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Abstract. To support analysis and modelling of large amounts of spatio-temporal data having the 

form of spatially referenced time series (TS) of numeric values, we combine interactive visual 

techniques with computational methods from machine learning and statistics. Clustering methods 

and interactive techniques are used to group TS by similarity. Statistical methods for time series 

modelling are then applied to representative TS derived from the groups of similar TS. The 

framework includes interactive visual interfaces to a library of modelling methods supporting the 

selection of a suitable method, adjustment of model parameters, and evaluation of the models 

obtained. The models can be externally stored, communicated, and used for prediction and in 

further computational analyses. From the visual analytics perspective, the framework suggests a 

way to externalize spatio-temporal patterns emerging in the mind of the analyst as a result of 

interactive visual analysis: the patterns are represented in the form of computer-processable and 

reusable models. From the statistical analysis perspective, the framework demonstrates how time 

series analysis and modelling can be supported by interactive visual interfaces, particularly, in a 

case of numerous TS that are hard to analyse individually. From the application perspective, the 

framework suggests a way to analyse large numbers of spatial TS with the use of well-established 

statistical methods for time series analysis. 

Keywords: spatio-temporal data, interactive visual techniques, clustering, time 

series analysis 

Introduction 

It is now widely acknowledged that complex real-world data cannot be properly 

and/or efficiently analysed using only automatic computational methods or only 

interactive visualizations. Visual analytics research strives at multiplying the 

analytical power of both human and computer by finding effective ways to 

combine interactive visual techniques with algorithms for computational data 

analysis and by developing new methods and procedures where visualization and 

computation interplay and complement each other (Keim et al. 2008). 

The main role of data visualization is traditionally seen as enabling an analyst to 

see patterns in data. Accordingly, visual analytics researchers strive at creating 
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techniques capable of effectively exposing various patterns to analyst’s visual 

perception. However, the perceived patterns exist only in the analyst’s mind. To 

preserve the findings from decay and loss and to be able to communicate them to 

others and use in further analyses, the analyst needs to represent the patterns in an 

explicit form. Annotation tools, which allow the analyst to supplement visual 

displays with text and/or audio notes and drawings, may be sufficient for 

supporting recall and communication, but they do not enable the utilization of the 

patterns in further computerised analyses. For the latter purpose, the patterns need 

to be represented in the form of computer-processable models. Interactive visual 

interfaces can effectively support the process of creating such models. Hence, 

visual analytics methods and tools should enable not only discovery of patterns in 

data but also building of formal models representing the patterns. 

Our research focuses on spatio-temporal data, i.e., data with spatial (geographic), 

temporal, and thematic (attributive) components. While there are visual analytics 

systems supporting the exploration of previously built spatio-temporal models 

(e.g. Maciejewski et.al. 2010, 2011), the process of deriving such models from 

observed spatio-temporal data has not been yet supported by existing visual 

analytics methods and tools. The framework presented in this paper partly fills 

this gap. Our approach to spatio-temporal analysis and model derivation can be 

briefly described as follows. 

Spatio-temporal data often have or can be transformed to the form of numeric 

time series (TS) referring to different locations in space or different geographical 

objects; such TS will be further referred to as spatial time series, or spatial TS. 

Time series analysis and modelling is a well-established area in statistics. The 

existing variety of methods and tools can be applied to spatial TS, and we support 

this by interactive visual interfaces. However, analysing and modelling each 

spatial TS independently from others ignores relationships and similarities that 

may exist among spatial locations or objects. To allow these relationships to be 

discovered and explicitly represented in the resulting spatio-temporal model, we 

employ clustering and interactive grouping, so that related locations or objects can 

be analysed together. 

The following statements summarise our contribution: 

 We suggest a new approach to analyse and model spatio-temporal phenomena 

described by multiple spatial time series. 
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 We suggest a comprehensive framework to support the whole process of 

analysis and model building. It includes (a) a set of interactive visual tools that 

embed existing computational analytical methods and (b) a clearly defined 

analytical procedure in which these tools and methods are applied. 

In the next section, we give an overview of the related literature. After that, we 

introduce our framework for spatio-temporal analysis and modelling and describe 

the interactions among the components and the analysis workflow. Then we 

present two possible use cases of the framework by example of analysing real 

datasets. This is followed by a discussion and conclusion. 

Related literature 

Linking visual analytics and modelling 

There are many works where interactive visualisation is designed to help users to 

explore, understand, and evaluate a previously built formal model. Thus, Demšar 

et al. (2008) employ coordinated linked views and clustering for exploration of a 

geographically weighted regression model of a spatio-temporal phenomenon. 

Matković et al. (2010) support users in exploring multiple runs of a simulation 

model. Visualisation and interaction can reduce the overall number of simulation 

runs by allowing the user to focus on interesting cases (Matković et al. 2011). 

Migut and Worring (2010) visualise a classification model, particularly, the 

decision boundaries between classes. Interactive techniques allow the user to 

update the model for achieving desired performance.  

Evaluation of a model often requires testing its sensitivity to parameter values 

and/or input data. Visual and interactive techniques are used for exploring the 

sensitivity of an artificial neural network model to input data (Therón and De Paz 

(2006), the impact of parameter choice on LSA (latent semantic analysis) models 

as well as models using the results of the LSA in the further analysis (Crossno et 

al. 2009), and the effects of different assumptions on a model of estimated losses 

due to a natural disaster, particularly, assumptions about the spatial distribution of 

the disaster exposure (Slingsby et al. 2010). 

Maciejewski et al. (2010) and Maciejewski et al. (2011) suggest visual analytics 

techniques to support the exploration and use of existing spatio-temporal models. 

In the former work, kernel density estimation is used for spatial modelling and 
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cumulative summation for time series modelling. The user can view and explore 

the model results represented on a map and time series display, respectively. In 

the latter work, the authors suggest an interactive visual interface allowing the 

user to explore the results of a pandemic simulation model and investigate the 

impact of various possible decision measures on the course of the pandemic. In 

both cases, the user does not participate in model building. 

Among the works where interactive visual techniques support the process of 

model building, several papers focus on classification models. Xiao et al. (2006) 

describe a system visualising network events where the user can select a sequence 

of events as an instance of a pattern and describe this pattern by logical predicates 

(the system aids the user by suggesting candidate predicates). Then the system 

uses this description to find other instances of this pattern in the data. Garg et al. 

