
Data Min Knowl Disc (2011) 22:73–105
DOI 10.1007/s10618-010-0176-8

A disk-aware algorithm for time series motif discovery

Abdullah Mueen · Eamonn Keogh · Qiang Zhu ·
Sydney S. Cash · M. Brandon Westover ·
Nima Bigdely-Shamlo

Received: 14 May 2009 / Accepted: 25 March 2010 / Published online: 18 April 2010
© The Author(s) 2010

Abstract Time series motifs are sets of very similar subsequences of a long time
series. They are of interest in their own right, and are also used as inputs in several
higher-level data mining algorithms including classification, clustering, rule-discovery
and summarization. In spite of extensive research in recent years, finding time series
motifs exactly in massive databases is an open problem. Previous efforts either found
approximate motifs or considered relatively small datasets residing in main memory.
In this work, we leverage off previous work on pivot-based indexing to introduce a
disk-aware algorithm to find time series motifs exactly in multi-gigabyte databases
which contain on the order of tens of millions of time series. We have evaluated our

Responsible editor: Bart Goethals.

A. Mueen (B) · E. Keogh · Q. Zhu
Department of Computer Science & Engineering, University of California, Riverside, CA, USA
e-mail: mueen@cs.ucr.edu

E. Keogh
e-mail: eamonn@cs.ucr.edu

Q. Zhu
e-mail: qzhu@cs.ucr.edu

S. S. Cash
Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
e-mail: scash@partners.org

M. B. Westover
Massachusetts General Hospital, Brigham and Women’s Hospital, Boston, MA, USA
e-mail: mwestover@partners.org

N. Bigdely-Shamlo
Swartz Center for Computational Neuroscience, University of California, San Diego, CA, USA
e-mail: nima@sccn.ucsd.edu

123

74 A. Mueen et al.

algorithm on datasets from diverse areas including medicine, anthropology, computer
networking and image processing and show that we can find interesting and meaningful
motifs in datasets that are many orders of magnitude larger than anything considered
before.

Keywords Time series motifs · Bottom-up search · Random references · Pruning

1 Introduction

Time series motifs are sets of very similar subsequences of a long time series, or from
a set of time series. Fig. 1 illustrates an example of a motif discovered in an industrial
dataset. As in other domains, (i.e. text, DNA, video Cheung and Nguyen 2005) this
approximately repeated structure may be conserved for some reason that is of interest
to the domain specialists. In addition, time series motifs are also used as inputs in sev-
eral higher-level data mining algorithms, including classification (Mueen et al. 2009),
clustering, rule-discovery and summarization. Since their formalization in 2002, time
series motifs have been used to solve problems in domains as diverse as human motion
analyses, medicine, entertainment, biology, anthropology, telepresence and weather
prediction.

In spite of extensive research in recent years (Chiu et al. 2003; Ferreira et al. 2006;
Mueen et al. 2009; Yankov et al. 2007), finding time series motifs exactly in massive
databases is an open problem. Previous efforts either found approximate motifs or
considered relatively small datasets residing in main memory (or in most cases, both).
However, in many domains we may have datasets that cannot fit in main memory. For
example, in this work we consider a 228 GB dataset. We must somehow find the motif
in this dataset, while only allowing a tiny fraction (less than 1%) of it in main memory
at any one time. In this work, we describe for the first time a disk-aware algorithm
to find time series motifs in multi-gigabyte databases containing tens of millions of

4000 6000 8000 10000

0
10
20
30

0 2000

0 100 200 300 400 500 600 700 800

Fig. 1 (Top) The output steam flow telemetry of the Steamgen dataset has a motif of length 640 beginning
at locations 589 and 8,895. (Bottom) By overlaying the two motifs we can see how remarkably similar they
are to each other

123

A disk-aware algorithm for time series motif discovery 75

time series. As we shall show, our algorithm allows us to tackle problems previously
considered intractable, for example finding near duplicates in a dataset of forty-million
images.

The rest of this paper is organized as follows. In Sect. 2 we review related work.
In Sect. 3 we introduce the necessary notation and background to allow the formal
description of our algorithm in Sect. 4. Sections. 5 and 6 empirically evaluate the
scalability and utility of our ideas, and we conclude with a discussion of future work
in Sect. 7.

2 Related work

Many of the methods for time series motif discovery are based on searching a
discrete approximation of the time series, inspired by and leveraging off the rich
literature of motif discovery in discrete data such as DNA sequences (Chiu et al.
2003; Patel et al. 2002; Ferreira et al. 2006; Minnen et al. 2007a; Yoshiki et al.
2005; Simona and Giorgio 2004). Discrete representations of the real-valued data
must introduce some level of approximation in the motifs discovered by these meth-
ods. In contrast, we are interested in finding motifs exactly with respect to the raw
time series. More precisely, we want to do an exact search for the most similar pair
of subsequences (i.e. the motif) in the raw time series. It has long been held that
the exact discovery of motif is intractable even for datasets residing in main mem-
ory. In a recent work the current authors have shown that motif discovery is trac-
table for large in-core datasets (Mueen et al. 2009); however, in this work we plan
to show that motif discovery can be made tractable even for massive disk resident
datasets.

The literature is replete with different ways of defining time series “motifs.” Motifs
are defined and categorized using their support, distance, cardinality, length, dimen-
sion, underlying similarity measure, etc. Motifs may be restricted to have a minimum
count of participating similar subsequences (Chiu et al. 2003; Ferreira et al. 2006) or
may only be a single closest pair (Mueen et al. 2009). Motifs may also be restricted to
have a distance lower than a threshold (Chiu et al. 2003; Ferreira et al. 2006; Yankov
et al. 2007), or restricted to have a minimum density (Minnen et al. 2007b). Most of
the methods find fixed length motifs (Chiu et al. 2003; Ferreira et al. 2006; Mueen
et al. 2009; Yankov et al. 2007), while there are a handful of methods for variable
length motifs (Minnen et al. 2007b; Yoshiki et al. 2005; Tang and Liao 2008). Multi-
dimensional motifs and subdimensional motifs are defined (Minnen et al. 2007a) and
heuristic methods to find them are explored in (Minnen et al. 2007a,b; Yoshiki et al.
2005). Depending on the domain in question, the distance measures used in motif dis-
covery can be specialized, such as allowing for “don’t cares” to increase tolerance to
noise (Chiu et al. 2003; Simona and Giorgio 2004). In this paper we explicitly choose
to consider only the simplest definition of a time series motif, which is the closest pair
of time series subsequences of fixed length. Since virtually all of the above definitions
can be trivially calculated with inconsequential overhead using the closest pair as a
seed, we believe the closest pair is the core operation in motif discovery. Therefore,
we ignore other definitions for brevity and simplicity of exposition.

123

76 A. Mueen et al.

To the best of our knowledge, the closest-pair/time series motif problem in high
dimensional (i.e. hundreds of dimensions) disk resident data has not been addressed.
There has been significant work on spatial closest-pair queries (Nanopoulos et al.
2001; Corral et al. 2000). These algorithms used indexing techniques such as R-tree
and R*-tree which have the problem of high creation and maintenance cost for multi-
dimensional data (Koudas and Sevcik 2000). In Weber et al. (1998), it has been proved
that there is a dimensionality beyond which every partitioning method (R*-tree, X-tree,
etc.) degenerates into sequential access. Another possible approach could be to use
efficient high dimensional self similarity join algorithms (Koudas and Sevcik 2000;
Dohnal et al. 2003). If the data in hand is joined with itself with a low similarity thresh-
old we would get a motif set, which could be quickly refined to find the true closest
pair. However, the threshold must be at least as big as the distance between the closest
pair to filter it from the self-join results. This is a problem because most of the time
users do not have any idea about a good threshold value. Obviously, user can choose a
very large threshold for guaranteed results, but this degrades the performance a lot. In
this regard, our method is parameter free and serves the exact purpose of finding the
closest pair of time series. Besides, the datasets we wish to consider in this work have
three orders of magnitude more objects than any of the datasets considered in Corral
et al. (2000); Koudas and Sevcik (2000); Nanopoulos et al. (2001) and dimensionality
(i.e length) of the motifs are from several hundreds to a thousand whereas in Koudas
and Sevcik (2000) the maximum dimensionality is thirty. Therefore, our algorithm is
the first algorithm to find exact time series motifs in disk resident data.

Given this, most of the literature has focused on fast approximate algorithms for
motif discovery (Beaudoin et al. 2008; Chiu et al. 2003; Minnen et al. 2007b; Tanaka
et al. 2005; Guyet et al. 2007; Meng et al. 2008; Rombo and Terracina 2004; Lin et al.
2002). For example, a recent paper on finding approximate motifs reports taking 343 s
to find motifs in a dataset of length 32,260 (Meng et al. 2008), in contrast we can find
motifs in similar datasets exactly, and on similar hardware in under 100 s. Similarly,
another very recent paper reports taking 15 min to find approximate motifs in a dataset
of size 111,848 (Beaudoin et al. 2008), however we can find motifs in similar datasets
in under 4 min. Finally, paper (Liu et al. 2005) reports 5 s to find approximate motifs in
a stock market dataset of size 12,500, whereas our exact algorithm takes less than 1 s.

It has long been known that the closest pair problem in multidimensional data has
a lower bound of �(nlogn). The optimal algorithm is derived from the divide-and-
conquer paradigm and exploits two properties of a dataset: sparsity of the data and the
ability to select a “good” cut plane (Bentley 1980). This algorithm recursively divides
the data by a cut plane. At each step it projects the data to the cut plane to reduce the
dimensionality by one and then solve the subproblems in the lower dimensional space.
Unfortunately the optimal algorithm hides a very high constant factor in the complex-
ity expression, which is of the order of 2d and the sparsity condition does not hold
for time series subsequences (c.f. sect. 5.1). In addition, the large worst-case memory
requirement and essentially random data accesses made the algorithm impractical for
disk-resident applications.

