
FRaC: a feature-modeling approach for semi-supervised and
unsupervised anomaly detection

Keith Noto,
Department of Computer Science, Tufts University, 161 College Ave., Medford, MA 02155, USA

Carla Brodley, and
Department of Computer Science, Tufts University, 161 College Ave., Medford, MA 02155, USA

Donna Slonim
Department of Computer Science, Tufts University, 161 College Ave., Medford, MA 02155, USA
Keith Noto: noto@cs.tufts.edu; Carla Brodley: brodley@cs.tufts.edu; Donna Slonim: slonim@cs.tufts.edu

Abstract
Anomaly detection involves identifying rare data instances (anomalies) that come from a different
class or distribution than the majority (which are simply called “normal” instances). Given a
training set of only normal data, the semi-supervised anomaly detection task is to identify
anomalies in the future. Good solutions to this task have applications in fraud and intrusion
detection. The unsupervised anomaly detection task is different: Given unlabeled, mostly-normal
data, identify the anomalies among them. Many real-world machine learning tasks, including
many fraud and intrusion detection tasks, are unsupervised because it is impractical (or
impossible) to verify all of the training data. We recently presented FRaC, a new approach for
semi-supervised anomaly detection. FRaC is based on using normal instances to build an
ensemble of feature models, and then identifying instances that disagree with those models as
anomalous. In this paper, we investigate the behavior of FRaC experimentally and explain why
FRaC is so successful. We also show that FRaC is a superior approach for the unsupervised as
well as the semi-supervised anomaly detection task, compared to well-known state-of-the-art
anomaly detection methods, LOF and one-class support vector machines, and to an existing
feature-modeling approach.
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1 Background
Anomaly detection involves the identification of instances that come from a different
distribution or class than the majority. Examples of this type of task include fraud detection
(e.g., identify fraudulent credit card transactions among a majority of valid ones), and
intrusion detection (e.g., distinguish an attack from normal network activity). As a learning
task, anomaly detection may be semi-supervised or unsupervised.1 In a semi-supervised
anomaly detection task, we assume all the training instances come from the “normal” class
and our goal is to distinguish future instances that come from a different distribution
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(“anomalies”). In an unsupervised anomaly detection task, we are given one sample that is a
mixture of normal and anomalous instances, and the goal is to differentiate them. The
proportion of anomalies is generally small, but its exact value is often unknown and varies
from task to task.

We focus on tasks where data instances are represented by feature vectors. That is, we are
given a training set of N examples  = {x1, x2, …, xN }. Each example xj is a fixed-length
vector of D features xj = 〈xj1, xj2, …, xj D〉 of types t = 〈t1, t2, …, tD〉. Our goal is to learn a
function f: t → ℝ that maps a query vector xq to a real-valued anomaly score. In the semi-
supervised anomaly detection task, we assume all of  come from the normal class, and f is
used to classify or rank future instances. In the unsupervised anomaly detection task, we
assume that a majority of  are normal, and use f to classify or rank each x j ∈ .

1.1 Distance- and density-based approaches
Most current approaches make judgments based on the distance among instances. That is,
they map each instance to a point in some representation of feature space, and then measure
the distance among these points.2 For example, one approach is to cluster the points, and
then identify anomalies as points that are far away from any cluster centroid (Smith et al.
2002). Alternatively, one may rank each instance by the distance to its kth nearest neighbor
(the larger the distance, the more likely the instance is to be anomalous, Byers and Raftery
1998; Guttormsson et al. 1999). The local outlier factor method (LOF) (Breunig et al. 2000)
compares the distance between a point and its nearest neighbors to the density among those
neighbors. It identifies anomalies as points relatively far from local groups. That is, LOF is a
density-based approach that has the advantage of distinguishing between a point near the
boundary of a sparse cluster and a point that does not appear to be part of any cluster or
distribution at all. This is an important consideration and makes LOF one of the best general
approaches to anomaly detection. Classification is also used in anomaly detection. For
example, given a set of labeled training data for multiple “normal” classes, classification
algorithms can be used to distinguish the normal classes from each other. Anomalies are
instances that do not appear to be part of any normal class (Chandola et al. 2009). These
approaches require labels that are often not available. However, one-class support vector
machines (SVMs) are able to learn models from one class of training instance (Schölkopf et
al. 2000). They attempt to separate the training examples from the rest of feature space and
rank anomalies according to their distance from this region. For a survey of anomaly
detection problems and current approaches, see Chandola et al. (2009).

1.2 Feature modeling approaches
All of the approaches above assume that anomalies can be identified by their distance to
normal instances in feature space. An alternative framework is to model features
individually, as shown by Huang et al. (2003) and our own approach (Noto et al. 2010).
Feature-modeling anomaly detection approaches use supervised learning algorithms to learn
predictive models of each feature, based on the other features. The intuition is that these
models represent the underlying relationships among features that hold for the normal class.
These relationships may not hold for an alternative distribution and therefore feature models
that predict the wrong feature value provide evidence of an anomaly.

Any implementation of feature-modeling involves three key design decisions:

2Euclidean distance is a common measurement, and is naturally applicable to numeric features. Other feature types, and especially
combinations of different feature types, may require complex mappings or distance functions.
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1. For which features do we learn a predictive model, and which other features do we
use in each model?

2. Which supervised learning algorithm(s) do we use to train the feature models?

3. How do we combine the set of feature models  into a single anomaly score for a
query instance xq? That is, what is the definition of f ( , xq) → ℝ?

Without any feature-specific background knowledge, there is no basis to choose to model
particular features over others. A natural choice is therefore to learn predictors for all
features and use all other features (potentially) in their predictive models. That is, if ρi is the
function mapping a vector x to just the components of x that are used to predict feature i,
then we choose

(1)

for all i. This means that  = {C1, C2, …, CD} consists of one predictive model for each
feature and each Ci is a function mapping the subset of features ρi (xq) of a query instance xq
to a prediction of its ith feature value. Its type is Ci: ρi(t) → ti, where t = 〈t1, t2, …, tD〉 are
the types of each of the D features.

