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Abstract Network data describe entities represented by nodes, which may be con-
nected with (related to) each other by edges. Many network datasets are characterized
by a form of autocorrelation, where the value of a variable at a given node depends
on the values of variables at the nodes it is connected with. This phenomenon is a
direct violation of the assumption that data are independently and identically distrib-
uted. At the same time, it offers an unique opportunity to improve the performance
of predictive models on network data, as inferences about one entity can be used
to improve inferences about related entities. Regression inference in network data
is a challenging task. While many approaches for network classification exist, there
are very few approaches for network regression. In this paper, we propose a data
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mining algorithm, called NCLUS, that explicitly considers autocorrelation when build-
ing regression models from network data. The algorithm is based on the concept of
predictive clustering trees (PCTs) that can be used for clustering, prediction and multi-
target prediction, including multi-target regression and multi-target classification. We
evaluate our approach on several real world problems of network regression, coming
from the areas of social and spatial networks. Empirical results show that our algorithm
performs better than PCTs learned by completely disregarding network information,
as well as PCTs that are tailored for spatial data, but do not take autocorrelation into
account, and a variety of other existing approaches.

Keywords Autocorrelation - Predictive clustering trees - Regression inference -
Network data

1 Introduction

Networks have become ubiquitous in several social, economical and scientific fields,
ranging from the Internet to social sciences, and including biology, epidemiology,
geography, finance, and many others. Indeed, researchers in these fields have proven
that systems of different nature can be represented as networks (Newman and Watts
2006). For instance, the Web can be considered as a network of web-pages, which may
be connected with each other by edges representing various explicit relations, such as
hyperlinks. Social networks can be seen as groups of members that can be connected
by friendship relations or can follow other members because they are interested in
similar topics of interests. Metabolic networks can provide insight about genes and
their possible relations of co-regulation based on similarities in their expressions level.
Finally, in epidemiology, networks can represent the spread of diseases and infections.

Regardless of where we encounter them, networks consist of entities (nodes), which
may be connected to each other by edges. The nodes in a networks are generally of the
same type and the edges between nodes express various explicit relations. Information
on the nodes is provided as a set of properties (attributes), whose values are associated
to each node in the network. The edges reflect the relation or dependence between
the properties of the nodes. This is typically referred to as autocorrelation, that is, a
cross-correlation of an attribute with itself (Cressie 1993).

In the literature, different definitions of autocorrelation are in use, depending on
the field of study being considered. Not all of them are equivalent. In statistics, auto-
correlation is generically defined as the cross-correlation between the attribute of a
process at different points in time (Epperson 2000). In time-series analysis, temporal
autocorrelation is defined as the correlation among timestamped values due to their
relative proximity in time (Epperson 2000).

In spatial data analysis, spatial autocorrelation is defined as the cross-correlation of
a property, which is measured across space. Spatial autocorrelation exists when there
is systematic spatial variation in the values of a given property. This variation can exist
in two forms, called positive and negative spatial autocorrelation. In the positive case,
the value of a property at a given location tends to be similar to the values of that
property in nearby locations. This means that if the value of some property is low at a
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given location, the presence of spatial autocorrelation indicates that nearby values are
also low. Conversely, negative spatial autocorrelation is characterized by dissimilar
values at nearby locations. Positive autocorrelation is seen much more frequently in
practice than negative autocorrelation. The main focus of analysis is positive spatial
autocorrelation. This is also justified by Tobler’s first law of geography according to
which “everything is related to everything else, but near things are more related than
distant things” (Legendre 1993).

In social analysis, autocorrelation can be recognized in the homophily principle, that
is, the tendency of nodes with similar values to be linked with each other (McPherson
et al. 2001). Homophily is observable, for example, in social networks where it is
defined as the tendency of individuals to associate and bond with similar others (friend-
ship). Actually, homophily shows that people’s social networks are homogeneous
with regard to many sociodemographic, behavioral, and intra-personal characteristics.
Homophily effects among friends have demonstrated their importance in marketing
(Chuhay 2010). Moreover, homophily is the hidden assumption of recommender sys-
tems, although it veers away from how people are socially connected to how they are
measurably similar to each other.

In the context of Twitter, a special type of a social network, homophily implies
that a rwitterer follows a friend because he/she is interested in some topics the friend
is publishing and the friend follows back the twitterer if he/she shares similar topics
of interest. This is due to the fact that “a contact between similar people occurs at a
higher rate than among dissimilar people” (Weng et al. 2010). Recently, Kwak et al.
(2010) investigated homophily in two contexts: geographic location and popularity.
They considered the time zone of a user as an approximate indicator for the location
of the user and the number of followers as a measure for user’s popularity. Among
reciprocated users, they observed some level of homophily.

In this paper, we propose to mine regression models from network data by taking
positive autocorrelation into account. The extracted models are tree-structured and
represent reasonable clusters of training data. In this way, we combine descriptive
and predictive mining in the same task. In the proposed approach, different effects of
autocorrelation can be identified and considered at each node of the tree.

The paper is organized as follows. The next section clarifies the motivation and the
actual contribution of this paper. Section 3 reports relevant related work. Section 4
describes the proposed approach. Section 5 describes the datasets, the experimental
setup and reports relevant results. Finally, in Section 6 some conclusions are drawn
and some future work outlined.

2 Motivation and contributions

The major difficulty implied by the presence of autocorrelation is that the indepen-
dence assumption (i.i.d.), which typically underlies data mining methods and mul-
tivariate statistics, is no longer valid. The violation of the instance independence
assumption has been identified as one of the main reasons responsible for the poor
performance of traditional data mining methods (Neville et al. 2004; LeSage and
Pace 2001). To remedy the negative effects of the violation of the independence
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assumption, autocorrelation has to be explicitly accommodated in the learned mod-
els. In particular, recent research has explored the use of collective inference tech-
niques to exploit this phenomenon when learning predictive models. According to
Sen et al. (2008), collective inference refers to the combined classification of a set
of nodes using the attribute value of a node and the labels of interlinked nodes.
This means that, differently from traditional algorithms that make predictions for
data instances individually, without regard to the relationships or statistical dependen-
cies among instances, collective inference techniques collectively predict the labels
of nodes simultaneously using similarities that appear among groups of interlinked
nodes.

However, one limitation of most of the models that represent and reason for auto-
correlation is that the methods assume that autocorrelation dependencies are stationary
(i.e., do not change) throughout the network (Angin and Neville 2008). This means
that possible significant variabilities in autocorrelation dependencies throughout the
network cannot be represented and modeled. The variability could be caused by a dif-
ferent underlying latent structure of the network that varies among its portions in terms
of properties of nodes or associations between them. For example, different research
communities may have different levels of cohesiveness and thus cite papers on other
topics with varying degrees. As pointed out by Angin and Neville (2008), when auto-
correlation varies significantly throughout a network, it may be more accurate to model
the dependencies locally rather than globally.

In this work, we develop an approach to modeling non-stationary autocorrelation in
network data by using predictive clustering (Blockeel et al. 1998). Predictive cluster-
ing combines elements from both prediction and clustering. As in clustering, clusters
of examples that are similar to each other are identified, but a cluster description and a
predictive model is associated to each cluster. New instances are assigned to clusters
based on the cluster descriptions. The associated predictive models provide predic-
tions for the target property. Predictive clustering is similar to conceptual clustering
(Michalski and Stepp 1983) since, besides the clusters themselves, it also provides
symbolic descriptions (in the form of conjunctions of conditions) of the constructed
clusters. However, in contrast to conceptual clustering, predictive clustering is a form
of supervised learning.

Predictive clustering trees (PCTs) are tree structured models that generalize deci-
sion trees. The key properties of PCTs relevant to our approach are that (1) they can be
used to predict many or all labels of an example at once (multi-target), (2) they can be
applied to a wide range of prediction tasks (classification and regression) (3) they can
handle examples represented by means of a complex representation (DZeroski et al.
2007), which is achieved by plugging in a suitable distance for the task at hand, and
iv) their tree structure allows us to estimate and exploit the effect of autocorrelation
in different ways at the different nodes of the tree (non-stationarity). In the context
of this paper, PCTs are learned by plugging distances, which exploit the network
structure, in the PCTs induction and obtaining predictive models that will be able
to deal with autocorrelated data. This is done by maximizing the variance reduction
and maximizing cluster homogeneity (in terms of autocorrelation) at the same time
when evaluating the candidates for adding a new node to the tree, thus improving the
predictive performance of the obtained models.

@ Springer



382 D. Stojanova et al.

The network setting that we address in this work is based on the use of both the
descriptive information (node attributes) and the network structure during training.
We only use the descriptive information in the testing phase, where we disregard the
network structure. More specifically, in the training phase, we assume that all exam-
ples are labeled and that the given network is complete. In the testing phase, all testing
examples are unlabeled and the network is not given. The fact that the network is not
necessary in the testing phase, can be very beneficial, especially in cases where pre-
dictions needs to be made for new examples for which connections to other examples
are not known or need to be confirmed.

The setting where a network is given with some nodes labeled and some nodes
unlabeled can be mapped to our setting. Namely, we can use the nodes with labels and
the projection of the network on these nodes for training. We can then use only the
unlabeled nodes without network information in the testing phase.

Our network setting is very much different from existing approaches to network
classification and regression, where typically the descriptive information is in a tight
connection to the network structure. The connections (edges in the network) between
the data in the training/testing set are predefined for a particular instance, and are used
to generate the descriptive information associated to the nodes of the network (see,
for example, Steinhaeuser et al. (2011)). Therefore, in order to predict the value of the
response variable(s), besides the descriptive information one needs the connections
(edges in the network) to the related/similar entities.

Our network setting is also very much different from what is typically done in
network analysis, where the general focus is on exploring the structure of a network
by calculating its properties (e.g., the degrees of the nodes, the connectedness within
the network, scalability, robustness, etc.). The network properties are then fitted into
an already existing mathematical (theoretical) network (graph) model (Steinhaeuser
etal. 2011).