In this paper we employ a bottom-up search algorithm that simulates the merge steps
of the divide-and-conquer approach. Our contribution is that we created an algorithm
whose worst-case memory and I/O overheads are practical for implementation on very

123

A disk-aware algorithm for time series motif discovery 77

large-scale databases. The key difference with the optimal algorithm that makes our
algorithm amenable for large databases is that we divide the data without reducing the
number of dimensions and without changing the data order at any divide step. This
allows us to do a relatively small number of batched sequential accesses, rather than
a huge number of random accesses. As we shall see, this can make a three- to four-
order-of-magnitude difference in the time it takes to find the motifs on disk-resident
datasets.

To the best of our knowledge, our algorithm is completely novel. However we
leverage off related ideas in the literature (Gonzalez et al. 2008; Jagadish et al.
2005; Yu and Wang 2007). In particular, the iDistance method of Jagadish et al.
(2005) introduces the idea of projecting data on to a single line, a core sub-
routine in our algorithm. Other works, for example Gonzalez et al. (2008) also
exploits the information gained by the relative distances to randomly chosen refer-
ence points. However they use this information to solve the approximate similar-
ity search problem, whereas we use it to solve the exact closest-pair problem. In
Jagadish et al. (2005) and Yu and Wang (2007), Reference objects have been used
for each partition of a B+ tree index which is adapted for different data distribution.
However, we use only one reference object to do the data ordering. In Dohnal et al.
(2003), Reference objects (pivots) are used to build an index for similarity joins.
While we exploit similar ideas, the design of the index is less useful for the closest-
pair problem because of data replication and parameter setting described previously.
Both Jagadish et al. (2005) and Yu and Wang (2007) use the idea of pivots to do
K-nearest neighbor search, and report approximately one order of magnitude speedup
over brute force. However we use the idea of pivots for motif discovery and report
four to five orders or magnitude. What explains this dramatic difference in speedup?
A small fraction can be attributed to the simple fact that we consider significantly
larger datasets, and pivot-based pruning is more effective for larger datasets. How-
ever, most of the difference can be explained by our recent observation that the speed
up of pivot-based indexing depends on the value of the best-so-far variable (Mueen
et al. 2009). While this value does decrease with datasets size for K-nearest neighbor
search or full joins (Dohnal et al. 2003), it decreases much faster for motif discovery
(Mueen et al. 2009), allowing us to prune over 99.99% of distance calculations for
real-world problems.

3 Definition and background

As described in the previous section we focus on the simplest “core” definition of time
series motifs. In this section we define the terms formally.

Definition 1 A time series is a sequence T = (t1, t2, . . ., tm) of m real valued numbers.

The sequence of real valued numbers (ti) is generally a temporal ordering. Other well-
defined orderings such as shapes (Yankov et al. 2007), spectrographs, handwritten
text, etc. can also be fruitfully considered as “time series.” As with most time series
data mining algorithms, we are interested in local, not global properties of the time
series and therefore, we need to extract subsequences from it.

123

78 A. Mueen et al.

Definition 2 A subsequence of length n of a time series T = (t1, t2, . . ., tm) is a time
series Ti,n = (ti , ti+1, . . ., ti+n−1) for 1 ≤ i ≤ m − n + 1.

A time series of length m has m − n + 1 subsequences of length n. We naturally
expect that adjacent subsequences will be similar to each other; these subsequences
are known as trivial matches (Chiu et al. 2003). However, subsequences which are
similar to each other, yet at least some minimum value w apart suggest a recurring
pattern, an idea we formalize as a time series motif.

Definition 3 The time series motif is a pair of subsequences {Ti,n, Tj,n} of a long
time series T of length m that is the most similar. More formally, the pair {Ti,n, Tj,n},
where |i − j | ≥ w, is the time series motif iff ∀a, b dist (Ti,n, Tj,n) ≤ dist(Ta,n, Tb,n),
for |a − b| ≥ w and w > 0.

Note the inclusion of the separation window w. This means that a motif must contain
subsequences separated by at least w positions. The reason behind this separation con-
straint is to prevent trivial matches from being reported as motif (Patel et al. 2002).
To explain what is a trivial match, let us consider an example (on discrete data for
simplicity). If we were looking for motifs of length four in the string:

sjdbbnvfdfpqoeutyvnABABABmbzchslfkeruyousjdq (1)

Then, in this case we probably would not want to consider the pair {ABAB,ABAB} to
be a motif, since they share 50% of their length (i.e AB is common to both). Instead,
we would find the pair {sjdb,sjdq} to be a more interesting approximately repeated
pattern. In this example, we can enforce this by setting the parameter w = 4. Therefore,
after discounting trivial matches, the total number of possible motif pairs is exactly
(m−n−w+1)(m−n−w)

2 .
There are a number of distance measures to capture the notion of similarity between

subsequences. In Ding et al. (2008) and elsewhere it has been empirically shown that
simple Euclidean distance is competitive or superior to many of the complex distance
measures and has the very important triangular inequality property. Note, however, that
our method can work with any distance measure that is metric. Additional reasons for
using Euclidean distance are that it is parameter-free and its calculation allows many
optimizations, for example, it is possible to abandon the Euclidean distance computa-
tion as soon as the cumulative sum goes beyond the current best-so-far, an idea known
as early abandoning (Mueen et al. 2009). For example assume the current best-so-far
has a Euclidean distance of 12.0, and therefore a squared Euclidean distance of 144.0.
If, as shown in Fig. 2, the next item to be compared is further away, then at some point
the sum of the squared error will exceed the current minimum distance r=12.0 (or,
equivalently r2 = 144). So the rest of the computation can be abandoned since this
pair can’t have minimum distance. Note that we work here with the squared Euclidean
distance because we can avoid having to take square roots at each of the n steps in the
calculation.

One potential problem with Euclidean distance is that it is very sensitive to offset
and scale (amplitude). Two subsequences of a time series may be very similar but
at different offsets and/or scales, and thus report a larger distance than warranted.

123

A disk-aware algorithm for time series motif discovery 79

0 10 20 30 40 50 60 70 80 90
-2

0

2

sum of squared error
exceeded r2 = 144

Fig. 2 A visual intuition of early abandoning. Once the squared sum of the accumulated gray hatch lines
exceeds r2, we can be sure the full Euclidean distance exceeds r

Normalization before comparison helps to mitigate this effect. In this paper, we use
the standard z-normalization defined as X = x−μ

σ
where X is the normalization of

vector x with sample mean μ and standard deviation σ . Z-normalization is an O(n)
operation. Therefore, to avoid renormalizing same subsequences multiple times, we
compute all of the (m − n + 1) normalized subsequences just once, store all of them
in a database of time series and use these normalized sequences when computing the
distances.

Definition 4 A time series database is an unordered set of normalized time series
or time series subsequences stored in one or multiple disk blocks of fixed or varying
sizes.

Although the most typical applications of motif discovery involve searching subse-
quences of a long time series, one other possibility is that we may simply have m
individual and independent time series to examine, such as m gene expression profiles
or m star light curves. With the exception of the minor overhead of keeping track of
the trivial matches (Chiu et al. 2003) in the former case, our algorithm is agnostic to
which situation produces the time series and it assumes to have a time series database
as the input and to output the time series motif found in the database.

As noted earlier, there are many other definitions of time series motifs (Lin et al.
2002; Yankov et al. 2007; Tang and Liao 2008; Minnen et al. 2007a). For example,
we present two other useful definitions below.

Definition 5 The kth-T imeSeriesmoti f is the k most similar pair in the database D.
The pair {Ti , Tj } is the kth motif iff there exists a set S of pairs of time series of size
exactly k − 1 such that ∀Td ∈ D {Ti , Td} /∈ S and {Tj , Td} /∈ S and ∀{Tx , Ty} ∈
S, {Ta, Tb} /∈ Sdist (Tx , Ty) ≤ dist (Ti , Tj)∀dist (Ta, Tb).

Definition 6 The Range motif with ranger is the maximal set of time series that have
the property that the maximum distance between them is less than 2r. More formally,
S is a range motif with range r iff ∀Tx , Ty ∈ Sdist (Tx , Ty) ≤ 2r and S is maximal.

In general, these definitions impose conditions on two major features of a set of
subsequences: similarity and support. We note that all such conditions can easily be
obtained with a single pass through the data using our definition as a seed. As such
the Definition 3 above is the core task of time series motif discovery.

123

80 A. Mueen et al.

For example, suppose we are tasked with finding all the range motifs with range
r. We can leverage of the simple observation that a necessary condition for a set S of
time series to be a range motif is that any two of the time series must be within 2r of
each other, and we can find such pairs using our algorithm. We can therefore simply do
the following. Find the time series motif (as in Definition 3) and record the distance,
dist(Ti,n, Tj,n). If the distance is greater than 2r, then we can report the null set as the
answer to our query, and terminate. Otherwise, we do a linear scan through the data,
retrieving all objects that are within 2r of bothTi,n, Tj,n . This set is a superset of the
range motif, and we can trivially condense it to the correct set.

For meaningful motif discovery, the motif pair should be significantly more similar
to each other than one would expect in a random database. In this work we gloss
over the problem of assessing significance, other than to show that the motifs have an
interpretation in the domains in question. In the next section we describe an algorithm
which allows us to efficiently find the motifs in massive time series databases.