For the second decision, any supervised learning algorithm can be used in principle to infer
a feature predictor Ci, as long as it is compatible with the feature types. This holds for any
feature type, but by and large it means that Ci must be a regression model if ti is numeric,
and Ci must be a classifier if ti is nominal.3

For the third design choice, the definition of f( , xq) → ℝ, Huang et al. first suggest using
the average match count, defined as the average number of correct predictions per example:

(2)

If xq is an anomaly, then fewer Ci classifiers will predict the observed xqi values correctly.
Therefore, the lower the average match count, the more likely the instance is anomalous.
Recall that Ci (ρi (xq)) returns a feature value of type ti. This means that average match
count is not compatible with real-valued features, because the prediction can never exactly
match the observed value.

Average match count does not account for the classifier’s uncertainty, however. The
observation, that Ci (ρi (xq)) is not equal to xqi, is more significant if the classifier is more
confident in its prediction. Huang et al. therefore suggest the alternative average probability:

(3)

P(xqi |Ci, ρi (xq)) is the likelihood of an observed feature value xqi given the feature model
Ci and the other features ρi (xq), and Eq. 3 requires that this quantity be defined. Fortunately,
it is the natural output of some classifiers such as naïve Bayes, and there are standard ways

3By numeric features, we mean both real-valued features and discrete numerical features with a large number of possible values (e.g.,
age measured in years, or number of network packets received) that are better modeled as continuous values.
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of estimating likelihoods from many other classifiers, such as decision trees (Quinlan 1990).
In (Huang et al. 2003), present cross-feature analysis (CFA), which uses average probability.
CFA discretizes all numeric features so they can be modeled by a classifier.4 In (Huang et
al. 2003), the authors experiment with C4.5 (decision trees) (Quinlan 1993), RIPPER (a rule
learner) (Cohen 1995), and the naïve Bayes classifier (Mitchell 1997), and use the likelihood
associated with observed feature values according to these classifiers.

We recently presented feature regression and classification (FRaC) (Noto et al. 2010),
another feature modeling approach that measures the log-loss, or amount of surprisal
(Shannon 1948), of the observation xq, given its feature predictions.

(4)

We interpret the surprisal as the amount of evidence (measured in bits of information, if we
use log base 2) that an instance is anomalous, and FRaC uses the sum of surprisal over all
features to produce the surprisal anomaly score:

(5)

FRaC does not use the classifier Ci directly to define P(xqi). Instead, it uses cross-validation
to compute Ai, a set of (observed, predicted) feature i values, one pair for each training set
example, and builds an error model, Ei, to model the distribution of prediction errors in Ai.
FRaC defines p(xqi) in terms of Ei and Ci (ρi (xq)).

This technique has the important advantage of being compatible with any feature type, as
long as an appropriate error model is defined. For numeric and nominal features, it is
straightforward to model the error.

In our experiments with FRaC, we define the error of a numeric feature as the difference
between an observed and a predicted value, xqi – Ci (ρi (xq)). We divide the real line of
possible error values into  bins (N is the training set size). For each bin, we count how
often an error in the corresponding range occurs in Ai. We then normalize the resulting
histogram of counts, making it a probability distribution. (In our experiments, we also
smooth the distribution with a Gaussian-shaped kernel that has a standard deviation of one
bin (John and Langley 1995; Noto et al. 2010).) Finally, we calculate P(xqi | Ei, Ci (ρi (xq)))
as the mass of the bin corresponding to xqi – Ci (ρi (xq)).

It is important to note that discretizing the error after training is not the same as discretizing
the numeric features into nominal features before training, and does not have the same affect
on performance. In Sect. 3.1 we empirically investigate the cost of discretizing numeric
features.

If i is a nominal feature, then the error distribution Ei takes the form of a confusion matrix.
Put simply, given a query instance xq, FRaC will predict its i th feature value to be g. If i is
nominal, then we estimate the likelihood of the observed value y to be the frequency in Ai of
the value y when it was predicted to be g. Formally, the type ti of a nominal feature is a set
of ki possible values. Let δ(·) map each possible value in ti to a unique integer 1, 2, …, ki.
The error distribution for i is then a confusion matrix M where each Mδ(g), δ(y) is the number

4Note that numeric features need only be modeled as a nominal-valued; their numeric values may be used in models of other features.
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of pairs in Ai equal to (y, g) (i.e., xj has the predicted value Ci (ρi (xj)) = g and the observed

value xji = y). After normalizing each row of M so that  for all g, P(xqi|Ei, Ci
(ρi (xq))) is given by the matrix entry Mδ(Ci(ρi(xq))), δ(xqi). (In our experiments, we smooth
the error distribution by adding a pseudocount of one to each entry of M before
normalizing.)

The choice of supervised learning algorithm used to infer feature models is not a
fundamental part of the feature modeling approaches, and may seem arbitrary for a general-
purpose anomaly detector. Different supervised algorithms use different hypothesis spaces,
and there is no one hypothesis space ideal for all features. FRaC learns multiple models for
each feature, each with its own bias, and combines them in a “feature ensemble,” in an
attempt to benefit from all of them.

Using surprisal, it is straightforward to combine the results for P models by simply adding
the scores associated with each model Cpi, p ∈ {1, 2, … P}.5 In Sect. 3.2, we empirically
demonstrate the benefits of doing so.