From the descriptive perspective, the tree models obtained by the proposed algo-
rithm allow us to obtain a hierarchical view of the network, where clusters can be
employed to design a federation of hierarchically arranged networks. This can be use-
ful, for instance, in wireless sensor networks, where a hierarchical structure is one
of the possible ways to reduce the communication cost between the nodes (Li et al.
2007b). Moreover, it is possible to browse the generated clusters at different levels
of the hierarchy, where each cluster can naturally consider different effects of the
autocorrelation phenomenon on different portions of the network: at higher levels of
the tree, clusters will be able to consider autocorrelation phenomenon that are spread
all over the network, while at lower levels of the tree, clusters will consider local
effects of autocorrelation. In this way, we can consider non-stationary autocorrela-
tion.

From the predictive perspective, according to the splitting tests in the tree, it is
possible to associate an observation (testing node of a network) to a cluster. The pre-
dictive model associated to the cluster can then be used to predict its response value
(or response values, in the case of multi-target tasks).
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The contributions of this paper are in

— the investigation of the different autocorrelation measures introduced in the liter-
ature and their use in the case of network structured data;

— the development of an approach that uses these autocorrelation measures in the
induction of PCTs by taking into account variations in the global/ local data dis-
tribution across the network;

— a theoretical discussion based on specific properties of autocorrelation, that are
exploited in PCTs induction, and allow the discovery of clusters of dense zones
of the network with similar values in the response variable;

— anextensive evaluation of the effectiveness of the proposed approach on regression
problems (single- or multi-target) in real network data and network data derived
from spatial data.

The algorithm proposed in this paper extends the predictive clustering framework
implemented in the CLUS system (Blockeel et al. 1998)!. It allows CLUS to handle
network data in the setting outlined above. Given a fully described network (nodes and
edges), we evaluate our algorithm on real-world data networks (among them several
geographical data networks), comparing it to approaches that do not take into account
the global and local dependencies into the network.

The paper is based on the preliminary work by Stojanova et al. (2011a). How-
ever, this paper significantly extends and upgrades the work presented there. We
first proposed an approach (Stojanova et al. 2011b) that deals with the global and
local effects of the spatial autocorrelation in PCTs. This was followed by our pre-
liminary work on considering network autocorrelation in PCTs (Stojanova et al.
2011a). The work presented here significantly extends the latter in the following
directions:

— Motivation for this work is given, both from the theoretical and application per-
spective.

— An extensive discussion of related work in Collective Inference, Transductive and
Semi-Supervised Learning, as well as Predictive Clustering is given.

— A theoretical discussion is given, based on the specific properties of autocorrela-
tion and on how these properties are exploited in the proposed extension of PCT
induction.

—  We consider the network regression task in a multi-target formulation.

— We present new experiments on additional datasets, including real data about
social networks.

— Additional experiments on social and spatial data networks that empirically con-
firm the considerations reported in the theoretical discussion and show how our
algorithm is able to capture autocorrelation within the learned PCTs.

—  We also report new experiments with a multi-target network regression task that
illustrate how our algorithm adequately combines the effect of autocorrelation for
several response variables in the case of learning Multi-Target multi-target PCTs.

! The CLUS system is available at http://www.cs.kuleuven.be/~dtai/clus.
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3 Related work

The motivation for this work comes from research reported in the literature on min-
ing network data and predictive clustering. In the following subsections, we discuss
background and related work from both research fields.

3.1 Mining network data

Numerous approaches have been designed for modeling a partially labeled network
and providing accurate estimates of unknown labels associated with the unlabeled
nodes. These approaches have been mainly studied in the research fields of collective
inference, active inference, semi-supervised and transductive inference. Details on the
principal studies in these fields are described below.

In collective inference, interrelated values are inferred simultaneously and estimates
of neighboring labels influence one another (Macskassy and Provost 2007; Gallagher
et al. 2008; Sen et al. 2008). Exact inference in this context is known to be an NP-hard
problem (Cooper 1990) and there is no guarantee that network data satisfies the con-
ditions that make exact inference tractable for collective inference. Thus, most of the
research in collective inference has been devoted to the development of approximate
learning algorithms.

Popular approximate inference algorithms include iterative inference, Gibbs sam-
pling, loopy belief propagation and mean-field relaxation labeling. An outline of the
strengths and weakness of these algorithms is reported in Sen et al. (2008). In gen-
eral, one of the major advantages of collective inference lies in its powerful ability
to learn various kinds of dependency structures (e.g., different degrees of correlation
(Jensen et al. 2004)). However, as pointed out by Neville and Jensen (2007), when
the labeled data are very sparse, the performance of collective classification might be
largely degraded due to the insufficient number of neighbors. This is overcome by
incorporating informative “ghost edges” into the network to deal with sparsity issues
(Macskassy 2007; Neville and Jensen 2007). An alternative solution to the sparsity of
labels is provided by Bilgic and Getoor (2008), where the authors resort to an active
learning approach in order to judiciously select nodes for which a manual labeling is
required from the domain expert.

Interestingly, learning problems similar to the predictive tasks arising in network
learning have been recently addressed outside the areas of network learning and graph
mining. In particular, in the area of in semi-supervised learning and transductive learn-
ing (Vapnik 1998), a corpus of data without links is given to the algorithms. The
basic idea is to connect the data into a weighted network by adding edges (in various
ways) based on the similarity between entities and to estimate a function on the graph
which guarantees the consistency with the label information and the smoothness over
the whole graph (Zhu et al. 2003). The constraint on smoothness implicitly assumes
positive autocorrelation in the graph, that is, nearby nodes tend to share the same class
labels (i.e., homophily).

Rahmani et al. (2010) use a transductive learning approach in order to classify the
function of proteins in protein—protein interaction (PPI) networks by using only data
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related to the structure of the networks. The classification task aims at predicting the
particular function associated with a node (protein). Appice et al. (2009) address the
task of the network regression with a transductive approach that follows the main idea
of iterative inference described in Sen et al. (2008). Their regression inference proce-
dure is based on a co-training approach according to which separate model trees are
learned from the attributes of a node and the attributes aggregated in the neighborhood
of the nodes. During an iterative learning process, each of these trees is used to label
the unlabeled nodes for the other. The learning process is robust to sparse labeling and
low label consistency and improves traditional model tree induction across a range
of geographical data networks. As with other transductive learning approach, no final
model is produced. This idea of using aggregated relational features to enhance the
node-wise similarity measurement is popular in network mining and it is not restricted
to the transductive setting. In fact, Popescul and Ungar (2003) and Hasan et al. (2006)
have demonstrated that using aggregated relational features in an iterative way can be
quite effective not only for the collective classification, but also for the link prediction
task. The construction of aggregated features has been also investigated in Grear and
Lavrac (2011), where the authors present an efficient classification algorithm for cat-
egorizing video lectures in heterogeneous document information networks. They first
transform documents into bag-of-words vectors, then decompose the corresponding
heterogeneous network into separate graphs and compute structural-context feature
vectors, and finally construct a common feature vector space to be used in the mining
phase.

The studies described above investigate several means (from the synthesis of
in-network features to the propagation of a response across the network) to account
for autocorrelation and improve the accuracy of prediction. However, they only con-
sider the cases where training and testing data (nodes) belong to the same network.
This means that the prediction phase requires complete knowledge of the network
arrangement (e.g., connections to other nodes of the network) of any unlabeled node
to be predicted. In this paper, we are inspired by these works to consider the network
structure in learning data with autocorrelation, but make a step further and attempt to
learn a general predictive model, which allows the labeling of nodes also in the case
connections to other nodes are not known or need to be confirmed.

In the context of social networks, Weng et al. (2010) proposed TwitterRank, an algo-
rithm for finding topic-sensitive influential twitterers which is based on the assump-
tions that the presence of homophily implies that there are twitterers who are selective
in choosing friends to follow. Next, Kwak et al. (2010) investigated homophily in two
contexts: geographic location and popularity. They considered the time zone of a user
as an approximate indicator for the location of the user and the number of followers as
a measure for user’s popularity. Among reciprocated users they observed some level
of homophily.

We consider the work of Steinhaeuser et al. (2011), which follows an approach
close to the idea of predictive clustering. In fact, Steinhaeuser et al. (2011) combine a
descriptive data mining task (clustering) with a predictive data mining task (regression)
and argue that using networks as a data representation provides a unified framework
for identifying and characterizing patterns in climate data. In their case, the network
is built a-posteriori on the basis of the values of the Pearson’s correlation coefficients
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between pair of nodes on time series collected for the same variable. Clustering then
boils down to a community detection problem that allows the proposed approach to
group interconnected nodes so that the pairwise walking distance between two nodes
in the cluster is minimized. Finally, the prediction is obtained by means of a linear
regression model built on the cluster to which the nodes to be predicted belong (spa-
tially). The innovative aspects of our proposal with respect to this work are manifold.
First, clustering is addressed as a hierarchical task. Second, the correlation is measured
on nodes which are interconnected in an existing network, while Steinhaeuser et al.
(2011) measure the correlation to define virtual edges between examples. Finally, in
our idea, clusters are not constrained from the structure of the training network.

3.2 Mining predictive clustering trees

PCTs (Blockeel et al. 1998) view decision trees as a hierarchy of clusters: the top-node
corresponds to one cluster containing all data, which is recursively partitioned into
smaller clusters while moving down the tree. The task of mining predictive clustering
trees can be formalized as follows:

Given

— adescriptive space X ={ X1, X», ... X;; } spanned by m independent (or predictor)
variables X j, which can be both continuous and discrete;

— atargetspace Y = (Y1, Y2, ..., Y,} spanned by g dependent (or target) variables
Yj;

— aset T of training examples, (x;, y;) withx; € Xand y; € Y.

Find a tree structure T which represents:

— Assetof hierarchically organized clusters on 7" such that foreachu € T, asequence
of clusters Cj,, Cjy, ..., C;, exist for which u € C; and the containment relation
Ci, 2 Ci; 2 ... 2 (;, issatisfied. Clusters Cy, C;, ..., C;, are associated to the
nodes f;,, t;;, . . ., t;,, respectively, where each li; €T is a direct child of i, | €T
(j =1,...,r)and ¢, is the root of the structure 7.

