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Abstract—Ensemble learning aims to improve generalization
ability by using multiple base learners. It is well-known that
to construct a good ensemble, the base learners should be
accurate as well asdiverse. In this paper, unlabeled data is
exploited to facilitate ensemble learning by helping augmeat
the diversity among the base learners. Specifically, a semi-
supervised ensemble method namedEED is proposed. Unlike
existing semi-supervised ensemble methods where error-qmne
pseudo-labels are estimated for unlabeled data to enlarge the
labeled data to improve accuracy, WEED works by maximizing
accuracies of base learners on labeled data while maximizin
diversity among them on unlabeled data. Experiments show
that UDEED can effectively utilize unlabeled data for ensemble
learning and is highly competitive to well-established sem
supervised ensemble methods.

Keywords-ensemble learning; unlabeled data; diversity

I. INTRODUCTION

Nanjing University, Nanjing 210093, China
Email: zhouzh@lamda.nju.edu.cn

several important reasons why ensemble learning and semi-
supervised learning are actually mutually beneficial, agnon
which an important one is that by considering unlabeled data
it is possible to help augment thiBversity among the base
learners, as explained in the following paragraph.

It is well-known that the generalization error of an en-
semble is related to the average generalization error of the
base learners and the diversity among the base learners.
Generally, the lower the average generalization error (or,
the higher the average accuracy) of the base learners and
the higher the diversity among the base learners, the better
the ensemblée_[11]. Previous ensemble methods work under
supervised setting, trying to achieve a high average acgura
and a high diversity by using the labeled training set. It
is noteworthy, however, pursuing a high accuracy and a
high diversity may suffer from a dilemma. For example,

In ensemble learning8], a number of base learners are for two classifiers which have perfect performance on the
trained and then combined for prediction to achieve strondabeled training set, they would not have diversity sinaé¢h

generalization ability. Numerous effective ensemble mésh
have been proposed, such as@sTING [9], BAGGING [4],

is no difference between their predictions on the training
examples. Thus, to increase the diversity needs to sacrifice

STACKING [19], etc., and most of these methods work underthe accuracy of one classifier. However, when we have
the supervised setting where the labels of training exasnpleunlabeled data, we might find that these two classifiers
are known. In many real-world tasks, however, unlabeledactually make different predictions on unlabeled datasThi
training examples are readily available while obtainingith would be important for ensemble design. For example, given
labels would be fairly expensiv&emi-supervised learning two pairs of classifiers,4, B) and(C, D), if we know that
[5] is a major paradigm to exploit unlabeled data togethemll of them are with 10&% accuracy on labeled training data,
with labeled training data to improve learning performancethen there will be no difference taking either the ensemble
automatically, without human intervention. consisting of(A, B) or the ensemble consisting 6f', D);
This paper deals with semi-supervised ensembles, thdtowever, if we find thatd and B make the same predictions
is, ensemble learning with labeled and unlabeled data. lon unlabeled data, whil€ and D make different predictions
contrast to the huge volume of literatures on ensembl®n some unlabeled data, then we will know that the ensemble
learning and on semi-supervised learning, only a few workconsisting of (C, D) should be better. So, in contrast to
has been devoted to the study of semi-supervised ensemblgsevious ensemble methods which focus on achieving both
As indicated by Zhou [20], this was caused by the differenthigh accuracy and high diversity using only the labeled data
philosophies of the ensemble learning community and th¢he use of unlabeled data would open a promising direction
semi-supervised learning community. The ensemble legrninfor designing new ensemble methods.
community believes that it is able to boost the performance In this paper, we propose theDdeD (Unlabeled Data to
of weak learners to strong learners by using multiple learnEnhance Ensemble Diversjtapproach. Experiments show
ers, and so there is no need to use unlabeled data; while thieat by using unlabeled data for diversity augmentation,
semi-supervised learning community believes that it i€ abl UDEED achieves much better performance than its counter-
to boost the performance of weak learners to strong learnegart which does not consider the usefulness of unlabeled
by exploiting unlabeled data, and so there is no need to usgata. Moreover, BEED also achieves highly comparable
multiple learners. However, as Zhou indicated [20], theee a performance to other state-of-the-art semi-supervisedran
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ble methods. assigningpseudo-labelsor them to enlarge labeled training
The rest of this paper is organized as follows. Sedfibn liset. Specifically, pseudo-labels of unlabeled instances ar
briefly reviews related work on semi-supervised ensemblesstimated based on the ensemble trained solfar [1], [7],
Section Il presents DEED. Sectior TV reports our experi- [14], [21], or with specific form of smoothness or mani-
mental results. Finally, Sectidn] V concludes. fold regularization [[6], [[16], [[18]. After that, by regardj
the estimated labels as theground-truthlabels, unlabeled
instances are used in conjunction with labeled examples to
As mentioned before, in contrast to the huge volumeupdate the current ensemble iteratively.
of literatures on ensemble learning and on semi-supervised Although various strategies have been employed to make
learning, only a few work has been devoted to the study ofhe pseudo-labeling process more reliable, such as by-incor
semi-supervised ensembles. porating data editind [13], the estimated pseudo-labelg ma
Zhou and Li [21] proposed theRI-TRAINING approach  still be prone to error, especially in initial training itgions
which uses three classifiers and in each round if two classiwhere the ensemble is only moderately accurate. In the next
fiers agree on an unlabeled instance while the third classifiesection we will present the hEED approach. Rather than
disagrees, then the two classifiers, under a certain congiti working with pseudo-labels to enlarge labeled training set
will label this unlabeled instance for the third classifier; UDEED utilizes unlabeled data in a different way, i.e., help
the three classifiers are voted to make prediction. Thimugment thaliversityamong base learners.
is a disagreement-basesemi-supervised learning approach
[22], which can be viewed as a variant of the famous I1l. THE UDEED APPROACH
co-training method [3]. Later, Li an_d Zho_u [14] extended A. General Formulation
TRI-TRAINING to CO-FOREST, by including more base
classifiers and in each round timeajority teach minority Let ¥ = R? be the d-dimensional input space and
strategy is still adopted. Y ={-1,+1} be the output space. SuppoSe= {(z;, y)|
In addition to TRI-TRAINING and @-FOREST, there are 1 < @ < L} containsL labeled training examples and
severalsemi-supervised boostimgethodsl[[L],[[6],[7], [16], ¢ ={wi|L+1<i < L+U} containsU unlabeledtraining
[18]. D’'Alché Buc et al. [7] proposed SSMBosTto handle  €xamples, where; € X andy; € V. In addition, we use
unlabeled data within the margin cost functional optimiza-£ = {@:i[l < ¢ < L} to denote the unlabeled data set
tion framework for boosting [17], where the margin of an en-derived fromZL.
sembleH on unlabeled data is defined as eitheH (x)? or We assume that the classifier ensemble is composed of
|H (z)|. Furthermore, SSMBosTrequires the base learners m base classifierg fy|1 < k < m}, where each of them
to be semi-supervised algorithms themselves. Later, Benndakes the formf, : X — [-1,+1]. Here, the real value
et al. [1] developed ASEMBLE which labels unlabeled Of fi(z) corresponds to the confidencemtbeing positive.
dataz by the current ensemble as= sign[H(z)], and  Accordingly,(f.(x)+1)/2 can be regarded as tpesteriori
then iteratively puts the newly labeled examples into theProbability of being positive giver, i.e. P(y = +1|z).
original labeled set to train a new base classifier which is The basic idea of DEED is to maximize the fit of the clas-
then added tdy. Fo||owing the same margin cost functional sifiers on the labeled data, while maximizing the diversity
optimization framework, Chen and Warlg [6] added a localof the classifiers on the unlabeled data. ThereforegEb
smoothness regularizer to the objective function used bgenerates the classifier ensemifle= (f1, f2,- -, fm) by
ASSEMBLE to help induce new base classifier with a moreminimizing the following loss function:

