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Abstract We study the extent to which social ties between people can be inferred
in large social network, in particular via active user interactions. In most online social
networks, relationships are lack of meaning labels (e.g., “colleague” and “intimate
friends”) due to various reasons. Understanding the formation of different types of
social relationships can provide us insights into the micro-level dynamics of the social
network. In this work, we precisely define the problem of inferring social ties and
propose a Partially-Labeled Pairwise Factor Graph Model (PLP-FGM) for learning to
infer the type of social relationships. The model formalizes the problem of inferring
social ties into a flexible semi-supervised framework. We test the model on three dif-
ferent genres of data sets and demonstrate its effectiveness.We further study how to
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Actively learning to infer social ties 271

leverage user interactions to help improve the inferring accuracy. Two active learning
algorithms are proposed to actively select relationships to query users for their labels.
Experimental results show that with only a few user corrections, the accuracy of infer-
ring social ties can be significantly improved. Finally, to scale the model to handle
real large networks, a distributed learning algorithm has been developed.

Keywords Social ties · Partially labeled · Factor graph model · Active learning ·
Influence maximization · Distributed learning

1 Introduction

Online social networks, such as Facebook, MySpace, Twitter, and FourSquare, have
already become a bridge to connect our real daily life and the virtual web space. Face-
book, one of the largest social networks, has more than 750 million active users in
July 2011; Foursquare, a location-based mobile social network, has attracted more
than 20 million registered users at the beginning of 2011. Just to mention a few,
there is little doubt that most of our friends are online now. Considerable research
has been conducted on social network analysis (Albert and Barabasi 2002; Faloutsos
1999; Newman 2003; Strogatz 2003), dynamic evolution analysis (Kleinberg 2005),
social influence analysis (Domingos and Richardson 2001; Kempe et al. 2003; Tang
et al. 2009), social behavior analysis (Roth et al. 2010; Tan et al. 2010), and social
tie analysis (Crandall et al. 2010; Hopcroft et al. 2011; Leskovec et al. 2010; Tang
et al. 2012). However, most of these works ignore one important fact that makes the
online social networks different from the physical social networks, i.e., our physical
social networks are colorful (“family members”, “colleagues”, and “classmates”) but
the online social networks are still black-and-white: the users merely do not take the
time to label the relationships. Indeed, statistics show that only 16 % of mobile phone
users in Europe have created custom contact groups (Roth et al. 2010; Grob et al.
2009) and less than 23 % connections on LinkedIn have been labeled.Understanding
the formation of different types of social relationships can provide us insights into the
micro-level dynamics of the social network. For example, awareness of the types of
social relationships can help many mining applications such as friend recommendation
and product advertisement.

In this work, we investigate to what extent social relationships can be inferred from
the online social networks. Given users’ behavior history and interactions between
users, can we estimate how likely they are to be family members? One challenge is
how to design a unified model so that it can be easily applied to different domains?
There exist a few related studies. For example, Diehl et al. (2007) try to identify the rela-
tionships by learning a ranking function. Wang et al. (2010) propose an unsupervised
algorithm for mining the advisor-advisee relationships from the publication network.
However, Diehl et al. (2007) only considers the communication archive, while Wang
et al. (2010) is a domain-specific unsupervised algorithm. Both algorithms are not
easy to extend to other domains.

Another challenge is that online social networks are becoming more and more
complex and dynamic. Even the best performance achieved by the state-of-the-art
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272 H. Zhuang et al.

algorithms is still under 90 %. The result is unsatisfactory and invariably contains a
number of errors. A promising solution is to design an interactive interface to allow
users to provide feedbacks on the inferring results. However, we should be aware
that the interactive process might be tedious, error-prone, and time-consuming. For
example, for inferring advisor-advisee relationships from the coauthor network, an
author may have hundreds of coauthors.1 The user may soon become tired, if she/he is
asked to carefully go through all her/his relationships to validate the inferring results.
Ideally, an algorithm should be able to actively select only a few potentially wrong
relationships to query the user, instead of passively waiting for user feedbacks. The
problem is referred to as actively learning to infer social ties.

Motivating examples To illustrate the problem, Fig. 1 gives an example of actively
inferring ties in a mobile communication network. The left figure gives the input of our
problem: a mobile social network, which consists of users, calls made and messages
sent between users, and users’ attribute information such as location. The objective
is to classify the type of social relationships in the network. The middle figure shows
the result of the proposed PLP-FGM model, a semi-supervised learning model. The
blue solid lines stand for friend relationship between users and the green dash lines
indicate colleagues.The probability associated with each relationship represents how
confident the learning model is in the inferred type of the relationship. Further, an
active learning algorithm selects an uncertain relationship (associated with a question
mark) to query the user. Once the user gives the answer, the learning model propagates
the correction in the social network and further corrects other relationships (Cf. the
right figure).

Therefore, the fundamental problem is how to design a flexible model for effec-
tively and efficiently learning to infer social ties in different networks. This problem is
non-trivial and poses a set of unique challenges. First, what are the underlying factors
that form a specific type of social relationship. Second, the input social network is par-
tially labeled. We may have some labeled relationships, but most of the relationships
are unknown. To learn a high-quality predictive model, we should not only consider
the knowledge provided by the labeled relationships, but also leverage the unlabeled
network information. Third, how to make optimal use of user interaction. The selection
should consider both the uncertainty and the network structure information. Finally,
real social networks are getting bigger with thousands even millions of nodes. It is
important to develop a method that can scale well to real large networks.

Results In this paper, we try to conduct a systematic investigation for the problem
of actively learning to infer social ties in large networks. We precisely define the
problem and propose a Partially-Labeled Pairwise Factor Graph Model (PLP-FGM)
for solving this problem. To make optimal use of user interactions, two strategies,
an influence maximization based strategy and a belief maximization based strategy,
have been devised to actively select potentially wrong but most useful relationships to
query the user. To scale to large networks, we develop a distributed implementation
of the learning algorithm based on MPI (Message-Passing Interface).

1 An example can be found on http://arnetminer.org/person/jiawei-han-745329.html.
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Fig. 1 An example of actively learning to infer social ties in a mobile communication network. The left
figure is the input of our problem, the middle figure shows the inferred relationships by the proposed learning
model. The relationship associated with the question mark is selected by an active learning algorithm to
query the user. The right figure is the improved result with the user’s feedback

We evaluate the proposed model on three different data sets: Publication, Email and
Mobile. Experimental results demonstrate that the proposed PLP-FGM model can
accurately infer 92.7 % of advisor-advisee relationships from the coauthor network
(Publication), 88.0 % of manager-subordinate relationships from the email network
(Email), and 83.1 % of the friendships from the mobile network (Mobile). Our study
also reveals several interesting phenomena:
– Unlabeled data indeed helps. With the unlabeled relationships, the accuracy of

inferring social relationships can be significantly improved (+2.2 to +11.8 %).
– Strong correlation between relationships. For example, in the Email network, we

obtained 7.6 % improvement on the inferring accuracy by considering the corre-
lations (Co-recipient, Co-manager and Co-subordinate).

– Network information helps. For active selection of the relationship, both of the pro-
posed methods which consider the network information outperform (+0.3 to 6.1 %)
the alternative baseline methods which consider only the uncertain information.

Organization The rest of paper is organized as follows. Section 2 formally formu-
lates the problem and presents the basic idea of methodologies; Section 3 explains
the PLP-FGM model; Section 4 presents the active learning strategies for PLP-FGM;
Section 5 gives experimental results; Finally, Section 6 discusses related work and
Section 7 concludes.

2 Overview

In this section, we present the problem formulation and the basic ideas of our
approach.
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274 H. Zhuang et al.

2.1 Problem formulation

First, we give several related definitions. A social network can be represented as
G = (V, E), where V is a set of |V | = N users and E ⊂ V × V is a set of |E | = M
relationships between users. The objective of our work is to learn a model that can
effectively infer the type of social relationships between two users. More precisely,
we first formally define the output of our problem, namely relationship semantics.