Finally, in the cases where the query instance feature value xqi is missing, FRaC uses the
entropy (this is the expected surprisal) of feature i’s training set distribution in place of the
surprisal score. This is equivalent to subtracting the entropy from each surprisal score and
using zero when the feature value is missing. We call this anomaly score normalized
surprisal. This is the definition of f ( , xq) → ℝ that FRaC uses. If there are P feature
prediction models, then normalized surprisal is defined as:

(6)

The entropy of a collection  is given by

(7)

where ν corresponds to each of the k distinct values in  and pν is the proportion in  of
items that have that value. If ti is nominal, it is straightforward to use Eq. 7. If ti is numeric,
we discretize the values in {x1i, …, xNi} into  bins and use Eq. 7. A detailed description
of our entire approach is given in Algorithm 1.

In Noto et al. (2010), we introduced FRaC and compared it to LOF and one-class SVMs.
The contributions of this paper are as follows: (i) we compare FRaC to cross-feature-
analysis (Huang et al. 2003) on semi-supervised anomaly detection tasks (Sect. 2), (ii) we
explain why FRaC succeeds, using extensive new experiments and several examples of
feature models learned by FRaC on real data sets (Sect. 3), and (iii) we present and defend
FRaC as a superior approach for the unsupervised anomaly detection task (Sect. 4).

5In our experiments, we ensure that each feature has the same number of predictors by choosing a clas-sification “version” (e.g.,
decision tree) and a regression version (e.g., regression tree) of each feature predictor p.
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2 Semi-supervised experiments
To evaluate FRaC as a general-purpose approach to the semi-supervised anomaly detection
problem, we run it on several independent data sets and compare its performance to that of
local outlier factor (LOF) (Breunig et al. 2000), a one-class SVM (Schölkopf et al. 2000),
and cross-feature analysis (CFA) (Huang et al. 2003).6–7

2.1 Evaluation testbed
As a testbed, we select all classification data sets from the UCI machine learning repository
(Asuncion and Newman 2007) with at least 100 examples that are (i) listed as being
classification tasks in feature-vector format at http://archive.ics.uci.edu/ml, and (ii) have
a .data file in the corresponding machine-learning-databases public directory at
ftp.ics.uci.edu. If the directory contains multiple data sets, we select one arbitrarily. The
resulting testbed contains 47 data sets, listed in Table 1.

For our experiments, all of the features in this testbed are considered to be either (i) nominal,
taking on one of a finite number of values, or (ii) numeric, taking on either integer or real
values. Any features with complex types (e.g., hierarchical features) are reduced to either
nominal or numeric types.

For each data set, we assign the most-represented class the label “normal.” All other classes
are assigned the label “anomaly.” We take 75% of the normal examples for training. The
remaining 25% of the normal examples and all “anomalous” examples are held aside for
testing.

2.2 Evaluation criteria
Note that our test sets may be larger than our training sets, and the relative proportion of test
set instances labeled ‘anomalous’ may be large (indeed, ‘normal’ instances may be a
minority in the test set). This is in contrast to most traditional anomaly detection scenarios,
where anomalies are particularly rare events. We therefore choose an evaluation metric that
depends only on the relative order of test set instances, when ranked by an anomaly score
(i.e., the real-valued output of an anomaly detection method). To evaluate an anomaly
detection method on a test set, we construct an ROC curve (Spackman 1989) and report the
area under the curve (AUC).8 This allows us to use all test instances in our measure of
performance and avoid committing to a particular anomaly score threshold, which in
practice depends on a cost analysis particular to the data set in question.

The anomaly detection methods we compare in this section are listed in Table 2. The AUC
for each data set varies depending on which examples are randomly assigned to the training
set and which are held aside for testing. Therefore we replicate each of our experiments at
least 25 times and report the average AUC.

We also compare the AUC of anomaly detection methods to that of a supervised classifier
trained on labeled examples from both normal and anomalous classes. The reported
supervised AUC is the best test set AUC of three supervised models: Decision trees, SVM
with a linear kernel and SVM with a RBF kernel. This is meant to judge the difficulty of the

6The experiments in this section are similar to the ones carried out in Noto et al. (2010). There are two important differences: First, we
replicate each experiment several times and report a robust average. Second, we include a comparison to CFA.
7We also ran all the experiments described in this section using connectivity-based outlier factor (COF) (Tang et al. 2002), but we
find that its performance does not differ significantly from that of LOF.
8The area under the ROC curve is equal to the probability that a randomly selected anomaly will have a higher score than a randomly
selected normal example. An AUC of 1.0 is perfect, and an AUC of 0.5 is no better than random guessing.
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learning task—we expect the AUC of the supervised classifier to be a rough estimate of the
upper-bound for any anomaly detection approach.

2.3 Methods
LOF is a density-based approach, fundamentally based on a feature distance metric. For our
experiments, we use the Euclidean distance between feature vectors, where the distance for a
single numeric feature is the difference in value divided by the range of that feature’s value
(i.e., the maximum distance is 1.0), and the distance for a nominal feature is the Hamming
distance (i.e., 1 if the feature values are different, 0 if they are identical). We compute the
LOF separately for each test set example, such that a test set example cannot receive a low
LOF score due to other test set examples in the same neighborhood. LOF has one parameter,
Min Pts, which is the size of the neighborhood. Following a suggestion in Breunig et al.
(2000), we calculate the anomaly score by taking the maximum LOF over a range of values.
9

One-class SVMs learn from numeric features, thus when using SVMs, we replace k-valued
nominal features with k binary features, each set to 0, except for the one corresponding to
the feature’s value, which is set to 1. We use the LIBSVM implementation (Chang and Lin
2001) of one-class SVMs with a radial basis kernel (RBF). There is no standard way of
choosing one-class SVM parameters for an anomaly detection task. This is in contrast to
supervised classification, where one is able to set parameters to optimize an objective that
depends on training set labels, such as the accuracy of a validation set. In our experiments,
we use the default LIBSVM parameter values, but we have run our experiments with several
different parameter settings and we have confirmed using t-tests that test set performance
does not improve for any of these parameter settings. Specifically, we altered the default
LIBSVM RBF model by setting the model type to linear, quadratic, cubic, and sigmoid, the
SVM c parameter to all powers of ten 0.001 ≤ c ≤ 100, and the RBF parameter γ to all
powers of ten 0.001 ≤ γ ≤ 100. Therefore, we can say with confidence that the parameter
settings we use in our analysis are a fair representation of the SVM approach.