reliable self-labeling process. Other than the margin cost B
functional formalization, MssSB[18] and SEMIBOOST[16] V(£,£,D) = Vemp(f, £) + v - Vaiu(f, D) @

estimate the labels of unlabeled instances by optimizingyere the first ternV,,., (£, £) corresponds to thempirical
an objective function containing two terms. The first term|ogs of £ on the labeled data sef; the second term
encodes themanifold assumptiorthat unlabeled instances Vaio(£,D) corresponds to thaliversity lossof £ on a

with high similarities in input space should share simikar | specified data seb (e.g. D = ). Furthermore;y is the

bels, while the other term encodes tlestering assumption  cost parameter balancing the importance of the two terms.
that unlabeled instances with high similarities to a labele |, this paper, WEED calculates the first teri, ., (f, £)

example should share its given label. The difference lies i, Eq.Q) as:

that McssB[[18] implemented the objective terms based on

Bregman divergence whileEmMIBooST [16] implemented 1

them with traditional exponential loss. Vemyp (f, £) = m
A commonness of these existing semi-supervised ensem-

ble methods is that they construct ensembles iterativelyHere,l( fx, £) measures the empirical loss of tketh base

and in particular, the unlabeled data are exploited througlelassifier f;, on the labeled data sét

Il. RELATED WORK

> Ufr, £) @)

k=1



As shown in Eq[{ll), the second tervy;,(f,D) is used and P(y = —1|z) are modeled asl*’z“(””) and 1_-’;’“(:‘)
to characterize the diversity among the based learnersespectivelyBLH(fx(x;),y;) then takes the following form
However, it is well-known that diversity measurement is notbased on Ed.{5):

a straightforward task since there is no generally accepted
formal definition [12]. In this paper, DEED chooses to BLH(fi(x:),v:)
calculateVy;, (f, D) in a novel Way as follows:

Lt ful@)\ 7 (1= fulm)) 7
Vaiol £, D) = Z S d(fyefy D o | (FEAE) T ()
p=1 q=p+1
where d(fpquv |D| mezpfp fq (3) _ _1';%' In (1 _i_e—wngi) _ 1_2yi In (1 _i_ewngi) (6)

Here, |D| returns the cardinality of data s&t. Intuitively, Note that the first terrﬂ/;mp(f,ﬁ) can also be evaluated in
d(fp, fq. D) represents thprediction differencéetween any

m L N .02
pair of base classifiers on a specified data3&tn addition, (;ther vlvays such as loss: L 2ok=1 2t Efk(ml) yi)"s
the prediction difference is calculated based on the cdacre inge lossizr 3252, Zz 11— yifu(zi), ete.