Definition 1 Relationship semantics: Relationship semantics is a triple (ei j , ri j , pi j ),
where ei j ∈ E is a social relationship; ri j ∈ Y is a label associated with the
relationship; Y is the set of all the labels; pi j is the probability (confidence) obtained
by an algorithm for inferring relationship type.

Social relationships might be undirected in some networks (e.g., the friendship
discovered from the mobile communication network) or directed in other networks
(e.g., the advisor-advisee relationship in the publication network). To be consistent, we
define all social relationships as directed relationships. In addition, relationships may
be static (e.g., the family-member relationship) or dynamic over time (e.g., colleague
relationship). In this work, we focus on static relationships, and leave the dynamic
case to our future work.

To infer relationship semantics, we could consider different factors such as user-
specific information, link-specific information, and global constraints (Cf. § 5.1 and
§ A for examples). For example, to discover advisor-advisee relationships from a pub-
lication network, we can consider how many papers were coauthored by two authors;
how many papers in total an author has published; when the first paper was published
by each author. Besides, there may exist some labeled relationships. Formally, we can
define the input of our problem as a partially labeled network.

Definition 2 Partially labeled network: A partially labeled network is an augmented
social network denoted as G = (V, E L , EU , RL , W), where E L is a set of labeled
relationships and EU is a set of unlabeled relationships with E L∪EU = E ; RL is a set
of labels corresponding to the relationships in E L ; W is an attribute matrix associated
with users in V where each row corresponds to a user, each column an attribute, and
an element wi j the value of the j th attribute of user vi .

Based on the above concepts, we can define the problem of inferring social rela-
tionships. Given a partially labeled network, the goal is to detect the types (labels) of
all unknown relationships in the network. More precisely,

Problem 1 Social relationship mining. Given a partially labeled network G =
(V, E L , EU , RL , W), the objective is to learn a predictive function

f : G = (V, E L , EU , RL , W)→ R

Another important question is how we can learn the mapping function f effec-
tively. In many situations, labeled data is limited and expensive. The problem is, can
we design a strategy to actively learn the model with minimal labeling cost? Formally,
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Actively learning to infer social ties 275

Problem 2 Active relationship mining. Given a partially labeled network G =
(V, E L , EU , RL , W), and a labeling budget b (number of user interactions). Our
objective is to select a subset of unknown relationships A ⊂ EU within the constraint
of b to label, so that the performance of predictive function f can be maximally
improved.

Our formulation of inferring social relationships is very different from existing
works on relation mining (Califf and Mooney 1999), which focuses on detecting the
relationships from the content information, while we focus on mining relationship
semantics in social networks. Diehl et al. (2007) and Wang et al. (2010) investi-
gate the problem of relationship identification. However, they study the problem in
specific domains (Email network or Publication network). Backstrom and Leskovec
(2011) propose an algorithm based on supervised random walks for link prediction.
Crandall et al. (2010) incorporate geographic coincidences to infer social ties, while
Wang et al. (2011) consider user mobility and network proximity. Different from these
works which aim at link prediction, our goal is to infer the types of relationships. There
are also works on inferring the types of relationships. Hopcroft et al. (2011) explore
the problem of reciprocal relationship prediction and Tang et al. (2012) have devel-
oped a framework for classifying the type of social relationships by learning across
heterogeneous networks. Yang et al. (2010) study the retweeting behavior. Leskovec
et al. (2010) focus on the prediction of edge signs (positive or negative). However,
they do not consider how to make optimal use of user interaction.

2.2 Our approach

For inferring the type of social relationships, we have three basic intuitions. First, the
user-specific or link-specific attributes will contain implicit information about the rela-
tionships. For example, two users who make a number of calls in working hours might
be colleagues; while two users who frequently contact with each other in the even-
ing are more likely to be family members or intimate friends. Second, relationships
among different users may have a correlation. For example, in the mobile network,
if user vi makes a call to user v j immediately after calling user vk , then user vi may
have a similar relationship (family member or colleague) with user v j and user vk .
Third, we also need to consider some global constraints such as common knowledge
or user-specific constraints.

Based on the intuitions above, we propose a Partially-Labeled Pairwise Factor
Graph Model (PLP-FGM). It allows us to take all the factors mentioned above into
account to better infer the social relationships. We will describe the model in details
in Section 3.

For actively selecting helpful relationships to query the user, we define a quality
function Q(A), which measures the expected improvement of the prediction perfor-
mance by labeling relationships in set A. The problem can be then defined as an
optimization problem of Q(A), i.e.,

A∗ = arg max
A⊂Y U

Q(A), |A| = b, b > 0
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Fig. 2 Graphical representation of the PLP-FGM model

To quantify Q(A), we could consider how a selected node can influence the oth-
ers. For example, correction of a centered relationship may trigger a spread of the
correction, thus help infer correlated relationships.

Based on the above intuitions, we develop an Influence-Maximization Selection
(IMS) model and a Belief-Maximization Selection (BMS) model for actively inferring
the types of social relationships. The IMS model selects the most influential nodes,
by leveraging the network structure and the uncertainty obtained from PLP-FGM.
The BMS model further incorporates the active selection process into the learning
process of PLP-FGM.

3 Partially-labeled pairwise factor graph model (PLP-FGM)

Typically, there are two ways to model the social tie inferring problem. The first way is
to model each user as a node and for each node to estimate the probability distribution
of different relationships. The resultant graphical model thus consists of N variable
nodes. Each node contains a d×|Y|matrix to represent the probability distributions of
different relationships between the user and her/his neighbors, where d is the number
of neighbors of the node. This model is intuitive, but it suffers from some limitations.
For example, it is difficult to model the correlations between two relationships, and its
computational complexity is high. An alternative way is to model each relationship as
a node in the graphical model and the relationship mining task becomes how to pre-
dict the semantic label for each relationship node in the model. This model contains
M nodes (2M when the input social network is undirected). This model is able to
incorporate different correlations between relationships such as the above intuitions.

We propose a Partially-Labeled Pairwise Factor Graph Model (PLP-FGM).
Figure 2 shows the graphical representation of the PLP-FGM. Each relationship
(vi1 , vi2) or ei1i2 in the partially labeled network G is mapped to a relationship node ri
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in PLP-FGM. We denote the set of relationship nodes as Y = {y1, y2, . . . , yM }. The
relationships in G are partially labeled, thus all nodes in PLP-FGM can be divided
into two subsets Y L and Y U , corresponding to the labeled and unlabeled relationships
respectively. For each relationship node yi = (vi1 , vi2 , ri1i2), we combine the attributes
{wi1, wi2} into a relationship attribute vector xi .

Now we explain the PLP-FGM in details. The relationships in the input are modeled
by relationship nodes in PLP-FGM. Corresponding to the three intuitions, we define
the following three factors.

– Attribute factor: f (yi , xi ) represents the posterior probability of the relationship
yi given the attribute vector xi ;

– Correlation factor: g(yi , G(yi )) denotes the correlation between the relationships,
where G(yi ) is the set of correlated relationships to yi .

– Constraint factor: h(yi , H(yi )) reflects the constraints between relationships,
where H(yi ) is the set of relationships constrained on yi .

Given a partially labeled network G = (V, E L , EU , RL , W), we can define the
joint distribution over Y as

p(Y |G) =
∏

i

f (yi , xi )g(yi , G(yi ))h(yi , H(yi )) (1)

The three factors can be instantiated in different ways. In this paper, we use expo-
nential-linear functions. In particular, we define the attribute factor as

f (yi , xi ) = 1

Zλ

exp{λT �(yi , xi )} (2)

where λ is a weighting vector and � is a vector of feature functions. Similarly, we
define the correlation factor and constraint factor as

g(yi , G(yi )) = 1

Zα

exp{
∑

y j∈G(yi )

αT g(yi , y j )} (3)

h(yi , H(yi )) = 1

Zβ

exp{
∑

y j∈H(yi )

βT h(yi , y j )} (4)

where g and h can be defined as a vector of indicator functions. This feature definition
was often used in a graphical models such as Markov Random Fields (Hammersley
and Clifford 1971) or Conditional Random Fields (Lafferty et al. 2001).