— A predictive piecewise function f : X — Y, defined according to the hierarchi-
cally organized clusters. In particular,

VueX, fa)= > D.t)fiw (1

tieleaves(t)

lifueC;
0 otherwise
associated to the leaf #; and D(u, t;) is only associated to leaves. Each f, (u) is a
vector of g constant values.

where D(u, t;) = , fi;(u) is a (multi-target) prediction function

Clusters are identified according to both the descriptive space and the target space
X x Y (Fig. 1c). This is different from what is commonly done in predictive modelling
(Fig. 1a) and classical clustering (Fig. 1b), where only one of the spaces is typically
considered.
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Fig. 1 TIllustration of predictive clustering: a clustering in the target space, b clustering in the descrip-
tive space, and ¢ clustering in both the target and descriptive spaces. Note that the target and descriptive
spaces are presented here as one-dimensional axes for easier interpretation, but can actually be of higher
dimensionality

Note that this general formulation of the problem allows us to take into account
two different aspects:

— the clustering phase can consider the (possibly) complex nature of the data such
as, in our extension, the network structure;

— the prediction model mining phase can consider multiple target variables Y =
Y1, Y, ..., Yq at the same time.

The construction of a PCT is not very different from the construction of standard
decision tree (see, for example, the C4.5 algorithm proposed by Quinlan (1993)): at
each internal node ¢, a test has to be selected according to a given evaluation func-
tion. The main difference is that for PCTs, we select the best test by maximizing the
(inter-cluster) variance reduction, defined as:

C
Ay(C,P) = Vary(C) — Z MVary (Cr) (2)

CreP €]

where C represents the cluster associated with ¢ and P defines the partition {Cy, C3} of
C. The partition is defined according to a Boolean test on a predictor variable in X. By
maximizing the variance reduction, the cluster homogeneity is maximized, improving
at the same time the predictive performance. Vary (C) is the variance of the target
variable Y in the cluster C.

If the variance V ar () and the predictive function f(-) are considered as parameters,
instantiated for the specific learning task at hand, it is possible to easily adapt PCTs to
different domains and different tasks. The PCT framework allows different definitions
of appropriate variance (dispersion) functions for different types of data and can thus
handle complex structured data as targets. To construct a regression tree, for example,
the variance function returns the variance of the response values on the examples in
a cluster, whereas the predictive function f;, (1) is the average of the response values
in a cluster. Indeed, by appropriately defining the variance and predictive functions,
PCTs have been used for clustering (Blockeel et al. 1998), multi-target classification
and regression (Blockeel et al. 1998; DemSar et al. 2005), and time series data analy-
sis (Dzeroski et al. 2007). Because PCTs can work with complex structured data by
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introducing adequate variance measures, PCTs are a good candidate to appropriately
deal with data that are not i.i.d., where the complexity comes from the need of taking
autocorrelation into account.

In this paper, we consider an extended version of the problem of constructing PCTs
for multi-target regression problems and, in particular, we consider the network struc-
ture in addition to the descriptive and target spaces.

4 Learning PCTs from network data

This section is devoted to the description of the proposed algorithm. In particular, we
first formalize the problems to be solved and then we describe the considered autocor-
relation measures and provide a detailed description of the implemented algorithm. In
the last part, we give an analysis of the time complexity and discuss some theoretical
issues raised by the specific properties of autocorrelation.

4.1 The problem

A network is a set of entities connected by edges. Each entity is called a node of the
network. A number (which is usually taken to be positive) called “weight” is associated
with each edge. In a general formulation, a network can be represented as a (weighted
and directed) graph, i.e., a set of nodes and a ternary relation which represents both
the edges between nodes and the weight associated to each edge. Formally, a data
network G is a pair (V, E), where:

— V is aset of nodes, and
— Eisasetof weighted edges between nodes, that is, £ C {{u, v, w)|u,v e V,w €
R}

The network G is represented by an adjacency matrix W with entries w;; > 0 if
there is an edge connecting i to j, and w;; = 0 otherwise. We impose w;; = 0 and

we define the degree of a node u; as Deg(u;) = z w;;j. Figure 2 shows an example

of a data network, where different colors represent] different node labels.

In practice, when the original data comes in the form of a network, the weights w;;
represent the strength of the connections from one node to another and usually have
a natural interpretation. For example, in hypermedia data, it could be the number of
hyperlinks from one page to another or, in Twitter, the fact that a user follows another
user (keeping in mind that a user is not obligated to reciprocate followers by following
them). These examples, indeed, are related to the case of modeling asymmetric rela-
tionships. In the case of modeling symmetric relationships, it could be the frequency
with which a pair of lectures have been viewed together or a binary value indicating
whether two proteins interact each other. When the weights are not readily available
from the data, they are often computed based on symmetric and nonnegative similarity
measures between nodes, based on some node properties, i.e., /; and / Iz
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Fig. 2 Autocorrelation in network data. Different labels are given in different colors

A popular choice is to use the Gaussian-like similarity measure:

diss(; 1))
wij=1e ¥ ifdiss(li,lj) <b 3)
0 otherwise

where diss(l;, [ ;) represents the dissimilarity between node i and node j, while b is
referred to as the bandwidth. In this way, nodes with dissimilarity greater than b are
treated as disconnected nodes.?

If /; and [; are exactly the same, the weighting function w;; for these nodes will be
one. In other cases, the weight w;; will decrease according to a Gaussian-like function
as the dissimilarity between i and j increases. If nodes i and j have highly dissimilar
values, the weight will be approximately zero. Using the bandwidth b, it is possible
to consider only the nodes whose values are most similar.

As an alternative, it is possible to use a discrete weighting function (see Eq. (4))
and a bisquare density function (see Eq. (5)):

diss(li,l;) . . e
wij = I—Tflfdzssgll,l])<b @)
0 otherwise
dissUid)*\% oo oo o
wyy = (1= S0 it diss 4, 15) < b )
otherwise

which we refer to as “Euclidean” and “Modified”, respectively. Indeed, as empirically
shown by Stojanova et al. (2011a), the three weighting functions show very similar
results. For this reason, in the remainder of this paper, we will always use the Euclidean
weighting function. If each node can be represented in Euclidean space R, (as is for

2 At this point, we do not assume any information on the type of the considered properties and on the
dissimilarity functions.
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instance the case with spatial data), diss(l;, ;) =| [; —; || where [; € Ry (I; € Ry)
describes the location of the node i (j). Whatever weighting schema is employed,
the choice of the bandwidth b plays a crucial role. This means that the main problem
is how to select the optimal bandwidth b. This problem is described and tackled in
Sect.4.3.1.

In this work, each node of the network is associated with a data observation (x, y) €
XxY whereX = {X1, X3, ..., X;n} (each X; can be either continuous or discrete) and
Y = {In, Y2, ..., Y} is the possibly unknown, possible multi-dimensional response
variable with a range in RY. In order to formalize the learning task we are referring
to, we need to define the network arrangement of the data with the goal of explicitly
taking autocorrelation into account when learning the multi-target prediction function.
For this purpose, in addition to the descriptive space X and the target space Y, it is
necessary to add information on the connections within the network (e.g., the links
between the objects involved in the analysis and the pairwise dissimilarities between
them) for the training data.

The network regression problem that we address can now be formulated as follows.
Given:

1. a network G = (V, E) where V is the set of nodes and E C {(u, v, w)|lu,v €
V,w € R} is the set of edges;

2. afunction n : V +—— (X x Y) which associates each node with its predictor and
response values.

Find:

A PCT which represents a multi-dimensional (or multi-target) piecewise predictive
function f : X — Y defined according to hierarchically organized extracted clusters,
such that both the inter-cluster variance on the response variable is minimized and the
inter-cluster autocorrelation on the response variable in maximized.

4.2 Network autocorrelation measures

When taking autocorrelation into account, we consider three alternative autocorrela-
tion measures within the PCTs induction algorithm.

The first measure we consider is the Global Moran’s I (Cressie 1993), which is
borrowed from spatial data analysis, but also fits the general structure of network
data. This measure requires a weight matrix that reflects the intensity of the relation-
ships (the strength of the connection) between connected nodes. Formally, the Global
Moran’s [ is defined as:

Ne Do Do o Wi (Y = YO (¥ = Yo)
i J

Zv,‘GC zvjec Wij Zv,‘GC(Yi N Y_C)2

where C is a cluster of nodes; N is the cardinality of C; ¥; and Y; are the values of
the variable Y for the nodes v; and v; according to the function 7, respectively; Y is
the target variable of interest; Y_C is the mean of Y in C; and w; ; are the values of

Iy (C) = Q)
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the adjacency matrix for the weight associated to (v;, v;). Dubin (1998) shows that
the expected value of Moran’s I (calculated assuming the values of Y are distributed
randomly) is

E(ly) = N

Nc —1

where Iy(C) > —1/(Nc¢ — 1) indicates positive autocorrelation, while Iy (C) <
—1/(N¢ — 1) indicates negative autocorrelation. The values of Iy (C) generally range
from -1 to +1 and high positive (negative) values of Iy (C) indicate strong positive
(negative) autocorrelation.

Relational Autocorrelation (R A) is an alternative measure of network autocorrela-
tion used in collective classification to estimate the strength of statistical dependencies
of the values of a variable ¥ between linked nodes (Angin and Neville 2008). Any
traditional measure of association, such as the X2 statistic or information gain, can be
used to assess the association between interconnected values of Y. One possibility is
to use a variant of the Pearson’s correlation coefficient that measures the correlation
of a continuous variable Y with itself:

Y =YY —Yo)

(vi,vj,wij)€
Y, — Yeo)?
Z(v;,v_/,w;_,')eE( ! C)

As in Global Moran’s I, high positive values indicate positive autocorrelation,
while high negative values indicate negative autocorrelation. Both Global Moran’s /
and Relational Autocorrelation allow us to measure autocorrelation of a variable Y
across the network.

Global Moran’s I takes into account the weight associated to each edge, while Rela-
tional Autocorrelation only considers the existence or absence of an edge connecting
two nodes and neglects the strength associated to the edge. Therefore, the RA can be
considered a special case of Global Moran’s I where the weights are binary and each
edge is labeled with a weight of one.