. . ) : The target modelf* is found by employinggradient
output f(x) instead of the signed outpsign[f(x)]. In this . 4 .
way, theprediction confidencef each classifier other than descenbased techniques. Accordingly, the gradients of

the simplebinary predictionis fully utilized. V(f,£,D) with respect to the model paramete@s =

Then, WEED aims to find the target modef* which {wi[1 <k <m} are determined as follovs:
minimizes the loss function in E@I(1):

) ov ov oV oV
f*:argn}an(f,E,D) (4) %: |:aW1"."BWk7.'.7awm:|’ where
B. Logistic Regression Implementation
In this paper, we emplolpgistic regressionto implement 8_‘/ - 1 O BLH(fr(@:), i)

the base classifiers. Specifically, each base clasgjfiér < dwy  mL Owy,
k < m) is modeled as:

1 27 ad(fkvfk’ap)
fe@)=2-gu(@) =1 =2~y =1 O T —1) 'k,_;#k w0 M
Here, g, : X — [0,1] is the standard logistic regression
function with weight vectorw;, € R? and bias valué,, < OBLH(fx (), v:)
‘R. Without loss of generality, in the rest of this papar,is Awy, -
absorbed intaw; by appending the input spacg with an
extra dimension fixed at value 1. (1 +y)( = fe(zs)) —wT e,
Correspondingly, the first termit.,,,(f, £) in Eq.(1) is ( 4 In (1 te )

set to be the negativeinomial likelihoodfunction on the
labeled data sef, which is commonly used to measure the —y; .
whien | yu u —(1 vi)(L+ fr(®i)) In (l—i—e“’g' )> -x;, and

empirical loss of logistic regression: 4
1 m
‘/emp(faﬁ) = —_ l(.fkv‘c) ad(fkvfk'vp) 1 2
- . A(x) - (1 — . 7
= G o 2 fe@) (= @) @ ()
m L xeD
1
= Z Z —BLH(fk(w:), y:) To initialize the ensemble, each classifjgris learned from
==l a bootstrapped samplef £, namely £;, = {(z¥,y¥)]1 <

Here, the termBLH(fx(x;),y;) calculates the binomial ; < L}, by conventional maximum likelihood procedure.
likelihood of z; having labely;, whenf;, serves as the classi- Specifically, the corresponding model paramatgyr is ob-
fication model. Note that the probabilities &y = +1|x)  tained by minimizing the objective functios||wy||* +

L
1As reviewed in [[I2], most existing diversity measures areutated A Zl 1 BLH(fk( ) ) Here, A balances the model

based on theoracle (correct/incorrect) outputs of base leamers, i.e. the COMplexity and the b|n0m|a| likelihood of; on L. In
ground-truth labels of the data set are assumed to be known. However,

considering that examples contained in the specified dat®smay be 2Note that under logistic regression implementation, thes lfunction
unlabeled it is then infeasible to calculaig(f,, f4, D) by directly utilizing V(f, L, D) is generallynon-convexand the target modef* returned by
existing diversity measures. the gradient descent process would correspondltmal optimal solution.



Table |
CHARACTERISTICS OF THE DATA SETYd: DIMENSIONALITY, pOS: #POSITIVE EXAMPLES, Neg: #NEGATIVE EXAMPLES).

data set d posineg.|data set d posineg. ||data set d posineg. ||data set d posineg.|| data set d posineg.
diabetes 8 268/50()vote 16 168/267| ionosphere 34 255/126|creditg 61 300/700|adult 123 7841/24720
heart 9 120/15Q vehicle 16 218/217| kr_vs kp 40 1527/1669 BCI 117 200/200| web 300 1479/48270

wdbc 14 357/212| hepatitis 19 123/32 || isolet 51 300/300||Digitl 241 734/76€ijcnnl 22 13565/128126
austra 15 307/383 labor 26 37/20 || sonar 60 111/97||COIL2 241 750/75Q|cod-rna 8 110384/220768
house 16 108/124ethn 30 1310/132fcolic 60 136/232|g241n 241 748/753 forest 54 283301/297711

this paper,\ is set to the default value of 1. Note that is predicted by the learned ensemigte= (f;, 5, -+, fx)

the ensemble can also be initialized in other ways, such asia weighted votind f*(z) = sign Yoy fr(2)].

instantiating eachw;, with random values, etc. Intuitively, if the ensemble does benefit from the diver-
As shown in Eq[{ll), the second tefri;, (f, D) regarding  sity augmented by the unlabeled training exampleslJb

ensemble diversity is defined on a specified datds&@iven  should achieve superior performance thamand Lcb.

the labeled training sef and the unlabeled training s&f,

. I . S IV. EXPERIMENTS
we consider three possibilities of instantiatifig

In this section, comparative studies betweebedD (i.e.