Model learning Learning PLP-FGM is to estimate a parameter configuration θ =
(λ, α, β), so that the log-likelihood of observation information (labeled relationships)
are maximized. For presentation simplicity, we concatenate all factor functions for a
relationship node yi as s(yi ) = (�(yi , xi )

T ,
∑

y j
g(yi , y j )

T ,
∑

y j
h(yi , y j )

T )T . The
joint probability defined in (Eq. 1) can be rewritten as

p(Y |G) = 1

Z

∏

i

exp{θT s(yi )} = 1

Z
exp{θT

∑

i

s(yi )} = 1

Z
exp{θT S} (5)
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278 H. Zhuang et al.

Input: learning rate η

Output: learned parameters θ

Initialize θ ;
repeat

Calculate Epθ (Y |Y L ,G)
S using LBP ;

Calculate Epθ (Y |G)S using LBP ;
Calculate the gradient of θ according to Eq. 7:

∇θ = Epθ (Y |Y L ,G)S− Epθ (Y |G)S

Update parameter θ with the learning rate η:

θnew = θold − η · ∇θ

until Convergence;

Algorithm 1: Learning PLP-FGM

where Z = ZλZα Zβ is a normalization factor (also called partition function), S is the
aggregation of factor functions over all relationship nodes, i.e., S =∑

i s(yi ).
One challenge for learning the PLP-FGM model is that the input data is partially

labeled. To calculate the partition function Z , one needs to sum up the likelihood
of possible states for all nodes including unlabeled nodes. To deal with this, we use
the labeled data to infer unknown labels. Here Y |Y L denotes a labeling configuration
Y inferred from the known labels. Thus, we can define the following log-likelihood
objective function O(θ):

O(θ) = log p(Y L |G) = log
∑

Y |Y L

1

Z
exp{θT S}

= log
∑

Y |Y L

exp{θT S} − log Z

= log
∑

Y |Y L

exp{θT S} − log
∑

Y

exp{θT S} (6)

To solve the objective function, we consider a gradient decent method (or a
Newton–Raphson method). Specifically, we first calculate the gradient for each param-
eter θ :

∂O(θ)

∂θ
=

∂
(

log
∑

Y |Y L exp θT S− log
∑

Y exp θT S
)

∂θ

=
∑

Y |Y L exp θT S · S
∑

Y |Y L exp θT S
−

∑
Y exp θT S · S∑

Y exp θT S

= Epθ (Y |Y L ,G)S− Epθ (Y |G)S (7)

Another challenge here is that the graphical structure in PLP-FGM can be arbi-
trary and may contain cycles, which makes it intractable to directly calculate the
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expectation Epθ (Y |G)S. A number of approximate algorithms have been proposed,
such as Loopy Belief Propagation (LBP) (Murphy et al. 1999). In this paper, we uti-
lize Loopy Belief Propagation. Specifically, we approximate marginal probabilities
p(yi |θ) and p(yi , y j |θ) using LBP. With the marginal probabilities, the gradient can
be obtained by summing over all relationship nodes. It is worth noting that we need
to perform the LBP process twice in each iteration, one time for estimating the mar-
ginal probability p(y|G) and the other for p(y|Y L , G). Finally with the gradient, we
update each parameter with a learning rate η. The learning algorithm is summarized
in Algorithm 1.

Inferring unknown social ties We now turn to describe how to infer the type of
unknown social relationships. Based on learned parameters θ , we can predict the
label of each relationship by finding a label configuration which maximizes the joint
probability (Eq. 1), i.e.,

Y ∗ = argmaxY |Y L p(Y |G) (8)

Again, we utilize the Loopy Belief Propagation (LBP) to compute the marginal
probability of each relationship node p(yi |Y L , G) and then predict the type of a rela-
tionship as the label with the largest marginal probability. The marginal probability is
taken as the prediction confidence.

Time complexity analysis We use ν1, ν2, ν3 to denote the number of attribute factors,
correlation factors and constraint factors in our PLP-FGM respectively. In each round
of LBP, the time cost of propagation is O(ν1 ·dim(�)+ν2 ·dim(g)+ν3 ·dim(h)), where
dim(·) is the dimension of a vector. We execute the learning algorithm for n iterations,
and in each round we execute LBP for nL B P iterations. Thus we can estimate the time
complexity as O((ν1 · dim(�)+ ν2 · dim(g)+ ν3 · dim(h))× n × nL B P ).

4 Actively learning PLP-FGM

The quality function Q(A) can be defined in different forms. Without any constraints,
optimizing the quality function Q(A) needs to enumerate all possible subsets A ⊂ Y U ,
which is obviously NP-hard. Let us first review two baseline greedy algorithms; and
then we will present two new algorithms: Influence-Maximization Selection model
(IMS) and Belief-Maximization Selection model (BMS); a theoretical analysis will
be given.

4.1 Baseline methods

Maximum uncertainty (MU) A most common selection strategy for active learning
is to select the most uncertain relationships. The uncertainty of an unlabeled relation-
ship yi is measured by the entropy H(yi ) = −∑

y∈Y p(yi = y) log p(yi = y). Based
on this intuition, we can define the quality function as

QMU (A) = H(A) (9)

where H(A) =∑
yi∈A H(yi ).
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Information density (ID) A drawback of the Maximum Uncertainty strategy is its
tendency to choose outliers. Thus we employ another strategy, Information Density,
proposed in Settles and Craven (2008). The idea is to choose the most representative
nodes in Y U , which are supposed to be the most informative ones. Based on this intu-
ition, we measure the informativeness of a node by its cosine similarity to all other
unlabeled nodes in the sense of the attributes attached to a node. Formally, we define
the quality function as

QI D(A) =
∑

i∈A

H(yi )× [ 1

|Y U |
∑

j∈Y U

sim(xi , x j )] (10)

where sim(xi , x j ) = xi ·x j
‖xi‖×‖x j‖ . Note that we again employ the entropy of a relation-

ship node H(yi ) to leverage the “base” informativeness.

4.2 Proposed methods

Influence-maximization selection (IMS) All the strategies mentioned above do not
consider the network structure information. As relationship nodes in PLP-FGM are
correlated, the most influential nodes are more likely to help improve the overall
performance of the model. Existing work has studied several influence propagation
model, including the Linear Threshold Model (LTM) in Kempe et al. (2003). The
LTM model sets a threshold value εi for each node, and weights bi, j for its edges,
satisfying

∑
j∈N B(i) bi, j ≤ 1. In each time stamp, if

∑
j∈N B(i)∧activated( j) bi, j ≥ εi ,

then the node i will be activated. We develop a variation of the LTM by incorporating
a score for each node reflecting the strength of the influence spreading in our model.
The propagation process is described as:

– The graph is the same as the PLP-FGM model. In addition, we call a relationship
node as “activated” when its label yi is determined. The initial activated set of
nodes is Y L . We assign a threshold εi =∑

y∈Y |p(yi = y|G, Y L)− 1
|Y | | for each

node. Thus a node with higher uncertainty will be easier to be activated.
– When a node i is activated, it spreads its gained score increment (gi − εi ) to its

neighbor nodes j ∈ N B(i) with a weight bi, j , i.e. g j ← g j + bi, j (gi − εi ).
The gained score increment reflects the improvement of confidence brought by
user labeling, therefore the influence by labeling an uncertain relationship will be
greater than labeling a more certain relationship. To simplify the problem, we set
weight bi, j = 1/|N B( j)|.

– If a node is labeled by the user, we set it as activated and assign its gained score as 1.
The gained score for other nodes is set to 0 at the beginning. Once an inactivated
node k gains a score which exceeds the threshold, i.e. gk > εi , it will become
activated and spread its gained score similarly. An activated node only spreads its
gained score once and remains its status.

