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Abstract

Many real-world networks, including social and information networks,
are dynamic structures that evolve over time. Such dynamic networks are
typically visualized using a sequence of static graph layouts. In addition to
providing a visual representation of the network structure at each time step,
the sequence should preserve the mental map between layouts of consecu-
tive time steps to allow a human to interpret the temporal evolution of the
network. In this paper, we propose a framework for dynamic network visu-
alization in the on-line setting where only present and past graph snapshots
are available to create the present layout. The proposed framework creates
regularized graph layouts by augmenting the cost function of a static graph
layout algorithm with a grouping penalty, which discourages nodes from de-
viating too far from other nodes belonging to the same group, and a tempo-
ral penalty, which discourages large node movements between consecutive
time steps. The penalties increase the stability of the layout sequence, thus
preserving the mental map. We introduce two dynamic layout algorithms
within the proposed framework, namely dynamic multidimensional scaling
(DMDS) and dynamic graph Laplacian layout (DGLL). We apply these algo-
rithms on several data sets to illustrate the importance of both grouping and
temporal regularization for producing interpretable visualizations of dynamic
networks.

1 Introduction

The study of networks has emerged as a topic of great interest in recent years, with
applications in the social, computer, and life sciences, among others. Dynamic net-
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works are of particular interest because networks observed in the real world often
evolve over time due to the creation of new nodes and edges and the removal of old
nodes and edges (Kossinets and Watts, 2006; Leskovec et al., 2007). Many devel-
opments have been made in mining dynamic networks, including finding low-rank
approximations (Sun et al., 2007; Tong et al., 2008) and the detection of clusters
or communities and how they evolve over time (Chi et al., 2009; Mucha et al.,
2010; Xu et al., 2013). However, the closely related task of visualizing dynamic
networks has remained an open problem that has attracted attention from soci-
ologists (Moody et al., 2005; Bender-deMoll and McFarland, 2006; Leydesdorff
and Schank, 2008) and the graph drawing community (Brandes and Wagner, 1997;
Branke, 2001; Brandes and Corman, 2003; Erten et al., 2004; Brandes et al., 2007;
Frishman and Tal, 2008; Brandes and Mader, 2011; Brandes et al., 2012) among
others. Visualization is an important tool that can provide insights and intuition
about networks that cannot be conveyed by summary statistics alone.

Visualizing static networks is a challenge in itself. Static networks are typically
represented by graphs, which have no natural representation in a Euclidean space.
Many graph layout algorithms have been developed to create aesthetically pleasing
2-D representations of graphs (Di Battista et al., 1999; Herman et al., 2000). Com-
mon layout methods for general graphs include force-directed layout (Kamada and
Kawai, 1989; Fruchterman and Reingold, 1991), multidimensional scaling (MDS)
(de Leeuw and Heiser, 1980; Gansner et al., 2004; Borg and Groenen, 2005) and
graph Laplacian layout (GLL), also known as spectral layout (Hall, 1970; Koren,
2005).

Dynamic networks are typically represented by a time-indexed sequence of
graph snapshots; thus visualizing dynamic networks in 2-D presents an additional
challenge due to the temporal aspect (Branke, 2001; Moody et al., 2005). If one
axis is used to represent time, then only a single axis remains to convey the topol-
ogy of the network. While it is possible to identify certain trends from a 1-D time
plot created in this manner, it is a poor representation of the network structure.
Brandes and Corman (2003) presented a possible solution to this problem by cre-
ating a pseudo-3-D visualization that treats 2-D layouts of each snapshot as layers
in a stack. Unfortunately, the resulting visualization is difficult to interpret. The
more conventional approach is to present an animated 2-D layout that evolves over
time to reflect the current snapshot (Erten et al., 2004; Moody et al., 2005; Bender-
deMoll and McFarland, 2006; Brandes et al., 2007; Frishman and Tal, 2008). A
challenge with this approach is to preserve the mental map (Misue et al., 1995) be-
tween graph snapshots so that the transition between frames in the animation can
be easily interpreted by a human viewer. In particular, it is undesirable for a large
number of nodes to drastically change positions between frames, which may cause
the viewer to lose reference of the previous layout.
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Some of the early work on dynamic network visualization simply involved
creating interpolated transition layouts (Moody et al., 2005; Bender-deMoll and
McFarland, 2006). While interpolation does make an animation more aesthetically
pleasing, it does not constrain the successive layouts in any way to make them more
interpretable. In many real networks, individual snapshots have high variance, so
creating a layout for each snapshot using a static graph layout method could result
in large node movements between time steps. Often, this is not due to a failure of
the static graph layout algorithm but simply a consequence of the cost function it
is attempting to optimize, which does not consider any other snapshots.