4 Our algorithm

A set of time series of length n can be thought of as a set of points in n-dimensional
space. Finding the time series motif is then equivalent to finding the pair of points
having the minimum possible distance between any two points. Before describing the
general algorithm in detail, we present the key ideas of the algorithm with a simple
example in two-dimensional space.

4.1 A detailed intuition of our algorithm

For this example, we will consider a set of 24 points in 2D space. In Fig. 3a the dataset
is shown to scale. Each point is annotated by an id beside it. A moment’s inspection
will reveal that the closest pair of points is {4,9}. We assume that a disk block can
store at most three points (i.e. their co-ordinates) and their ids. So the dataset is stored
in the disk in eight blocks.

We begin by randomly choosing a reference point r (see Fig. 3a). We compute the
distance of each data point from r and sort all such distances in ascending order. As
the data is on the disk, any efficient external sorting algorithm can be used for this
purpose (Motzkin and Hansen 1982; Nyberg et al. 1995). A snap shot of the database
after sorting is shown in Fig. 3b. Note that our closest pair of points is separated in
two different blocks. Point 4 is in the fourth block and point 9 is in the fifth block.

Geometrically, this sorting step can be viewed as projecting the database on one
line by rotating all of the points about r and stopping when every point is on that line.
We call this line the order line since it holds all of the points in the increasing order of
their distances from r. The order line shown in Fig. 3c begins at the top, representing
a distance of 0 from r and continues downward to a distance of infinity (note that
the order line shown in Fig. 3c is representative, but does not strictly conform to the
scale and relative distances of Fig. 3a). Data points residing in the same block after
the sorting step are consecutive points in the order line and thus, each block has its
own interval in the order line. In Fig. 3c the block intervals are shown beside the order

123

A disk-aware algorithm for time series motif discovery 81

B

A

C
D E F

r

x

x-y

x+y

y

y

Fig. 3 a A sample database of 24 points. b Disk blocks containing the points sorted in the order of the
distances from r. The numbers on the left are the ids. c All points projected on the order line. d A portion
of an order line for a block of 8 points. e After pruning by a current motif distance of 4.0 units. f After
pruning by 3.0 units

line. Note that, up to this point, we have not compared any pairs of data points. The
search for the closest pair (i.e. comparisons of pairs of points) will be done on this
representation of the data.

Our algorithm is based upon the following observation. If two points are close in the
original space, they must also be close in the order line. Unfortunately, the opposite is
not true; two points which are very far apart in the original space might be very close
in the order line. Our algorithm can be seen as an efficient way to weed out these false
positives, leaving just the true motif.

As alluded to earlier, we search the database in a bottom-up fashion. At each
iteration, we partition the database into consecutive groups. We start with the

123

82 A. Mueen et al.

smallest groups of size 1 (i.e. one data point) and iteratively double the group
size (i.e. 2, 4, 8, . . .). At each iteration, we take pairs of disjoint consecutive
groups one at a time and compare all pairs of points that span those two groups.
Fig. 3d shows a contrived segment of an order line unrelated to our running
example, where a block of eight points is shown. An arc in this figure repre-
sents a comparison between two points. The closest four arcs to the order line
{(1, 2), (3, 4), (5, 6), (7, 8)} are computed when the group size is 1. The follow-
ing eight arcs {(1, 3), (1, 4), (2, 3), (2, 4), (5, 7), (5, 8), (6, 7), (6, 8)} are computed
when the group size is 2 and the rightmost 16 arcs are computed when the group size
is 4. Note that each group is compared with one of its neighbors in the order line at
each iteration. After the in-block searches are over, we move to search across blocks
in the same way. We start by searching across disjoint consecutive pairs of blocks
and continually increasing the size of groups like 2 blocks, 4 blocks, 8 blocks, and
so on. Here we encounter the issue of accessing the disk blocks efficiently, which is
discussed later in this section.

As described thus far, this is clearly a brute force algorithm that will eventually
compare all possible pairs of objects. However, we can now explain how the order
line helps to prune the vast majority of the calculations.

Assume A and B are two objects, and B lies beyond A in the order line; in
other words, dist (A, r) ≤ dist (B, r). By the triangular inequality we know that
dist (A, B) ≥ dist (B, r) − dist (A, r). But dist (B, r) − dist (A, r) is the distance
between A and B in the order line. Thus, the distance between two points in the
order line is a lower bound on the true distance between them. Therefore, at some
point during the search, if we know that the closest pair found so far has a dis-
tance of y, we can safely ignore all pairs of points that are more than y apart on
the order line. For example, in Fig. 3e, if we know that the distance between the
best pair discovered so far is 4.0 units, we can prune off comparisons between points
{(1, 6), (1, 7), (1, 8), (2, 7), (2, 8), (3, 8)}, since they are more than 4.0 units apart on
the order line. Similarly, if the best pair discovered so far had an even tighter distance
of 3.0 units, we would have pruned off four additional pairs (see Fig. 3f).

More critically, the order line also helps to minimize the number of disk accesses
while searching across blocks. Let us assume that we are done searching all possible
pairs (i.e. inside and across blocks) in the top four blocks and also in the bottom four
blocks (see Fig. 3b). Let us further assume that the smaller of the minimum distances
found in each of the two halves is y. Let x be the distance of the cut point between the
two halves from r. Now, all of the points lying within the interval (x − y, x] in the
order line may need to be compared with at least one point from the interval [x, x + y).
Points outside these two intervals can safely be ignored because they are more than y
apart from the points in the other half. Since in Fig. 3c the interval (x − y, x] over-
laps with the intervals of blocks 3 and 4 and the interval [x, x + y) overlaps with the
intervals of blocks 5 and 6, we need to search points across block pairs {3, 5}, {3, 6},
{4, 5} and {4, 6}. Note that we would have been forced to search all 16 possible block
pairs from the two halves if there were no order line.

Given that we are assuming the database will not fit in the main memory, the ques-
tion arises as to how we should load these block pairs when the memory is very small.
In this work, we assume the most restrictive case, where we have just the memory

123

A disk-aware algorithm for time series motif discovery 83

available to store exactly two blocks. Therefore, we need to bring the above four block
pairs {{3, 5}, {3, 6}, {4, 5}, {4, 6}} one at a time. The number of I/O operations
depends on the order in which the block pairs are brought into the memory. For exam-
ple, if we search the above four pairs of blocks in that order, we would need exactly
six block I/Os: two for the first pair, one for the second pair since block 3 is already
in the memory, two for the third pair and one for the last pair since block 4 is already
in the memory. If we choose the order {{3, 5}, {4, 6}, {3, 6}, {4, 5}} we would need
seven I/Os. Similarly, if we chose the order {{3, 5}, {4, 5}, {4, 6}, {3, 6}}, we would
need five I/Os. In the latter two cases there are reverse scans; a block (4) is replaced
by a previous block (3) in the order line. We will avoid reverse scans and avail of
sequential loading of the blocks to get maximum help from the order line.

To complete the example, let us seehow the order line helps in pruning pairs across
blocks. When we have two blocks in the memory, we need to compare each point in
one block to each point in the other block. In our running example, during the search
across the block pair {3,6}, the first and second data points in block 3 (i.e. 8 and 10 in
the database) have distances larger than y to any of the points in block 6 in the order
line (see Fig. 3c). The third point (i.e. 11) in block 3 has only the first point (i.e. 6)
in block 6 within y in the order line. Thus, for block pair {3, 6}, instead of computing
distances for all nine pairs of data points we would need to compute the distance for
only one pair, 〈11, 6〉.

At this point, we have informally described how a special ordering of the data
can reduce block I/Os as well as reduce pair-wise distance computations. With this
background, we hope the otherwise daunting detail of the technical description in the
next section will be less intimidating.

4.2 A formal description of our algorithm

For the ease of description, we assume the number of blocks (N) and the block size (m)
are restricted to be powers of two. We also assume that all blocks are of the same size
and that the main memory stores only two disk blocks with a small amount of extra
space for the necessary data structures. Readers should note that in the pseudocode,
all variable and method names are in italics and globally accessible elements are in
bold. Shaded lines denote the steps for the pruning of pairs from being selected or
compared. We call our algorithm DAME which is an abbreviated form of Disk Aware
Motif Enumeration.

Our algorithm is logically divided into subroutines with different high-level tasks.
The main method that employs the bottom-up search on the blocks is DAME_Motif
shown in Table 1. The input to this method is a set of blocks B which contains every
subsequence of a long time series or a set of independent time series. Each time series
is associated with an id used for finding its location back in the original data. Individual
time series are assumed to be z-normalized. If they are not, this is done in the sorting
step.

DAME_Motif first chooses R random time series as reference points from the data-
base and stores them in Dref . These reference time series can be from the same block,
allowing them to be chosen in a single disk access. DAME_Motif then sorts the entire

123

84 A. Mueen et al.

Table 1 DAME_Motif is the bottom up search procedure for disk blocks

database, residing on multiple blocks, according to the distances from the first of
the random references named as r. The reason for choosing R random reference time
series/points will be explained shortly. The computeInterval method at line 5 in Table 1
computes the intervals of the sorted blocks. For example, if si and ei are respectively
the smallest and largest of the distances from r to any time series in Bi , then [si, ei] is
the block interval of Bi . Computing these intervals is done during the sorting phase,
which saves a few disk accesses. Lines 7–14 detail the bottom-up search strategy. Let
t be the group size, which is initialized to one, and iteratively doubled until it reaches
N
2 . For each value of t, pairs of time series across pairs of successive t-groups are

searched using the searchAcrossBlock method shown in Table 2.
The searchAcrossBlocks method searches for the closest pair across the partitions

[top,mid) and [mid,bottom). The order of loading blocks is straightforward (lines 1
and 8). The method sequentially loads one block from the top partition, and for each
of them it loads all of the blocks from the bottom partition one at a time (lines 4 and
11). D1 and D2 are the two memory blocks and are dedicated for the top and bottom
partitions, respectively. A block is loaded to one of the memory blocks by the load
method shown in Table 3. load reads and stores the time series and computes the
distances from the references.