A different measure is the Connectivity (Randic) Index (C7) which is limited to
the consideration of the structure of a network (or graph). In this paper we exploit
the extension of the classical Randic connectivity index (Randic 1998) for the case of
weighted networks (Ghimire et al. 2008). Formally, the Connectivity Index is defined
as:

RAy(C) =

®)

CI(C) — Wij + Wji 9
© v,;v%c 2/ Deg(vi)Deg(vj) ©
where Deg(v;) and Deg(v;) represent the degrees of nodes v; and v; respectively.
C1 is an indication of the connectedness (or branching) of a cluster C and can be used
to compare the connectivity among clusters. It is typically used in chemistry, since it
can be well correlated with a variety of physico-chemical properties of alkanes, such
as boiling points, surface area and solubility in water.
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High values of C7(C) indicate high connectivity, while low values of CI(C) indi-
cate low connectivity (Ghimire et al. 2008). As we assume a network where all con-
nected nodes are directly linked, measuring connectivity is also a way to quantify
correlation in the network.

Finally, we point out that in all presented measures, only the possible influence of a
node linked directly to the considered node is taken into account. In other words, these
autocorrelation measures consider only pairs of directly connected nodes. In future
work, it is possible to define novel autocorrelation measures that, differently from the
measures available in the literature, also take indirect connections into account when
computing autocorrelation.

4.3 The algorithm

We can now proceed to describe the top-down induction algorithm for building PCTs
from network data (Algorithm 1). It is a recursive algorithm which takes as input the
network G = (V, E) and the function n: V + X x Y and partitions the set of nodes
V until a stopping criterion is satisfied (Algorithm 1 line 2). Since the implementation
of this algorithm is based on the implementation of the CLUS algorithm, we will call
this algorithm NCLUS (for Network CLUS).

Algorithm 1 Top-down induction of NetworkPCTs

1: procedure NCLUS(G = (V, E), n(-)) returns tree
2: if stop(V, n(-)) then
3:  return leaf (Prototype(V, 1(-)))

4: else

50 (c*, h*,PE Py*) = (null, 0,0, 9)

6: C={nlveV}

7:  for each possible Boolean test ¢ according to values of X on C do

8: P = {C}, C3} partition induced by ¢ on C

9: Py = {V1, Va} = partition induced by P on V;

100 h=23 ayc P+ LS Ay G )
4 YeY YeY

11: if (h > h*) then

12: (c*, h*, P*, Py™) = (c, h, P, Py)

13: end if

14:  end for

150 {Vy, o} =Py*

16:  treey = NCLUS((Vy, E), n(-))
17:  treep = NCLUS((V3, E), n())
18:  return node(c*, treey, treep)
19: end if

The main loop (Algorithm 1, lines 7—-14) searches for the best attribute-value test
¢* that can be associated to a node 7. The algorithm associates the best test ¢* to the
internal node ¢ and calls itself recursively to construct a subtree for each subnetwork
in the partition P),* induced by ¢* on the training nodes.

Possible tests are of the form X < g for continuous attributes,and X € {x;, xi,, ...,
xi,} (where {x;,, x;,, ..., x;,} is a subset of the domain Dom x of X) for discrete attri-
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butes. For continuous attributes, possible values of S are found by sorting the distinct
values of X in the training set associated to ¢, then considering a threshold between
each pair of adjacent values. Therefore, if the cases in r have d distinct values for X,
at most d — 1 thresholds are considered.

For discrete attributes, possible subsets of values are selected by relying on a non-
optimal greedy strategy (Mehta et al. 1996). Starting with an empty set Left; = @ and
a full set Right; = Domyx, where Domx is the domain of X, this iterative procedure
moves one element from Right; to Lef't;, such that the move results in an increased
reduction of variance for the target variable Y. This differs from the classical solu-
tion by Breiman et al. (1984), where some ordering on the possible values of Dom x
is defined apriori, according to the data distribution. However, the classical solution
cannot deal with multi-target prediction tasks as PCTs can. If the examples in ¢ have

d—1 2
d distinct (discrete) values, ;l = 5

The algorithm evaluates the best split according to the formula (10) reported in

Algorithm 1, line 10.

splits are considered.

1 —
=23 ave, P+ L2 S 4060, P) (10)

YeY YeY

This formula is a linear combination of the variance reduction Ay (C, P) and the
autocorrelation measure Ay (G, n(-), P).

Both, variance and autocorrelation are computed for the Y variable over the cluster
C. In the case of multiple target variables, the average values of both, variance reduc-
tion Ay (C, P) and autocorrelation Ay (G, n(-), P) are taken over the set of target
variables, where each target variable contributes equally to the overall / value.

The influence of these two parts of the linear combination when building the PCTs
is determinated by a user-defined coefficient « that falls in the interval [0, 1]. When
a = 0, NCLUS uses only autocorrelation, when o = 0.5 it weights equally variance
reduction and autocorrelation, and when o = 1 it ignores autocorrelation and works
such as the original CLUS algorithm.

According to the above discussion on network autocorrelation measures, Ay (G,
n(-), P) can be defined in terms of each of the three indexes we introduced (Moran’s /,
R A and CI). However, since they all range in different intervals (but are consistently
monotonic), it is necessary to appropriately scale them. Since variance reduction is
non-negative, we decided to scale them both to the interval [0, 1], where 1 means
high positive autocorrelation and 0 means high negative autocorrelation. The choice
of the scaling interval does not affect the heuristic computation, therefore other scaling
intervals are possible as well, provided that, in all cases, the same scaling is performed
and the monotonicity of the scaled measure is maintained.

For example, for Moran’s 1,Ay (G, n(-), P) is defined as:

Cil ~
Ay(G.n(),P)= D MIY(Ck) (1)

Geep IC1
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where E/(Dk) is the scaled Moran’s I computed on Dy.

Moreover, in order to guarantee a fair combination of the variance reduction and the
autocorrelation statistic Ay (G, n(-), P), we also need to scale the variance reduction
to the interval [0, 1]. For that purpose, we use a common scaling function:

A Ay(C,P) — Amin
Ay (C, = 12
r(C.P) Amax — Amin (12)

where Amax and Amin are the maximum and the minimum values of Ay (C, P) for
a particular split.

The search stops when one of the two defined stopping criteria is satisfied. The first
criterion stops the search when the number of examples in a leaf is smaller than v/N,
which is considered a good locality threshold that does not lose too much in accuracy
(also for rule based classifiers) (Gora and Wojna 2002). The second criterion uses the
statistical F-test to check whether a given split/test in an internal node of the tree results
in a reduction in Ay (C, P) that is statistically significant at a given significance level.
Actually, the F-test is only theoretically correct for normally distributed populations.
Since this assumption may not hold in this case, the usage of the F-test should here be
considered, coherently with (Blockeel et al. 1998), as a heuristic for deciding when
to stop growing a branch, not as a real statistical test. To choose the optimal signif-
icance level among the values in the set {1, 0.125, 0.1, 0.05, 0.01, 0.005, 0.001}, we
optimize the MSE obtained with an internal 3-fold cross validation. When the first
stopping criterion is not satisfied, we evaluate the second criterion. In the case one of
the two stopping criteria is satisfied, the algorithm creates a leaf and labels it with a
predictive function f, (1) (in this case the average of the response variable(s)) defined
over the examples falling in that leaf. When predicting multiple response variables,
the predictive function returns the vector of the averages of the responses values.

InNCLUS, a pruning strategy to prevent trees from over-fitting data is implemented.
This strategy is the pessimistic error pruning strategy, which is also implemented in
several regression/ model tree learners (including M5’ and CLUS). According to this
strategy, a subtree is kept only if the error at the leaf is greater than the error of the
subtree multiplied by a scaling factor, which takes into account the statistical support
and the complexity of the model (Wang and Witten 1997). The results that we present
in this paper are those of the pruned tree models learned by NCLUS.

4.3.1 Choosing the bandwidth

The choice of the bandwidth (denoted by b in (3)) is perhaps the most critical decision
to be taken in the modeling process. This parameter controls the degree of smooth-
ing, with larger bandwidths causing stronger smoothing. An oversmoothed model will
predict similar values of the target variable all across the network, while an undersmoo-
thed model will predict values with so much local variation that it would be difficult
to determine whether there are any patterns at all. At the same time, this parameter
influences the calculation of autocorrelation.

The bandwidth may be defined manually or by using some adaptive method on
the whole training network. For example, GWR (Fotheringham et al. 2002) explores
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different values of the bandwidth and finds the one which yields the lowest cross-val-
idated AIC (Akaike Information Criterion) value. In this study, for the selection of the
bandwidth, we minimize the leave-one-out cross validated-(RMSE) Root Mean Square
Error. Moreover, in this automatic determination of the bandwidth, the selection is not
performed directly on the bandwidth b, but on b% that is, the bandwidth expressed as
a percentage of the maximum dissimilarity between two connected nodes. This means
that the algorithm implicitly considers different bandwidth values b at different nodes
of the tree depending on the maximum dissimilarity between connected examples
falling in that node of the tree. The bandwidth 5% ranges in the interval [0, 100%].

Minimization is performed by means of the Golden section search (Brent 1973)
that recursively partitions the »% domain. Golden section search is similar to binary
search, improving it by splitting the range in two intervals with a length ratio of y
instead of 1 (equal parts). Golden ratio has the value y = 1+T‘6

The share maintains a pair of minimum and maximum bandwidth values, b‘f" and
b?’ (at the first iteration, they are initialized as the minimum and maximum bandwidth
in the interval [0, 100 %]). At each step, the algorithm identifies a point b5 between
them, according to the golden ratio and computes the cross-validated error for that
point (error,s). (b < by < b¥). The values of the function at these points are

f (b‘f"), f (bg“), and f (bg” ) and, collectively, these are known as a “triplet”. The algo-
rithm than identifies the only parabola with a vertical axis that intersects the points
(P, errorbf/ﬂ), (b;%, errorngo), (b?, errorb;/o)}. On the basis of the position of the

minimum of this parabola, the system decides whether to consider %, b;%’ Y or (b2,
bg/”) as the next pair of (minimum and maximum) b% values.

The search stops when there is no reduction of cross-validated RMSE. In the algo-
rithm, the RMSE is computed by fitting a weighted linear model for the example
left out. Having decided to consider only the Euclidean weighting function (4), we
optimize b” only for this case.