(2008) suggest a framework where a classifier is built by means of machine 

learning methods on the basis of positive and negative examples (patterns) 

provided by the user through an interactive visual interface; the user finds the 

patterns using visualisations. Garg et al. (2010) describe a procedure in which 

clusters of documents are built by combining computational and interactive 

techniques, then a classifier for assigning documents to the clusters is 

automatically generated, and then the user refines and debugs the model. This is 

similar to what is suggested by Andrienko et al. (2009) for analysis of a very large 

collection of trajectories: first, clusters of trajectories following similar routes are 

defined on the basis of a subset of trajectories, second, a classification model is 

built and interactively refined, and, third, the model is used to assign new 

trajectories to the clusters. 

Visual analytics techniques can also support building of numeric models. Thus, 

Guo, Z., et al. (2009) suggest techniques that help an analyst to discover single 

and multiple linear trends in multivariate data. Hao et al. (2011) describe an 

approach to building peak-preserving models of single time series. However, the 

process of deriving spatio-temporal models from multiple spatially referenced 

time series has not been addressed yet in the visual analytics literature. 

Modelling of spatial time series 

Kamarianakis and Prastacos (2006) make a review of methodologies proposed for 

spatial time series modelling, particularly, STARIMA, which is a spatio-temporal 
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extension of the ARIMA methodology (autoregressive integrated moving 

average) widely used in TS analysis. STARIMA expresses each observation at 

time t and location i as a weighted linear combination of previous observations 

and neighbouring observations lagged in both space and time. This requires prior 

specification of a series of weight matrices where the weights define the impacts 

among the locations for different temporal lags. The specification of the weights, 

which is crucial for the performance of the model, is left to the analyst. 

Kamarianakis and Prastacos (2005, 2003) used STARIMA for modelling traffic 

flow in a road network based on time series of measurements from 25 locations 

and compared it with other approaches applied to the same data. The comparison 

showed that a set of univariate ARIMA models built independently for each 

location gave better predictions than a single STARIMA model capturing the 

entire spatio-temporal variation. The authors attribute this to their simplistic way 

of specifying the weight matrices. Although a set of local temporal models (like 

ARIMA) is much easier to build and can give better results than a single global 

spatio-temporal model, the authors note that excessive computer time may be 

needed for building local temporal models in case of hundreds of TS. 

We see two disadvantages in modelling by means of STARIMA or similar 

methods producing a single global model of the spatio-temporal variation. First, 

while the quality of the model critically depends on how well the impacts among 

the locations are represented by numeric weights, these impacts may be not fully 

clear to the analyst and/or may be hard to quantify. Second, from the user’s 

viewpoint, a global spatio-temporal model is a kind of “black box” whose 

behaviour is very difficult to understand.  

Kyriakidis and Journel (2011) suggest an approach to spatio-temporal modelling 

of atmospheric pollution that combines modelling techniques from temporal and 

spatial statistics. The temporal variation is modelled independently for each 

measurement location and then the spatial variation of the parameters of the 

temporal models is, in turn, modelled as a random field. This provides an 

opportunity to make predictions for locations for which no measurements are 

available. The model is relatively easy to understand for the user since the 

temporal models can be explored with the help of time graphs and the spatial 

variation of each parameter by means of maps. The approach is applicable to 
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spatially smooth phenomena where attribute values change gradually from place 

to place. 

Generalising from the approaches found in the literature, we can conclude that 

spatio-temporal variation can be modelled using methods for TS modelling in 

combination with some way of reflecting the spatial variation of the TS. We 

suggest clustering of locations or spatial objects by similarity of their TS as a 

possible way to represent the spatial variation. It is especially suitable for 

representing spatially abrupt phenomena. 

An orthogonal approach to decomposing the spatio-temporal modelling task is to 

model the spatial variation separately for each time step and then somehow 

combine the resulting spatial models to represent also the temporal variation. We 

did not find an example of modelling a single spatio-temporal variable in this way 

but Demšar et al. (2008) use this idea to model a dependency between several 

spatio-temporal variables. Geographically weighted regression (GWR) models are 

built separately for several consecutive time steps and then clustering is applied to 

the time series of values of the GWR parameters associated with each location. In 

this way, the locations are grouped and coloured on a map display according to 

the similarity of the respective TS of the parameter values.  

Generally, clustering of TS is often used in geovisualisation and visual analytics 

for dealing with large numbers of TS. 

Visual analysis of multiple (spatial) time series 

Ziegler et al. (2010) use clustering to enable visual exploration of a very large 

dataset of financial TS. Prior to the clustering, the TS are generalised and 

compressed, which not only increases the efficiency of the clustering but also 

distils temporal trends from fluctuations. Schreck et al. (2009) apply the Self-

Organising Map (SOM) clustering method (Kohonen 2001) to time series of two 

variables and visualise the TS directly within the resulting SOM network layout. 

Guo, D. (2009) and Andrienko et al. (2010a,b) apply SOM to spatial TS, assign 

colours to the clusters, and use these colours for painting areas in map displays 

and lines in time graphs. The time graphs allow the user to see and interpret the 

patterns of the temporal variation in the clusters. Andrienko et al. (2010b) 

introduce the general idea of representing these patterns by formal statistical 

models as a way to externalize results of interactive visual analysis and make 
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them practically utilizable. As a proof of concept, the authors made an experiment 

on building models for clusters of time series. However, the model building 

process was not supported by visual and interactive techniques. Our current work 

aims at developing this kind of support.  

Presentation of the framework 

It is not our goal to develop new methods for TS analysis and modelling since 

there are many existing methods and tools, which are widely available in 

statistical packages such as R or SAGE or in software libraries such as 

OpenForecast or IMSL. Our implementation uses the open-source OpenForecast 

library (http://www.stevengould.org/software/openforecast/); however, this should 

be considered as just an example. 

Components of the framework 

The suggested system consists of the following main components: 

 Cartographic map display, in which spatio-temporal data can be represented 

by map animation or by embedded diagrams; 

 Time series display, shortly called time graph, in which multiple TS can be 

represented in summarised and/or detailed way; 

 Interactive tools for clustering based on one or more of existing clustering 

methods, for example, from the Weka library 

(www.cs.waikato.ac.nz/ml/weka/) or the SOM Toolbox 

(http://www.cis.hut.fi/somtoolbox/); 

 Methods for TS modelling from a statistical package or library such as 

OpenForecast;  

 An interactive visual interface around the methods from the model library. 

Besides these main components, the analysis is supported by tools for interactive 

re-grouping (allowing, in particular, modification of computationally produced 

clusters), data transformation (e.g., absolute values to relative with respect to the 

mean), data filtering (including spatial, temporal, attribute-based, and cluster-

based filters), and display coordination by simultaneous highlighting of 

corresponding graphical elements in multiple displays. 

The links and interactions among the components are schematically shown in 

Figure 1. 
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Figure 1. The main components of the framework and links between them. 