When dealing with dynamic networks, better performance can be obtained by
using regularized methods that consider both current and past snapshots. Such
an approach has been used to develop regularized clustering algorithms for dy-
namic networks, also known as evolutionary clustering algorithms (Chi et al., 2009;
Mucha et al., 2010; Xu et al., 2013), that outperform traditional static clustering al-
gorithms in the dynamic setting. In the context of dynamic network visualization,
regularization encourages layouts to be stable over time, thus preserving the men-
tal map between snapshots. As such, many methods for dynamic graph drawing
either implicitly or explicitly employ regularization in the form of a dynamic sta-
bility penalty to discourage large node movements (Brandes and Wagner, 1997;
Branke, 2001; Erten et al., 2004; Baur and Schank, 2008; Frishman and Tal, 2008;
Brandes and Mader, 2011; Brandes et al., 2012). The concept of regularization has
also been employed in many problems in statistics and machine learning, includ-
ing ridge regression (Hoerl and Kennard, 1970), the LASSO (Tibshirani, 1996),
and penalized matrix decomposition (Witten et al., 2009). It is often used to intro-
duce additional information or constraints and to give preference to solutions with
certain desirable properties such as sparsity, smoothness, or in this paper, dynamic
stability in order to preserve the mental map.

We introduce a framework for dynamic network visualization using regular-
ized graph layouts. The framework is designed to generate layouts in the on-line
setting using only present and past snapshots. It involves optimizing a modified
cost function that augments the cost function of a static graph layout algorithm
with two penalties:

1. A grouping penalty, which discourages nodes from deviating too far from
other nodes belonging to the same group.

2. A temporal penalty, which discourages nodes from deviating too far from
their previous positions.

Groups could correspond to a priori knowledge, such as participant affiliations in
social networks. If no a priori group knowledge is available, groups can be learned
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from the network using, for example, the aforementioned evolutionary clustering
algorithms. The grouping penalty keeps group members close together in the se-
quence of layouts, which helps to preserve the mental map because nodes belong-
ing to the same group often evolve over time in a similar fashion. The tempo-
ral penalty helps to preserve the mental map by discouraging large node move-
ments that may cause a human to lose reference of previous node positions, such
as multiple nodes moving unnecessarily from one side of the layout to the opposite
side. Within the proposed framework, we develop two dynamic layout algorithms,
dynamic multidimensional scaling (DMDS) and dynamic graph Laplacian layout
(DGLL).

To the best of our knowledge, this is the first framework for dynamic net-
work visualization that incorporates both grouping and temporal regularization1.
The methods for grouping regularization in DMDS and temporal regularization in
DGLL used in this paper are novel. Temporal regularization in dynamic graph
layouts has been employed in previous work (Brandes and Wagner, 1997; Branke,
2001; Erten et al., 2004; Baur and Schank, 2008; Frishman and Tal, 2008; Brandes
and Mader, 2011; Brandes et al., 2012). Grouping regulariation has also appeared
in previous work (Wang and Miyamoto, 1995; Eades and Huang, 2000; Costa and
Hero III, 2005), but only in the static graph setting, not in the dynamic setting we
consider. We apply the proposed DMDS and DGLL algorithms on a selection of
dynamic network data sets to demonstrate the importance of both grouping and
temporal regularization in creating interpretable visualizations.

2 Background

We begin by specifying the notation we shall use in this paper. Time-indexed
quantities are indicated using square brackets, e.g. X[t]. We represent a dynamic
network by a discrete-time sequence of graph snapshots. Each snapshot is repre-
sented by a graph adjacency matrix W [t] where wij [t] denotes the weight of the
edge between nodes i and j at time t (chosen to be 1 for unweighted graphs), and
wij [t] = 0 if no edge is present. We assume all graphs are undirected, so that
wij [t] = wji[t]. For simplicity of notation, we typically drop the time index for all
quantities at time step t, i.e. W is assumed to denote W [t].

We refer to a graph layout by a matrixX ∈ Rn×s, where n denotes the number
of nodes present at time t, and each row x(i) corresponds to the s-dimensional
position of node i. We are most interested in 2-D visualization (s = 2), although
the proposed methods can also be applied to other values of s. The ith column of
X is denoted by xi, and the individual entries by xij . The superscript in x

(h)
i is

1A preliminary version of this work can be found in (Xu et al., 2011).
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used to denote the value of xi at iteration h of an algorithm. The norm operator
‖ · ‖ refers to the l2-norm, and tr(·) denotes the matrix trace operator. We denote
the all ones column vector by 1.

We now summarize the static graph layout methods of multidimensional scal-
ing and graph Laplacian layout, which operate on a single graph snapshot. We
develop regularized versions of these methods for dynamic networks in Section 3.