DAME_Motif and all subroutines shown in Tables 1, 2, 3, 4, and 5 maintain a
variable bsf (best so far) that holds the minimum distance discovered up to the current
point of search. We define the distance between two blocks p and q by sq − ep if
p < q. Lines 2–3 in Table 2 encode the fact that if block p from the top partition
is more than bsf from the first block (mid) of the bottom partition, then p cannot be

123

A disk-aware algorithm for time series motif discovery 85

Table 2 searchAcrossBlocks compares pairs among disjoint set of blocks

Table 3 load loads a disk block and computes the referenced distances

within bsf of any other blocks in the bottom partition. Lines 9–10 encode the fact that
if block q from the bottom partition is not within bsf of block p from the top partition,
then none of the blocks after q can be within bsf of p. These are the pruning steps of
DAME that prune out entire blocks.

Lines 5–6 and 12–13 check if the search is at the bottom-most level. At that level,
searchInBlock shown in Table 4 is used to search within the loaded block. Lines 14–15
do the selection of pairs by taking one time series from each of the blocks. Note the
use of istart at lines 14 and 19. istart is the index of the last object of block p which
finds an object in q located farther than bsf in the order line. Therefore, the objects

123

86 A. Mueen et al.

Table 4 searchInBlocks compares pairs within a disk block

Table 5 update checks a pairs lower bound and update best-so-far if necessary

indexed by i ≤ istart do not need to be compared to the objects in the blocks next to
q. So, the next time series to istart is the starting position in p when pairs across p and
the next of q are searched. For all the pairs that have escaped from the pruning steps,
the update method shown in Table 5 is called.

123

A disk-aware algorithm for time series motif discovery 87

The method searchInBlock is used to search within a block. This method employs
the same basic bottom-up search strategy as the DAME_Motif, but is simpler due to
the absence of a memory hierarchy. Similar to the searchAcrossBlocks method, the
search across partitions is done by simple sequential matching with two nested loops.
The pruning step at lines 11–12 in Table 4 terminates the inner loop over the bottom
partition at the j th object which is the first to have a distance larger than bsf in the
order line from the i th object. Just as with searchAcrossBlocks method, every pair that
has escaped from pruning is given to the update method for further consideration.

The update method shown in Table 5 does the distance computations and updates
the bsf and the motif ids (i.e. L1 and L2). The pruning steps described in the earlier
methods essentially try to prune some pairs from being considered as potential motifs.
When a potential pair is handed over to update, it also tries to avoid the costly dis-
tance computation for a pair. In the previous section, it is shown that distances from a
single reference point r provides a lower bound on the true distance between a pair. In
update, distances from multiple (R) reference points computed during loads are used
to get R lower_bounds, and update rejects distance computation as soon as it finds a
lower_bound larger than bsf . Although R is a preset parameter like N and m, its value
is not very critical to the performance of the algorithm. Any value from five to sixty
produces near identical speedup, regardless of the data R (Mueen et al. 2009). Note
that the first reference time series r is special in that it is used to create the order line.
The rest of the reference points are used only to prune off distance computations. Also
note the test for trivial matches (Chiu et al. 2003; Mueen et al. 2009) at line 6. Here,
a pair of time series is not allowed to be considered if they overlapped in the original
time series from which they were extracted.

4.3 Correctness of DAME

The correctness of the algorithm can be described by the following two lemmas. Note
that pruning steps are marked by the shaded regions in the pseudocode of the previous
section.

Lemma 1 The bottom-up search compares all possible pairs if the pruning steps are
removed.

Proof In searchInBlock we have exactly m time series in the memory block D. The bot-
tom-up search does two-way merging at all levels for partition sizes t = 1, 2, 4, . . ., m

2
successively. For partitions of size t, while doing the two-way merge, the number of
times update is called is mt

2 . Therefore, the total number of calls to update is {20 +
21 + 22 + · · · + 2x−1}m

2 , where m = 2x . This sum exactly equals the total number of

possible pairs m(m−1)
2 . Similarly, DAME_Motif and searchAcrossBlocks together do

the rest of the search for partition sizes t = m, 2m, 4m, . . ., Nm
2 to complete the search

over all possible pairs.

Lemma 2 Pruning steps ignore pairs safely.

Proof Follows from the description.

123

88 A. Mueen et al.

Before ending the description of the algorithm, we describe the worst-case scenario
for seachAcrossBlocks. If the motif distance is larger than the spread of the data points
in the order line, then all possible pairs are compared by DAME because no pruning
happens in this scenario. Therefore, DAME has the worst-case complexity of O(n2).
Note, however, that this situation would require the most pathological arrangement of
the data, and hundreds of experiments on dozens of diverse real and synthetic datasets
show that average cost is well below n2.

5 Scalability experiments

In this section we describe experimental results to demonstrate DAME’s scalability
and performance. Experiments in Sects. 5.1–5.4 are performed in a 2.66 GHz Intel
Q6700 and the rest of the experiments are performed on an AMD 2.1 GHz Turion-X2.
We use internal hard drives of 7200 rpm. For the ease of reproducibility, we have built
a webpage (Supporting Webpage) that contains all of the code, data files for real data,
data generators for synthetic data and a spreadsheet of all the numbers used to plot the
graphs in this paper. In addition, the webpage has experiments and case studies which
we have omitted here due to space limitations.

Note that some of the large-scale experiments we conduct in this section take several
days to complete. This is a long time by the standards of typical empirical investiga-
tions in data mining; however, we urge the reader to keep in mind the following as
they read on:

• Our longest experiment (the “tiny images” dataset Torralba et al. 2008) looks at
40,000,000 time series and takes 6.5 days to finish. However, a brute force algo-
rithm would take 124 years to produce the same result. Even if we could magically
fit all of the data in main memory, and therefore bypass the costly disk accesses,
the brute force algorithm would require (40, 000, 000∗39, 999, 999)/2 Euclidean
comparisons, and require 8 years to finish.

• Our largest experiment finds the motif in 40,000,000 time series. If we sum up
the sizes of the largest datasets considered in papers (Minnen et al. 2007b; Mueen
et al. 2009; Ferreira et al. 2006; Chiu et al. 2003; Patel et al. 2002) which find
only approximate motifs, they would only sum to 400,000. So we are considering
datasets of at least two orders of magnitude larger than anything attempted before.

• In many of the domains we are interested in, practitioners have spent weeks,
months or even years collecting the data. For example, the “tiny images” dataset
(Torralba et al. 2008) took eight months to collect on a dedicated machine run-
ning 24 h a day (R. Fergus, Personal Communication, Email on 12/28/08). Given
the huge efforts in both money and time to collect the data, we believe that the
practitioners will be more than willing to spend a few days to uncover hidden
knowledge from it.

5.1 Comparison with divide and conquer approach

In this section, we show why it is a necessity to device a specialized algorithm that
finds closest pair of subsequences termed as time series motifs. To facilitate that,

123

A disk-aware algorithm for time series motif discovery 89

we have placed our algorithm in the context of the divide and conquer methods for
closest-pair which is prevalent in the text books of computational geometry. The divide
and conquer (DaC) approach for finding closest pair in multidimensional space is
described in great detail in Bentley (1980). DaC works in O(nlogdn) time for any
data distribution, which is expensive for large d. For “sparse” data DaC works in O(n
log n). The relevant definition of sparsity is given “as the condition that no d-ball in
the space (that is, a sphere of radius d) contains more than some constant c points.
(Bentley 1980)” This condition ensures that the conquer step remains a linear opera-
tion with no more than cn pairs of close points to be compared. But subsequences of
a long time series form a trail in the high dimensional space which may cross itself
arbitrary number of times to violate the sparsity condition for efficient DaC algorithm
[16]. A simple 3D demonstration is shown in Fig. 4 (top-left) by plotting all triplets
of successive real numbers in an ECG time series.

If we are only considering independent time series objects (c.f. sect. 6.4), it is still
not a good choice to use DaC, because it divides the data by hyper planes perpendic-
ular to an axis. This is because the range of the distribution of referenced distances

-2
0

2
4 -2

0
2

4
-2

-1

0

1

2

3

30 1 2 4 5 6 7 8 9 10
x 10 5

0

1

2

3

4

5

6

7

8
x 1010

Number of Time Series in the Database

N
um

be
r o

f D
is

ta
nc

e
C

om
pu

ta
tio

ns Divide and Conquer

DAME

-3 -2 -1 0 1 2 3 4
0

50

100

150

200

250

300

Values at a dimension

0 5 10 15 20 25
0

50

100

150

200

250

300

350

400

Distances from r

Fig. 4 (Top-left) Plot of successive triplets of numbers of a time series. (Top-right) Comparison of DAME
with divide and conquer approach. (Bottom) Distribution of 10,000 random walks along (left) a plane
perpendicular to an axis and (right) the order line

123

90 A. Mueen et al.

(Fig. 4 bottom-right) is much larger than the range of possible values in a particular
normalized dimension (Fig. 4 bottom-left). If the closest pair of time series has 95%
correlation between them, the minimum Euclidian distance for m = 128 is 3.57. For
this minimum distance, a perpendicular hyper plane through 0 would have all the points
within [−3.57, 3.57] and thus resulting in no pruning being achieved. In contrast, the
reference point ordering has a larger range and can prune many pairs of points using
the same bracket.