4.4 Time complexity

The computational complexity of the algorithm depends on the computational com-
plexity of adding a splitting node ¢ to the tree, which in fact depends on the complexity
of selecting a splitting test for 7. A splitting test can be either continuous or discrete.
In the former case, a threshold g has to be selected for a continuous variable. Let N be
the number of examples in the training set; then the number of distinct thresholds can
be N — 1 at worst. They can be determined after sorting the set of distinct values. If m
is the number of descriptive variables, the determination of all possible thresholds has
a complexity O(m % N * logN), assuming an optimal algorithm is used for sorting.
For each variable, the system has to compute the evaluation measure % for all the
possible thresholds. This computation has, in principle, time-complexity O ((N — 1) %
(N + N % k)), where N — 1 is the number of thresholds, k is the average number
of edges for each node in the network, O (N) is the complexity of the computation
of the variance reduction Z;(C ,P) and O(N x k) is the complexity of the compu-
tation of autocorrelation Ay (G, n(-), P). However, it is not necessary to recompute

@ Springer



396 D. Stojanova et al.

autocorrelation values from scratch for each threshold, since partial sums in both
variance reduction computation and in autocorrelation computation can be used. In
particular, partial sums can be incrementally updated depending on the examples that
are iteratively moved from the right to the left branch. This optimization makes the
complexity of the evaluation of the splits for each variable O(N * k). This means
that the worst case complexity of creating a splitting node on a continuous attribute is
O(m * (NlogN + N xk)).

Similarly, for a discrete splitting test (for each variable), the worst case complexity
is O((d — 1) x (N 4+ N % k)), where d is the maximum number of distinct values of a
discrete variable (d < N). This complexity takes the same optimization as proposed
for continuous splits into account.

Therefore, finding the best splitting node (either continuous or discrete) has a com-
plexity of O(m * (NlogN + N x k))+O(m xd x (N + N x k)), thatis O(m * N x
(logN + d * k)), where m is the number of descriptive variables, N is the number of
examples, d is the maximum number of distinct values of a discrete variable and k is
the average number of edges for each example (for each node in the network).

4.5 Exploiting the properties of autocorrelation in NCLUS

The consideration of autocorrelation in clustering has been the subject of some recent
work in spatial clustering (Glotsos et al. 2004) and network clustering (Jahani and
Bagherpour 2011). Motivated by the demonstrated benefits of autocorrelation, we
exploit some properties of autocorrelation to improve the quality of the PCTs.

The use of autocorrelation in predictive clustering offers several advantages since
it allows to:

— determine the strength of the network effects on the variables in the model;

— consider tests on assumptions of stationarity and heterogeneity in the network;

— identify the possible role of the network interaction/ distance decay on the predic-
tions associated to each of the nodes of the tree;

— focus on the “node neighborhood” to better understand the effects that it can have
on other neighborhoods and vice versa.

These properties, identified by Arthur (2008), hold for spatial clustering. How-
ever, they also hold for the case of PCTs. Moreover, as recognized by Griffith (2003),
autocorrelation implicitly defines a zoning of a (spatial) phenomenon and reduces the
effect of autocorrelation in the prediction errors.

Variance reduction leads to more accurate models since it reduces the error on the
training set. However, it does not have all the properties implicitly introduced by auto-
correlation. This is due to the fact that variance reduction does not take the distribution
of connections among the nodes in the network into account.

With regard to the statistical properties of the measures of autocorrelation, most of
the theoretical research in Statistics and Econometrics exploits the so called “auto-
regressive model” in order to measure autocorrelation in networks (represented as a
special case of a directed acyclic graph) (Griffith 2003). More formally, the autore-
gressive model is defined as:
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Gi=pYy wjej+e (13)
J

where e; = Y; — Y is the prediction error (where prediction is based on the aver-
age), p is a parameter that expresses the network dependence, w;; are the elements of
the neighborhood matrix W and the error ¢€; follows a Gaussian (normal) distribution
(Engle 1982).

In this case, the informal notion of network dependence is often implicitly based
on an autoregressive framework, where the goal is to assess the predictive ability of
the neighboring values of the data. As recognized by Li et al. (2007a), in order to
informally assess the strength of the network dependence, exploratory data analysis
should be based on estimating p in the autoregressive model (see Eq. 13). This means
that the parameter p plays a crucial role in representing autocorrelation in the data.

One common solution for estimating p is to use a modified least squares estimator,
which is the solution to the following quadratic equation in p:

el I— pW)'WI - pW)e =0 (14)

where W is the matrix representation of w;, Iis the identity matrix and e is the vector
of e; values.

Although this estimator is consistent (Li et al. 2007a), its computation is not straight-
forward?. Therefore, instead of computing an estimate of p, Moran’s I is commonly
used in spatial data mining applications. Indeed, as proved by Jin (2010), under the
assumption that w;; = w;; (W is symmetric), Moran’s I is monotonic in p. Unfortu-
nately, this result is not valid when w;; # wj; (some counterexamples can be found).
Moreover, Li et al. (2007a) empirically proved that Moran’s [ is a good (not unbiased)
estimator of p in the case when p approaches zero. This means that Moran’s / is a good
indicator of the network dependence under some conditions. The same conclusions
can be drawn for the Relational Autocorrelation (RA) that is similar to the Moran’s
I, but considers the weights in a binary form. On the contrary, the Connectivity Index
(CT) cannot be considered as a good estimator of p and, for this reason, we expect
different results by varying the autocorrelation measure used in the predictive model.
This analysis also confirms that a model that is able to take autocorrelation into account
should lead to small values of p, that is, according to (13), it should lead to a reduction
of the effect of an error in the neighborhood.

5 Empirical evaluation

Before we proceed to presenting empirical results, we provide a description of the
used datasets and experimental settings*.

3 It would require the computation of the Maximum Likelihood Estimator of p which is impractical when
large datasets need to be processed (Li et al. 2007a).

4 All materials (datasets and system) are available at the following web page: http://kt.ijs.si/
daniela_stojanova/DMKDpaper/
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5.1 Datasets

In this experimental evaluation, we use four real network datasets obtained from social
domains and six network datasets obtained from spatial data. They are described below.

5.1.1 Social network data

The VideoL dataset contains the ECML PKDD 2011 Discovery Challenge data
(Antulov-Fantulin etal. 2011). The data are related to the content of VideoLectures.net,
a free and open access multimedia repository of video lectures, mainly of research and
educational character. The response is the total number of views of lectures published
online, where pairs of lectures are viewed together (not necessarily consecutively) with
at least two distinct cookie-identified browsers. The predictor variables include several
properties of a lecture such as the type, category, author and language of the lecture,
as well as the recorded and published dates of the lecture. Here we use the complete
(training) data from the Challenge for 2009. The network structure has 754 nodes and
14398 edges. The nodes contain the lectures along with their properties, whereas the
dissimilarities are the inverse of frequency (the number of distinct cookie-identified
browsers) with which the respective pair of lectures was viewed together.

The Books dataset contains cross-rating book data from different users (Ziegler
et al. 2005). For each node (book), the ISBN code, author, year of publication and
publisher information are given, as well as the users’ rating. The response is the aver-
age rating of all users. The network structure has 500 nodes (books) and 1167 edges.
The nodes represent the books (described with their properties), whereas the weighted
edges represent the dissimilarity (scalar distance) of the ratings given by the users to
the respective pair of books.

The Movies datasets contains movie ratings given to movies by users of the online
movie recommender service Movielens, collected during the period 1997-1998 5,
Specifically, for each movie, it contains the IMDB movie identifier, genre, country,
movie director and filming location, as well as all/top/audience critics’s ratings: aver-
age scores, numbers of reviews/fresh scores/rotten scores from the Rotten Tomatoes
film review aggregator. The response variable is the all critics ratings: all other ratings
data are not included in the analysis. We are interested in pairs of movies that are
ranked together by a single user, where the selected users had rated at least 20 mov-
ies. The network structure has 500 nodes and 202440 edges for the Movies| dataset
(snapshotl) and 500 nodes and 122748 edges for the Movies2 dataset (snapshot2).
The nodes represent the movies (labeled with their properties), whereas the weighted
edges represent the dissimilarity (scalar distance) of the ratings given by the users to
the respective pair of movies.

The Twitter Maternal Health dataset contains the top Twitter users who recently
mentioned maternal mortality. This dataset is obtained by a query performed on August
25, 2010 and it is sorted by betweenness centrality ©. Specifically, it contains the

5 http://www.grouplens.org/node/12.
6 http://casci.umd.edu/NodeXL_Teaching/.
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number of posts (tweets) of a user (response variable), user’s registration date on
Twitter and its time zone, as well as the number of tweets (posted by other users)
that the user marked as “favorites” and the number of “following” and “followed”
on Twitter. The relationships “following” and “followed” simply reflect the number
of users that are subscribed to receive news information from a specific user and the
number of users that a specific user is subscribed to receive news information from.
Here, we address only the pairs of users that are in the relationship “following”. The
network structure has 109 nodes and 198 edges. The nodes are the users (along with
their properties), whereas the weighted edges are the “following” relation between the
Twitter users. Note that this relationship is binary (“1” if there is a relation “following”
between two Twitter users and “0” otherwise) and we consider only edges contained
in this relation.

The Twitter network differs from other communities networks (e.g., Facebook, My-
Space and MSN), because it is an information and a community network, where a user
connects to the latest news information about what he/she finds interesting. Note that
Twitter relationships are not symmetric (i.e., networks are of directed nature), thus
a path from a user to another user may follow different hops for which the inverse
direction does not exist. For example, while in MSN a link represents a mutual agree-
ment of a relationship, on Twitter a user is not obligated to reciprocate followers by
following them.

5.1.2 Spatial network data

In the spatial datasets, the nodes are the spatial units of analysis considered (wards,
sampling points, counties and forest fire sites). They are described by some attributes
that will be discussed in detail below. The spatial units of analysis are at some distance
apart in space.

The NWE (North-West England) dataset contains census data collected in the Euro-
pean project SPIN!. The data concerns North West England, an area that is decomposed
into censual sections (wards). Census data provided by the 1998 Census are available
at ward level. We consider the percentage of mortality (response variable) and mea-
sures of deprivation level in the ward according to index scores such as the Jarman
Underprivileged Area Score, Townsend score, Carstairs score and the Department of
the Environment Index, as well as the coordinates of the ward centroids. The nodes in
the network structure are the 970 wards.