 

Analysis workflow 

The framework is meant for analysing data having the form of multiple numeric 

TS associated with different spatial locations or objects. A time series is a 

sequence of values of a numeric attribute referring to consecutive time moments 

or intervals, for example, monthly ice cream sales over several years. Each TS is 

associated with one location or object in space, for example, a town district or a 

café. There are two possible use cases of the framework: (1) analysis of the spatio-

temporal variation of a single space- and time-related attribute, such as the ice 

cream sales; (2) analysis of dependencies between two space- and time-related 

attributes, for example, sales of ice cream and average air temperature. The two 

attributes need to be defined for the same places or objects in space and the same 

moments or intervals in time. The analysis workflow is schematically represented 

in Figure 2. 
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Figure 2. The analysis workflow. 

 

Step 0: Data preparation. When necessary, the analyst transforms the data so as 

to make them suitable to the goals of the analysis. For example, the analyst may 

divide the amounts of the sold ice cream by the population of the respective 

districts and then analyse the ice cream consumption per person.  

Step 1: Grouping. The set of TS is divided into groups based on similarity of the 

temporal variations of the attribute values. This is supported by the tools for 

clustering and re-grouping. The results are controlled using the time graph display 

and the map display. The time graph allows the analyst to view the TS of each 

group, assess the degree of homogeneity within the group and decide whether it 

needs to be subdivided. Two or more groups can be shown in the time graph 

together using different colours so that the analyst can compare the groups and 

decide whether the differences are high enough or some of the groups should be 

united. In the map display, the places or spatial objects characterised by the TS are 

painted in the colours of the groups. The analyst can see whether the colours form 

meaningful spatial patterns. For example, the places with high ice cream 

consumption may be spatially concentrated in the regions with high proportions of 
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children and young people in the population. An explainable spatial distribution is 

an indication of good grouping. 

Step 2: Analysis and modelling. The analyst investigates the temporal variation of 

the attribute values in each group of TS by means of the time graph. By visual 

inspection, the analyst gains an understanding of the character of the temporal 

variation, particularly, whether it is periodic and whether there is a long-term 

trend. Thus, ice cream sales may periodically (seasonally) vary reaching higher 

values in the summer months and lower values in winter. Besides this seasonal 

variation, there may be an overall increasing or decreasing trend.  

After gaining an idea in the mind, the analyst externalises it in the form of a curve 

that expresses the generic characteristics of the temporal variation within the 

group. For this purpose, the interactive interface to the library of modelling 

methods is used. The analyst selects the suitable modelling method; for example, 

triple exponential smoothing (Holt-Winters method) can be chosen to express 

periodic variation with or without a trend. The sequence of input values for the 

modelling tool is created, according to the user’s choice, from the median or mean 

values taken from all time steps, or from arbitrary percentiles (e.g., 60th 

percentiles). When choosing to use the mean values, the analyst may decide to 

exclude a certain percentage of the highest and/or lowest values in each time step. 

This diminishes the impact of outliers on the mean values.  

The generated input sequence, further called representative TS (it represents the 

temporal variation in the group), is shown on the time graph and passed to the 

modelling tool for building a model. The tool tries to find the best fitting model 

(according to statistical criteria such as minimal mean squared error) by varying 

the model parameters. After the model is created, the sequence of model-predicted 

values for the same time steps as in the original data plus several further time 

steps is obtained and shown on the time graph so that the predicted values can be 

compared with the representative TS and with the individual TS. The 

automatically selected parameters of the model are shown to the analyst.  

It is not guaranteed that the automatic selection gives the best possible result. 

First, the modelling tool may be trapped in a local optimum. Second, not only the 

statistical criteria of fitness are important. Particularly, the model needs to 

represent the variation of a group of TS rather than single TS and hence should 

have a sufficient degree of generality, which is not achieved by the automatic 
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parameter selection. Therefore, the analyst is given the possibility to iteratively 

modify the parameters of the model, re-run the modelling tool, and immediately 

see the result as a curve on the time graph. When the curve corresponds well to 

the analyst’s idea of the general characteristics of the temporal variation in the 

group, the model is stored in the data storage. 

Step 3: Model evaluation. To evaluate the quality of the model, the analyst 

examines the model residuals. The temporal distribution of the residuals is 

explored by means of the time graph display and the spatial distribution by means 

of the map display. The absence of clear temporal and spatial patterns in the 

distribution of the model residuals (in other words, the distributions appearing as 

random noise) signifies that the model captures well the general features of the 

spatio-temporal variation. If this is not so, the analyst may decide to modify the 

model (i.e., return to step 2) or to subdivide the group (i.e., return to step 1) and 

refine the analysis. 

Step 4. Storing the models externally. Descriptions of the generated models are 

stored externally in a human- and machine-readable form such as XML.  The 

descriptions include all information that is necessary for re-creating the models, 

namely: the modelling method, the values of the parameters, and the values 

needed for the model initialisation. Besides, the descriptions contain information 

about the group membership of the objects or places. The descriptions can be 

loaded in another session of the system’s work. The user will be able to view the 

models and to use them for prediction. For example, the user may predict the 

amounts of the ice cream consumption per person in the next year. 

Using the models for prediction 

According to our framework, one TS model is built for a group (cluster) of similar 

TS associated with different places or spatial objects. If this model were 

straightforwardly applied for prediction, the same values would be predicted for 

all places/objects of the group and the statistical distribution of the predicted 

values would differ from the distribution of the original values. To avoid these 

undesired effects, the model-based prediction is individually adjusted for each 

object based on the basic statistics (quartiles) of the distribution of its original TS 

values. The statistics are computed on the stage of model building and stored in 

the model description file together with the information about the group 
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membership of the places or objects. Besides that, the statistics of the model-

predicted values for the same time steps as in the original data is computed and 

stored together with the description of each model. 

The adjustment of the predicted values is done in the following way. Let Q1i, Mi, 

and Q3i be the first quartile, median, and third quartile, respectively, of the value 

distribution in the original TS for the object/place i. Let Q1, M, and Q3 be the first 

quartile, median, and third quartile, respectively, of the distribution of the model-

predicted values for the group containing the object/place i. We introduce level 

shift S and two amplitude scale factors Flow and Fhigh as  

ܵ ൌ ௜ܯ െ ௟௢௪ܨ  ;ܯ ൌ ெ೔ିொଵ೔
ெିொଵ

௛௜௚௛ܨ	; ൌ
ொଷ೔ିெ೔

ொଷିெ
 . 