Considering the above two observations, we may expect DAME to perform much
better than divide and conquer algorithm in Bentley (1980). As shown in Fig. 4 (top-
right), this is the case. For a motif length of 128 we tested up to 1 million points
of EEG time series and DaC performs 100 times more distance computations than
DAME for the larger datasets. These results are in spite of the fact that we allowed
DaC to “cheat”, by always using the best axis (the one that has minimum number of
points within the bracket [−δ, δ]) to divide the data at each step.

5.2 Sanity check on large databases

We begin with an experiment on random walk data. Random walk data is commonly
used to evaluate time series algorithms, and it is an interesting contrast to the real
data (considered below), since there is no reason to expect a particularly close motif
to exist. We generate a database of four million random walks in eighty disk blocks.
Each block is identical in size (400 MB) and can store 50,000 random walks of length
1024. The database spans more than 32 GB of hard drive space. We find the closest
pair of random walks using DAME on the first 2, 4, 8, 16, 32, 64 and 80 blocks of
this database. Figure 5 left shows the execution times against the database size in the
number of random walks.

In another independent experiment we use DAME on a very long and highly over-
sampled real time series (EOG trace, cf. Sect. 6.5) to find a subsequence-motif of
length 1024. We start with a segment of this long time series created by taking the
first 100,000 data points, and iteratively double the segment-sizes by taking the first
0.2, 0.4, 0.8, 1.6, 3.2 and 4.0 million data points. For each of these segments, we run

0 0.5 1 1.5 2 2.5 3 3.5 4
x 10 6

0

1

2

3

4

5

6

7

D
ay

s
in

 D
A

M
E

_M
ot

if

Number of Time Series in the Database

Algorithm

Largest
Dataset
Tested

(thousands)

Time for
the

Largest
Dataset

Estimated
Time for

4.0
million

NoAdditionalStorage 200
4.82
days

5.28
years

CompletelyInDisk 200
1.50
days

1.65
years

CompletelyInMemory 100
35

minutes
37.8
days

DAME
(Synthetic Data)

4,000
1.35
days

1.35
days

Fig. 5 (Left) Execution times in days on random walks and EOG data. (Right) Comparison of the three
different versions of brute-force algorithm with DAME

123

A disk-aware algorithm for time series motif discovery 91

DAME with blocks of 400 MBs, each containing 50,000 time series, as in the previous
experiment. Figure 5: left also shows the execution times against the lengths of the
segments. Because of the oversampled time series, the extra “noise” makes the motif
distance larger than it otherwise would be, making the bsf larger and therefore reduc-
ing the effectiveness of pruning. This is why DAME takes longer to find a motif of the
same length than in a random-walk database of similar size.

Since no other algorithm is reported to find motifs exactly on such large databases
of such large dimensionalities, we have implemented three possible versions of the
naïve brute force algorithm to compare with DAME:

• CompletelyInMemory: The database is in the main memory.
• CompletelyInDisk: The database is in the disk and memory is free enough to store

only two disk blocks and negligible data structures for comparisons.
• NoAdditionalStorage: There is no database. Only the base time series is stored in

the main memory. Subsequences must be normalized again and again every time
they are extracted from the base time series.

Figure 5 right tabulates the performances of the above three algorithms as well
as DAME’s. CompletelyInMemory algorithm has been run until memory allocation
request is honored; therefore, estimated time for four million time series is unattain-
able, as it would need 32 GB of main memory. The other two algorithms have been
executed until time becomes critical. The estimated execution times demonstrates that
DAME is the only tractable algorithm for exact discovery of time series motifs.

5.3 Performance for different block sizes

As DAME has a specific order of disk access, we must show how the performance
varies with the size of the disk blocks. We have taken the first one million random
walks from the previous section and created six databases with different block sizes.
The sizes we test are 40, 80, 160, 240, 320 and 400 MBs containing 5, 10, 20, 30,
40 and 50 thousands of random walks, respectively. Since the size of the blocks is
changed, the number of blocks also changes to accommodate one million time series.
We measure the time for both I/O and CPU separately for DAME_Motif (Fig. 6, left)
and for searchAcrossBlocks (Fig. 6, right).

Figure 6 left shows that I/O time decreases as the size of the blocks gets larger and
the number of blocks decreases. On the other hand, the CPU time is worse for very low
or very high block sizes. Ideally it should be constant, as we use the same set of random
walks. The two end deviations are caused by two effects: when blocks are smaller,
block intervals become smaller compared to the closest pair distance, and therefore,
almost every point is compared to points from multiple blocks and essentially istart
loses its role. When the blocks become larger, consecutive pairs on the order line in
later blocks are searched after the distant pairs on the order line in an earlier block.
Therefore, bsf decreases at a slower rate for larger block sizes.

Figure 6 right shows that the search for a motif using the order line is a CPU-bound
process since the gap between CPU time and I/O time is large, and any effort to mini-
mize the number of disk loads by altering the loading order from the current sequential
one will make little difference in the total execution time.

123

92 A. Mueen et al.

10,000 20,000 30,000 40,000 50,000
2
3
4
5
6
7
8
9

10
11
12

Number of Time Series per Block

Se
co

nd
s

in
 D

A
M

E
_M

ot
if

x 103

10,000 20,000 30,000 40,000 50,000
0

1

2

3

4

5

6

7

8

Number of Time Series per Block

Se
co

nd
s

in
 s

ea
rc

hA
cr

os
sB

lo
ck

s

I/O

x 103

Fig. 6 Total execution times with CPU and I/O components recorded on one million random walks for
different block sizes (left) for the DAME_Motif method and (right) for the searchAcrossBlocks method

Fig. 7 Execution times on one
million random walks of
different lengths

0 200 400 600 800 1000 1200
3

4

5

6

7

8

9

10

Motif Length

Se
co

nd
s

in
 D

A
M

E
_M

ot
if

x 103

5.4 Performance for different motif lengths

To explore the effect of the motif length (i.e. dimensionality) on performance, we test
DAME for different motif lengths. Recall that the motif length is the only user-defined
parameter. We use the first one-million random walks from Sect. 4.1. They are stored
in 20 blocks of 50,000 random walks, each of length 1024. For this experiment, we
iteratively double the motif length from 32 to 1024. For each length x, we use only
the first x temporal points from every random walk in the database. Figure 7 shows
the result, where all the points are averaged over five runs.

The linear plot demonstrates that DAME is free of any exponential constant (2d) in
the complexity expression, as in the optimal algorithm. The linear increase in time is
due to the distance computation, which needs a complete scan of the data. Note the
gentle slope indicating a sub-linear scaling factor. This is because longer motifs allow
greater benefit from early abandoning (Mueen et al. 2009).

5.5 In-Memory search options

While searching within a memory block, DAME does a bottom-up search starting
with pairs of consecutive time series, continuing until it covers all possible pairs.

123

A disk-aware algorithm for time series motif discovery 93

Fig. 8 Comparison of
in-memory search methods

Number of Time Series per Block

Se
co

nd
s

in
 s

ea
rc

hI
nB

lo
ck Brute Force

MK
Bottom-Up

10,000 20,000 30,000 40,000 50,000
0

20

40

60

80

100

120

140

160

Thus, DAME has a consistent search hierarchy from within blocks to between blocks.
There are only two other exact methods we could have used, the classic brute-force
algorithm or the recently published MK algorithm (Mueen et al. 2009). We measure
the time that each of these methods takes to search in-memory blocks of different sizes,
and experiment on different sizes of blocks ranging from 10,000 to 50,000 random
walks of length 1024. For all of the experiments, the databases are four times the block
sizes and values are averaged over ten runs.

From the Fig. 8, brute force search and the MK algorithm perform similarly. The
reason for MK not performing better than brute force here is worth considering. MK
performs well when the database has a wide range and uniform variability on the order
line. Since the database in this experiment is four times the block size, the range of
distances for one block is about one fourth of what it would be in an independent
one-block database of random walks. Therefore, MK cannot perform better than brute
force. The bottom-up search performs best because it does not depend on the distribu-
tion of distances from the reference point, and moreover, prunes off a significant part
of the distance computations.

5.6 Lower bound options

In our algorithm we compute distances from R reference points to all of the objects.
In the update method, we use each reference point one at a time to compute a lower
bound on the distance between a pair and check to see if the lower bound is greater than
the current best. This lower bound is a simple application of the triangular inequality
computed by circularly projecting the pair of objects onto any line that goes through
the participating reference point. We call this idea the “linear bound” for clarity in
the following discussion. Since we pre-compute all of the distances from R reference
points, one may think about getting a tighter lower bound by combining these ref-
erenced distances. In the simplest case, to find a “planar bound” for a pair of points
using two reference points, we can project both the points (x and y) onto any 2D plane,
where two reference points (r1 and r2) reside, by a circular motion about the axis
connecting the reference points. After that, simple 2D geometry is needed to compute
the lower bound (dashed line) using five other pre-computed distances (solid lines in
Fig. 9, mid).

123

94 A. Mueen et al.

r1 r2

x
y

Rotational axis r1 r2

y
x

40
30
20
10
0
10
20
30
40

Planar bounds

Linear bounds

A
ct

ua
l d

is
ta

nc
es

Larger Gap

Smaller Gap

Fig. 9 (Left) Two points x and y are projected on a plane by a rotation around the axis joining two reference
points r1 and r2. (Mid) Known distances and the lower bound after the projection. (Right) Planar and linear
bound are plotted against true distances for 40,000 random pairs

We have computed both the bounds on one million pairs of time series of length
256. In 56% of the pairs, planar bounds are larger than linear bounds. Intuitively it
seems from this value that the planar bound is tighter. But the true picture is more
complex. The average value of linear bounds is 30% larger than that of planar bounds
and standard deviation of linear bounds is 37% larger than that of planar bounds. In
Fig. 9 right, it is clear that the linear bound is significantly tighter than the planar
one when the actual distances between pairs are larger. Moreover, the planar bound is
complex to compute compared to a simple subtraction in the case of a linear bound.
Therefore, we opt to use the linear bound in update to prune off distance computations.