e D = (): No data is employed to measure the diversity][TCLIJD) and (zjthl\e/lr ser_m-superv;sed ens_emblel metlhoc_js are
among base learner¥4, (f, D)=0). The resulting im- Irstly reported. More importantly, experimental analysrs
plementation is called &; the three different implementations ofbHeD are further

conducted to show whether unlabeled data do benefit en-

« D = L[: Labeled training examples are employed Semble learning by helping augment the diversity among
to measure the diversity among base learners, anBase learners. _ _
the ensemble is optimized by exploiting onfy The Twenty-five publicly-available binary data sets are used
resulting implementation is calleddp; for experiments, whose characteristics are summarized in
Table[l. Fifteen of them are from UCI Machine Learning
e« D = U: Unlabeled training examples are employed Repository[[2], five from UCI KDD Archive{[10], four from
to measure the diversity among base learners, and tH8] and one from[[15]. Twentyegular-scaledata sets (left
ensemble is optimized by exploiting bathandz{. The  four columns) as well as fivéarge-scaledata sets (right
resulting implementation is calleddUp; column) are included. The data set size varies from 57 to
581,012, the dimensionality varies from 8 to 300, and the
For Lc and LcD, after the ensemble is initialized, a ratio between positive examples to negative examplessvarie
series ofgradient descensteps are performed to optimize from 0.031 to 3.844.
the model by minimizing the loss functioVi(f, £, D) as For each data sef0% of them are randomly selected
defined in Eq{ll). For EUD however, instead of directly to form the test sef, and the rest is used to form the
minimizing V (£, £, D) in the straightforward way of setting training set of £ JU. The percentage of labeled data in
D = U, the loss function is firstly minimized by a series of training set (i.e|Z|/(|£] + |U])) is set to be 0.25. For each
gradient descent steps with = L. After that, by using data set, 50 randori/U /T splits are performed. Hereafter,
the learned model as trstarting point a series of gradient the reported performance of each method corresponds to the
descent steps are further conducted to finely search th@verage result out of 50 runs on different splits.
model space withD = /. The purpose of this two-stage = Various ensemble sizes (i.ea) are considered in the
process is to distinguish theriorities of the contribution —€xperiments: ajn = 20 representing the case sinall-scale
from labeled data and unlabeled data. ensemble; b)n = 50 representing the case ofedium-scale
For anygradient descerbased optimization process, it is €nsemble; and cj» = 100 representing the case &rge-
terminated if either the loss functidvi(f, £, D) or the di- scaleensemblé In addition, as shown in E§I(1), the cost
yerSIty termv_di”(f’ D) does not decrease anymore. For each 4Compared tounweighted votingvhere the label ofz is predicted by
implementation of WEED, the label of an unseen example ¢+ (2) = sign [S21", sign[f; (2)]], the prediction confidencef each

base learner could be fully utilized by weighted voting.
3Similar strategies have been adopted by some successful sem SPreliminary experiments show that, as the ensemble sizedses from
supervised ensemble methods|[16].1[18], where objectiuagenvolving 10 to 100 within an interval of 100, the performance ob&ED does not
labeled data are given much higher weight than those inwglunlabeled  significantly change within successive ensemble sizesemmbtto converge
data. as the ensemble size approaches 100.



Table Il
PREDICTIVE ACCURACY (MEANZ£STD.) UNDER small-scaleENSEMBLE SI1ZE(m = 20). /o INDICATES WHETHERUDEED IS STATISTICALLY

SUPERIORINFERIOR TO THE COMPARED ALGORITHM(PAIRWISE{-TEST AT 95% SIGNIFICANCE LEVEL).

Algorithm

Data Set WEED BAGGING ADABOOST ASSEMBLE SEMIBOOST
diabetes 0.7260.021 0.696:0.01% 0.728+0.029 0.706:0.031 0.695+0.01%
heart 0.793-0.040 0.77%0.043 0.766+0.045 0.744+0.072 0.789+0.035
wdbc 0.9270.014 0.8070.02% 0.934+0.025 0.898-0.07G» 0.793+0.028
austra 0.8340.023 0.8168-0.02% 0.809+0.028 0.8014-0.038 0.815+0.02%
house 0.9240.028 0.922-0.027 0.842-0.156» 0.921+0.036 0.924-0.029
vote 0.932-0.017 0.936:0.01% 0.906+0.106 0.928-0.019 0.9320.017
vehicle 0.916-0.019 0.914-0.021 0.916:0.064 0.9210.029 0.886-0.026»
hepatitis 0.80€&-0.042 0.7920.026 0.7630.077% 0.788+0.041 0.796-0.026
labor 0.802:0.072 0.801%0.074 0.646:0.14% 0.74H#0.07> 0.8106+0.071
ethn 0.944-0.007 0.9420.008 0.934+0.013 0.939+0.010 0.929+0.00%
ionosphere 0.7950.043 0.72%0.023 0.80A-0.037 0.772:0.035 0.746+0.027%
kr_vs kp 0.940+0.008 0.938-0.008 0.941-0.009 0.942-0.010 0.936:0.008
isolet 0.989-0.007 0.988-0.006 0.714-0.24% 0.985+0.01G 0.989+0.005
sonar 0.698-0.069 0.69€-0.070 0.70%0.063 0.672-0.068 0.692-0.067
colic 0.77#0.035 0.785:0.03% 0.74H#0.03% 0.748+0.037% 0.765+0.04 1
credit g 0.690+0.024 0.716:0.01%® 0.678+0.023 0.686+0.025 0.7020.01%®
BCI 0.582+0.039 0.576:0.03% 0.606+0.04® 0.575+0.037 0.562-0.04%
Digitl 0.939+0.010 0.946-0.009 0.9280.012 0.92A40.01%» 0.9414-0.00®
COlL2 0.80'A-0.029 0.802-0.028 0.8620.01% 0.819+0.023 0.823+0.02b
g241n 0.793-0.020 0.794-0.018 0.76@-0.021e 0.751-0.020 0.794-0.022
adult 0.83%-0.003 0.844-0.002 0.840+0.003 0.843+0.002 N/A