Let vt be the model-predicted value for an arbitrary time step t (this value is 

common for all group members). The individual value ݒ௜
௧ for the object/place i 

and time step t is computed according to the formula: 

௜ݒ
௧ ൌ ቊ

ܯ ൅ ௟௢௪ܨ ∙ ሺݒ௧ െ ሻܯ ൅ ܵ, ௧ݒ	݂݅ ൏ ܯ
ܯ ൅ ௛௜௚௛ܨ ∙ ሺݒ௧ െ ሻܯ ൅ ܵ, ݁ݏ݅ݓݎ݄݁ݐ݋

 

The adjustment according to this formula preserves the quartiles of the original 

value distribution for each object/place. In the model evaluation step, model 

residuals are computed as the differences between the original values and the 

individually adjusted predicted values. 

Use of the framework 

In this section, we describe the analysis workflow in more detail by examples 

using two different datasets referring to approximately the same territory (Milan, 

Italy). The first dataset, provided by the Italian telecommunication company 

WIND, consists of records about 2,956,739 mobile phone calls made during 9 

days from 30/10/2008 till 07/11/2008.  The second dataset, provided by Comune 

di Milano (Municipality of Milan), consists of GPS tracks of 17,241 cars during 

one week starting from April 1, 2007. Both datasets have been transformed to 

spatial TS by means of spatio-temporal aggregation.  

We shall demonstrate two use cases of the visual analytics framework: 

1. Analysis and modelling of the spatio-temporal variation of a single space- and 

time related variable (by example of the phone calls data). 

2. Analysis and modelling of the dependencies between two space- and time-

related variables (by example of the car movement data). 
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Use case 1: Analysing the spatio-temporal variation of a single 

variable 

Step 0: Data preparation 

For the spatio-temporal aggregation of the phone calls data, we divided the 

underlying territory into 307 compartments (cells) by means of Voronoi 

tessellation using the positions of the WIND cellular network antennas as the 

seeds. Then the call records were aggregated into hourly counts of calls in each 

cell, which gave us 307 time series of the length 216 time steps (hours).  

Step 1: Grouping 

In our example, we use the k-means clustering method from the Weka library, but 

other methods can be applied as well. K-means uses the Euclidean distance 

between points in the abstract n-dimensional space of attribute values, where n is 

the number of the attributes and the points represent the combinations of the 

attribute values characterising the objects to be clustered, as the measure of object 

dissimilarity. In the case of clustering time series, each time step is treated as a 

separate attribute. We run the k-means method with different values of k (number 

of clusters) in order to find the most suitable grouping. The results of the 

clustering are immediately shown on the time graph (Figure 3) and the map 

display (Figure 4) by painting lines in the graph and areas in the map in different 

colours assigned to the clusters.  
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Figure 3. The lines on the time graph represent the time series of phone call counts clustered by 

similarity and painted in the colours of the clusters.  

 

 Figure 4. The map display shows two variants of k-means clustering of the mobile phone cells in 

Milan according to the time series of the call counts. A: k=7; B: k=9. The legends ((A) and (B)) 

show the absolute and relative sizes of the clusters. 

A good choice of colours for the clusters can facilitate understanding of clustering 

results. Our system automatically chooses the colours based on the relative 

distances between the cluster centres in the space of attribute values, so that 

similarity of cluster colours means closeness of the cluster centres. For this 

purpose, the cluster centres are projected on a two-dimensional colour space 

(Andrienko et al. 2010a). To allow the user to judge the distances between the 

clusters in the attribute space and control the assignment of colours to the clusters, 

the system produces a display of the colour space with the projected positions of 

the cluster centres (Figure 5). The user can choose one of two suggested schemes 
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for mapping between colours and positions on a plane, rectangular or polar. In the 

former, four base colours are put in the corners of a rectangle and the colours for 

the remaining positions are produced by mixing the base colours proportionally to 

the distances from the corners. In the latter, a polar coordinate system is used in 

which the colour hue is mapped onto the angular coordinate and the colour 

lightness onto the radial coordinate. Figure 5 demonstrates the polar scheme. The 

projection of the cluster centres onto the colour space is done using Sammon’s 

mapping (Sammon 1969). It is a heuristic iterative algorithm. The user may refine 

its result by running additional iterations. The user can also modify the colour 

mapping by applying operations ‘flip’ and/or ‘mirror’, which stand for the 

symmetric reflection of the colour space along the horizontal and vertical axes, 

respectively. In this way, the user can obtain similar colour assignments for sets of 

clusters produced in different runs of the clustering algorithm with different 

parameters (in our example, different values of k in k-means). This is 

demonstrated in Figure 5.  

 

Figure 5. For assigning colours to clusters, the cluster centres are projected on a two-dimensional 

colour map. The user can refine the projection and adjust the colours. A: 7 clusters; B: 9 clusters.  

On the left is the projection of the cluster centres for k=7 and on the right for k=9. 

Obviously, the cluster labels are not the same in the two cluster sets (the labels are 

produced automatically from the ordinal numbers of the clusters in the output of 

the clustering algorithm). However, the two projections of the cluster centres look 

quite similar. They are nearly symmetric with respect to the vertical axis; 

therefore, applying the operation ‘mirror’ to one of them results in assigning 

similar colours to the cluster centres with similar relative positions among the 

other cluster centres of the same set of clusters. In Figure 4 (A, B), these colours 

are used for painting the cells on the map. The spatial distributions of the cluster 
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colours look very similarly for k=7 (A) and k=9 (B). The colouring of the lines on 

the time graph also looks almost the same for k=7 and k=9. This means that 

increasing the number of the clusters introduces only minor changes in the 

grouping. The projection display and time graph allow us to examine the changes 

in more detail. We see that the changes occur in the dark cyan area, where there 

are clusters with the lowest values of the call counts (see Figure 3). Increasing k 

leads mainly to dividing these clusters into smaller clusters, which do not differ 

much from each other (this can be seen, in particular, from the projection of the 

cluster centres). Hence, we choose 7 as the reasonable number of clusters. 

The map display not only supports comparison of different clustering results but 

also allows the analyst to judge the goodness of the grouping based on the 

interpretability of the spatial patterns. Unfortunately, we have no local knowledge 

of Milan allowing us to interpret the patterns. We can observe that the clusters are 

not contiguous in space and that the clusters corresponding to high calling 

activities (red, yellow, and light blue) are located at the street ring around the 

downtown as well as some of the radial streets connecting the ring to the 

periphery. We have also compared the distribution of the clusters to the Milan 

map of metro and tram lines, which could be found in the Internet, and found that 

many of the hot spots of the calling activities are located at crossings of two or 

more transportation lines. Hence, the observed spatial patterns can be partly 

related to the transportation network topology. We can speculate that the patterns 

can also be related to the areas of business activities in Milan, but we have no 

information for checking this.  