6 Experimental case studies

In this section we consider several case studies to demonstrate the utility of motifs in
solving real-world problems.

6.1 Motifs for brain–computer interfaces

Recent advances in computer technology make sufficient computing power readily
available to collect data from a large number of scalp electroencephalographic (EEG)
sensors and to perform sophisticated spatiotemporal signal processing in near-real
time. A primary focus of recent work in this direction is to create brain–computer
interface (BCI) systems.

In this case study, we apply motif analysis methods to data recorded during a target
recognition EEG experiment (Bigdely-Shamlo et al. 2008). The goal of this exper-
iment is to create a real-time EEG classification system that can detect “flickers of
recognition” of the target in a rapid series of images and help Intelligence Analysts find
targets of interest among a vast amount of satellite imagery. Each subject participates
in two sessions: a training session in which EEG and behavior data are recorded to
create a classifier and a test session in which EEG data is classified in real time to find
targets. Only the training session data is discussed here.

In this experiment, overlapping small image clips from a publicly available satellite
image of London are shown to a subject in 4.1 s bursts comprised of 49 images at the
rate of 12 per second. Clear airplane targets are added to some of these clips such that
each burst contains either zero (40%) or one (60%) target clip. To clearly distinguish

123

A disk-aware algorithm for time series motif discovery 95

Fig. 10 A burst trial time line

target and non-target clips, only complete airplane target images are added, though
they can appear anywhere and at any angle near the center of the clip.

Figure 10 shows a burst trial timeline. After fixating a cross (left) for 1 s, the
participant views the RSVP burst and is then asked to indicate whether or not he/she
has detected a plane in the burst clips, by pressing one of two (yes/no) finger buttons.

In training sessions only, visual error/correct feedback is provided. The training
session comprises of 504 RSVP bursts organized into 72 bouts with a self-paced
break after each bout. In all, each session thus includes 290 target and 24,104 non-tar-
get image presentations. The EEG from 256 scalp electrodes at 256 Hz and manual
responses are recorded during each session.

Each EEG electrode receives a linear combination of electric potentials generated
from different sources in and outside the brain. To separate these signals, an extended-
infomax Independent Component Analysis (ICA) algorithm (Lee et al. 1999; Delorme
and Makeig 2003) is applied to preprocessed data from 127 electrodes to obtain about
127 maximally independent components (ICs). The ICA learns spatial filters in the
form of an unmixing matrix separating EEG sensor data into temporally maximally
independent processes, most appearing to predominantly represent the contribution to
the scalp data of one brain EEG or non-brain artifact source, respectively.

It is known that among ICs representing brain signals, some show changes in activ-
ity after the subject detects a target. However, the exact relationships are currently
unknown. In an ongoing project, we attempt to see if the occurrences of motifs are
correlated with these changes.

We use DAME to discover motif of length 600 ms (153 data points), on IC activity
from 1 s before until 1.5 s after image presentation. Figure 11 shows the discovered
motif.

Figure 12 shows the start latencies of all of the 600 ms segments which are within a
distance of twice the motif distance (i.e. twice the Euclidean distance between the two
time series shown in Fig. 11) from either of the motif segment. Note that the distribu-
tion of these latencies is highly concentrated around 100 ms after target presentation
(showed by the blue line). This is significant because no information about the latency
of the target has been provided beforehand, and thus the algorithm finds a motif that
is highly predictive of the latency of the target.

123

96 A. Mueen et al.

Fig. 11 Two subsequences
corresponding to the first motif

0 100 200 300 400 500 600
-2

-1

0

1

2

3

Time (ms)

Motif 1
Segment 1
Segment 2

N
or

m
al

iz
ed

 IC
 A

ct
iv

ity
Fig. 12 Motif 1 start latencies
in epochs

-1000 -500 0 500 1000

10
20
30
40
50
60
70
80
90

100
110

Before target
presentation

After target
presentation

IC 17

Latency

E
po

ch
s

6.2 Finding repeated insect behavior

In the arid to semi-arid regions of North America, the Beet leafhopper (Circulifer
tenellus) shown in Fig. 13, is the only known vector (carrier) of curly top virus, which
causes major economic losses in a number of crops including sugarbeet, tomato, and
beans (Kaffka et al. 2000). In order to mitigate these financial losses, entomologists
at the University of California, Riverside are attempting to model and understand the
behavior of this insect (Stafford and Walker 2009).

It is known that the insects feed by sucking sap from living plants; much like the
mosquito sucks blood from mammals and birds. In order to understand the insect’s
behaviors, entomologists glue a thin wire to the insect’s back, complete the circuit
through a host plant and then measure fluctuations in voltage level to create an Elec-
trical Penetration Graph (EPG) as shown in Fig. 13.

This method of data collection produces large amounts of data, in Fig. 14 we see
about a quarter hour of data, however the entomologists data archive currently contains
thousands of hours of such data, collected in a variety of conditions. Up to this point,
the only analysis of this data has been some Fourier analyses, which has produced some
suggestive results (Stafford and Walker 2009). However, Fourier analysis is somewhat
indirect and removed from the raw data. In contrast motif discovery operates on the

123

A disk-aware algorithm for time series motif discovery 97

Beet Leafhopper (Circulifer tenellus)

plant membrane
Stylet

voltage source

input resistor

V

0 50 100 150 200
0

10

20

to insect
conductive glue

voltage reading

to soil near plant

Fig. 13 A schematic diagram showing the apparatus used to record insect behavior

0 10,000 20,000 30,000

0

1

2

3

x 10 4

Approximately 14.4 minutes of insect telemetry

Fig. 14 An electrical penetration graph of insect behavior. The data is complex and highly non-stationary,
with wandering baseline, noise, dropouts, etc.

0 50 100 150 200 250 300 350 400 450 500
0.5

1

1.5

2

2.5

3
x 104

Fig. 15 The motif of length 480 found in the insect telemetry shown in Fig. 14. Although the two instances
occur minutes apart they are uncannily similar

raw data itself and can potentiality produce more intuitive and useful knowledge. In
Fig. 15 we show the motif of length 480 discovered in the entire 33,021 length time
series shown in Fig. 14.

As we can see, the motifs are uncannily similar, even though they occur minutes
apart. Having discovered such a potentially interesting pattern, we followed up to see
if it is really significant. The first thing to do is to see if it occurs in other datasets. We
have indexed the entire archive with an iSAX index (Shieh and Keogh 2008) so we
quickly determined the answer to be affirmative, this pattern does appear in many other
datasets, although the “plateau” region (approximately from 300 to 380 in Fig. 15) may

123

98 A. Mueen et al.

Additional examples
of the motif

0 50 100 150 200 250 300 350 400
-3

-2

-1

0

1

2

3

4

5

6

Instance at 20,925
Instance at 25,473

Fig. 16 The motif of length 400 found in an EPG trace of length 18,667. (Inset) Using the motifs as
templates, we can find several other occurrences in the same dataset

be linearly scaled by a small amount (Stafford and Walker 2009). We recorded the time
of occurrence and looked at the companion video streams which were recorded syn-
chronously with the EPGs. It appears that the motif occurs immediately after phloem
(plant sap) ingestion has taken place.

The motif discovered in this stream happens to be usually smooth and highly struc-
tured, however motifs can be very complex and noisy. Consider Fig. 16 which shows
a motif extracted from a different trace of length 18,667.

In this case, examination of the video suggests that this is a highly ritualized groom-
ing behavior. In particular, the feeding insect must get rid of honeydew (a sticky
secretion, which is by-product of sap feeding). As a bead of honeydew is ejected,
it temporarily forms a highly conductive bridge between the insect and the plant,
drastically affecting the signal.

Note that these examples are just a starting point for entomological research. It
would be interesting to see if there are other motifs in the data. Having discovered
such motifs we can label them, and then pose various hypotheses. For example: “Does
motif A occur more frequently for males than females?” Furthermore, an understanding
of which motifs correlate with which behaviors suggests further avenues for additional
data collection and experiments. For example, it is widely believed that Beet leafhop-
pers are repelled by the presence of marigold plants (Tagetes). It may be possible to use
the frequency of (now) known motifs to detect if there really is a difference between
the behavior of insect with and without the presence of marigolds. We defer further
discussion of such issues to future and ongoing work.

6.3 Automatically constructing EEG dictionaries

In this example of the utility of time series motifs we discuss an ongoing joint
project between the authors and Physicians at Massachusetts General Hospital

123

A disk-aware algorithm for time series motif discovery 99

0 2 4 6 8 10
-8000

-7800

-7600

-7400

-7200

-7000

LSF5

10 seconds of EEG activity

Fig. 17 The first 10 s of an EEG trace. In the experiment discussed below, we consider a full hour of this
data

(MGH) in automatically constructing “dictionaries” of recurring patterns from
electroencephalographs.

The electroencephalogram (EEG) measures voltage differences across the scalp
and reflects the activity of large populations of neurons underlying the recording elec-
trode (Niedermeyer and Lopes da Silva 1999). Figure 17 shows a sample snippet of
EEG data.

Medical situations in which EEG plays an important role include, diagnosing and
treating epilepsy; planning brain surgery for patients with intractable epilepsy, moni-
toring brain activity during cardiac surgery and in certain comatose patients; and dis-
tinguishing epileptic seizures from other medical conditions (e.g. “pseudoseizures”).