web 0.9810.001 0.986-0.001e 0.980+0.001 0.9814-0.00b N/A
ijcnnl 0.914+0.001 0.906-0.001e 0.910+0.004% 0.906+0.001 N/A
cod-rna 0.926-:0.001 0.856:0.00% 0.945+0.003 0.8510.002 N/A
forest 0.706:-0.002 0.7030.002 0.736+0.006 0.696+0.002 N/A
win/tie/loss / 13/9/3 13/7/5 14/8/3 9/8/3

parametery is set to the default value of 1. Note that betterthe similarity matrix for the training examples.
performance can be expected if certain strategies such asOn each data set, the mean predictive accuracy as well
cross-validation are employed to optimize the valueyof as the standard deviation of each algorithm (out of 50
) i runs) are recorded. Furthermore, to statistically meathee
A. Comparative Studies significance of performance difference, pairwiseests at
In this subsection, DEED (LcUD) is compared with two  95% significance level are conducted between the algo-
popular ensemble methodsaBGING [4] and ADABoOST  rithms. Specifically, wheneverkEED achieves significantly
[Q], and two successful semi-supervised ensemble methodmtter/worse performance than the compared algorithm on
ASSEMBLE[1] and SEMIBooOsST [16]. For fair comparison, any data set, a win/loss is counted and a maker is
logistic regression is employed as the base learner of eacdhown. Otherwise, a tie is counted and no marker is given.
compared method. For kED, the maximum number of The resulting win/tie/loss counts for DEED against the
gradient descent steps is set to 25 and the learning rate is ssompared algorithms are highlighted in the last line of each
to 0.25. For the other compared methods, default parametetable.
suggested in respective literatures are adopted. In summary, when the ensemble sizesigall (Table[Tl),
Tables[l to[1IV report the detailed experimental resultsUDEED is statistically superior to BGGING, ADABOOST,
undersmall-scalg(m=20), medium-scal¢m=50) andlarge- ~ ASSEMBLE and EMIBooOsSTin 52%, 52%, 56% and 45%
scale (m=100) ensemble sizes respective\EMBBOOST  cases, and is inferior to them in much les2%, 20%,
fails to work on thelarge-scaledata sets, due to its de- 12% and 15% cases; When the ensemble sizemgdium
manding storage complexity((|£| + |¢4])*)) to maintain  (Table[Ill), UbEED is statistically superior to BGGING,



Table 1lI
PREDICTIVE ACCURACY (MEANZ£STD.) UNDER medium-scal&ENSEMBLE SIZE(m = 50). e/o INDICATES WHETHERUDEED IS STATISTICALLY

SUPERIORINFERIOR TO THE COMPARED ALGORITHM(PAIRWISEt-TEST AT 95% SIGNIFICANCE LEVEL).

Algorithm

Data Set WEED BAGGING ADABOOST ASSEMBLE SEMIBOOST
diabetes 0.7180.020 0.6910.01% 0.7310.0260 0.699+0.032 0.696+0.01%
heart 0.794-0.033 0.7820.03% 0.766+0.03% 0.736+0.078 0.794+0.033
wdbc 0.88%-0.017 0.806:0.022 0.925+0.065% 0.916+0.046 0.816+0.033
austra 0.82&0.024 0.812-0.028 0.808+0.02% 0.815+0.036e 0.816+0.02%
house 0.9240.030 0.926-0.030 0.793-0.19% 0.925+0.034 0.924-0.02%
vote 0.931#0.017 0.922-0.015 0.868+0.15% 0.92A0.019 0.9320.017
vehicle 0.914-0.022 0.914-0.021 0.914-0.088 0.912-0.025 0.893-0.026e
hepatitis 0.796:0.031 0.7920.022 0.73#0.106» 0.785+0.045 0.79#0.027
labor 0.813-0.083 0.7920.07% 0.6810.14% 0.749+0.09% 0.804+0.083
ethn 0.944-0.006 0.9420.007% 0.93A0.013 0.939+0.01% 0.931-0.00%
ionosphere 0.79%0.042 0.7220.022 0.814+0.03% 0.783+0.027% 0.748+0.028
kr_vs kp 0.939+0.008 0.938-0.008 0.943+0.01b 0.943+0.00% 0.935+0.008
isolet 0.989-0.006 0.988-0.007% 0.672+0.23% 0.986+0.008 0.990+0.005
sonar 0.68%0.069 0.69€-0.072 0.714-0.05% 0.679+0.070 0.696-0.068
colic 0.783t0.033 0.7830.036 0.7440.043 0.748+0.046» 0.763+:0.040
credit g 0.703t0.024 0.71%0.020® 0.674+0.026» 0.689+0.025 0.703£0.019
BCI 0.582+0.041 0.57#40.041 0.626:0.043 0.583+0.051 0.5720.045
Digitl 0.9410.010 0.946:0.010 0.929-0.012 0.925+0.01% 0.941+0.009
COIlL2 0.808t0.027 0.8120.024 0.86740.016 0.8210.022 0.820+0.022
g241n 0.796:0.019 0.794-0.018 0.762:0.023 0.750+0.020 0.791-0.023
adult 0.842:0.002 0.844-0.002 0.8414-0.002 0.842+0.002 N/A

web 0.9810.001 0.986-0.001e 0.980+0.001 0.9810.00% N/A
ijcnnl 0.9072-0.001 0.906-0.001e 0.906+0.001e 0.910+0.004 N/A
cod-rna 0.8910.001 0.8510.00% 0.945+0.003 0.8510.003 N/A
forest 0.7050.002 0.7030.002 0.73A0.006 0.698+0.003 N/A
win/tie/loss / 14/9/2 14/2/9 13/6/6 10/8/2