After testing the impact of the clustering parameter and choosing the suitable 

value, we review the resulting clusters one by one to judge their internal 

homogeneity. If some cluster has high internal variability, it should be subdivided 

into smaller clusters. We do this by means of progressive clustering (Rinzivillo et 

al. 2008), i.e., applying the clustering tool to members of one or a few chosen 

clusters. This is illustrated in Figure 6, where the time series are shown on a time 

graph display in a summarised way, as described in (Andrienko and Andrienko 

2005). Instead of representing the individual time series by lines, the display 

shows the frequency distribution of the values in each time step by polygonal 

stripes shaded in alternating light and dark grey. The polygon boundaries are built 

by connecting the positions of the corresponding quantiles (e.g., quartiles, 
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quintiles, or deciles, according to the user’s choice) in consecutive time steps. The 

screenshots in Figure 6 show the quintiles. The thick black line connects the 

positions of the average values. 

 

Figure 6. A selected cluster with high internal variability (cluster 6) has been subdivided into 3 

clusters by means of progressive clustering. A: The time series of the original cluster in a 

summarized form. B, C, D: The time series of the resulting three clusters (clusters 6, 8, and 9). 

Figure 6A summarises the 32 time series of cluster 6. The internal variability is 

quite high, as may be judged from the widths of the inner quintile stripes (the 

outer stripes are less important for assessing the variability as they may contain 

outliers). It is especially high on Saturday and Sunday (days 3 and 4; the vertical 

lines on the graph separate the days). We use k-means to divide cluster 6 in two, 

three, and four smaller clusters and find that the division into three clusters is the 

most reasonable. With two clusters, we still have high variability in one of them, 

and with four clusters, we get two very small clusters (with 4 and 5 members) 

while the variability is not noticeably reduced. The sections B, C, and D of Figure 

6 show the TS of the three clusters obtained by refining cluster 6. It can be seen 

that the clusters mainly differ in the values attained on Saturday and Sunday. The 

division has substantially reduced the inter-cluster variability, particularly, among 
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the values for the weekend. The spatial pattern on the map has remained almost 

the same since the colours assigned to the new clusters are very close to the 

original colour of cluster 6. 

As a summary of the grouping results, Figure 7 shows the time series of the mean 

values of the final nine clusters. 

 

Figure 7. The temporal variation of the mean values in 9 clusters of cells. 

 

Figure 8. An interactive visual interface for the temporal analysis and modelling: A) Check 

automatically detected time cycles in the data. B) Select the current class (cluster) for the analysis 

and modelling. C) Build the representative TS. D) Select the modelling method. E) View and 

modify model parameters (this section changes depending on the selected modelling method). 

Step 2: Analysis and modelling 

An interactive visual interface for the temporal analysis and modelling is shown in 

Figure 8. We shall not describe this specific UI in detail since the UI design is not 

the focus of the paper. It is more important what the user can and is supposed to 

do, according to the suggested framework. The user considers the previously 

defined clusters of TS one by one; this is supported by controls for cluster 

selection. The TS of the selected cluster can be seen in a detailed or summarized 

way in a time graph. The representative TS for the modelling is built from the 
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mean or percentile values, as described earlier, according to user’s choice. The 

user selects one of the available modelling methods from the library. Depending 

on the selected method, a set of controls for specifying model parameters appears. 

The user can limit the time range of the values to be used for deriving the model. 

In Figure 8, the beginning and end of the selected time range are marked by green 

and red vertical lines, respectively. 

The user can run the modelling tool without specifying values for the model 

parameters. The modelling tool will try different values or value combinations, in 

case of two or more parameters, to come to the best fitting model. The resulting 

model is represented in the time graph by a curve (as the yellow-coloured curve in 

Figure 8). To build the curve, the model is used to predict the values for the time 

steps originally present in the data plus several further time steps. It is possible to 

see if the model captures well the shape of the input curve and if the prediction for 

the further time steps is plausible. The automatic procedure for finding the best 

fitting model does not necessarily produce a good result. The current model 

parameters are shown to the user, who can modify them and run the model-

building tool repeatedly until the result is satisfactory. Thus, the model presented 

in Figure 9 has been obtained after some modifications of the smoothing 

parameters. It fits much better the input data than the one in Figure 8. 

 

Figure 9. A result of modifying model parameters. 

Some modelling methods, such as triple exponential smoothing (Holt-Winters 

method), assume periodic (cyclic) variation of the data. For building a model, it is 

necessary to specify the length of the cycle, i.e., the number of time steps. To help 

the user to deal with cyclic variation in the data, the tool tries to detect 

automatically which of the common temporal cycles (daily, weekly, and yearly) 

are present within the time span of the data. The detected cycles are described in 

the UI of the tool, as in Figure 8A. The user is expected to check whether the 

cycles have been identified correctly. The user can also specify which step in the 

data must be treated as the start of each cycle. When the user selects a modelling 
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method assuming cyclic variation in the input data, the tool automatically fills the 

required information about the cycle length and cycle start in the relevant fields 

for specifying model parameters (Figure 8E). The user can modify these 

automatically filled values if needed. 

The data may involve more than one temporal cycle. This is the case in our 

example dataset, where the values vary according to the daily and weekly cycles. 

As can be seen in Figure 8, the tool has automatically detected the daily cycle 

consisting of 24 time steps of one hour length and the weekly cycle consisting of 

168 time steps (i.e., 7 times 24 hours). The time period of the data starts from 0 

o’clock on Thursday but we want to use 0 o’clock on Monday as the beginning of 

the weekly cycle. Therefore, we specify that the weekly cycle starts from step 96. 

To our knowledge, there is no time series modelling method that can deal with 

two or more time cycles, or, at least, there is no such method in the openly 

available libraries we have investigated. In our tool, we have enabled two 

approaches that can be used for data with two cycles: 

a) Ignore the larger (outer) cycle and build a model assuming that the data varies 

only according to the smaller (inner) cycle. In our example, we would ignore 

the weekly variation and consider only the daily variation. 

b) Build a combination of models with a separate model for each position of the 

smaller cycle within the larger cycle. Thus, for the case of the daily and 

weekly cycle, separate models are built for Mondays, Tuesdays, ..., Sundays, 

i.e., the variation is represented by a combination of seven models. 

Figures 8 and 9 correspond to approach a. Figure 10 shows a model obtained with 

approach b. The latter model is better in representing the differences between the 

working days and weekend and in giving plausible predictions for the future. 