For our approach using feature regression and classification (FRaC), we combine multiple
feature prediction methods: (i) support vector machines (SVMs) using a linear kernel
(trained for regression in the case of numeric features) (ii) SVMs using a radial basis
function (RBF) kernel, and (iii) decision trees (regression trees for numeric features). We
choose these methods because they represent a variety of hypothesis spaces. We use the
LIBSVM implementation for multi-class SVMs and support vector regression (Chang and
Lin 2001; Fan et al. 2008). When learning SVM models, we replace the nominal predictor
features with multiple binary features as described above. We use the WEKA
implementation for C4.5 classification decision trees and decision/regression trees (Hall et
al. 2009). We use normalized surprisal as our anomaly detection score (Eq. 6).

Like FRaC, Cross-feature analysis (CFA) is a “wrapper” algorithm that uses supervised
learning algorithms as a subroutine to predict feature values. The choice of feature
prediction algorithm is important, but any algorithm will work, as long as it is compatible
with the feature types, and the equation used to combine feature predictions. In their
evaluation of CFA, Huang et al. experiment with three feature predictors C4.5, RIPPER, and
naïve Bayes (Huang et al. 2003). However, in order to compare CFA with FRaC as fairly as
possible, we run a version of CFA that uses the same feature models as FRaC. Recall that
CFA combines predictions using average probability (Eq. 3). This means that feature

9In our experiments, we use the range 10 = Min Pts = 100. In Noto et al. (2010), we tried a number of alternative ranges and found
that LOF is not very sensitive to this choice.
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predictors must produce a probability and therefore the feature in question must be nominal.
In our implementation of CFA, following Huang et al. (2003), we discretize numerically-
valued features into five bins, with approximately the same number of instances in each. We
use C4.5, linear-kernel SVMs, and RBF-kernel SVMs as feature predictors. We use Platt
scaling to convert the natural output of SVMs to a probability. To produce an anomaly
score, we use the average probability (Eq. 3) of all three feature predictors.10

2.4 Experimental results
The results are shown in Table 3. We make the following observations:

• The performance of FRaC is better than that of all of the other three anomaly
detectors on about half of the data sets, and has the maximum score more often
than the other methods combined, by a wide margin.

• The AUC is as good as or better than the estimated upper-bound on 34% of the data
sets. Recall that the reported estimated upper-bound is itself the best of three
supervised classifiers.

• FRaC does not have the worst performance in any data set, excluding a few where
all anomaly detectors are worse than random guessing. It is important that an
anomaly detector be robust in this sense because, without labeled anomalies
available for training, it is often difficult to judge the accuracy of an anomaly
detector or even the difficulty of an anomaly detection task.

On the average, the AUC scores for FRaC are superior to all of the other anomaly detection
methods. To test if the differences are statistically significant, we run one-tailed, paired t-
tests, comparing the AUC of FRaC to that of the next best anomaly detection method for
each data set. p-values are shown in Table 3. The p-values are shown in Table 3.11 With few
exceptions, the superior average AUC scores of FRaC shown in Table 3 are statistically
significant.

The results in Table 3 raise some important questions. Why is FRaC successful? Why does
it outperform the other feature-modeling approach? Why are some of the AUC scores less
than 0.5 (i.e., worse than random guessing)? In the next section, we address these questions.

3 Discussion
3.1 Analysis of feature-based methods

Distance-based methods such as LOF work well when anomalous instances are separated in
feature space from the observed set of normal training instances (see Fig. 1). FRaC works by
identifying key relationships among features instead of computing a distance from all
features (Noto et al. 2010). However, Cross-feature analysis (CFA) is also a feature
modeling approach. In the examples above, CFA models the same features as FRaC. Why
does FRaC typically outperform CFA?

There are two key differences between FRaC and CFA. The first is that FRaC is able to
handle numerical features by learning regression feature models. CFA, in contrast, first

10The authors of CFA do not explicitly suggest combining feature models this way, but it appears to be an improvement. On the data
sets in Table 1, the average performance (area under the ROC curve) of CFA combining feature models is 0.014 higher than the
average performance of CFA with the individual feature models. We also carried out the same CFA experiments using C4.5, RIPPER,
and naïve Bayes. On the data sets in Table 1, RIPPER performs best, but the performance of combining C4.5, linear and RBF-kernel
SVMs is, on average, 0.025 higher than that.
11The t-test assumes the pairwise differences in AUC scores are normally distributed. According to the Shapiro-Wilk test for
normality (Shapiro and Wilk 1965), this does not always appear to be the case. However, we believe the vast majority of t-test
comparison p-values are small enough to be convincing.
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discretizes these features so that it can estimate the probability of each observed feature
value. This discretization loses information about the feature values, and may adversely
affect the performance of the anomaly detector. The second difference is the equation used
to combine feature predictions. FRaC uses surprisal, and CFA uses average probability.

To measure the extent to which each of these differences affects the performance of the
anomaly detectors, we create two new versions of FRaC, “discrete FRaC,” which discretizes
all numerically-valued features before they are modeled by FRaC, and “Average Probability
(AP) FRaC,” which uses Eq. 3 instead of Eq. 6 to compute anomaly scores.

We rerun all of the experiments in Sect. 2 using both new methods. These experiments allow
us to estimate the effect of surprisal (by comparing CFA to discrete FRaC and AP FRaC to
FRaC) and that of discretization (by comparing CFA to AP FRaC and discrete FRaC to
FRaC). The results of these experiments are shown in Tables 4, 5, 6, and 7.