We define the quality function QI M S(A) as the total number of activated nodes
after the propagation process. Finding the set A that maximizes the quality function

123

Author's personal copy



Actively learning to infer social ties 281

QI M S(A) is NP-hard. Similar to Kempe et al. (2003), in this paper, we use a greedy
strategy to approximate the solution. Note that unlike the LTM, we do not guarantee
a lower bound of error for the greedy optimization method.

Belief-maximization selection (BMS) To quantify the influence of one node on the
others, we employ the belief of each node obtained by Loopy Belief Propagation in
our model. We define a heuristic by removing the effect of attributes from the belief
score, denoted by B(yi |G, Y L). More precisely,

B(yi |G, Y L) = exp{θT s(yi )− λT �(yi , xi )}

By normalizing the belief of one relationship node, we obtain the belief marginal
probability.

pB(yi |G, Y L) = 1

ZB
B(yi |G, Y L)

where ZB is the normalization factor. It estimates the marginal probability distribution
of a relationship node where the information of its attribute vector is absent.

A basic intuition is, the belief of a relationship node is monotonically increasing with
respect to the number of relationship nodes of the same type, i.e., B(yi = y|G, Y L)

is monotonically increasing with respect to the number of relationships with label y.2

Without loss of generality, we first consider the binary relationship mining problem,
i.e., there are only two possible labels of relationships (Y = {0, 1}). In the binary set-
ting, we further consider the active selection for each type separately. This is because
when mixing the different types of relationships together, it cannot be guaranteed to
have a closed-form solution. Thus, when users provide only positive feedback, our
objective is to find a set of positive nodes. Accordingly, we define the quality function
of the positive-oriented BMS strategy as:

Q B M S+(A) =
∑

yi∈Y U
(1)

pB(yi = 1|G, Y L ∪ A) (11)

where Y U
(1) = {yi |yi ∈ Y U ∧ B(yi = 1|G, Y L) ≥ B(yi = 0|G, Y L)}.

Symmetrically, if the users provide only negative feedback, we can adopt a nega-
tive-oriented BMS strategy, with the following quality function:

Q B M S−(A) =
∑

yi∈Y U
(0)

pB(yi = 0|G, Y L ∪ A) (12)

The optimization of both quality functions Q B M S+(A) and Q B M S−(A) is NP-hard.
However, as both quality functions are submodular (theoretical analysis is given in

2 We present a sufficient condition for this assumption. If for all y′ ∈ Y, y′ �= y, we can have
exp{αT g(y, y) + βT h(y, y)} ≥ exp{αT g(y, y′) + βT h(y, y′)}, then B(yi = y|G, Y L ) is monotonically
increasing with respect to the number of y-labeled relationships in Y L .
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Input: G, b
Output: a set of selected relationships A

Train PLP-FGM and get the parameter configuration θ ;
A+, A− ← ∅;
for b/2 times do

Use Loopy Belief Propagation(LBP) to obtain the probability distribution for each relationship;
Find ymax+ = argmaxyi∈Y U p(yi = 1|G, Y L )(Q B M S+ (A+ ∪ yi )− Q B M S+ (A+));

Move ymax+ from Y U to A+;
Y L ← Y L ∪ A+;
Use Loopy Belief Propagation(LBP) to obtain the probability distribution for each relationship;
Find ymax− = argmaxyi∈Y U p(yi = 0|G, Y L )(Q B M S− (A− ∪ yi )− Q B M S− (A−));

Move ymax− from Y U to A−;
Y L ← Y L ∪ A−;

end

Algorithm 2: Belief-Maximization selection

§4.3), a solution with an approximation ratio of (1 − 1/e) can be obtained using a
greedy algorithm: at each time, it selects the relationship which is expected to provide
the maximum marginal increase of the quality function. Notice that we treat the exam-
ining relationship node yi as if it is positive-labeled when optimizing Q B M S+(A), or
negative-labeled for Q B M S−(A), since the active learning algorithm is label-unaware
in the selection stage. In order to leverage the risk that a selected relationship is not
labeled as expected, we employ a weighting factor p(yi |G, Y L) to reflect how likely
the relationship would be labeled as positive(negative).

To prevent making an imbalance selection, we intuitively use Q B M S+ to choose b/2
nodes (where b is the number of relationships we expect to query the user each time),
and then use Q B M S− for the rest. Algorithm 2 formally describes the selection process.
This selection strategy is denoted by BMS. Note that BMS combines both BMS+ and
BMS−. Thus it cannot guarantee a lower error bound for the approximation.

4.3 Theoretical analysis

We give a theoretical analysis of proposed active learning models. The approximation
ratio of the IMS model is given in Kempe et al. (2003). Here we focus on the proof of
approximation guarantees of the BMS model. The proof is based on the submodular
property, which indicates that the marginal gain from adding an element to a set S is
at least as high as the marginal gain from adding the same element to a superset of S.
The following is a formal definition of the submodular set function.

Definition 3 (Submodular) A set function F defined on set S is called submodular,
if for all A ⊂ B ⊂ S and s /∈ B, it satisfies F(A∪{s})− F(A) ≥ F(B∪{s})− F(B).

Given a submodular function F , which is also monotone and non-negative, it is an
NP-hard problem to find a k-element subset S to optimize F . But a greedy algorithm
can result in an approximation ratio of (1 − 1/e). It constructs the subset by select-
ing elements one at a time, each time choosing an element that provides the largest
marginal increase in the function value. Thus, we have,
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Theorem 1 For a non-negative, monotone submodular function F, let S be the
k-element subset decided by the following algorithm: for k times, each time choose
an element which gives the maximum marginal increase of F and move it to S. Let S∗
denotes the optimal solution. Then we have F(S) ≥ (1− 1

e )F(S∗).

Before we prove the submodularity of the quality function Q B M S+ , we first prove
the monotonicity of function pB(yi = 1|S).

Lemma 1 For all yi ∈ Y U , function pB(yi = 1|S) is monotonic with respect to S.

Suppose x is another unlabeled relationship. We have

pB(yi = 1|S ∪ {x}) = B(yi = 1|S ∪ {x})
B(yi = 1|S ∪ {x})+ B(yi = 0|S ∪ {x})

= 1

1+ B(yi=0|S∪{x})
B(yi=1|S∪{x})

Let k1 = B(yi=0|S∪{x})
B(yi=1|S∪{x}) , then

pB(yi = 1|S ∪ {x}) = 1

1+ k1

Similarly, let k2 = B(yi=0|S)
B(yi=1|S)

, then

pB(yi = 1|S) = 1

1+ k2

According to the assumption in 4.2, we have k1 ≤ k2. Obviously,

pB(yi = 1|S ∪ {x}) ≥ pB(yi = 1|S)

Now we prove the submodularity of the quality function Q B M S+ defined by Eq. 11.

Theorem 2 The quality function Q B M S+(S) satisfies the submodular property, when
S ⊂ Y U

(1).

Proof The first step is to prove that function F(S) = p(yi = 1|G, Y L ∪ S) is sub-
modular with respect to S. Suppose A ⊂ B ⊂ Y U

(1), and there is another unlabeled
relationship x /∈ B.