2.1 Multidimensional scaling

Multidimensional scaling (MDS) is a family of statistical methods that aim to find
an optimal layout X ∈ Rn×s such that the distance between x(i) and x(j) for all
i 6= j is as close as possible to a desired distance δij . There are a variety of different
cost functions and associated algorithms for MDS; we refer interested readers to
Borg and Groenen (2005). Here we describe the cost function known as stress and
its associated majorization algorithm. The stress of a layout X is given by

Stress(X) =
1

2

n∑
i=1

n∑
j=1

vij
(
δij − ‖x(i) − x(j)‖

)2
, (1)

where vij ≥ 0 denotes the weight or importance of maintaining the desired distance
δij . We refer to the matrix V = [vij ] as the MDS weight matrix to avoid confusion
with the graph adjacency matrixW , which is also sometimes referred to as a weight
matrix. In order to use stress MDS for graph layout, the graph adjacency matrixW
is first converted into a desired distance matrix ∆ = [δij ]. This is done by defin-
ing a distance metric over the graph and calculating distances between all pairs of
nodes. The distance between two nodes i and j is typically taken to be the length of
the shortest path between the nodes (Gansner et al., 2004). For weighted graphs, it
is assumed that the edge weights denote dissimilarities; if the edge weights instead
denote similarities, they must first be converted into dissimilarities before comput-
ing ∆. The MDS weights vij play a crucial role in the aesthetics of the layout. The
commonly used Kamada-Kawai (KK) force-directed layout (Kamada and Kawai,
1989) is a special case of stress MDS where the weights are chosen to be vij = δ−2ij

for i 6= j and vii = 0.
The objective of stress MDS is to find a layout X that minimizes (1). (1) can

be decomposed into

1

2

n∑
i=1

n∑
j=1

vijδ
2
ij +

1

2

n∑
i=1

n∑
j=1

vij‖x(i) − x(j)‖2 −
n∑

i=1

n∑
j=1

vijδij‖x(i) − x(j)‖. (2)

Note that the first term of (2) is independent of X . The second term of (2) can be
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written as tr(XTRX) where the n× n matrix R is given by

rij =

{
−vij i 6= j,∑

k 6=i vik i = j.
(3)

tr(XTRX) is quadratic and convex in X and is easily optimized.
The third term of (2) cannot be written as a quadratic form. However, it can

be optimized by an iterative majorization method known as “scaling by majoriz-
ing a complicated function” (SMACOF) (de Leeuw and Heiser, 1980; Borg and
Groenen, 2005). This non-quadratic term is iteratively majorized, and the result-
ing upper bound for the stress is then optimized by differentiation. For a matrix
Z ∈ Rn×s, define the matrix-valued function S(Z) by

sij(Z) =

{
−vijδij/‖z(i) − z(j)‖ i 6= j,

−
∑

k 6=i sik(Z) i = j.
(4)

Then, it is shown in (Gansner et al., 2004; Borg and Groenen, 2005) that

− tr(XTS(Z)Z) ≥ −1

2

n∑
i=1

n∑
j=1

vijδij‖x(i) − x(j)‖

so that an upper bound for the stress is

1

2

n∑
i=1

n∑
j=1

vijδ
2
ij + tr(XTRX)− 2 tr(XTS(Z)Z). (5)

By setting the derivative of (5) with respect to X to 0, the minimizer of the upper
bound is found to be the solution to the equation RX = S(Z)Z.

The algorithm for optimizing stress is iterative. Let X(0) denote an initial lay-
out. Then at each iteration h, solve

Rx(h)
a = S

(
X(h−1)

)
x(h−1)
a (6)

for x(h)
a for each a = 1, . . . , s. (6) can be solved using a standard linear equation

solver. Note that R is rank-deficient; this is a consequence of the stress function
being translation-invariant (Gansner et al., 2004). The translation-invariance can
be removed by fixing the location of one point, e.g. by setting x(1) = 0, removing
the first row and column of R, and removing the first row of S

(
X(h−1))X(h−1)

(Gansner et al., 2004). (6) can then be solved efficiently using Cholesky factoriza-
tion. The iteration can be terminated when

Stress
(
X(h−1))− Stress

(
X(h)

)
Stress

(
X(h−1)

) < ε, (7)

where ε is the convergence tolerance of the iterative process.
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2.2 Graph Laplacian layout

Graph Laplacian layout (GLL) methods optimize a quadratic function associated
with the graph Laplacian matrix (Koren, 2005), which we call the GLL energy. The
graph Laplacian is obtained from the adjacency matrix by L = D −W , where D
is the diagonal matrix of node degrees defined by dii =