These tables indicate that both of the differences mentioned above are reasons why FRaC
performs better than CFA. However, there is a particular reason why discretization can lead
to bad performance. Note in Table 3 that the performance of CFA alone is significantly less
than 0.5 on breast-cancer-wisconsin, parkinsons, and wine, all of which have many
continuous features.

These data sets reveal a fundamental flaw in the discretization of numeric features by
feature-modeling approaches, which is that discretization replaces real values with ranges of
values. Errors within one of the ranges cannot be detected.

Consider the following example. On the breast-cancer-wisconsin data set, CFA learns that if
feature 14 (variance of perimeter) of a benign cell is large, then feature 12 (variance of cell
radius) is also large.12 However, for the CFA models, “large” refers to a range of values.
Malignant cells (anomalies) do not have quite the same relationship between perimeter and
radius variance as do benign cells, and FRaC can detect the numeric differences,13 but
malignant cells tend to be larger than benign cells and have more perimeter and radius
variance measurements that CFA simply labels as “large.” This means that the rule CFA
learned to predict radius variance still holds for many of the “anomalous” test cases, and
CFA incorrectly regards them as normal. Situations like this explain why CFA may tend to
rank normal instances ahead of anomalies and suffer poor performance as a result.

3.2 Combining multiple feature models
As the data sets in Table 1 represent a variety of tasks, it is not surprising that the
performance of our anomaly detector depends on our choice of feature prediction model. For
example, the connect-4 data set is best represented by a decision tree, and the tic-tac-toe data
set is best represented by a support vector machine.14 In general, we may not know which
hypothesis space is the best choice for a given data set, therefore we advocate the approach
of combining the normalized surprisal from multiple predictors. The intuition for why this
works is that normalized surprisal is influenced the most by accurate predictors. That is, if
the set of predictors using one type of feature model contains few accurate predictors, but

12This is one of the rules inferred by the C4.5 decision tree model. The average probability is most heavily influenced by the tree
(compared to the SVM models) on this data set.
13FRaC’s tree model on the same training set uses feature 15 (variance of cell radius) as well as feature 14, but the rule is effectively
the same: large perimeter (and area) variance predicts large radius variance.
14tic-tac-toe is the familiar 3 × 3 naughts and crosses game. The object of the two-player game connect-4 is to place four checkers in a
row on a 7 × 6 board with specific rules about how checkers may be placed. Although these seem like similar domains, the task for
tic-tac-toe is to determine the winner of a completed game and the task for connect-4 is to predict the eventual winner from an
incomplete game.
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the set of predictors using another type of feature model contains many accurate predictors,
then normalized surprisal will be controlled primarily by the second set of predictors, which
uses the superior hypothesis space for the task in question. The FRaC AUC scores in Table 3
are computed from the combined normalized surprisal of three feature models (RBF kernel
SVMs, linear kernel SVMs, and decision trees), and Table 8 compares the AUC scores using
the normalized surprisal of each of these models individually and those of adding the
normalized surprisal of all three model types.

Our empirical results show that the AUC of FRaC combining all three models is as good as
the best AUC of FRaC using any individual feature model on 57% of the data sets. Indeed,
the AUC of FRaC combining three feature models is strictly better than that of FRaC with
any individual model 23% of the time. Based on these observations, we advocate combining
multiple feature prediction models.

3.3 Implicit feature selection
In any learning task, there are many potentially irrelevant features that distort the feature
space, affecting the shapes of clusters and the relative distance among examples. LOF and
one-class SVMs treat all features equally, but by using normalized surprisal to combine the
output of feature predictors, FRaC implicitly selects features, because normalized surprisal
is only very high for accurate predictors. CFA does not treat all features equally, but it
averages the likelihood estimates of inaccurate predictors with those of accurate predictors.

To show that FRaC is robust to irrelevant features, we perform the following experiment.
We take all of the data sets from Table 3 for which all of the anomaly detection methods do
well (AUC ≥ 0.9), then add a number of synthetic features to each. Each of these new
features is of the same type and value distribution as one of the original features, but its
value in each data instance is independent of the class label and of any of the other features.
This type of noise makes each learning task more difficult. We then rerun the experiments
from Sect. 2 on the resulting data sets. We hypothesize that the performance of FRaC will be
more robust to the additional noise than that of one-class SVMs, LOF and CFA.

For this experiment, we include one additional anomaly detection method: LOF with feature
bagging, which was developed specifically for data sets that contain noisy or irrelevant
features (Lazarevic and Kumar 2005). It involves running LOF multiple times with random
feature subsets and combining the results.15

Table 9 shows the performance (average AUC) on data sets with 10 additional features.
Table 10 shows the performance with 100 irrelevant features. The performance of FRaC is
the least affected by the added noise. Indeed, only once does an anomaly detection method
retain more AUC than FRaC (one-class SVMs on the data set, car).

To show how the performance of each anomaly detector degrades as a function of task
difficulty, we plot several points of a curve at increasing levels of noise. These experiments
involve hundreds of trials for each anomaly detector (as before, we replicate each
experiment 25 times and report an average AUC), so we choose the four smallest data sets
from Tables 9 and 10. The results are shown in Fig. 2. On these data sets, FRaC’s
performance nearly dominates that of the other anomaly detection methods over all data set
sizes.16 We expect that this trend would hold in general for the other data sets in Table 1.

15The effect of feature bagging on the experiments in Sect. 2 is minimal (on average, it slightly lowered the AUC of LOF), but we
include it here because it was proposed specifically for data sets with irrelevant or noisy features.
16FRaC’s performance does not degrade at all on the iris data set because the anomalous feature values are so unlikely according to
FRaC’s feature models that the surprisal measures hundreds of bits. We estimate that FRaC’s performance would remain consistent
for several thousand more features.
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Many real-world data sets are likely to contain features that are irrelevant, but identifying
which features are irrelevant is extremely difficult because only one class of training
instance is provided. These results suggest that FRaC is robust in the presence of irrelevant
features.