Similarly, we define k1, k2, k3, k4 below:

k1 = B(yi = 0|G, Y L ∪ A ∪ {x})
B(yi = 1|G, Y L ∪ A ∪ {x}) , k2 = B(yi = 0|G, Y L ∪ A)

B(yi = 1|G, Y L ∪ A)

k3 = B(yi = 0|G, Y L ∪ B ∪ {x})
B(yi = 1|G, Y L ∪ B ∪ {x}) , k4 = B(yi = 0|G, Y L ∪ B)

B(yi = 1|G, Y L ∪ B)
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Since A ⊂ B ⊂ Y U
(1), we have k1, k2, k3, k4 ≤ 1. In addition,3 since our factor

functions are defined as exponential-linear functions, we can have k1/k2 = k3/k4.
We define α and β as follows,

α = k1

k2
= k3

k4
≤ 1, β = k3

k1
= k4

k2
≤ 1

Then we can obtain the following inequality,

δ(A, x) = pB(yi = 1|G, Y L ∪ A ∪ {x})− pB(yi = 1|G, Y L ∪ A)

= 1

1+ k1
− 1

1+ k2

= (1− α)k2

(1+ αk2)(1+ k2)

δ(B, x) = pB(yi = 1|G, Y L ∪ B ∪ {x})− pB(yi = 1|G, Y L ∪ B)

= (1− α)k4

(1+ αk4)(1+ k4)

= δ(A, x)
(1+ α)βk2 + β + αβk2

2

(1+ α)βk2 + 1+ αβ2k2
2

≤ δ(A, x)

Then we give the proof of the submodularity of quality function Q B M S+ . Suppose
A ⊂ B ⊂ Y U , and there is another unlabeled relationship yx /∈ B.

�(A, x) = Q B M S+(A ∪ {yx })− Q B M S+(A)

=
∑

yi∈Y U
(1)

pB(yi = 1|G, Y L ∪ A ∪ {yx })−
∑

yi∈Y U
(1)

pB(yi = 1|G, Y L ∪ A)

=
∑

yi∈Y U
(1)
\(A∪{yx })

[δ(A, yx )] + 1− pB(yx = 1|G, Y L ∪ A)

≥
∑

yi∈Y U
(1)
\(B∪{yx })

[δ(B, yx )] + 1− pB(yx = 1|G, Y L ∪ B)

= �(B, x)

��
Therefore, we have proved that Q B M S+ is submodular. The submodularity of Q B M S−
can be proved in a similar way. According to Theorem 1, it guarantees a lower bound
of the greedy algorithm employed for the BMS model.

3 If there is no factor functions between x and yi , the conclusion k1/k2 = k3/k4 is obvious; otherwise,
B(yi |G, Y L ∪ S ∪ {x})/B(yi |G, Y L ∪ S) is only relevant to the factor function between x and yi , and the
conclusion can be derived accordingly.
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Table 1 Statistics of three data sets

Data set Users Unlabeled relationships Labeled relationships

Publication 1,036,990 1,984,164 6,096

Email 151 3,424 148

Mobile 107 5,122 314

5 Experimental results

The proposed relationship mining approach is general and can be applied to many
different scenarios. In this section, we present experiments on three different genres
of data sets to evaluate the effectiveness and efficiency of our proposed approach. All
data sets and codes are publicly available.4

5.1 Experiment setup

Data sets We evaluate the proposed methods on three different data sets: Publication,
Email, and Mobile. Statistics of the data sets are listed in Table 1.

– Publication. In the publication data set, we try to infer the advisor-advisee relation-
ship from the coauthor network. The data set is provided by Wang et al. (2010).
Specifically, we have collected 1,632,442 publications from Arnetminer (Tang
et al. 2008) (from 1936 to 2010) with 1,036,990 authors involved. The ground
truth is obtained in three ways: (1) manually crawled from researcher’s home-
page; (2) extracted from Mathematics Genealogy project;5 (3) extracted from AI
Genealogy project.6 In total, we have collected 2,164 advisor-advisee pairs as
positive cases, and another 3,932 pairs of colleagues as negative cases. The min-
ing results for advisor-advisee relationships are also available in the online system
Arnetminer.org.

– Email. In the email data set, we aim to infer the manager-subordinate relation-
ship from the email communication network. The data set consists of 136,329
emails between 151 Enron employees. The ground truth of manager-subordinate
relationships is provided by Diehl et al. (2007).

– Mobile. In the mobile data set, we try to infer the friendship in mobile calling
network. The data set is from Eagle et al. (2009). It consists of call logs, bluetooth
scanning logs and location logs collected by a software installed in mobile phones
of 107 users during a ten-month period. In the data set, users provide labels for
their friendships. In total, 314 pairs of users are labeled as friends.

Factor definition In the Publication data set, relationships are established between
authors vi and v j if they coauthored at least one paper. For each pair of coauthors

4 http://arnetminer.org/socialtie/.
5 http://www.genealogy.math.ndsu.nodak.edu.
6 http://aigp.eecs.umich.edu.
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(vi , v j ), our goal is to identify whether vi is the advisor of author v j . In this data
set, we consider two types of correlations: 1) co-advisee. The assumption is based
on the fact that one could have only a limited number of advisors in her/his research
career. Based on this, we define a correlation factor h1 between nodes ri j and rk j . 2)
co-advisor. Another observation is that if vi is the advisor of v j (i.e., ri j = 1), then
vi is very likely to be the advisor of some other student vk who is similar to v j . We
define another factor function h2 between nodes ri j and rik .

In the Email data set, we try to discover the “manager-subordinate” relationship. A
relationship (vi , v j ) is established when two employees have at least one email com-
munication. There are in total 3,572 relationships among which 148 are labeled as
manager-subordinate relationships. We try to identify the relationship types from the
email traffic network. For example, if most of an employee’s emails were sent to the
same person, then the recipient is very likely to be her manager. A correlation named
co-recipient is defined, that is, if a user vi sent more than ϑ emails of which recipients
including both v j and vk (ϑ is a threshold and is set as 10 in our experiment), then,
the relationship ri j and rik are very likely to be the same. Therefore, a correlation
factor is added between the two relationships. Two constraints named co-manager
and co-subordinate are also introduced in an analogous way as that for the publication
data.

In the Mobile data set, we try to identify whether two users have a friendship if
there were at least one voice call or one text message sent from one to the other. Two
kinds of correlations are considered: (1) co-location. If more than three users arrived
at the same location roughly the same time, we establish correlations between all the
relationships in this groups. (2) related-call. When vi makes a call to both vk and v j

from the same location, or makes a call to vk immediately after the call with v j , we
add a related-call correlation factor between ri j and rik .

In addition, we also consider some other factors in the three data sets. A detailed
description of the factor definition for each data set is given in Table 6 in Appendix.

Comparison methods We compare our approach with the following methods for
inferring relationship types:

SVM: It uses the relationship attribute vector xi to train a classification model, and
predict the relationships by employing the classification model. We use the SVM-light
package to implement SVM.

TPFG: It is an unsupervised method proposed in Wang et al. (2010) for mining
advisor-advisee relationships in publication network. This method is domain-specific
and thus we only compare with it on the Publication data set.

PLP-FGM-S: The proposed PLP-FGM is based on the partially-labeled network.
An alternative strategy is to train the model (parameters) with the labeled nodes only.
We use this method to evaluate the necessity of the partial learning.

Evaluation measures To quantitatively evaluate the proposed method, we consider
two aspects: performance and scalability. For the relationship mining performance,
we consider two-fold cross-validation (i.e., half training and half testing) and evaluate
the approaches in terms of accuracy, precision, recall, and F1-score. For scalability,
we examine the execution time of the model learning.
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Table 2 Performance of relationship mining with different methods on three data sets: publication, email
and mobile (%)

Data set Method Accuracy Precision Recall F1-score

Publication SVM 76.6 72.5 54.9 62.1

TPFG 81.2 82.8 89.4 86.0

PLP-FGM-S 84.1 77.1 78.4 77.7

PLP-FGM 92.7 91.4 87.7 89.5

Email SVM 82.6 79.1 88.6 83.6

PLP-FGM-S 85.6 85.8 85.6 85.7

PLP-FGM 88.0 88.6 87.2 87.9

Mobile SVM 80.0 92.7 64.9 76.4

PLP-FGM-S 80.9 88.1 71.3 78.8

PLP-FGM 83.1 89.4 75.2 81.6

Bold values indicate the best performance

All the codes are implemented in C++, and all experiments are conducted on a server
running Windows Server 2008 with Intel Xeon CPU E7520 1.87GHz (16 cores) and
128 GB memory. The distributed learning algorithm is implemented on MPI (Message
Passing Interface).