ADABOOST, ASSEMBLE and SMIBooOST in 56%, 56%,
52% and50% cases, and is inferior to them in much 1888,
36%, 24% and10% cases; When the ensemble sizdaige
(Table[1\M), UDEED is statistically superior to BGGING, crease of predictive accuracy) ofcUDp against Llc and
ADABOOST, ASSEMBLE and SMIBoosST in 48%, 52%, Lco under various ensemble sizes. On each data set, the
52% and 40% cases, and is inferior to them in much mean improved predictive accuracy as well as the standard
less 8%, 40%, 20% and 15% cases. These results indicate deviation (out of 50 runs) are recorded. In addition, toistat
that UDEED is highly competitive to the other compared tically measure the significance of performance difference
methods. Roughly speaking, as for the time complexitypairwise t-tests at95% significance level are conducted.
UDEED is slightly higher than BGGING and ADABoOST  Specifically, whenever tUD achieves significantly supe-
while fairly comparable to AsEmBLE and SMIBOOST. rior/inferior performance than& or LcD on any data set, a
win/loss is counted and a makefo is shown in the Table.
B. The Helpfulness of Unlabeled Data Otherwise, a tie is counted and no marker is given. The
As motivated in Sectiofil I, DEED aims to exploit unla- resulting win/tie/loss counts fordUD against Ic and LcD
beled data to help ensemble learning in the particular wayre highlighted in the last line of Tahlg V.
of augmenting diversity among base learners. Therefore, in In summary, when the ensemble sizesigall LcUD is
addition to the above comparative experiments with othestatistically superior to £ and LcD in 64% and56% cases,
(semi-supervised) ensemble methods, it is more importardgnd is inferior to them in both only2% cases; When the
to show whether BDEED (LcUD) does achieve better per- ensemble size isnedium LcUD is statistically superior to

formance than its counterparts¢land Lcb) which do not
consider using unlabeled data for diversity augmentation.
Table[M reports the performance improvement (i.e. in-



Table IV
PREDICTIVE ACCURACY (MEAN=+STD.) UNDER large-scaleENSEMBLE SIZE(m = 100). /o INDICATES WHETHERUDEED IS STATISTICALLY
SUPERIORINFERIOR TO THE COMPARED ALGORITHM(PAIRWISEL-TEST AT 95% SIGNIFICANCE LEVEL).

Algorithm

Data Set WEED BAGGING ADABOOST ASSEMBLE SEMIBOOST
diabetes 0.7080.020 0.6920.01% 0.726+0.032 0.694+0.031 0.696-0.01%
heart 0.798:-0.035 0.7810.03% 0.75#-0.041 0.751-0.066e 0.792+0.036
wdbc 0.852:0.021 0.80%-0.01% 0.930+0.064 0.916+0.03% 0.825+0.030
austra 0.8240.025 0.8120.02% 0.806+0.027% 0.808+0.038 0.817A-0.028
house 0.9240.028 0.9210.029 0.8310.180» 0.919+0.029 0.924-0.02%
vote 0.93@:-0.017 0.936:0.018 0.902:0.104 0.926-0.020 0.9320.01%
vehicle 0.9130.022 0.915-0.022 0.936:0.0260 0.9114-0.031 0.89740.027%
hepatitis 0.79#0.027 0.796:0.023 0.743+0.10% 0.782+0.040 0.79H0.026
labor 0.811-0.080 0.808-0.080 0.6830.146» 0.756+0.098 0.809+0.075
ethn 0.9430.007 0.9420.007 0.9380.012 0.939+0.01% 0.932+:0.008
ionosphere 0.7800.032 0.72%0.023 0.812+0.03% 0.779+0.042 0.747-0.027%
kr_vs kp 0.939+0.008 0.938-0.007% 0.945+0.01b 0.944+0.008 0.935+0.008
isolet 0.989-0.006 0.982-0.006 0.616+0.208 0.984+0.01% 0.990+0.005
sonar 0.698-:0.071 0.682-0.070 0.713-0.06% 0.679+0.063 0.696-0.069
colic 0.784+0.033 0.786-0.033 0.7410.04% 0.745+0.05% 0.763+:0.042%
credit g 0.706+0.021 0.71%0.02b 0.6790.02% 0.686+0.026» 0.703£0.019
BCI 0.5806+0.041 0.5780.042 0.626:0.043 0.588+0.041 0.5720.046
Digitl 0.940+0.009 0.946:0.010 0.92740.013 0.925+0.01% 0.941+0.009
COIL2 0.80°A-0.027 0.8110.024 0.876:0.01&® 0.819+0.02% 0.820+0.02b
g241n 0.7950.018 0.796-0.018 0.76@:0.023 0.754+0.027% 0.792+0.022
adult 0.844-0.002 0.844-0.002 0.840+0.002 0.843+0.0023 N/A

web 0.9810.001 0.986-0.001e 0.980+0.002 0.9810.00% N/A
ijcnnl 0.906+0.001 0.905-0.00% 0.906+0.001e 0.906+0.001 N/A
cod-rna 0.8730.001 0.8510.00% 0.945+0.003 0.8510.003 N/A
forest 0.7050.002 0.7030.002 0.73A0.006 0.698+0.003 N/A
win/tie/loss / 12/11/2 13/2/10 13/7/5 8/9/3

Lc and Lcp in both 52% cases, and is inferior to them [12] are considered, whose values are calculated based on
in both only 8% cases; When the ensemble sizelamje, the oracle (correct/incorrect) outputs of base learners.