 

Figure 10. A representation of the daily and weekly variations by a combination of models with a 

separate model for each day of the week. 
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One note should be made here. For building a model representing cyclic variation 

in the data, it is necessary to have an input TS with at least two full cycles. For 

example, to build a model for each day of the week, we need data from at least 

two Mondays, two Tuesdays, and so on. If the time span of the available data is 

shorter, our tool allows the user to construct a longer input TS for the modelling 

method either by doubling the representative TS of the group or by concatenating 

several specific TS selected from the group. In the latter case, the tool selects the 

TS that have the closest values to the representative TS. The number of the 

specific TS to use is chosen by the user. 

Step 3: Model evaluation 

Besides the visual inspection of the curve representing the result of the modelling, 

the quality of the model is assessed by analysing the residuals, i.e., the differences 

between the real values and the model-predicted values. The tool automatically 

computes the residuals for each of the original TS. 

In evaluating a model, the absolute values of the residuals are not important, i.e., 

high residual values do not necessarily mean low model quality. The model needs 

to capture the characteristic features of the temporal variation but not reproduce 

all fluctuations present in the original data. The residuals are expected to reflect 

the fluctuations. The goal is not to minimise the residuals but to have them 

randomly distributed over time, which means that the model captures well the 

characteristic, non-random features of the temporal variation. 

To see how the residuals are distributed over time, we look at the time graph 

representing the time series of the residuals for the cluster that is currently under 

analysis. Representing the individual TS as lines results in a highly cluttered 

display; therefore, we look at summarised representations. In Figure 11, the TS of 

the residuals of one cluster (cluster 3) are summarised in two ways. The upper 

part of the graph shows the quintiles of the frequency distributions. The lower part 

is a temporal histogram with a bar for each time step divided into segments 

proportionally to the counts of residual values in user-specified intervals. The 

segments are painted in colours assigned to the intervals. 
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Figure 11. The model residuals for one cluster of TS (cluster 3) are summarised in a time graph 

display in two different ways. 

Both summarised representations show us that there is some non-random feature 

in the residual values: in the evenings of the working days negative values are 

more frequent than positive values. To find the reason for this undesired feature, 

we need to take a closer look at the TS of the residuals. To reduce the workload, 

we do not analyse each individual TS but group them by similarity, as we did for 

the original TS, and look at the groups. Figure 12 shows two of the groups. The 

thick black lines connect the average values in the consecutive time steps. 

 

Figure 12. Two groups of TS of model residuals. 

In the upper graph, the variation of the residuals appears to be random; no regular 

features are observed. In the lower graph, we can observe periodic drops of values 

occurring in the evenings. This means that the generic model built for cluster 3 
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does not capture well enough the pattern of the temporal variation in the 

corresponding subgroup of cells. More specifically, the model consistently 

overestimates the evening call counts in these cells. To improve the model quality, 

we need to subdivide the cluster so that the cells with non-random residuals are 

separated from those with random residuals and then build new, more accurate 

temporal models for the resulting clusters. The division can be done again by 

means of clustering or simply by interactive grouping (classification). In our case, 

we subdivide cluster 3 into two clusters according to the residuals. After building 

models for these clusters, we find that the undesired regular pattern has been 

eliminated. 

After the modelling is done for all groups of cells, the descriptions of the models 

are stored externally together with information about the group membership of the 

cells, the statistics (minimum, maximum, and quartiles) of the distribution of the 

original values for the cells, and the statistics (mean and standard deviation) of 

their residuals. At any time, the descriptions can be loaded in the system and the 

models displayed in a graphical form, i.e., as curves representing the generic 

features of the temporal variation in the groups. 

Use of the models 

The descriptions of the models and objects can be used for predicting values for 

new time steps that were not present in the original data. When there is no 

periodic pattern in the data, only short-term predictions for the next few time steps 

after the end of the original TS can be made. When temporal variation is periodic, 

as in our case, and it is assumed that the pattern does not change over time, it is 

possible to make predictions for times farther in the future with respect to the 

times of the original data. To obtain a prediction, the analyst needs to specify the 

time interval for which the prediction will be made. When the prediction is 

computed, the system can, depending on the user’s choice, introduce random 

(Gaussian) noise in the predicted values according to the statistics of the model 

residuals for each object. As an example, the time graphs in Figure 15 show the 

call counts for the period from 09/01/2012 (Monday), 0 o’clock to 15/01/2012 

(Sunday), 23 o’clock predicted by the models that we have built. The upper and 

lower graph (A, B) represent the predicted values without and with the noise, 

respectively. The patterns of the predicted values match very well the patterns of 
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the original values. Note that the predicted TS start on Monday unlike the original 

TS starting on Thursday (Figure 3). The statistics (means and quartiles) of the 

distribution of the predicted values coincide with those for the original values.  

 

Figure 13. The time graph shows the predicted call counts for the period from 09/01/2012 

(Monday), 0 o’clock to 15/01/2012 (Sunday), 23 o’clock. A: The prediction without introducing 

noise. B: The prediction with introduced Gaussian noise. 

 

Figure 14. The use of the model for detecting anomalies. Black: two cells at the San Siro stadium. 

The predictions given by the models (and by this class of models in general) can 

be used for different purposes, such as optimising network topology or planning 

maintenance works. One of the possible uses is detection of anomalies (very high 

deviations from expected values) in current or historical data. For example, 

anomalies in the call counts are easily seen in Figure 14, which represents the 

differences between the real and predicted values, i.e., the model residuals. The 

most extreme deviations from the predicted values occur in two cells: on the 

working days, in the cell including piazza Ovidio on the east-southeast of the city 

(increases up to 1139 over the predicted values, often at 14 and 19 o’clock), and 

on Saturday and Sunday in the area of Ospedale San Raffaele on the east-
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northeast (increases up to 848 at 10 o’clock on Sunday). We have no local 

knowledge or additional information sources to explain these anomalies. 

However, by searching in the Internet, we could explain smaller anomalies 

occurring in two cells at the San Siro stadium. The corresponding lines are 

highlighted in black in Figure 14. The deviations of the real values from the 

predicted ones are between 140 and 330 in the evening of 02/11/2008 (Sunday), 

especially at 19:00 (330) and 22:00 (262). This corresponds to a football game 

attended by about 50,000 spectators. A smaller increase of values in these cells is 

observed in the evening of 06/11/2008 (Thursday); the deviations from the 

predicted values range between 49 and 92. This corresponds to another football 

game attended by 11,000 spectators. 