5.2 Accuracy performance

Table 2 lists the accuracy performance of inferring the type of social relationships by
the different methods.

Performance comparison Our method consistently outperforms other comparative
methods on all the three data sets. In the Publication data set, PLP-FGM achieves
a +27 % (in terms of F1-score) improvement compared with SVM, and outperforms
TPFG by 3.5 % (F1-score) and 11.5 % in terms of accuracy. We observe that TPFG
achieves the best recall among all the four methods. This is because that TPFG tends
to predict more positive cases (i.e., inferring more advisor-advisee relationships in
the coauthor network), thus hurts the precision. As a result, TPFG underperforms
our method by 8.6 % in terms of precision. In Email and Mobile data set, PLP-FGM
outperforms SVM by +4 % and +5 % respectively.

Unlabeled data indeed helps From the result, it is clearly shown that by utilizing the
unlabeled data, our model indeed obtains a significant improvement. Without using
the unlabeled data, our model (PLP-FGM-S) results in a large performance reduction
(−11.8 % in terms of F1-score) on the publication data set. On the other two data sets,
we also observe a clear performance reduction.

Factor contribution analysis We perform an analysis to evaluate the contribution of
different factors defined in our model. We first remove all the correlation/constraint
factors and only keep the attribute factor, and then add each of the factors into the
model and evaluate the performance improvement by each factor. Table 3 shows the
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Table 3 Factor contribution analysis on three data sets (%)

Data set Factors used Accuracy Precision Recall F1-score

Publication Attributes 77.1 71.1 59.8 64.9

+ Co-advisor 83.5 80.9 69.8 75.0 (+10.1 %)

+ Co-advisee 83.1 79.7 70.2 74.7 (+9.8 %)

All 92.7 91.4 87.7 89.5(+24.6 %)

Email Attributes 80.1 79.5 81.2 80.3

+ Co-recipient 80.8 81.5 79.7 80.6 (+0.3 %)

+ Co-manager 83.1 82.8 83.5 83.2 (+2.9 %)

+ Co-subordinate 85.0 84.4 85.7 85.0 (+4.7 %)

All 88.0 88.6 87.2 87.9 (+7.6 %)

Mobile Attributes 81.8 88.6 73.3 80.2
+ Co-location 82.2 89.2 73.3 80.4 (+0.2 %)
+ Related-call 81.8 88.6 73.3 80.2 (+0.0 %)
All 83.1 89.4 75.2 81.6 (+1.4 %)

result of factor analysis. We see that almost all the factors are useful for inferring
the social relationships, but the contribution is very different. For example, for infer-
ring the manager-subordinate relationship, the co-subordinate factor is the most useful
factor which achieves a 4.7 % improvement by F1-score, and the co-manager factor
achieves a 2.9 % improvement, while the co-recipient factor only results in a 0.3 %
improvement. By combining all the factors together, we can further obtain a 2.9 %
improvement. An extreme phenomenon appears on the Mobile data set. With each of
the two factors (co-location and related-call), we cannot obtain a clear improvement
(0.2 and 0.0 % by F1). However, when combining the two factors and the attribute
factor together, we can achieve a 1.4 % improvement, seven times higher than that
obtained by the separated case. This is because our model not only considers different
factors, but also considers the correlation between them.

5.3 Active learning performance

For active learning, in each data set, we first randomly select 10 relationships as the
initial labeled set Y L . And then we iteratively perform the active selection algorithm,
each time selecting b = 10 relationships to query. After each round of selection, we
learn the PLP-FGM model and evaluate the prediction performance. We implement the
experiment for 10 times on each data set and use the mean of F1-score for evaluation.

Comparison methods We consider the following baseline methods7:
Random: It randomly selects b nodes in Y U at each time.
Maximum Uncertainty (MU): It chooses the most b uncertain nodes among unla-

beled relationships Y U .

7 We did not consider the co-advisee correlation in the model when dealing with the Publication data set and
the co-subordinate correlation for the Email data set, since they conflict with the assumption of monotonic
belief in §4.2.
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Fig. 3 Learning curves in terms of F1-score

Table 4 Average F1-score by all selection strategies (%)

Data set Random MU ID BMS IMS

Publication 60.6 63.7 64.8 66.4 66.8

Email 85.6 86.2 87.3 87.6 86.3

Mobile 79.2 80.0 74.3 80.4 79.9

The results were obtained by randomly selecting 10 relationships as the initial labeled set Y L , and then
iteratively perform the active selection algorithms, each time with b = 10 relationships to query
Bold values indicate the best performance

Information Density (ID): It chooses b nodes with the maximum average similarity
to all other nodes in Y U , proposed in Settles and Craven (2008).

Effect of active learning We plot the learning curves on each data set in Fig. 3,
and list the average F1-score by all selection strategies in Table 4. The results clearly
demonstrate the effectiveness of the active selection strategies. In the Publication data
set, the overall F1-score of the IMS strategy with 100 samples labeled outperforms
the Random algorithm by +7.4 %. In Email and Mobile data set, the BMS strategy
achieves the best performance, with an improvement of +3.3 and +3.9 % respectively.
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Fig. 4 Performance comparison between variations of BMS

Performance comparison In the publication data set, both the proposed BMS and
IMS strategy significantly perform better than all the baseline methods (paired t tests
with 95 % significance). BMS also significantly outperforms Random and ID strategy
in Mobile data set, while its performance is close to MU. The performance of IMS
is shown better than ID in Mobile data set, but is close to other baseline methods.
In Email data set, BMS significantly outperforms Random, while the performance
of other methods seems close to each other. Generally, the proposed BMS strategy
performs more consistently, and obtain better result in two of the three data sets. The
performance of IMS strategy is the best in Publication data set, but seems close to
baseline methods in the other two data sets.

Network information helps According to factor contribution analysis mentioned
before, co-advisor factor in Publication data set contributes the most. This explains
why the proposed methods achieve better performance than the alternative baseline
methods in Publication data set. The average F1-score of BMS and IMS reaches 65 %
with less than 30 labeled samples, while ID uses more than 40, and MU uses more
than 60. In Email and Mobile data set, BMS still takes advantage of the network
information, but the improvement shrinks due to the considerable decrease of factor
contribution.

In-depth analysis of BMS There are also some variations of BMS and we conduct
a comparison between them. BMS+ selects all b nodes optimizing Q B M S+(A), while
BMS− employs Q B M S−(A). Figure 4 shows the average F1-score of the different
versions. In Publication and Email data set, the difference between BMS and BMS+
is minor, while the performance of BMS− drops. It might be resulted from different
criteria of these three strategies. BMS+ tends to obtain true-positive samples, whereas
BMS− is more likely to acquire true-negative samples. F1-score excludes the impact of
true-negative samples, and therefore undermines the performance of BMS−. The gap
disappears in Mobile data set, probably due to the weak contribution of its correlation
and constraint factors.
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Table 5 Data transferred in distributed learning algorithm

Phase From To Data description

Initialization Master Slave i i-th subgraph

Iteration beginning Master Slave i Current parameters θ

Iteration ending Slave i Master Gradient in i-th subgraph

5.4 Distributed learning

As real social networks may contain millions of users and relationships, it is impor-
tant for the learning algorithm to scale well with large networks. To address this issue,
we develop a distributed learning method based on MPI (Message Passing Interface).
The learning algorithm can be viewed as two steps: (1) compute the gradient for each
parameter via loopy belief propagation; (2) optimize all parameters with the gradient
descents. The most expensive part is the step of calculating the gradient. Therefore we
develop a distributed algorithm to speed up the process.