3.4 Discovery of key feature relationships
To further demonstrate the principle that FRaC works by discovering key feature
relationships, we point out a few illustrative examples.

Consider the voting records data set. Each feature is a vote made by a Democratic (political
party) representative. The distance between each pair of instances is a function of the
number of votes on which the representatives disagree. Republican voters are anomalous in
this training set, but Democrats disagree often enough that both parties overlap in feature
space.17 However, there is one vote in particular (“physician fee freeze”) that goes mostly
along party lines. FRaC learns that Democrats are unlikely to vote ‘yes,’ and therefore
measures a high degree of surprisal when it observes almost all of the Republicans. This
feature is a large part of the reason that FRaC performs well. It makes sense that one-class
SVMs also do well on this data set, because ‘no’ values for this particular vote should fall
outside of the region containing a large majority of the normal instances.

In general, however, feature models will depend on multiple features. Consider the chess
(KR vs. KP) data set, which represents a set of chess scenarios where black has a king and a
rook, but white can win with a king and a pawn. Scenarios where white cannot win are
anomalous, and the task is to identify these. One of the features is, “can white capture the
rook?” Among anomalies (where white cannot win), the value is almost always ‘no,’ but it is
usually ‘no’ among normal instances as well, so that value is not surprising by itself. There
are situations among the normals, however, when the value is usually ‘yes.’ Part of the
decision tree model for this feature is shown in Fig. 3. This model identifies the other
features of normal scenarios when the black rook can be captured. Among anomalous
instances that follow these same decision tree paths, the rook cannot be captured. Given the
other features and the model, this observation is surprising, and therefore FRaC is able to
identify the corresponding anomalies.

Finally, we examine the model of a real-valued feature. On the libras (Brazilian sign
language) data set, FRaC is trained on instances of a particular sign. This is a high-
dimensional data set: features are the positions in two dimensions of a hand at 45 different
time steps during the process of making the sign. FRaC learns that feature 29 is a good
predictor of feature 53, and in fact they have roughly an inverse relationship. The regression
tree model is shown in Fig. 4. Using cross-validation on the training set, FRaC learns that
normal instances are unlikely to fall outside the delimited regions. Different signs are
anomalies in this task, and many of them do not have the same relationship between features
29 and 53. FRaC is able to recognize these as anomalies, and together with the other
accurate feature predictors, perform well on this data set.

3.5 Difficult anomaly detection tasks
Recall that the area under the ROC curve is equal to the likelihood of a randomly selected
test set anomaly being judged as more likely to be anomalous than a randomly selected test
set normal instance. This means that an AUC of 0.5 is equivalent to assigning anomaly

17Democrats also disagree with each other more than Republicans do. The average distance among Democrats is 3.62, among
Republicans it is 3.02.
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scores at random. However, several of the average AUC scores in Table 3 are conspicuously
close to or worse than 0.5 for all or most of the anomaly detection methods.

The performance of all of the anomaly detection methods is worse than random guessing on
the data sets cmc and ozone. There are three data sets for which the average distance among
normal instances is greater than the average distance between normal and anomalous
instances, and the average distance among instances from each anomalous class is even
smaller than that. These data sets are cmc, ozone, and tae (see Fig. 5). In other words, these
are simply extremely difficult tasks where the anomalies in these data sets form tighter
clusters than do normal examples, and these clusters of anomalies are near (possibly within)
the region of feature space where normal examples are located.

Why are CFA and FRaC alone worse than chance on the abalone data set? The task of the
abalone data set is to identify female or infant abalones, after training on male abalones (the
“normal” class in our experiments). There are several features based on weight
measurements, such as whole weight, weight of shucked abalone, and weight after being
dried. As you might expect, CFA and FRaC learn to predict each of the abalone weight
measurements from the remaining weight measurements fairly accurately. However, these
predictors, trained exclusively on male abalones, turn out to be even more accurate for
female and especially for infant abalones.18 Abalone presents an unusual set of
circumstances where anomalies have the same patterns among features, but less variance.19–
20

4 Unsupervised anomaly detection experiments
FRaC was designed to be a general approach to the semi-supervised anomaly detection
problem, and in Sect. 2, we showed that it is superior to several state-of-the-art approaches
on a variety of data sets. Recall that this learning scenario is semi-supervised because we
assume that we can trust that the training set consists of correctly labeled normal instances.
However, such labels are often unavailable. Unsupervised anomaly detection is the learning
scenario where we are given just one data set that is a mixture of normal and anomalous
instances, none of which are labeled, and our task is to identify the anomalous instances.

We do not assume that we know the proportion of anomalies in our data set, but they are by
definition infrequent, and we hypothesize that because the proportion of anomalies is small,
we can use FRaC and the feature predictors will still be accurate enough despite the
presence of anomalies in the training set.

To test this hypothesis, we use the same 47 UCI data sets that we use in Sect. 4. However,
for this set of experiments, we create data sets that contain only a small portion of
“anomalies.” Specifically, for each data set, we (i) add all “normal” instances to the
experimental data set. We then (ii) select a portion of anomalies uniformly at random. The
number of anomalies will be at least one, but no more than 5%. We add a random sample of
“anomalous” instances of the chosen sample size to the experimental data set. Finally (iii),
we randomize the order of the data set instances. We carry out this procedure over 25
replicates, so the portion of anomalies and the individual instances representing anomalies
are different each time (although the exact same data sets are used to compare across

18The Pearson correlation between two “weight” features for male abalones ranges from 0.84 to 0.96, and the corresponding
correlation among infant abalones ranges from 0.91 to 0.97 and is always higher. One may speculate that there is less variance in the
shape of the infants.
19Indeed, if we train on infant abalone and attempt to detect males and females as anomalies, then the performance of all anomaly
detectors (and the supervised estimated upper-bound) markedly increases.
20In practice, one would consider attempting to eliminate redundant features, but we intentionally experiment with unaltered public
data sets.
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different anomaly detection methods). We compare the same anomaly detection methods as
in Sect. 2: One-class SVMs (using an RBF kernel), LOF, CFA (using the average
probability of C4.5, linear-kernel and RBF-kernel SVMs), and FRaC (using the normalized
surprisal of C4.5, linear-kernel and RBF-kernel SVMs). Note that, although LOF is
applicable to both semi-supervised and unsupervised anomaly detection scenarios, it is
designed for the unsupervised scenario.