Use case 2: Analysing the dependence between two spatio-temporal 

variables 

Step 0: data preparation 

In this example, we use the GPS tracks of the cars in Milan. First, we did spatio-

temporal aggregation of the data using the method by Andrienko and Andrienko 

(2011). The territory of Milan was divided into spatial compartments (cells) and 

the time span of the data (one week) was divided into 168 hourly intervals. For 

each ordered pair of neighbouring cells and each time interval, the aggregation 

tool computed the number of cars that moved from the first to the second cell as 

well as the average speed of the movement. The resulting TS are associated with 

spatial objects called ‘aggregate moves’, or ‘flows’, which were created by the 

aggregation tool. A flow is a vector in space defined by a pair of locations (points 

or areas), the start location and the end location. In our example, there are 2155 

flows. The counts of the moving objects (cars in our case) are often called ‘flow 

magnitudes’. In a map display, the flows are represented by special ‘half-arrow’ 

symbols, which can show movements in two opposite directions (Figure 15). 

Attributes of the flows, such as magnitudes or average speeds, can be represented 

by varying the thickness of the lines or by colour coding. When we compare the 

time graphs representing the TS of flow magnitudes (Figure 16 top) and average 

speeds (Figure 16 bottom), we see that the speeds tend to decrease at the times 

when the flow magnitudes increase. We aim to capture this relationship by 

numeric dependency models. 
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Figure 15. Flows between cells are represented by directed symbols (half-arrows) with the widths 

proportional to the total counts of objects that moved. For a better display legibility, minor flows 

(with counts less than 150) have been hidden. Left: the whole territory; right: the northern part 

enlarged. 

 

Figure 16. The temporal variation of the flow magnitudes (top) and average speeds (bottom) are 

shown in a summarised form. The graphs represent the deciles of the frequency distributions 

(stripes in light and dark grey) and the mean values (thick black lines). 

For this modelling task, we do an additional transformation of the data. The 

system allows the user to transform two time-dependent attributes A and B 

defined for the same time steps into series of values of B corresponding to 

different value intervals of A. For this purpose, the user divides the value range of 

attribute A into suitable intervals. For each interval and each object/place, the 

system finds all time steps in which the values of A belong to this interval and 

collects the values of B attained in these time steps. From the collected values of 

B, the system finds the minimum, maximum, mean, and quartiles. In this way, the 

system derives a family of attributes: minimum of B, mean of B, first quartile of 

B, median of B, and so on. For each of the derived attributes and each object, 
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there is a sequence of values corresponding to the chosen value intervals of 

attribute A. These sequences are similar to time series except that the steps are 

based not on time but on values of attribute A. We shall call these sequences 

dependency series (DS) since they are meant to express the dependency between 

attributes A and B. In this transformation, attribute A is treated as the independent 

variable and B as the dependent variable. 

In our example, we take the flow magnitude as the independent variable and the 

average speed as the dependent variable. The values of the flow magnitude range 

from 0 to 69. We divide this range into intervals of length 3: 0-2, 3-5, 6-8, and so 

on; 23 intervals in total. From the attributes the system has computed, we take the 

attribute “Maximum of average speed” in order to analyse what speed can be 

potentially reached depending on the flow magnitude. Before the analysis, we 

filter out the flows where the maximum magnitude is below 5, which means that 

there is not enough data for identifying any dependency. We shall deal with 1186 

flows out of the original 2155. 

Step 1: Grouping 

We group the dependency series of the attribute “Maximum of average speed” by 

similarity using one of the available clustering tools. The clustering is applied 

only to the objects that satisfy the current filter. Figure 17 shows the results of the 

grouping. We have clear and easily interpretable spatial patterns, which 

correspond to the street network topology of the city. To visualise the DS, we use 

a line chart display, which is the same as a time graph display but the horizontal 

axis represents an independent variable (in our example flow magnitude) rather 

than time. The DS are represented in the same way as TS.  
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Figure 17. The flows have been clustered according to the similarity of the dependency series of 

the attribute “Maximum of average speed”. Left: the spatial distribution of the clusters. Right: the 

DS are represented by lines on a line chart. 

Step 2: Analysis and modelling 

Modelling of dependencies is done almost in the same way as modelling of 

temporal variations except that temporal cycles are not involved. The analyst is 

expected to select the range of the values of the independent variable that will be 

used for building the model. This needs to be done separately for each cluster (in 

the previous use case the same time range was suitable for all clusters). As can be 

seen from Figure 17 (right), not all lines representing the DS have the same 

horizontal extent. This is because there are many flows where high values of the 

independent variable are not reached and, hence, there are no corresponding 

values of the dependent variable. Therefore, to build a dependency model for a 

group, the analyst needs to select a subsequence of values of the independent 

variable for which there are enough values of the dependent variable. An 

additional reason for limiting the value range for model building is the reliability 

of the data. Thus, in our example, the first value interval of the flow magnitude is 

from 0 to 2. The corresponding average speeds have been computed from 

movements of at most two cars; hence, the values cannot be sufficiently reliable. 

It may be reasonable to ignore these values in the course of dependency analysis 

and modelling, i.e., exclude the first value interval of the independent variable. 

Figure 18 gives two examples of limiting the range of the independent variable for 

model building. The green and red vertical lines mark the beginning and end of 

the selected sub-range, respectively. The user can interactively move the limits 

and try to build dependency models on the basis of different selections. 
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Figure 18. To build a dependency model for a group of DS, the analyst needs to select a valid 

subsequence of values of the independent variable. The beginning and end of the subsequence are 

marked by green and red vertical lines, respectively. 

There are modelling methods that are only applicable to time series and cannot be 

used to model dependencies. In the OpenForecast library, the methods suitable for 

dependency modelling are linear regression and polynomial regression. When 

polynomial regression is chosen, the analyst needs to specify the order of the 

polynomial that will be generated. 

Step 3: Model evaluation 

The evaluation of the models is done in the same way as in the case of TS 

modelling, i.e., by exploring the distribution of the model residuals. Here we 

briefly present one example. When we look at the statistical distribution of the 

residuals for the group of DS shown on the top of Figure 18, we notice that the 

model mostly overestimates the values of the dependent variable. This can be seen 

in the temporal histogram in Figure 19D: in almost all time steps there are much 

more negative residual values (represented by shades of blue) than positive ones 

(shades of red). We try to improve the model by changing the representative DS 
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and the range limits of the independent variable. The residuals are immediately re-

computed and the display of the residuals is updated as soon as the model 

changes. By observing the display, we see that our attempts do not bring 

sufficiently good results. We decide to refine the model by dividing the group into 

smaller groups, as shown in Figure 19A-C. Figure 19E shows the temporal 

histogram of the residuals after the refinement. The sizes of the yellow segments, 

which represent residual values close to zero (more precisely, from -2 to +2), have 

increased, and the prevalence of the blue segments (negative values) has been 

removed.  

 

Figure 19. A,B,C: Based on residual analysis, a group of DS has been divided into 3 subgroups, 

for which separate dependency models have been built. D, E: The temporal histograms of the 

distribution of the residuals before (D) and after (E) the division and model refinement. 