We adopt a master-slave architecture, i.e., one master node is responsible for opti-
mizing parameters, and the other slave nodes are responsible for calculating gradients.
At the beginning of the algorithm, the graphical model of PLP-FGM is partitioned
into P roughly equal parts, where P is the number of slave processors. This process
is accomplished by graph segmentation software METIS (Karypis and Kumar 1998).
The subgraphs are then distributed over slave nodes. Note that in our implementation,
the edges (factors) between different subgraphs are eliminated, which results in an
approximate solution. In each iteration, the master node sends the newest parameters
θ to all slaves. Slave nodes then start to perform Loopy Belief Propagation on the
corresponding subgraph to calculate the marginal probabilities, then further compute
the parameter gradient and send it back to the master. Finally, the master node collects
and sums up all gradients obtained from different subgraphs, and updates parameters
by the gradient descent method. The data transferred between the master and slave
nodes are summarized in Table 5.

We conduct a series of experiments to evaluate the scalability performance of our
distributed learning algorithm on the Publication data set. Figure 5 shows the running
time and speedup of the distributed algorithm with different number of computer nodes
(2,3,4,8,12 cores) used. The speedup curve is close to the perfect line at the beginning.
Although the speedup inevitably decreases when the number of cores increases, it can
achieve∼ 8× speedup with 12 cores. It is noticeable that the speedup curve is beyond
the perfect line when using 4 cores, it is not strange since our distributed strategy
is approximated. In our distributed implementation, graphs are partitioned into sub-
graphs, and the factors across different parts are discarded. Thus, the graph processed
in distributed version contains less edges, making the computational cost less than
the amount in the original algorithm. The effect of subgraph partition is illustrated in
Fig. 6. By using good graph partition algorithm such as METIS, the performance only
decreases slightly (1.4 % in accuracy and 1.6 % in F1-score). A theoretical study of
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Fig. 6 Approximation of graph partition

the approximate ratio for the distributed learning algorithm would be an interesting
issue and is also one of our ongoing work.

6 Related work

Relationship mining Relationship mining is an important problem in social net-
work analysis. One research branch is to predict and recommend unknown links in
social networks. Liben-Nowell and Kleinberg (2007) study the unsupervised meth-
ods for link prediction. Menon and Elkan (2010) propose a log-linear matrix model
for dyadic prediction. Backstrom and Leskovec (2011) propose a supervised random
walk algorithm to estimate the strength of social links. Leskovec et al. (2010) employ
a logistic regression model to predict positive and negative links in online social net-
works, where the positive links indicates the relationships such as friendship, while
negative indicating opposition. However, these works consider only the black-white
social networks, and do not consider the types of the relationships. There are also
several works on mining the relationship semantics. Diehl et al. (2007) try to identify
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the manager-subordinate relationships by learning a ranking function. Wang et al.
(2010) propose an unsupervised probabilistic model for mining the advisor-advisee
relationships from the publication network. Eagle et al. (2009) present several patterns
discovered in mobile phone data, and try to use these pattern to infer the friendship
network. Tang and Liu (2011) develop a classification framework of social media
based on differentiating different types of social connections. However, these algo-
rithms mainly focus on a specific domain, while our model is general and can be
applied to different domains. Moreover, these methods do not explicitly consider the
correlation information between different relationships. Hopcroft et al. (2011) explore
the problem of reciprocal relationship prediction and Tang et al. (2012) have devel-
oped a framework for classifying the type of social relationships by learning across
heterogeneous networks. Tan et al. (2011) have investigated how different types of
relationships between users influence the change of users’ opinion. However, they do
not consider how to make optimal use of user interaction.

Another related research topic is relational learning (Califf and Mooney 1999;
Getoor and Taskar 2007). However, the problem presented in this paper is very differ-
ent. Relational learning focuses on the classification problems when objects or entities
are presented in relations, while this paper explores the relationship types in social
network. A number of supervised methods for link prediction in relational data have
also been developed (Taskar et al. 2003; Popescul and Ungar 2003).

In our previous work Tang et al. (2011), we study the problem of inferring social ties
in large networks. In this work, we extend the work by further studying active learning
for inferring social ties. We propose two active learning models, the Influence-maxi-
mization Selection (IMS) model and the Belief-maximization Selection (BMS) model.
We give a theoretical analysis to the BMS model, which guarantee to have a bounded
approximation ratio using a greedy strategy. Our exploration shows that the accuracy
of inferring social ties can be improved by using active learning.

Active learning for networked data The exploding data size in social network,
bioinformatics, and many other fields nourishes the development of studies on active
learning of networked data. Settles and Craven (2008) provide a survey for active
learning strategies in sequence labeling tasks. There have been several works focus
on some special graphical structures. Krause and Guestrin (2009) develop an algo-
rithm to non-myopically optimize the active learning task in chain graphical models.
Cesa-Bianchi et al. (2010) study active learning on trees. Also, active learning on sev-
eral specific model has been explored. Martinez and Tsechpenakis (2008) combine
active learning method with a CRF-based classifier and propose an automated online
learning framework. Golovin et al. (2010) develop a greedy algorithm for Bayesian
active learning with noise. Shi et al. (2011) study the problem of batch mode active
learning for networked data. They propose a batch mode active learning method by
combining three criteria (i.e., minimum redundancy, maximum uncertainty and max-
imum impact). Similar to our intuition, Kuwadekar and Neville (2011) also attempt
to leverage the network structure to benefit the active learning performance. But they
study the problem on across-network task, while we focus on within-network setting.
Kimura et al. (2010) propose an effective algorithm to extract influential nodes in a
social network. In addition, Bilgic et el. (2010) propose a method for active inference
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on networked data, based on uncertainty sampling, committee-based sampling and
clustering; Roy and McCallum (2001) directly optimize expected future error.

7 Conclusion

In this paper, we study the problem of inferring social ties in large networks. We define
the problem in a semi-supervised framework, and propose a Partially-Labeled Pair-
wise Factor Graph Model (PLP-FGM) for learning to infer the relationship semantics.
In PLP-FGM, relationships in social network are modeled as nodes, and the type of
social relationships are modeled as hidden variables. An efficient algorithm is pre-
sented to learn model parameters and to predict unknown relationships. Experimental
results on three different types of data sets validate the effectiveness of the proposed
model. To further scale up to large networks, a distributed learning algorithm has
been developed. Experiments demonstrate good parallel efficiency of the distributed
learning algorithm. In order to effectively learn the mapping function, we propose two
active learning strategies: Influence-Maximization Selection and Belief-Maximization
Selection, both aiming to capture the inter-relationship influence. Experimental results
show that BMS and IMS often achieve significant better performance than baseline
methods.

So far PLP-FGM is utilized to infer social ties in a static social network. However,
most social network in our life is dynamic and it would be worthwhile to extend the
model to the dynamic case. PLP-FGM works in a semi-supervised framework, requir-
ing labeled data to learn the predictive function. Some unsupervised methods can be
studied for the social tie inferring problem for a broader utilization.

Inferring social ties represents a new research direction in social network analy-
sis. As future work, it is interesting to further study to which extent we should trust
user feedbacks. It would also be interesting to investigate how the inferred relation-
ship semantics can help other applications such as community detection, influence
analysis, and link recommendation.
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Appendix: Feature definition

In this section, we introduce how we define the attribute factor functions. In the Pub-
lication data set, we define five categories of attribute factors: Paper count, Paper
ratio, Coauthor ratio, Conference coverage, First-paper-year-diff. The definitions of
the attributes are summarized in Table 6. In the Email data set, traffic-based features
are extracted. For a relationship, we compute the number of emails for different com-
munication types. In the Mobile data set, the attributes we extracted are #voice calls,
#messages, Night-call ratio, Call duration, #proximity and In-role proximity ratio.
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Table 6 Attributes used in the experiments

Data set Factor Description

Publication Paper count |Pi |, |Pj |
Paper ratio |Pi |/|Pj |
Coauthor ratio |Pi ∩Pj |/|Pi |, |Pi ∩Pj |/|Pj |
Conference coverage The proportion of the conferences

which both vi and v j attended
among conferences v j attended

First-paper-year-diff The difference in year of the earliest
publication of vi and v j .