The interpretation of EEG data involves inferring information about the brain (e.g.
presence and location of a brain lesion) or brain state (e.g. awake, sleeping, having a
seizure) from various temporal and spatial patterns, or graphoelements (which we see
as motifs), within the EEG data stream. Over the roughly 100 years since its inven-
tion in the early 1900s, electroencephalographers have identified a small collection of
clinically meaningful motifs, including entities named “spike-and-wave complexes”,
“wicket spikes”, “K-complexes”, “sleep spindles” and “alpha waves”, among many
other examples. However, the full “dictionary” of motifs that comprise the EEG con-
tains potentially many yet-undiscovered motifs. In addition, the current, known motifs
have been determined based on subjective analysis rather than a principled search. A
more complete knowledge of the full complement of EEG motifs may well lead to
new insights into the structure of cortical activity in both normal circumstances and
in pathological situations including epilepsy, dementia and coma.

Much of the recent research effort has focus on finding typical patterns that may
be associated with various conditions and maladies. For example, (Stern and Engel
2004) attempts to be an “Atlas of EEG patterns”. However, thus far, all such attempts
at finding typical patterns have been done manually and in an ad hoc fashion.

A major challenge for the automated discovery of EEG motifs is large data vol-
umes. To see this, consider the following experiment. We conducted a search for the
motif of length 4 s, within a 1 h EEG from a single channel in a sleeping patient. The
data collection rate was 500 Hz, yielding approximately 2 million data points, after
domain standard smoothing and filtering, an 180,000 data point signal was produced.
Using the brute force algorithm in the raw data, finding the motif required over 24 h
of CPU time. By contrast, using the in memory version of the algorithm described in

123

100 A. Mueen et al.

0 200 400 600 800

Occurrence at 34.51 minutes

Occurrence at 36.21 minutes

Time [ms]

Fig. 18 (Left) Bold lines the first motif found in one hour of EEG trace LSF5. Light lines the ten nearest
neighbors to the motif. (Right) A screen dump of Fig. 6, from paper Stefanovic et al. (2007)

this paper, the same result requires 2.1 min, a speedup of about factor of about 700.
Such improvements in processing speed are crucial for tackling the high data volume
involved in large-scale EEG analysis. This is especially the case in attempting to com-
plete a dictionary of EEG motifs which incorporates multi-channel data and a wide
variety of normal situations and disease states.

Having shown that automatic exploration of large EEG datasets is tractable, our
attention turns to the question, is it useful? Figure 18 left shows the result of our first
run of our algorithm and Fig. 18 right shows a pattern discussed in a recent paper
(Stefanovic et al. 2007).

It appears that this automatically detected motif corresponds to a well-known pat-
tern, the K-complex. K-complexes were identified in 1938 (Niedermeyer and Lopes
da Silva 1999; Loomis et al. 1938) as a characteristic event during the sleep.

This figure is at least highly suggestive that in this domain, motif discovery can
really find patterns that are of interest to the medical community. In ongoing work we
are attempting to see if there are currently unknown patterns hiding in the data.

6.4 Detecting near-duplicate images

Finding near-duplicate images in an image database can be used to summarize the data-
base, identify forged images and clean out distorted copies of images. If we can con-
vert the two-dimensional ordered images into one-dimensional (possibly unordered)
vectors of features, we can use our motif discovery algorithm to find near-duplicate
images.

To test this idea, we use the first 40 million images from the dataset in Torralba
et al. (2008). We convert each image to a pseudo time series by concatenating its
normalized color histograms for the three primary colors (Hafner and Sawhney 1995).
Thus, the lengths of the “time series” are exactly 768. We run DAME on this large set
of time series and find 1,719,443 images which have at least one and on average 1.231
duplicates in the same dataset. We also find 542,603 motif images which have at least
one non-identical image within 0.1 Euclidean distances of them. For this experiment,

123

A disk-aware algorithm for time series motif discovery 101

2495
21298

2477
21280

3305
22166

3245
21891

2553
21371

32751032
17012103

15513839
15513780

31391181
6791228

23277616
23277667

38468056
11896606

Fig. 19 (Left) Five identical pairs of images. (Right) Five very similar, but non-identical pairs

DAME has taken 6.5 days (recall that a brute-force search would take over a century,
cf. Sect. 5). In Fig. 19, samples from the sets of duplicates and motifs are shown.
Subtle differences in the motif pairs can be seen; for example, a small “dot” is present
next to the dog’s leg in one image but not in the other. The numbers in between image
pairs are the ids of the images in the database.

6.5 Discovering patterns in polysomnograms

In polysomnography, body functions such as pulse rate, brain activity, eye movement,
muscle activity, heart rhythm, breathing, etc. are monitored during a patient’s sleep
cycle. To measure the eye movements an Electrooculogram (EOG) is used. Eye move-
ments do not have any periodic pattern like other physiological measures such as an
ECG and respiration. Repeated patterns in the EOG of a sleeping person have attracted
much interest in the past because of their potential relation to dream states. We use
DAME to find a repeated pattern in the EOG traces from the “Sleep Heart Health Study
Polysomnography Database” (Goldberger et al. 2000). The trace has about 8,099,500
temporal values at the rate of 250 samples per second. Since the data is oversampled,
we downsample it to a time series of 1,012,437 points. A subset of 64 s is shown in
Fig. 20.

After a quick review of the data, one can identify that most of the natural patterns
are shorter in length (i.e. 1 or 2 s) and are visually detectable locally in a single frame.
Instead of looking for such shorter patterns, we search for longer patterns of 4.0 s long
with the hope of finding visually undetectable and less frequent patterns. DAME has
finished the search in 10.5 h (brute force search would take an estimated 3 months)
and found two subsequences shown in Fig. 21 which have a common pattern, and very
unusually this pattern does not appear anywhere else in the trace. Note that the pattern
has a plateau in between seconds 1.5 and 2.0, which might be the maximum possible
measurement by the EOG machine.

1952 1960 1968 1976 1984 1992 2000 2008 2016-200

0

200

Fig. 20 A section of the EOG from the polysomnogram traces

123

102 A. Mueen et al.

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
-150

-100

-50

0

50

100

150

2304th second
1618th second

Fig. 21 Motif of length 4.0 s found in the EOG

We map these two patterns back to the annotated dataset. Both the subsequences
are located at points in the trace just as the person being monitored was going back
and forth between arousal and sleep stage 1, which suggests some significance to this
pattern.

6.6 Extension to multidimensional motifs

Because DAME works with any metric distance measure, it is very easily extend-
ible to multidimensional time series, so long as we use a metric to measure distances
among them. We can use multidimensional Euclidean distance for multidimensional
time series which is computed by taking the Euclidean distance for all the values along
each of the dimensions. The squared errors from different dimensions can be weighted
by their relative importance. Any weighting scheme preserves the metric property of
Euclidean distance and thus our algorithm is directly applicable to multidimensional
data.

A good example of multidimensional time series is human motion capture data
where the 3D positions and angles of several joints of the body are recorded while a
subject performs a specific motion. The positions of different joints are synchronous
time series and can be considered as different dimensions of a multidimensional time
series. While computing the similarity of motion segments, we must define the relative
importance (weights) of different body parts. For example, to compare Indian dances
we may need to put larger weights on the hands and legs than head and chest. To test
the applicability of DAME on multidimensional data, we use two dance motions from
the CMU motion capture databases and identified the motion-motif shown in Fig. 22.
Each of the dance motions are more than 20 s long and we search for motif of length
1 s. The motion-motif we found is a dance segment that denotes “joy” in Indian dance.

7 Conclusion and future work

In this paper we introduced the first scalable algorithm for exact discovery of time
series motif. Our algorithm can handle databases of the order of tens of millions of
time series, which is at least two orders of magnitude larger than anything attempted
before. We used our algorithm in various domains and discovered significant motifs.

123

A disk-aware algorithm for time series motif discovery 103

Fig. 22 An example of multidimensional motif found in the motion captures of two different Indian dances.
In the top row, four snapshots of the motions aligned at the motif are shown. In the bottom, the top-view of
the dance floor is shown and the arrows show the positions of the subjects

To facilitate scalability to the handful of domains that are larger than those consid-
ered here (i.e. star light curve catalogs), we plan to consider parallelization, given
that the search for different group sizes can easily be delegated to different proces-
sors. Another avenue of research is to modify the algorithm to find multidimensional
motifs in databases of similar scale.