Use of the models 

In Figure 20, the dependency models that have been built are represented as 

curves on a line chart. This representation of the models can be obtained at any 

time after loading the stored description of the model set in the visual analytics 

system. Hence, the models can be reviewed by the creator and communicated to 

others. 

 

Figure 20. The dependency models are represented as curves on a line chart. The colours of the 

curves correspond to the clusters presented in Figure 17. 
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Figure 21. The maximal average speeds of the flows predicted on the basis of the actual flow 

magnitudes. 

Figure 21 demonstrates the use of the dependency models for prediction. By 

means of the models, the maximal average speeds have been predicted based on 

the actual flow magnitudes by hours in the original TS. The predicted values also 

form time series defined for the same sequence of time steps as the original TS. 

As can be seen, the character of the temporal variation of the predicted values is 

the same as in the original TS of the average speeds (Figure 16 bottom) while the 

fluctuations have been reduced. The predicted values are generally higher than the 

original values. This is explainable since the modelling has been built on the basis 

of the maximal average speeds. We have also repeated the model building 

experiment for the means and medians of the average speeds. The resulting 

models, when applied to the original TS of flow magnitudes, also convey well the 

character of the temporal variation; however, the predicted values are lower than 

in the original TS of average speeds. The choice of the suitable attributes for 

dependency modelling may depend on the analyst’s goal. Thus, the dependency 

models based on the maximal average speeds can be used for estimating the 

required travel time for a given route depending on the current or predicted traffic 

conditions. 

Discussion 

Our framework models spatio-temporal variation through grouping locations or 

spatial objects by similarity of their TS. The cartographic display and interactive 

tools allow the analyst to define groups that form meaningful spatial patterns. If 

necessary, the groups may be built in such a way that only neighbouring locations 

or objects are put together; e.g., Guo, D. (2009) suggests several algorithms for 

obtaining spatially contiguous clusters. Since any way of grouping divides the 

territory into regions with crisp boundaries, the grouping-based approach is 

suitable for modelling spatially abrupt phenomena, i.e., such that neighbouring 
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places or objects can substantially differ by their characteristics. Phone calls and 

traffic flows are examples of such phenomena. The same character of the spatial 

variation can also be observed for other phenomena related to human life and 

activities, for example, voting during elections or housing prices. 

To model spatially smooth phenomena, such as atmospheric pollution (Kyriakidis 

and Journel 2001), it is valid to apply modelling methods that involve spatial 

smoothing of the available data, which is not supported by our framework. On the 

other hand, it is not valid to apply models involving spatial smoothing to spatially 

abrupt phenomena. Most of the available methods for spatial modelling assume 

smooth spatial variation. Dealing with spatially abrupt phenomena requires other 

approaches, and clustering is one of the possibilities. Our framework includes 

flexible and easily steerable tools for clustering that allow the user to represent the 

spatial variation in accord with user’s understanding of the data and background 

knowledge of the underlying phenomena. 

The temporal variation, according to our framework, is modelled by means of 

existing methods for time series modelling. This field of statistics is well 

developed, and the methods are widely available and commonly used. We do not 

limit the framework to a particular set of methods present in this or that library or 

package but propose a generic set of interactive controls and operations suitable 

for different methods. In our paper, we have demonstrated how temporal models 

and dependency models can be built using these controls and operations.  

A very important step in model building is model evaluation. Our framework 

supports this step by (a) immediate visualisation of model results (predicted 

values) as soon as a model is built, (b) immediate computation and visualisation 

of model residuals, and (c) providing possibilities for applying various analysis 

methods to the residuals in order to examine their spatial and temporal 

distributions. Besides interactive analysis, as demonstrated in this paper, it is 

possible to compute and analyse distribution statistics and apply the available TS 

analysis methods to the TS of residuals. In case of unsatisfactory residuals, the 

analyst can easily find the reason and the way to improving the model. 

We do not claim that our framework guarantees better quality of generated models 

than other tools. The quality of a model can only be ensured by diligent work of 

the analyst. However, the flexibility in choosing modelling methods and 

parameters and the support for model evaluation and refinement help a diligent 
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analyst to build high quality models. The framework also allows the analyst to 

control the degree of data abstraction and generalisation and achieve a suitable 

trade-off between the model quality and model complexity, i.e., the number of 

different statistical models that represent the entire spatio-temporal variation. 

Kamarianakis and Prastacos (2003) compared several methods for modelling 

spatio-temporal data and found that a global spatio-temporal model does not 

necessarily perform better than a set of local temporal models. One of the 

arguments in favour of a global model was the excessive computational time 

needed for building multiple local models in case of a very large dataset. 

Clustering makes our approach suitable for large collections of spatial TS. It 

reduces not only the required computational time but also the analyst’s effort as 

compared to building either a global spatio-temporal model (which requires 

tedious specification of weight matrices) or individual local models for all 

locations. Besides, clustering is a way to account for spatial relatedness among 

locations or objects and to represent patterns of spatial variation. 

The suggested approach is sufficiently generic to be applicable to various spatio-

temporal phenomena that can be characterised by spatial time series, such as 

sensor measurements, economical data, aggregated spatial events, aggregated 

movements, and many others. There is a potential for extending the approach to 

spatially smooth phenomena by involving spatial modelling methods. 

Conclusion 

The suggested framework is based on visual analytics wrapping around 

computational methods taken from the areas of machine learning and statistical 

analysis. The framework is intended for analysis and modelling of spatio-temporal 

data representing spatially abrupt dynamic phenomena. The result of the analysis 

is an explicit parsimonious description of the spatio-temporal variation, i.e., a 

description involving data abstraction and generalisation. The result is represented 

in a form allowing both human and computer processing. The framework is 

designed to deal with large amounts of spatial TS that cannot be analysed 

individually. 

From the visual analytics perspective, our framework suggests a way to represent 

results of interactive visual analysis in an explicit form, which can be not only re-

viewed and communicated but also used in further analysis and for making 
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predictions. From the statistical analysis and modelling perspective, we suggest a 

combination of visual, interactive and computational techniques supporting model 

building and evaluation. From the perspective of spatio-temporal analysis, we 

suggest an approach to spatio-temporal modelling by decomposing the overall 

modelling task into spatial and temporal modelling subtasks. We accommodate 

the statistical methods for time series and dependency modelling, which are well 

established and widely available, for spatio-temporal analysis. For this purpose, 

these methods are combined with interactive clustering and visual techniques. 

As noted by our colleagues practicing statistical analysis of various types of data, 

our visual analytics approach to modelling increases analyst’s trust in the resulting 

models as the analyst fully controls the process and can make well-informed 

decisions in each its step. 
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