The datasets SIGMEA _MS and SIGMEA _MF (MS and MF) (Demsar et al. 2005)
are derived from one multi-target dataset containing measurements of pollen dispersal
(crossover) rates from two lines of plants (response variables), that is, the transgenic
male-fertile (MF) and the non-transgenic male-sterile (MS) line of oilseed rape. The
coordinates of each sample point are collected. The predictor variables are the car-
dinal direction and distance of the sample point from the center of the donor field,
the visual angle between the sample plot and the donor field, and the shortest dis-
tance between the plot and the nearest edge of the donor field. The nodes in the
network structures of both SIGMEA_MS and SIGMEA_MF are the 817 sampling
points.
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The FOIXA dataset (Debeljak et al. 2012) contains measurements of the rates of
outcrossing at sample points located within a conventional field that comes from the
surrounding genetically modified (GM) fields within a 400 ha large maize production
area in the Foixa region in Spain. The measurements include the coordinates of the
sampling points (units) and several predictor variables, that is, the number and size
of the surrounding GM fields, the ratio of the size of the surrounding GM fields and
the size of conventional fields and the average distance between the conventional and
the GM fields. The nodes in the network structures of FOIXA represent 420 sampling
points.

The GASD (USA Geographical Analysis Spatial Dataset) (Pace and Barry 1997)
contains 3,106 observations on USA votes castin 1980 presidential election per county.
Besides the number of votes (response variable), the coordinates of the centroid of
each county as well as the number of owner-occupied housing units, the aggregate
income and the population over 18 years of age are reported, for the respective county.
The 3106 counties represent the nodes in the network structure.

The Forest Fires (FF) dataset (Cortez and Morais 2007) is publicly available for
research purposes from the UCI Machine Learning Repository . It collects 517 for-
est fire observations from the Montesinho park in Portugal. The data, collected from
January 2000 to December 2003, includes the coordinates of the forest fire sites, the
burned area of the forest given in ha (response variable), the Fine Fuel Moisture Code
(FFMC), the Duff Moisture Code (DMC), the Drought Code (DC), the Initial Spread
Index (ISI), the temperature in degrees Celsius, the relative humidity, the wind speed
in km/h and the outside rain in mm within the Montesinho park map. The nodes in the
network structure represent the individual forest fires sites.

In the networks obtained from these spatial data, edges are defined for each pair of
nodes and dissimilarities are computed according to the Euclidean distance between
the nodes’ spatial coordinates.

5.2 Experimental setup
5.2.1 Evaluation metrics

We evaluate the performance of several variants of NCLUS and compare it to the
performance of the original CLUS algorithms, as well as to the performance of sev-
eral other algorithms. The evaluation is performed on the two collections of datasets
described above. The evaluation is performed in terms of several metrics, which include
accuracy, model complexity, and learning time. In addition, we also measure autocor-
relation of the errors of the learned models on the testing set, evaluating the ability
of the different algorithms to capture the effect of autocorrelation within the learned
models, as well as the correlation of the model predictions with the true target values
on the test set.

All of these performance measures are estimated by using 10-fold cross valida-
tion. In particular, the accuracy is measured in terms of the RMSE, while the model

7 http://archive.ics.uci.edu/ml/
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complexity is measured in terms of the number of leaves in the learned trees. The
computation time is measured in seconds. The experiments were run on an Intel Xeon
CPU @2.00 GHz server running the Linux Operating System.

5.2.2 Algorithms compared

NCLUS is run with the automatic bandwidth determination, with the three differ-
ent autocorrelation measures, that is, Moran’s I (NCLUS_I), Relational Autocorrela-
tion (NCLUS_RA) and Connectivity Index (NCLUS_CI), and with the user-defined
parameter ¢ = 0 and « = 0.5. NCLUS, with the above experimental configurations,
is compared to the original CLUS algorithm (Blockeel et al. 1998).

Only for the spatial networks, where the spatial coordinates of each node are avail-
able in the data, NCLUS is also compared to a version of CLUS algorithm, where
the spatial coordinates are treated as additional response variables. This is done only
for the computation of the evaluation measures. In this way, we are able to implicitly
take spatial autocorrelation into account. We refer to this configuration of CLUS as
CLUS*.

Moreover, the empirical evaluation includes the well known tree-based method M5’
Regression Trees (Quinlan 1993), as well as non tree-based methods such as Support
Vector Regression (SVR) (Basak et al. 2007) and the k-Nearest Neighbors (k-NN)
(Aha and Kibler 1991), which do not consider autocorrelation. The WEKA (Witten
and Frank 2005) implementation of these algorithms was used with their default set-
tings, with the number of examples in a leaf in M5’, as well as the number of neighbors
in k-NN, set to JN. Furthermore, we also compare NCLUS to the Iterative Trans-
ductive Learning (ITL) algorithm (Appice et al. 2009) that addresses the network
regression problem for spatial data. ITL works in the transductive learning setting and
considers autocorrelation. Finally, as a baseline (Base) we also use the default method
that always predicts the mean (over the training set) of the response variable.

5.2.3 Statistical comparison

In order to compare the predictive capabilities of the learned models, we use the non-
parametric Wilcoxon two-sample paired signed rank test (Orkin and Drogin 1990).
To perform the test, we assume that the experimental results of the two methods
compared are independent pairs {(q1, 71), (2, 72), - .., (gn, )} of sample data. We
then rank the absolute value of the differences ¢; — r;. The Wilcoxon test statistics
WT* and WT ™ are the sum of the ranks from the positive and negative differences,
respectively. We test the null hypothesis Hy: “no difference in distributions” against
the two-sided alternative Hj: “there is a difference in distributions”. Intuitively, when
WT* > WT~ and vice versa, Hy is rejected. Whether WTT should be considered
“much greater than” WT~ depends on the considered significance level. The null
hypothesis of the statistical test is that the two populations have the same continuous
distribution. Since, in our experiments, g; and r; are average MRSEs, WT ™ > WT~
implies that the second method (R) is better than the first (Q). In all experiments
reported in this empirical study, the significance level used in the test is set at 0.05.
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Table 1 Comparison of error made by different learning approaches on social network data

Method/ Network dataset VideoL MOVIESI MOVIES2 BOOKS TWITTER
NCLUS_I a=0.0 686.32 1.08 1.17 2.53 10170.92
NCLUS_I a=0.5 653.2 1.06 1.02 2.53 10170.92
NCLUS_RA a=0.0 686.32 1.08 1.17 2.53 10170.92
NCLUS_RA a=0.5 653.2 1.06 1.02 2.53 10170.92
NCLUS_CI a=0.0 686.32 1.62 2.11 2.53 10170.92
NCLUS_CI a=0.5 653.2 1.51 1.31 2.53 10712.23
CLUS 660.69 1.53 2.42 2.83 10641.03
SVR 721.43 1.77 2.52 2.65 13875.73
k-NN 937.68 1.70 2.58 2.65 11007.23
M5’ 574.17 2.09 22 2.67 12253.34
Base 722.39 2.10 2.70 2.53 13255.27

The RMSE:s (estimated by 10-fold CV) of the models obtained with NCLUS_I, NCLUS_RA, NCLUS_CI,
CLUS, SVR, k-NN and M5’, as well as the default Base model. For each network dataset, the best results
are highlighted in bold

5.3 Results and discussion
5.3.1 Social network data

Table 1 reports the average errors of the PCTs by NCLUS_I, NCLUS_RA, NCLUS_CI
and CLUS, as well as the errors of the SVR, k-NN and M5’ approaches, on the social
network data. The last row in Table 1 gives the errors of the Base model that always
predicts the mean. For each network dataset, the best results are highlighted in bold.

We can observe that the NCLUS error depends on the network autocorrelation
measure and on the relative importance given to the variance reduction and autocor-
relation when building the PCT (according to the o parameter). The use of different
autocorrelation measures does not change the obtained results much. However, the
best results, in line with considerations reported in Sect. 4.5, are obtained by using the
Global Moran’s I and the Relational Autocorrelation. In contrast, the o parameter sig-
nificantly affects the errors. The best results are always obtained with « = 0.5 (when
a = 0 NCLUS uses only autocorrelation, when o = 0.5 NCLUS equally weights
variance reduction and autocorrelation, and when o« = 1 NCLUS works such as the
original CLUS algorithm).

The results of NCLUS_I and NCLUS_RA are very similar and reflect the covari-
ance between pairs of observations. The only difference between the two measures is in
the existence of weights in the definition of the Global Moran’s /. The weights reflect
the strength of the relations between the nodes in the network and are associated to the
edges in the network. Thus, the difference in the two measures of autocorrelation is in
the explicit (Euclidean similarity measure vs. binary) strength of the relation between
the nodes in the network, which usually comes with the definition of the network.
On the other hand, NCLUS_CI performs worse than NCLUS_I and NCLUS_RA.
From the results presented in Table 1, we can see that NCLUS compares very well to
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Table 2 Statistical comparison of the performance of different NCLUS variants on social network data

Network/Method Dataset NCLUS_I NCLUS_RA NCLUS_CI
a=0 a=0.5 a=0 a=0.5 a=0 a=0.5
VideoL (—)0.33 (+)0.28 (—)0.33 (+)0.28 (—)0.33 (4+)0.28
MOVIES1 (+)0.01 (+)0.01 (+)0.01 (+)0.01 (=)0.33 (4+)0.58
MOVIES2 (+)0.01 (+)0.01 (+)0.01 (+)0.01 (+)0.01 (+)0.01
BOOKS (+)0.01 (+)0.01 (+)0.01 (+)0.01 (+)0.01 (+)0.01
TWITTER (+)0.96 (+)0.96 (+)0.96 (+)0.96 (+)0.96 (—)0.58

The p-values of the Wilcoxon signed rank test comparing NCLUS and CLUS. (+) means that NCLUS is
better than CLUS (i.e. WTI'T™ > WT ™), (—) means that CLUS is better than NCLUS (i.e. WT't < WT ™),
(=) means that both algorithms perform equally well (i.e. WI't = WT 7). In bold, we report results in
case Hy (hypothesis of equal performance) is rejected at the 0.05 significance level

mainstream methods that do not consider autocorrelation (SVR, k-NN, M5’, Base),
by providing a remarkable reduction of the error for the most of the network datasets.