The results of these experiments are shown in Table 11. It is not surprising that LOF
improves the most relative to the semi-supervised tasks,21 but FRaC still clearly
outperforms the other three methods on these data sets.

FRaC often has the best performance among all four compared anomaly detection methods,
and it is never the worst, except in the case of ozone (a difficult data set on which all
methods perform worse than random guessing) and one other data set: car, on which FRaC
has an average AUC of 0.96.

5 Conclusions
FRaC is a new, general-purpose approach to anomaly detection. We showed that it
effectively models a set of normal data with just the key, conserved feature relationships that
characterize those data. FRaC can then discover anomalies effectively by testing their
consistency with these characteristic models.

We showed the importance of learning regression models for real-valued features and
modeling the prediction error instead of discretizing numeric features and learning classifier
models only.

We showed experimentally that FRaC is robust to noisy and high-dimensional feature sets
because it implicitly reduces feature space to the relevant features. It is also robust across a
wide variety of data sets; our experiments show that it is most often the best, and
consistently among the best, compared with state-of-the-art general-purpose approaches to
anomaly detection, including LOF and one-class SVMs.

Finally, we showed that FRaC is also a superior anomaly detection method on the (arguably
more general) unsupervised anomaly detection task.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
A visualization of feature space for four of the data sets in Table 1 that we discuss in this
section. Following (Leon et al. 2005), these graphs are created by performing non-metric
multidimensional scaling on each data set using Kruskal’s normalized stress1 criterion, and
connecting each instance to the point that is its nearest neighbor in the original high-
dimensional feature space. Overlapping lines are an indication that points are difficult to
separate in feature space. Note that there is a clear separation between classes in the iris data
set, which indicates that distance-based methods should work well
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Fig. 2.
Test set performance of five anomaly detection methods as a function of irrelevant features
that are synthetically added to a data set to make it more difficult
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Fig. 3.
Part of the decision tree model learned by FRaC for the feature, “can white capture the
rook?” of the chess (KR vs. KP) data set. (Note that the model only applies to “normal”
cases where white can win. If black controls the queening square, then it is likely that white
can capture the black rook—otherwise no progress toward winning would be made.)
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Fig. 4.
The regression tree model learned by FRaC for feature 53 of the libras data set. FRaC learns
that normal instances are unlikely to appear outside the delimited regions, but a large
percentage of anomalies do not follow this rule
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Fig. 5.
A visualization of feature space for three especially difficult anomaly detection tasks, cmc,
ozone, and tae. These are generated in the same way as Fig. 1
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Table 1

The 47 UCI data sets we use to evaluate our anomaly detection methods. All data sets are publicly available

Data set Examples Features

abalone 4,177 8

acute 120 6

adult 32,561 14

annealing 798 18

arrhythmia 452 266

audiology 200 62

balance-scale 625 4

blood-transfusion 748 4

breast-cancer-wisconsin 569 31

car 1,728 6

chess 3,196 36

cmc 1,473 9

connect-4 67,557 42

credit-screening 690 15

cylinder-bands 540 37

dermatology 366 34

echocardiogram 132 7

ecoli 336 7

glass 214 9

haberman 306 3

hayes-roth 132 4

hepatitis 155 19

horse-colic 300 27

image 210 18

internet_ads 3,279 1,558

ionosphere 351 33

iris 150 4

letter-recognition 20,000 16

libras 360 90

magic 19,020 10

mammographic-masses 961 5

mushroom 8,124 21

nursery 12,960 8

ozone 2,536 72

page-blocks 5,473 10

parkinsons 195 22

pima-indians-diabetes 768 8

poker 25,010 10

secom 1,567 474
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Data set Examples Features

spambase 4,601 57

statlog 1,000 20

tae 151 5

tic-tac-toe 958 9

voting-records 435 16

wine 178 13

yeast 1,484 8

zoo 101 16
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Table 2

Description of the anomaly detection methods we compare in this section. Each method is described in Sect. 1

Approach Description

LOF Local outlier factor (Breunig et al. 2000)

SVM One-class SVMs (Schölkopf et al. 2000)

CFA Cross-feature analysis (Huang et al. 2003), using average probability (Eq. 3)

FRaC Our approach, feature regression and classification Noto et al. (2010), using normalized surprisal (Eq. 6)
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Table 4

A comparison between cross-feature analysis (CFA) and a version of FRaC that models numeric features as
discrete value ranges to measure the extent to which the use of surprisal affects anomaly detection

Feature predictor CFA Discrete FRaC p-value

Naïve Bayes 13 29 0.00258

RIPPER 10 30 0.000416

Decision tree 12 28 0.00203

Linear Kernel SVM 15 25 0.13

RBF Kernel SVM 14 19 0.376

Tree, linear and RBF SVM combined 9 25 0.00178

The second and third columns indicate the number of data sets from Table 1 with superior AUC for each feature model type, and the fourth column
shows the p-value from a one-tailed paired t-test comparing the AUC scores across all data sets. (Due to ties, neither of the two compared methods
has the superior AUC for some data sets.)
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Table 5

A comparison between FRaC using average probability (Eq. 3 Huang et al. (2003)) and using normalized
surprisal (Eq. 6, Noto et al. 2010) to measure the extent to which using surprisal affects anomaly detection

