/PL00011669
http://dx.doi.org/10.1016/j.ygeno.2005.10.004

	iSAX: disk-aware mining and indexing of massive time series datasets
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Time series distance measures
	2.2 Time series representations
	2.3 Review of classic SAX

	3 The iSAX representation
	3.1 Comparing different cardinality iSAX words

	4 iSAX indexing
	4.1 The intuition behind iSAX indexing
	4.2 iSAX index construction
	4.3 Approximate search
	4.4 Exact search

	5 Experiments
	5.1 Tightness of lower bounds
	5.2 Sensitivity to parameters
	5.3 Indexing massive datasets
	5.4 Approximate search evaluation
	5.5 Time series set difference
	5.6 Batch nearest neighbor search
	5.7 Mapping the rhesus monkey chromosomes

	6 Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