Email Traffics Sender Recipients Include

vi v j

v j vi

vi vk and not v j

v j vk and not vi

vk vi and not v j

vk v j and not vi

vk vi and v j

Mobile #voice calls The total number of voice call logs between
two users

#messages Number of messages between two users
Night-call ratio The proportion of calls at night (8 PM to

8 AM)
Call duration The total duration time of calls between two

users
#proximity The total number of proximity logs

between two users
In-role proximity ratio The proportion of proximity logs in

“working place” and in working hours
(8 AM to 8 PM)

In the Publication data set, we use Pi and Pj to denote the set of papers published by author vi and v j
respectively. For a given relationship (vi , v j ), five categories of attributes are extracted. In the Email data
set, for relationship (vi , v j ), number of emails for different communication types are computed. In the
Mobile data set, the attributes are from the voice call/message/proximity logs

References

Albert R, Barabasi AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1), 47–97
Backstrom L, Leskovec J (2011) Supervised random walks: predicting and recommending links in social

networks. In: WSDM, pp 635–644
Bilgic M, Mihalkova L, Getoor L (2010) Active learning for networked data. In: Fürnkranz J, Joachims T

(eds) ICML. Omnipress, pp 79–86
Califf ME, Mooney RJ (1999) Relational learning of pattern-match rules for information extraction. In:

AAAI/IAAI, pp 328–334
Cesa-Bianchi N, Gentile C, Vitale F, Zappella G (2010) Active learning on trees and graphs. In: COLT, pp

320–332
Crandall D, Backstrom L, Cosley D, Suri S, Huttenlocher D, Kleinberg J (2010) Inferring social ties from

geographic coincidences. PNAS 107(52):22436
Diehl CP, Namata G, Getoor L (2007) Relationship identification for social network discovery. In: AAAI,

AAAI Press, pp 546–552

123

Author's personal copy



296 H. Zhuang et al.

Domingos P, Richardson M (2001) Mining the network value of customers. In: KDD, pp 57–66
Eagle N, Pentland AS, Lazer D (2008) Mobile phone data for inferring social network structure. In: Social

computing, behavioral modeling, and prediction, pp 79–88
Faloutsos M, Faloutsos P, Faloutsos C (1999) On power-law relationships of the internet topology. In:

SIGCOMM, pp 251–262
Getoor L, Taskar B (2007) Introduction to statistical relational learning. The MIT Press, Cambridge
Golovin D, Krause A, Ray D (2010) Near-optimal Bayesian active learning with noisy observations. CoRR

abs/1010.3091
Grob R, Kuhn M, Wattenhofer R, Wirz M (2009) Cluestr: mobile social networking for enhanced group

communication. In: GROUP, pp 81–90
Hammersley JM, Clifford P (1971) Markov field on finite graphs and lattices. Unpublished manuscript
Hopcroft JE, Lou T, Tang J (2011) Who will follow you back? Reciprocal relationship prediction. In:

CIKM’11
Karypis G, Kumar V (1998) MeTis: unstrctured graph partitioning and sparse matrix ordering system.

Version 4.0 Sept
Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of influence through a social network. In:

KDD, pp 137–146
Kimura M, Saito K, Nakano R, Motoda H (2010) Extracting influential nodes on a social network for

information diffusion. Data Min Knowl Discov 20(1):70–97
Kleinberg J (2005) Temporal dynamics of on-line information streams. In: Garofalakis M, Gehrke J, Rastogi

R (eds) Data stream managemnt processing high-speed data. Springer, Heidelberg
Krause A, Guestrin C (2009) Optimal value of information in graphical models. J Artif Intell Res (JAIR)

35:557–591
Kuwadekar A, Neville J (2011) Relational active learning for joint collective classification models. In:

Getoor L, Scheffer T (eds) Proceedings of the 28th International Conference on Machine Learning
(ICML-11), ICML ’11, pp 385–392, New York, NY, USA, June. ACM.

Lafferty JD, McCallum A, Pereira FCN (2001) Conditional random fields: probabilistic models for seg-
menting and labeling sequence data. In: Proceedings of the 18th international conference on machine
learning (ICML’01), pp 282–289

Leskovec J, Huttenlocher DP, Kleinberg JM (2010) Predicting positive and negative links in online social
networks. In: WWW, pp 641–650

Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social networks. J Am Soc Inf Sci
Technol 58(7):1019–1031

Martinez O, Tsechpenakis G (2008) Integration of active learning in a collaborative CRF. In: Computer
vision and pattern recognition workshop, pp 1–8

Menon AK, Elkan C (2010) A log-linear model with latent features for dyadic prediction. In: ICDM, pp
364–373

Murphy K, Weiss Y, Jordan M (1999) Loopy belief propagation for approximate inference: an empirical
study. In: UAI, vol 9, pp 467–475

Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256
Popescul A, Ungar L (2003) Statistical relational learning for link prediction. In: IJCAI03 workshop on

learning statistical models from relational data volume 149,172
Roth M, Ben-David A, Deutscher D, Flysher G, Horn I, Leichtberg A, Leiser N, Matias Y, Merom R (2010)

Suggesting friends using the implicit social graph. In: KDD, pp 233–242
Roy N, McCallum A (2001) Toward optimal active learning through sampling estimation of error reduction.

In: ICML, pp 441–448
Settles B, Craven M (2008) An analysis of active learning strategies for sequence labeling tasks. In: EMNLP,

pp 1070–1079
Shi L, Zhao Y, Tang J (2011) Batch mode active learning for networked data. In: ACM Transactions on

Intelligent Systems and Technology (TIST)
Strogatz SH (2003) Exploring complex networks. Nature 410:268–276
Tan C, Lee L, Tang J, Jiang L, Zhou M, Li P (2011) User-level sentiment analysis incorporating social

networks. In: KDD, pp 1397–1405
Tan C, Tang J, Sun J, Lin Q, Wang F (2010) Social action tracking via noise tolerant time-varying factor

graphs. In: KDD, pp 1049–1058
Tang J, Lou T, Kleinberg J (2012) Inferring social ties across heterogenous networks. In: WSDM’12

123

Author's personal copy



Actively learning to infer social ties 297

Tang J, Sun J, Wang C, Yang Z (2009) Social influence analysis in large-scale networks. In: KDD, pp
807–816

Tang J, Zhang J, Yao L, Li J, Zhang L, Su Z (2008) Arnetminer: Extraction and mining of academic social
networks. In: KDD’08, pp 990–998

Tang L, Liu H (2011) Leveraging social media networks for classification. Data Min Knowl Discov
23(3):447–478

Tang W, Zhuang H, Tang J (2011) Learning to infer social ties in large networks. In: ECML/PKDD’11, pp
381–397

Taskar B, Wong MF, Abbeel P, Koller D (2003) Link prediction in relational data. In: NIPS. MIT Press
Wang C, Han J, Jia Y, Tang J, Zhang D, Yu Y, Guo J (2010) Mining advisor-advisee relationships from

research publication networks. In: KDD, pp 203–212
Wang D, Pedreschi D, Song C, Giannotti F, Barabási A-L (2011) Human mobility, social ties, and link

prediction. In: KDD, pp 1100–1108
Yang Z, Guo J, Cai K, Tang J, Li J, Zhang L, Su Z (2010) Understanding retweeting behaviors in social

networks. In: CIKM, pp 1633–1636

123

Author's personal copy


	Actively learning to infer social ties
	Abstract
	1 Introduction
	2 Overview
	2.1 Problem formulation
	2.2 Our approach

	3 Partially-labeled pairwise factor graph model (PLP-FGM)
	4 Actively learning PLP-FGM
	4.1 Baseline methods
	4.2 Proposed methods
	4.3 Theoretical analysis

	5 Experimental results
	5.1 Experiment setup
	5.2 Accuracy performance
	5.3 Active learning performance
	5.4 Distributed learning

	6 Related work
	7 Conclusion
	Acknowledgments
	Appendix: Feature definition
	References