Table?2 presents the p-values of the Wilcoxon test comparing the errors obtained
by NCLUS_I, NCLUS_RA and NCLUS_CI with the errors of the original CLUS
algorithm. The analysis of these results reveals that NCLUS_I and NCLUS_RA give
statistically better results than CLUS for three out of the five datasets (Movies1, Mov-
ies2 and Books) whereas NCLUS_CI results are significantly better than CLUS for
two out of the five datasets (Movies2 and Books). For the other two datasets NCLUS
results are generally better than those obtained by CLUS, but not significantly. This
empirical study confirms our hypothesis that the explicit consideration of the non-
stationary autocorrelation when building regression models from network data can
increase the accuracy (decrease the error) of the obtained PCTs when autocorrela-
tion is present in the data. Section 5.3.3 discusses some further characteristics of the
learned PCTs.

5.3.2 Network data obtained from spatial datasets

Table 3 reports the average errors achieved by NCLUS, CLUS, CLUS*, ITL, SVR,
k-NN and M5’ on spatial datasets, as well as the errors of the Base model that always
predicts the mean, on the spatial network datasets. Note that ITL builds model trees
that consider spatial autocorrelation in a transductive network setting®. The best results
are highlighted in bold.

As for the social network datasets, NCLUS errors only slightly depend on the
adopted network autocorrelation measure. Indeed, the observed errors of PCTs learned
by NCLUS do not change too much by varying this measure. However, once again,
the best results are obtained with Moran’s /. This result is not surprising, as Moran’s

8 Strictly speaking a comparison to the latter approach is not fair since model trees are recognized to be
more accurate than regression trees. Moreover, ITL, according to the transductive learning settings, exploits
both training and testing data during learning. We primarily use these results as a motivation for our further
work and present the ITL improvements over the other algorithms in italic.

@ Springer



404 D. Stojanova et al.

Table 3 Comparison of error made by different learning approaches on spatial network data

Method /Spatial Dataset FF NWE FOIXA GASD MS MF
NCLUS_I a=0.0 42.82 2.16 2.53 0.18 247 5.44
NCLUS_I a=0.5 56.55 2.48 2.34 0.17 2.29 5.81
NCLUS_RA a=0.0 42.82 2.45 2.65 0.18 2.47 6.60
NCLUS_RA a=0.5 53.27 2.46 2.66 0.17 2.35 5.92
NCLUS_CI a=0.0 42.82 2.47 2.61 0.17 2.49 6.72
NCLUS_CI a=0.5 52.79 2.45 2.66 0.16 2.35 5.93
CLUS 49.21 2.46 2.65 0.16 2.35 5.64
CLUS* 47.22 2.47 2.52 0.16 2.54 6.68
ITL 58.25 2.54 3.55 0.14 1.92 3.52
SVR 64.58 2.50 2.95 0.14 2.80 8.60
kNN 65.44 2.40 2.73 0.16 2.37 4.56
M5’ 47.22 2.47 2.66 0.16 247 5.92
Base 63.66 2.50 2.93 0.20 3.23 8.58

The RMSE:s (estimated by 10-fold CV) of the models obtained with NCLUS_I, NCLUS_RA, NCLUS_CI,
CLUS, ITL, SVR, k-NN and M5’, as well as the default Base model. For each network dataset, the best
results are highlighted in bold. In the case ITL outperforms other approaches, we report values in italic.
This because comparison to ITL is not fair. Results for NWE are multiplied by 103

I was specifically designed for modeling autocorrelation in spatial domains. Unlike
for social network data, we have no clear evidence of the best accuracy been achieved
with « = 0.5. In general, considering autocorrelation is beneficial, but we cannot
decide apriori how much the consideration of autocorrelation should influence the
PCT construction (i.e., the value of alpha). In general, there is always a configuration
of NCLUS that outperforms CLUS. Moreover, NCLUS outperforms CLUS*, except
for the GASD dataset where they are comparable in performance.

Both, NCLUS and CLUS* are designed to improve (if possible) the accuracy of
the CLUS PCTs by modifying/enhancing the heuristic (variance reduction for regres-
sion) used to evaluate each split in the process of tree construction. Whereas NCLUS
accounts for autocorrelation that is often present in network data, CLUS* takes the
spatial coordinates (usually presented in pairs (X, y) or (latitude, longitude)) from
spatial datasets and considers them as response variables in addition to the actual
response(s). This means that CLUS* aims at generating PCTs that will maximize the
inter-cluster variance reduction of both the responses and the coordinates. Moreover,
much higher importance is given to the spatial information than to the actual response,
as they all are normalized at the beginning of the modeling process and equal impor-
tance is given the single target (response) and two coordinates x and y (as additional
targets). This makes the predictions of the models more coherent in space than those
of the CLUS models, mostly increases the accuracy of the models and shows some
other characteristics of the models that will be discussed in Sect. 5.3.3.

However, in contrast to NCLUS models, CLUS* models cannot deal with non-sta-
tionary autocorrelation appropriately. In NCLUS, two different geographical regions
that have the same distribution of attribute and target values including autocorrela-
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Table 4 Statistical comparison of the performance of different NCLUS variants on spatial network data

Spatial/Method Dataset NCLUS_I NCLUS_RA NCLUS_CI
a=0 a=05 a=0 a=0.5 a=0 a=0.5
FF (4)0.01 (—)0.56 (+)0.01 (—)0.56 (+)0.01 (—)0.56
NWE (+)0.20 (—=)0.96 (+)0.80 (=)1.00 (—)0.88 (+)0.80
FOIXA (+)0.01 (+)0.01 (4+)0.88 (+)0.88 (+)0.72 (—)0.80
GASD (—)0.01 (—)0.28 (—)0.01 (—)0.28 (—)0.28 (=)1.00
MF (—)0.88 (+)0.58 (—)0.88 (+)0.96 (—)0.88 (+)0.96
MS (+)0.58 (—)0.88 (—)0.20 (—)0.58 (—)0.22 (—)0.58

The p-values of the Wilcoxon signed rank test comparing NCLUS and CLUS. (+) means that NCLUS is
better than CLUS (i.e. WI'T™ > WT ™), (—) means that CLUS is better than NCLUS (i.e. WTI't < WT ™),
(=) means that both algorithms perform equally well (i.e. WI't = WT 7). In bold, we report results in
case H( (hypothesis of equal performance) is rejected at the 0.05 significance level

tion, can be covered by one leaf of the tree. In CLUS*, the data will need to be split
into different regions due to the strong preference for spatial homogeneity. Moreover,
CLUS* cannot handle different definitions of the regression problem that can arise
from different definitions of the network, e.g., using different similarity measures. As
for the social network datsets, NCLUS compares very well to mainstream methods that
do not consider autocorrelation (SVR, k-NN, M5’, Base), by providing a remarkable
reduction of the error in most of spatial network datasets.

Table4 presents the results of the Wilcoxon test when comparing NCLUS with
the original CLUS algorithm in terms of the RMSE of the obtained PCTs. The errors
obtained with NCLUS are statistically lower than those obtained with CLUS for the
FF (using Global Moran’s //Relational Autocorrelation and @ = 0) and the FOIXA
(using Global Moran’s I) datasets and worse for the GASD dataset (using Global
Moran’s I/Relational Autocorrelation and o = 0), at the significance level of 0.05. In
the other case, there are at least two datasets on which each of the NCLUS algorithms
wins over CLUS, but the difference is not statistically significant.

5.3.3 Properties of the models: size, autocorrelation of the errors
and learning times

For completeness, we also include Table5 that gives the mean and variance of the
target variable calculated on the entire dataset and the correlation of the NCLUS_I,
NCLUS_RA, NCLUS_CI, CLUS, CLUS*, SVR, k-NN and M5’ predictions with the
true target values on the test set. In most cases (7/11), NCLUS returns predictions
which are more correlated with the true values than other competitive approaches.
In the case of GASD and VideoL results are coherent with the errors, while in the
case of FOIXA, k-NN shows slightly higher linear dependence between the predicted
response value and the real one than NCLUS, although the error is smaller in NCLUS.
For the Twitter dataset, NCLUS models result in negative correlation values due to
over-pruning. Note that this is the smallest of all datasets considered.
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Table 6 The average size of the PCTs learned by NCLUS, CLUS, CLUS* and M5’

Dataset/Method NCLUS_I NCLUS_RA NCLUS_CI CLUS CLUS* M5’
o
0.0 0.5 0.0 0.5 0.0 0.5
VideoL 3.0 6.9 3.0 4.9 3 6.9 6.9 - 11.0
MOVIES1 11.1 13.2 11.1 13.2 12.9 13.5 7.7 - 19.0
MOVIES2 7.9 10.8 7.9 10.8 7.9 11.9 7.5 - 11.0
BOOKS 1.0 1.0 1.0 1.0 1.0 1.0 4.8 - 9.0
TWITTER 1.7 1.7 1.7 1.7 1.0 1.7 2.2 - 4.0
FF 1.0 1.4 1.0 1.8 1.1 1.8 1.8 1.0 1.0
NWE 1.4 3.6 2.0 3.8 1.2 39 5.6 23 4.0
FOIXA 1.8 2.3 1.0 3.8 2.1 4.0 4.7 6.1 3.0
GASD 8.4 31.3 8.4 30.7 23.1 30.6 27.7 23.8 49.0
MF 1.0 4.4 1.0 4.2 34 4.1 5.1 19.7 6.0
MS 1.5 6.0 1.0 5.1 2.9 59 6.0 19.2 6.0

Table 6 shows the average size of the PCTs (number of leaves) learned by NCLUS,
CLUS and CLUS*. In most cases, NCLUS learns smaller trees, whereas CLUS* learns
larger trees than CLUS. This comes as a result of the consideration of the autocorre-
lation phenomenon in NCLUS models which, in most cases, makes the learned PCTs
not only more accurate, but also smaller and consequently simpler to be displayed
and interpreted. The predictions of the CLUS* PCTs are more coherent in space in
comparison to CLUS PCTS, but differently from NCLUS, this happens at the price of
increasing the size of the trees. While NCLUS can consider two different geograph-
ical regions that have the same distribution of attribute and target values (including
autocorrelation) in one leaf of the tree, CLUS* will split these due to the emphasis on
spatial homogeneity. This is the reason for the increase of the tree size.