LcUDb is statistically superior to ¢ and Lcb in 52% and Supposen denotes the number of base classifiers in the
56% cases, and is inferior to them in or§% and12% cases. ensemble andV denotes the number of examples in the
These results indicate that, by exploiting unlabeled data itest set7. In addition, letO = [o;j],mxn be the oracle

the specific way of helping augment ensemble diversityputput matrix. Herep;; = 1 if the i-th base learner correctly
UDEED (LcUD) is capable of achieving better performance classifies thej-th test examplel(< i < m, 1 < j < N).

than its counterparts @& and Lcp) which do not consider Otherwise,o;; = 0. The formal definitions of the four
employing unlabeled in ensemble generann. diversity measures are as follows:

C. Diversity Analysis

To clearly verify that WEED (LcUD) does increase the * Disagreement measu®IS):

diversity among base learners after generating ensemble by m—1 m
utilizing unlabeled data, additional experiments are yred DIS = 2 Z dis;,, where
in this subsection based on several existing diversity mea- m(m — 1) =1 ki1

sures. Specifically, four diversity measures summarized in

N N
2 jm1 0 - (L—ok;) + 3752, (1 — 05) - o

6Note that although in a number of cases the accuracy differbetween dis;, =
two algorithms looks rather marginal (e.g. less théf), the difference may

still be statistically significant according to the pairevistest.



ACCURACY IMPROVEMENT(MEAN=£STD.) FORLCUD AGAINST LC AND LCD UNDER VARIOUS ENSEMBLE SIZESe/o INDICATES WHETHERLCUD 1S

Table V

STATISTICALLY SUPERIORINFERIOR TO THE COMPARED IMPLEMENTATION(PAIRWISEt-TEST AT 95% SIGNIFICANCE LEVEL).

Accuracy Improvement of tUD against

Lc Lco

Data Set m = 20 m = 50 m = 100 m = 20 m = 50 m = 100
diabetes 0.0340.02% 0.019+0.013 0.008+0.011e 0.0114-0.01%» 0.009+-0.00% 0.004+0.007%
heart 0.023:0.027% 0.009+0.0160 0.006+0.013 0.009+0.0160 0.003+0.010 0.004+0.00%
wdbc 0.1270.02% 0.075+0.01% 0.04A0.013 0.033+:0.01% 0.031-0.013 0.023+0.008
austra 0.0220.022 0.015+0.013 0.01G+0.008 0.004+0.012 0.006+0.008 0.005+0.005
house 0.0030.010 -0.000.005 0.0031:0.00% 0.002+0.007% 0.000+£0.004 0.00%:0.003
vote 0.002:0.005 0.001:0.003 0.0010.003 0.001£0.004 0.00%:0.002 0.001:0.001e
vehicle 0.005:-0.010» 0.002£0.005 0.00%:0.004 0.003-0.007% 0.001£0.005 0.00%0.004
hepatitis 0.0168:0.035 0.005:0.027 0.008-0.01% 0.003+£0.027 0.00%0.019 0.005:0.01»
labor 0.003:0.071 0.004:-0.043 0.004-0.018 -0.00#40.041 0.00#0.032 0.004-0.01»
ethn 0.00Z0.003 0.001-0.002 0.00-0.002 0.00-0.002 0.00-0.001e 0.001-0.001e
ionosphere 0.0730.04% 0.076+0.04% 0.05A-0.03% 0.015+0.03% 0.022+0.032 0.029+0.02%
kr_vs kp 0.002+0.003 0.001-0.002 0.00-0.001e 0.004-0.001e 0.00-0.001e 0.0014-0.001e
isolet 0.001-0.003 0.001-0.002 0.0014-0.002 0.00%0.002 0.00%0.00% 0.004-0.001
sonar 0.00%0.036 0.003:-0.022 0.00%0.015 0.002-0.016 -0.00%0.014 0.00%0.011
colic -0.006:0.01% -0.003+0.012 -0.00%0.008 -0.003:0.01®» -0.003+0.009 0.00%:0.006
credit g -0.019:0.01» -0.008+0.01®» -0.005+0.008 -0.009+0.01® -0.004+0.0060 -0.002+0.006
BCI 0.006:0.015 0.003£0.010 0.002:0.012 0.005:-0.010 0.002+£0.010 0.002:0.011
Digitl 0.001£0.005 0.00%0.002 0.00%:0.004 0.00%0.005 0.00%0.002 0.00%0.003
COIL2 -0.001-0.016 -0.004-0.016 -0.003-0.015 0.00%0.005 -0.001:0.006 -0.002-0.00%
g241n 0.00%0.005 0.00%0.004 -0.00%0.004 -0.001:0.004 0.00%0.004 -0.001:0.004
adult -0.002:-0.002 -0.002£0.002 -0.001£0.00k -0.006+0.00b -0.002+0.00b -0.001£0.00k
web 0.001-0.001e 0.0014-0.001e 0.006+0.000 0.00%0.001 0.00-0.001e 0.000G+0.000
ijjcnnl 0.008:0.001 0.001£0.001e 0.001£0.001e 0.006+£0.001e 0.001:0.001e 0.001:0.001e
cod-rna 0.069:0.001e 0.041£0.001e 0.023£0.001e 0.022+0.001e 0.018£0.001e 0.011£0.001e
forest 0.003:0.001e 0.002£0.001e 0.001£0.001e 0.001£0.001e 0.0010.001e 0.001:0.001e
win/tie/loss 16/6/3 13/10/2 13/10/2 14/8/3 13/10/2 14/8/3