References

Abe H, Yamaguchi T (2005) Implementing an integrated time-series data mining environment—a case
study of medical Kdd on chronic hepatitis. In: Presented at the 1st international conference on com-
plex medical engineering (CME2005)

Androulakis I, Wu J, Vitolo J, Roth C (2005) Selecting maximally informative genes to enable temporal
expression profiling analysis, In: Proceddings of foundations of systems biology in engineering

Arita D, Yoshimatsu H, Taniguchi R (2005) Frequent motion pattern extraction for motion recognition in
real-time human proxy. In: Proceedings of JSAI workshop on conversational informatics, pp 25–30

Beaudoin P, Van de Panne M, Poulin P, Coros S (2008) Motion-motif graphs, symposium on computer
animation

Bentley JL (1980) Multidimensional divide-and-conquer. Commun ACM 23(4):214–229
Bigdely-Shamlo N, Vankov A, Ramirez R, Makeig S (2008) Brain activity-based image classification from

rapid serial visual presentation. IEEE Trans Neural Syst Rehabil Eng 16(4)
Böhm C, Krebs F (2002) High performance data mining using the nearest neighbor join. In: Proceedings

of 2nd IEEE international conference on data mining (ICDM), pp 43–50
Celly B, Zordan V (2004) Animated people textures. In: Proceedings of 17th international conference on

computer animation and social agents (CASA)
Cheung SS, Nguyen TP (2005) Mining arbitrary-length repeated patterns in television broadcast. ICIP

3:181–184

123

104 A. Mueen et al.

Chiu B, Keogh E, Lonardi S (2003) Probabilistic discovery of time series motifs. In: ACM SIGKDD,
Washington, DC, pp 493–498

Corral A, Manolopoulos Y, Theodoridis Y, Vassilakopoulos M (2000) Closest pair queries in spatial dat-
abases. In: SIGMOD

Delorme A, Makeig S (2003) EEG changes accompanying learning regulation of the 12-Hz EEG activity.
IEEE Trans Rehabil Eng 11(2):133–136

Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E (2008) Querying and mining of time series data:
experimental comparison of representations and distance measures. In: VLDB

Dohnal V, Gennaro C, Zezula P (2003) Similarity join in metric spaces using eD-Index, vol 2736. In: DEXA,
pp 484–493

Duchêne F, Garbay C, Rialle V (2007) Learning recurrent behaviors from heterogeneous multivariate time-
series. Artif Intell Med 39(1):25–47

Faloutsos C, Ranganathan M, Manolopoulos Y (1994) Fast subsequence matching in time-series databases.
In: SIGMOD, pp 419–429

Ferreira P, Azevedo PJ, Silva C, Brito R (2006) Mining approximate motifs in time series. Discov Sci
Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng

C-K, Stanley HE (2000) PhysioBank, physiotoolkit, and physionet: components of a new research
resource for complex physiologic signals. Circulation 101(23):e215–e220

Gonzalez EC, Figueroa K, Navarro G (2008) Effective proximity retrieval by ordering permutations. IEEE
Trans Pattern Anal Mach Intell 30(9):1647–1658

Guyet T, Garbay C, Dojat M (2007) Knowledge construction from time series data using a collaborative
exploration system. J Biomed Inform 40(6):672–687

Hafner J, Sawhney H et al (1995) Efficient color histogram indexing for quadratic form distance functions.
IEEE Trans Pattern Anal Mach Intell 17(7):729–736

Hamid R, Maddi S, Johnson A, Bobick A, Essa I, Isbell C (2005) Unsupervised activity discovery and
characterization from event-streams. In: Proceedings of the 21st conference on uncertainty in artificial
intelligence (UAI05)

Jagadish HV, Ooi BC, Tan K, Yu C, Zhang R (2005) iDistance: An adaptive B+-tree based indexing method
for nearest neighbor search. ACM Trans Database Syst 30(2)

Kaffka S, Wintermantel B, Burk M, Peterson G (2000) Protecting high-yielding sugarbeet varieties from
loss to curly top. http://sugarbeet.ucdavis.edu/Notes/Nov00a.htm

Keogh EJ (2003) Efficiently finding arbitrarily scaled patterns in massive time series databases. In: Proceed-
ings of the 7th European conference on principles and practice of knowledge discovery in databases
(PKDD), pp 253–265

Keogh EJ, Wei L, Xi X, Lee S-H, Vlachos M (2006) LB_Keogh supports exact indexing of shapes under
rotation invariance with arbitrary representations and distance measures. In: VLDB, pp 882–893

Koudas N, Sevcik KC (2000) High dimensional similarity joins: algorithms and performance evaluation.
IEEE Trans Knowl Data Eng 12(1):3–18

Lee T, Girolami M, Sejnowski TJ (1999) Independent component analysis using an extended infomax
algorithm for mixed subgaussian and supergaussian sources. Neural Comput 11(2):417–441

Lin J, Keogh E, Lonardi S, Patel P (2002) Finding motifs in time series. In: 2nd workshop on temporal data
mining (KDD’02)

Liu Z, YU JX, Lin X, Lu H, Wang W (2005) Locating motifs in time-series data. In: PAKDD, pp 343–353
Loomis AL, Harvey E, Hobart G (1938) Disturbance patterns in sleep. J Neurophysiol 2:413–430
McGovern A, Rosendahl D, Kruger A, Beaton M, Brown R, Droegemeier K (2007) Understanding the

formation of tornadoes through data mining. In: 5th conference on artificial intelligence and its appli-
cations to environmental sciences at the American meteorological society

Meng J, Yuan J, Hans M, Wu Y (2008) Mining motifs from human motion. In: Proceedings of EURO-
GRAPHICS

Minnen D, Isbell CL, Essa I, Starner T (2007a) Detecting subdimensional motifs: an efficient algorithm for
generalized multivariate pattern discovery. In: IEEE ICDM

Minnen D, Isbell CL, Essa I, Starner T (2007b) Discovering multivariate motifs using subsequence density
estimation and greedy mixture learning. In: 22nd conference on artificial intelligence

Motzkin D, Hansen CL (1982) An efficient external sorting with minimal space requirement. Int J Parallel
Program 11(6):381–396

Mueen A, Keogh E, Zhu Q, Cash S, Westover B (2009) Exact discovery of time series motif. In: SDM

123

http://sugarbeet.ucdavis.edu/Notes/Nov00a.htm

A disk-aware algorithm for time series motif discovery 105

Murakami K, Doki S, Okuma S, Yano Y (2005) A study of extraction method of motion patterns observed
frequently from time-series posture data. In: Proceedings of IEEE international conference on systems,
man and cybernetics (SMC), pp 3610–3615

Nanopoulos A, Theodoridis Y, Manolopoulos Y (2001) C2P: clustering based on closest pairs. In: Interna-
tional conference on very large data bases (VLDB), pp 331–340

Niedermeyer E, Lopes da Silva F (eds) (1999) Electroencephalography: basic principles, clinical applica-
tions and related fields. Williams and Wilkins, Baltimore

Nyberg C, Barclay T, Cvetanovic Z, Gray J, Lomet D (1995) Alphasort: A cache-sensitive parallel external
sort. VLDB J 4(4):603–628

Patel P, Keogh E, Lin J, Lonardi S (2002) Mining motifs in massive time series databases. In: IEEE inter-
national conference on data mining

Rombo S, Terracina G (2004) Discovering representative models in large time series databases. In: Pro-
ceedings of the 6th international conference on flexible query answering systems, pp 84–97

Shieh J, Keogh E (2008) iSAX: Indexing and mining terabyte sized time series. In: IGKDD, pp 623–631
Simona R, Giorgio T (2004) Discovering representative models in large time series databases. Int Conf

Query Answ Syst 3055:84–97
Stafford C, Walker G (2009) Characterization and correlation of DC electrical penetration graph waveforms

with feeding behavior of beet leafhopper (submission)
Stefanovic BJ, Schwindt W, Hoehn M, Silva AC (2007) Functional uncoupling of hemodynamic from neu-

ronal response by inhibition of neuronal nitric oxide synthase. J Cereb Blood Flow Metab 27:741–754
Stern JM, Engel J Jr (2004) Atlas of EEG patterns. Williams & Wilkins, Lippincott
Supporting Webpage www.cs.ucr.edu/~mueen/DAME/index.html
Tanaka Y, Iwamoto K, Uehara K (2005) Discovery of time-series motif from multi-dimensional data based

on MDL principle. Mach Learn 58(2–3):269–300
Tang H, Liao SS (2008) Discovering original motifs with different lengths from time series source. Knowl-

Based Syst 21(7):666–671
Tata S (2007) Declarative querying for biological sequences, Ph.D Thesis, The University of Michigan,

(Advisor Jignesh M. Patel)
Torralba A, Fergus R, Freeman WT (2008) 80 million tiny images: a large database for non-parametric

object and scene recognition. IEEE PAMI 30(11):1958–1970
Ueno K, Xi X, Keogh E, Lee D (2006) Anytime classification using the nearest neighbor algorithm with

applications to stream mining. In: Proceedings of of IEEE international conference on data mining
(ICDM)

Weber R, Schek H-J, Blott S (1998) A quantitative analysis and performance study for similarity-search
methods in high-dimensional spaces. In: International conference on very large data bases (VLDB),
pp 194–205

Wilson DR, Martinez TR (2000) Reduction techniques for instance-based learning algorithms machine
learning, vol 38. Kluwer, Dordrecht, pp 257–286

Yankov D, Keogh E, Medina J, Chiu B, Zordan B (2007) Detecting motifs under uniform scaling. In:
SIGKDD

Yoshiki T, Kazuhisa I, Kuniaki U (2005) Discovery of time-series motif from multi-dimensional data based
on MDL principle. Mach Learn 58(2–3):269–300

Yu C, Wang S (2007) Efficient index-based KNN join processing for high-dimensional data. Inf Softw
Technol 49(4)

123

www.cs.ucr.edu/~mueen/DAME/index.html

	A disk-aware algorithm for time series motif discovery
	Abstract
	1 Introduction
	2 Related work
	3 Definition and background
	4 Our algorithm
	4.1 A detailed intuition of our algorithm
	4.2 A formal description of our algorithm
	4.3 Correctness of DAME

	5 Scalability experiments
	5.1 Comparison with divide and conquer approach
	5.2 Sanity check on large databases
	5.3 Performance for different block sizes
	5.4 Performance for different motif lengths
	5.5 In-Memory search options
	5.6 Lower bound options

	6 Experimental case studies
	6.1 Motifs for brain--computer interfaces
	6.2 Finding repeated insect behavior
	6.3 Automatically constructing EEG dictionaries
	6.4 Detecting near-duplicate images
	6.5 Discovering patterns in polysomnograms
	6.6 Extension to multidimensional motifs

	7 Conclusion and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