Moreover, the PCTs learned by NCLUS by considering only the measures of net-
work autocorrelation in the process of tree construction (¢ = 0) are smaller than
the models obtained with NCLUS using both autocorrelation and variance reduction
in the tree construction (¢ = 0.5). This comes as a result of the reduction in the
number of relations/connections in the network with the introduction of additional
splitting nodes, which then directly affects the calculation of the measures of network
autocorrelation. This kind of situation is most notable in the models obtained using
NCLUS_I and NCLU S_RA, where the network autocorrelation is the only splitting
criterion for the tree construction process. On the other hand, models that use only the
C1 index as a splitting criterion are less affected by this phenomenon as CI is only a
function of the degree Deg(v;) of a node v.

In Table 7, we present autocorrelation of the prediction errors of the PCTs learned
by NCLUS, CLUS, CLUS*, SVR, k-NN and M5’. Autocorrelation is computed by
means of the Moran’s I on the errors committed on the testing set. We analyze the
obtained models in terms of this measure in order to show that PCTs learned by
NCLUS can capture autocorrelation, when present in the network, and generate pre-
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Table 7 Average autocorrelation of the prediction errors on the testing set, made by PCTs learned with
NCLUS, CLUS, CLUS*, SVR, k-NN and M5’

Dataset/Method NCLUS_I ~ NCLUS_RA  NCLUS_CI CLUS CLUS* SVR k-NN M5’

o

00 05 00 05 0.0 05

VideoL 030 022 035 022 035 022 1.00 - 022 022 022
MOVIES1 —-0.02 -0.02 —0.02 —0.02 —-0.01 —0.02 —0.02 - —0.02 —0.02 —0.02
MOVIES2 —0.01 —0.02 —0.01 0.01 0.01 —0.02 —-0.02 - —0.01 —0.01 —0.01
BOOKS 0.04 0.04 0.04 0.04 0.04 0.04 0.04 - 0.04 0.04 0.04
TWITTER —-0.50 0.50 —-0.50 0.50 -0.50 035 0.76 - —0.50 0.50 0.50
FF —0.02 —0.02 —0.02 —0.02 —-0.02 —0.02 1.00 —0.02 —0.02 —0.02 0.98
NWE 0.00 —0.01 —0.03 —0.02 —-0.03 —0.02 0.84 —0.01 —0.01 —0.02 —0.01
FOIXA —0.02 —0.02 —0.02 —0.02 —0.02 —0.02 0.96 —0.02 —0.03 —0.03 —0.06
GASD 0.19 0.19 0.11 0.19 0.07 0.05 1.00 0.08 0.01 0.03 0.37
MF —-0.01 0.15 0.01 0.07 0.08 0.06 0.88 0.15 —0.01 001 0.14
MS 0.13 024 0.03 0.055 0.01 0.04 066 0.13 —0.01 —-001 0.34

For each dataset, the best results (the smallest in absolute value) are given in bold

dictions that exhibit small (absolute) autocorrelation in the errors. The analysis of
the results reveals that NCLUS handles autocorrelation better than CLUS. In fact,
coherently with the analysis reported in Sect. 4.5, NCLUS is able to correctly remove
the effect of autocorrelation when making predictions. Thus, it is able to obtain net-
work-consistent predictions. This analysis also reveals that CLUS* is able to capture
autocorrelation better than CLUS, but worse than NCLUS. This is expected according
to the differences between NCLUS and CLUS#*, already discussed in this Section.
Moreover, as expected, autocorrelation on the errors is often lower when o = 0.

Table 8§ reports the average learning times for NCLUS, CLUS, CLUS*, ITL, SVR,
k-NN and M5’ models. Results for CLUS* and ITL are available only for the spatial
datasets. The shortest learning times are obtained by using the CLUS algorithm. The
learning times for CLUS* are similar (slightly larger) to the times of CLUS, as in this
configuration CLUS is run by considering the spatial coordinates as responses, while
the time complexity of the PCT induction remains the same. The learning times for
NCLUS are much longer than the learning times for CLUS because the consideration
of autocorrelation introduces additional computations and increases the complexity
of building a PCT. This is coherent with the time complexity analysis reported in
Sect. 4.4. The learning times for ITL are significantly longer than the times of CLUS,
CLUS* and NCLUS because of its iterative co-training implementation.

5.3.4 NCLUS for multi-target regression

In this section, we investigate the capability of NCLUS to adequately combine the
effects of autocorrelation over several response variables when solving multi-target
regression tasks. The results, presented in Table9, demonstrate that there is no sta-
tistically significant difference between the accuracy of the multi-target PCTs and
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Table 8 The learning times (seconds) of the NCLUS_I, CLUS, CLUS*, ITL, SVR, k-NN and M5’

Dataset/Method NCLUS_I CLUS CLUS* ITL SVR k-NN M5
a=0 a=0.5

VideoL 8.66 7.71 0.04 - — 0.03 0.03 0.07
MOVIES1 130.21 141.17 0.07 - — 0.04 0.04 1.02
MOVIES2 45.79 48.89 0.07 - — 0.04 0.08 0.09
BOOKS 0.07 0.09 0.09 - — 0.02 0.04 0.06
TWITTER 0.23 0.97 0.01 - — 0.05 0.01 0.01
FF 1.50 1.03 0.04 0.04 422.10 1.03 0.45 1.23
NWE 2.31 1.62 0.11 0.11 857.30 1.22 1.02 1.94
FOIXA 0.69 0.49 0.02 0.02 162.90 0.49 0.56 0.88
GASD 27.86 20.79 0.04 0.04  30462.50 3045  20.54  20.43
MF 2.68 1.39 0.04 0.03 593.60 1.00 2.00 2.25
MS 3.39 1.41 0.04 0.03 528.20 0.59 2.04 3.55

Table 9 The p-values of the Wilcoxon tests comparing the average RMSE of the single and multi-target
PCTs learned by NCLUS

Dataset /Method NCLUS_I NCLUS_RA NCLUS_CI
a=0 a=05 a=0 a=05 a=0 a=05

MF (=)1.00 (—)0.24 (—)0.96 (—)0.88 (+)0.51 (—)0.80

MS (—)0.11 (—)0.51 (—)0.88 (—)0.65 (+)0.39 (—)0.33

(—) means that Single-Target PCTs are more accurate than Multi-Target PCTs; (+) means that Multi-Target
PCTs are more accurate than Single-Target PCTs; (=) means that they perform equally well

the accuracy of the corresponding single-target PCT. This behavior is observed inde-
pendently on the autocorrelation measure (NCLUS_I, NCLUS_RA and NCLUS_CI)
used to learn the PCTs. In any case, we observe that the size of a single Multi-Target
PCT is always significantly lower than the combined (by sum) sizes of the two single-
target trees (see Table 10). This means that the multi-target PCTs learned by NCLUS
adequately combine the effect of autocorrelation on several response variables by
resulting in a predictive model that is accurate enough and simpler to be interpreted
than several distinct trees. Moreover, the learning time spent to construct a multi-target
PCT is lower than the learning times spent to learn several distinct single-target PCTs
(see Table 11).

6 Conclusions

In this paper, we address the task of network regression. This is an important task as
demonstrated by the presented related work and the use of real world datasets. While
many approaches for network classification exist, there are very few approaches to the
network regression task.
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Table 10 The average sizes of the multi-target PCT learned by NCLUS compared to the size of single-target
PCTs

Dataset/Method NCLUS_I NCLUS_RA NCLUS_CI
a=0 a=0.5 a=0 a=0.5 a=0 a=0.5

MS-MF 1.0 6.4 1.5 6.3 4.8 4.8

MF 1.0 4.2 1.0 42 34 4.1

MS 14 6.1 1.0 5.1 2.9 5.9

Table 11 The average learning
time (seconds) of constructing a
multi-target PCT and two a=0 a=05
single-target PCTs by NCLUS_I

Dataset/Method NCLUS_I

MS-MF 4.73 2.7
MF 2.68 1.39
MS 3.39 1.41

The network setting that we address uses both the descriptive information (node
attributes) and the network structure during training and uses only the descriptive
information in the testing phase, where the network structure around the (new) test-
ing instances may be unknown. This is quite different from existing approaches to
network classification and regression, where the descriptive information used during
both training and testing phase is typically closely related to the network structure and
the connections between the nodes.

In this setting, we develop a data mining method that explicitly considers autocor-
relation when building regression models from network data. The resulting models
adapt to local properties of the data, providing, at the same time, smoothed predictions.
The novelty of our approach is that, due to the generality of PCTs, it can work for
different predictive modeling tasks, including regression and Multi-Target regression,
as well as some clustering tasks.

We use well known measures of (spatial and relational) autocorrelation, since we
deal with a range of different data networks. The heuristic we use in the construc-
tion of PCTs is a weighted combination of variance reduction (related to predictive
performance) and autocorrelation of the response variable(s). Our approach can con-
sider different sizes of neighborhoods (bandwidth) and different weighting schemes
(degrees of smoothing) when calculating autocorrelation. We identify suitable combi-
nations of autocorrelation metrics and weighting schemes and automatically determine
the appropriate bandwidth.

We evaluate our approach on an extensive set of real world problems of network
regression, coming from the areas of spatial and social networks. Empirical results
show that the proposed extension of PCTs (NCLUS) performs better than both the
original PCTs, which completely disregard network information, and PCTs that cap-
ture local spatial network regularities (CLUS*), but do not take autocorrelation into
account and compares very well to mainstream methods that do not consider autocor-
relation (SVR, k-NN and M5”).
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Our approach performs better along several dimensions. First, it is better in terms
of predictive performance (as measured by RMSE, estimated by cross-validation).
Second, autocorrelation of the errors made by our approach is smaller. Finally, the
models produced by our approach are (on average) smaller.

Several directions for further work remain to be explored. The automated deter-
mination of the parameter « that sets the relative importance of variance reduction
and autocorrelation during tree construction deserves immediate attention. In a sim-
ilar fashion, one might consider selecting an appropriate autocorrelation measure.
Moreover, it would be interesting to define novel autocorrelation measures that take
indirect connections into account when computing autocorrelation. Finally, while our
approach completely ignores the network information in the testing phase, we would
like to explore developments in the direction of using this information if and when
available.
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