Feature predictor AP FRaC FRaC (Eq. 6) p-value

Decision/regression tree 17 19 0.106

Linear Kernel SVM 24 20 0.268

RBF Kernel SVM 11 26 0.00826

Tree, linear and RBF SVM combined 11 22 0.0272

Columns have the same meaning as in Table 4. (Rows for naïve Bayes and RIPPER are not shown because these approaches require discretization
which reduces the comparison to that between CFA and discrete FRaC)
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Table 6

A comparison between CFA Huang et al. (2003) and FRaC using average probability (Eq. 3) to measure the
extent to which discretization affects anomaly detection

Feature predictor CFA AP FRaC p-value

Decision/regression tree 10 32 0.000133

Linear Kernel SVM 9 33 0.000697

RBF Kernel SVM 13 28 0.00416

Tree, linear and RBF SVM combined 11 29 0.000925

Columns have the same meaning as in Table 4. (Rows for naïve Bayes and RIPPER are not shown because these approaches are the same when
discretization is required)
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Table 7

A comparison between FRaC with and without discretizing numeric features

Feature predictor Discrete FRaC FRaC p-value

Decision/regression tree 9 25 0.000528

Linear Kernel SVM 10 27 0.000244

RBF Kernel SVM 12 26 0.00123

Tree, linear and RBF SVM combined 9 26 0.00146

Columns have the same meaning as in Table 4 (Rows for naïve Bayes and RIPPER are not shown because these algorithms are not compatible with
numeric targets and therefore the ability of FRaC to handle numeric features is not an advantage when using these models)
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Table 8

Test set area under the ROC curve (AUC) using normalized surprisal for three types of feature prediction
model, and for the combined normalized surprisal of all three of them. The best AUC scores are shown in bold

Data set Linear Kernel SVM RBF Kernel SVM Decision tree Combined

abalone 0.50 0.51 0.43 0.48

acute 0.99 1.00 0.93 1.00

adult 0.64 0.64 0.53 0.61

annealing 0.73 0.79 0.84 0.82

arrhythmia 0.77 0.77 0.78 0.78

audiology 0.81 0.79 0.78 0.80

balance-scale 0.94 0.96 0.94 0.97

blood-transfusion 0.56 0.60 0.56 0.59

breast-cancer-wisconsin 0.94 0.96 0.96 0.96

car 0.95 0.91 0.96 0.97

chess 0.89 0.91 0.92 0.93

cmc 0.41 0.42 0.42 0.41

connect-4 0.51 0.54 0.75 0.65

credit-screening 0.83 0.84 0.84 0.85

cylinder-bands 0.62 0.75 0.63 0.69

dermatology 0.98 1.00 0.99 1.00

echocardiogram 0.64 0.68 0.65 0.67

ecoli 0.96 0.96 0.96 0.97

glass 0.61 0.65 0.65 0.65

haberman 0.67 0.66 0.66 0.67

hayes-roth 0.92 0.91 0.88 0.92

hepatitis 0.80 0.80 0.84 0.83

horse-colic 0.78 0.79 0.80 0.82

image 0.97 0.96 0.98 0.98

internet_ads 0.96 0.89 0.95 0.94

ionosphere 0.96 0.97 0.96 0.97

iris 0.99 1.00 0.99 1.00

letter-recognition 0.99 1.00 0.99 1.00

libras 0.89 0.88 0.89 0.89

magic 0.80 0.74 0.86 0.83

mammographic-masses 0.72 0.74 0.71 0.73

mushroom 1.00 1.00 1.00 1.00

nursery 0.99 1.00 1.00 1.00

ozone 0.37 0.37 0.34 0.34

page-blocks 0.88 0.83 0.90 0.89

parkinsons 0.54 0.67 0.65 0.64

pima-indians-diabetes 0.73 0.74 0.72 0.75

poker 0.56 0.57 0.53 0.56
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Data set Linear Kernel SVM RBF Kernel SVM Decision tree Combined

secom 0.54 0.56 0.61 0.57

spambase 0.79 0.85 0.84 0.84

statlog 0.61 0.60 0.62 0.63

tae 0.60 0.48 0.49 0.55

tic-tac-toe 0.96 0.97 0.78 0.99

voting-records 0.93 0.94 0.91 0.95

wine 0.95 0.94 0.91 0.96

yeast 0.72 0.72 0.71 0.72

zoo 0.99 0.99 1.00 1.00

Number of data sets with the maximum AUC score 3 8 6 11
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Algorithm 1

Outline of our approach, showing the use of cross-validation to estimate training set error and the use of
multiple prediction models. The running time depends on the supervised feature prediction algorithm(s) and is
otherwise linear in the number of features and feature predictors.

input:N training examples  = {x1,x2, …,xN }, any number of test examples xq

for each feature i ∈ {1, 2, …, D} do

 for each feature prediction model p ∈ {1, 2, …, P} do

  Ap,i ← ∅//Ap,i will be a set of training set

   //(observed feature value, predicted feature value) pairs we can use to

   //build an error model to estimate P(xqi |Cp,i (ρi (xq))) for anyxq

  for each cross-validation fold fdo

    ,  ← divide( , f)//divide into a training set

    //and a validation set , unique to this fold

   valsetf ← (ρi (x), xji) for each xj ∈ 

   trainset f ← (ρi (x), xji) for each xj ∈ 

   Cp,i, f ← train p(trainset f)//learn a feature i predictor using model p

   Ap,i ← Ap,i ∪ (xji, Cp,i, f (ρi (xj))) for each xj ∈ valset f

  end for

  Ep,i ← error_model(A p,i)//model the distribution of error A p,i

    //(the model type depends on the type of feature i, see text)

  trainset ← (ρi (xj), xji) for each xj ∈ 

  Cp,i ← train(trainset)//the “final” predictor trained on the entire

   //training set , used to make test set predictions

 end for

end for

for each test example xqdo

 //output the normalized surprisal score as the sum

 //over P feature prediction models.

 //P(xqi) depends on C p,i (ρi (xq))) and E p,i.

 output:

end for
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