o Double-fault measur¢DF): 0, po=1.0
CFD = . o , where
et S B < 10
DF = o Zl 2 df;x, where ZZ\L L e
i=1 k=i+ i = j=1 [zzzkzl(l—okj)] (0 <i< m)

N )
Y (1= 05) - (1= ox)
N

df;, =

Here, DIS and DF arpairwise measures while ENT and
CFD arenon-pairwisemeasures. In addition, 1-DF is used
instead of DF such that for all the measures, dheaterthe
value thehigher the diversity. All the four measures vary
between 0 and 1.

Table[Vl compares UEED's initial diversity after ensem-
ble initialization with itsfinal diversity after ensemble learn-
ing under various ensemble sizes. For each data set, pairwis
t-tests at95% significance level are conducted between the
initial and the final ensemble diversities. Whenever the fina

e Entropy measur¢dENT):

1Y 1 RS -
ENT:NZW““{;%’W;%}

Jj=1

e Coincident failure diversityfCFD):



Table VI
THE WIN/TIE/LOSS RESULTS FORFINAL ENSEMBLE AGAINSTINITIAL ENSEMBLE IN TERMS OF THE FOUR DIVERSITY MEASURES UNDER VARIOS
ENSEMBLE SIZES

FINAL ensemble vs. INITIAL ensemble

m = 20 m = 50 m = 100
Data Set DIS DF ENT CFD DIS DF ENT CFD DIS DF ENT CFD
diabetes win win win win win win win win win win win win
heart loss win loss tie loss win loss loss loss win loss loss
wdbc tie win tie tie tie tie tie tie tie win tie tie
austra loss win loss tie loss win loss tie loss win loss loss
house win win win win win win win win win win win win
vote win win win win win win win win win win win win
vehicle tie tie tie tie loss tie tie tie win tie win tie
hepatitis win tie win win win  win  win win win  win  win win
labor tie tie tie tie win win win tie win win win tie
ethn win win win win loss tie tie tie win win win tie
ionosphere win win  win  win win  win  win win win win win win
kr_vs kp win win win win win win win win win win win win
isolet win tie win tie win loss  win tie win loss  win tie
sonar loss tie loss loss loss tie loss tie loss tie loss tie
colic win loss  win win win tie win tie win tie win tie
credit g win loss win win win loss win win win loss win win
BCI win win win win win win win win win win win win
Digitl win win  win  win win  win  win win win win  win win
COIL2 win win win win tie win tie win tie win tie win
g241n tie loss tie tie tie tie tie tie tie loss tie tie
adult win loss win win win loss win win win win win win
web win win win win win win win win win win win win
ijjcnnl loss loss loss loss loss loss loss loss loss loss los®ss |
cod-rna tie win tie win tie win tie tie win win tie tie
forest tie tie tie tie tie tie tie tie tie tie tie tie
win/tie/loss 15/6/4  14/6/5 15/6/4  15/8/2 14/5/6 141714 141714 12/11/2 /AM7  17/4/4  16/5/4  12/10/3

ensemble achieves significantly higher/lower diversignth 68% (DF), 64% (ENT) and48% (CFD) cases, but decreases
the initial one, a win/loss is recorded. Otherwise, a tie isthe initial ensemble diversity in onli6% (DIS), 16% (DF),
recorded. The resulting win/tie/loss counts are highght 16% (ENT) and12% (CFD) cases.

in the last line of Tabl&VI.

In summary, when the ensemble sizesimall, UDEED
statistically increases the initial ensemble diversity6i¥s
(DIS), 56% (DF), 60% (ENT) and60% (CFD) cases, but
decreases the initial ensemble diversity in ohdfs (DIS),
20% (DF), 16% (ENT) and8% (CFD) cases.

When the ensemble size isedium UDEED statistically
increases the initial ensemble diversityi6% (DIS), 56%
(DF), 56% (ENT) and48% (CFD) cases, but decreases thedata to improve accuracy. The major contribution of our
initial ensemble diversity in only24% (DIS), 16% (DF),

16% (ENT) and8% (CFD) cases;

Finally, when the ensemble sizelerge, UDEED statisti-
cally increases the initial ensemble diversity6i&’ (DIS),

These results clearly verify thatd#eD can effectively
exploit unlabeled data to help augment ensemble diversity.

V. CONCLUSION

Previous ensemble methods try to obtain a high accuracy
of base learners and high diversity among base learners
by considering only labeled data. There were some studies
on using unlabeled data, but focusing on using unlabeled

work is to use unlabeled data to augment diversity, which
suggests a new direction for ensemble design. Specifically,
a novel semi-supervised ensemble method namedel is

proposed, which works by maximizing accuracy on labeled
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