∑n
j=1wij . For weighted

graphs, GLL assumes that the weights correspond to similarities between nodes,
rather than dissimilarities as in MDS. GLL is also referred to as “spectral layout”
because the optimal solution involves the eigenvectors of the Laplacian, as we will
show. The GLL energy function is defined by

Energy(X) =
1

2

n∑
i=1

n∑
j=1

wij‖x(i) − x(j)‖2. (8)

It is easily shown that Energy(X) = tr(XTLX). The GLL problem can be for-
mulated as (Hall, 1970; Koren, 2005):

min
X

tr(XTLX) (9)

subject to XTX = nI (10)

XT1 = 0. (11)

From (8), it can be seen that minimizing the GLL energy function aims to make
edge lengths short by placing nodes connected by heavy edges close together. (11)
removes the trivial solution xa = 1, which places all nodes at the same location in
one dimension. It can also be viewed as removing a degree of freedom in the layout
due to translation invariance (Belkin and Niyogi, 2003) by setting the mean of xa

to 0 for all a. Since xa has zero-mean, (xT
a xa)/n corresponds to the variance

or scatter of the layout in dimension a. Thus (10) constrains the layout to have
unit variance in each dimension and zero covariance between dimensions so that
each dimension of the layout provides as much additional information as possible.
Moreover, one can see that (10) differs slightly from the usual constraint XTX =
I (Belkin and Niyogi, 2003; Koren, 2005), which constrains the layout to have
variance 1/n in each dimension. In the dynamic network setting where n can vary
over time, this is undesirable because the layout would change scale between time
steps if the number of nodes changes.

By a generalization of the Rayleigh-Ritz theorem (Lütkepohl, 1997), an opti-
mal solution to the GLL problem is given by X∗ =

√
n[v2,v3, . . . ,vs+1], where

vi denotes the eigenvector corresponding to the ith smallest eigenvalue of L. Note
that v1 = (1/

√
n)1 is excluded because it violates the zero-mean constraint (11).

Using the property that tr(ABC) = tr(CAB), the cost function (9) is easily
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shown to be invariant to rotation and reflection, so X∗R is also an optimal solution
for any RTR = I .

In practice, it has been found that using degree-normalized eigenvectors often
results in more aesthetically pleasing layouts (Belkin and Niyogi, 2003; Koren,
2005). The degree-normalized layout problem differs only in that the dot product in
each of the constraints is replaced with the degree-weighted dot product, resulting
in the following optimization problem:

min
X

tr(XTLX)

subject to tr(XTDX) = tr(D)I

XTD1 = 0.

The optimal solution is given by X∗ =
√

tr(D) [u2,u3, . . . ,us+1] or any rotation
or reflection ofX∗, where ui denotes the generalized eigenvector corresponding to
the ith smallest generalized eigenvalue of (L,D). Again, u1 =

(
1/
√

tr(D)
)
1 is

excluded because it violates the zero-mean constraint. A discussion on the merits
of the degree normalization can be found in (Koren, 2005).

3 Regularized layout methods

3.1 Regularization framework

The aforementioned static layout methods can be applied snapshot-by-snapshot to
create a visualization of a dynamic network; however, the resulting visualization
is often difficult to interpret, especially if there are large node movements between
time steps. We propose a regularized layout framework that uses a modified cost
function, defined by

Cmodified = Cstatic + αCgrouping + βCtemporal. (12)

The static cost Cstatic corresponds to the cost function optimized by the static layout
algorithm. For example, in MDS, it is the stress function defined in (1), and in GLL,
it is the energy defined in (8). The grouping cost Cgrouping is chosen to discourage
nodes from deviating too far from other group members; α controls the importance
of the grouping cost, so we refer to αCgrouping as the grouping penalty. Similarly,
the temporal cost Ctemporal is chosen to discourage nodes from deviating too far
from their previous positions; β controls the importance of the temporal cost, so
we refer to βCtemporal as the temporal penalty. We propose quadratic forms for
these penalties, similar to ridge regression (Hoerl and Kennard, 1970).
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Let k denote the number of groups. Define the group membership by an n× k
matrix C where

cil =

{
1 node i is in group l at time step t,
0 otherwise.

We introduce grouping regularization by adding group representatives, which also
get mapped to an s-dimensional position, stored in the matrix Y ∈ Rk×s. The
proposed grouping cost is given by

Cgrouping(X,Y ) =

k∑
l=1

n∑
i=1

cil‖x(i) − y(l)‖2, (13)

where y(l) denotes the position of the lth representative. Notice that the grouping
cost is decreased by moving y(l) and x(i) towards each other if node i is in group l.
As a result, nodes belonging to the same group will be placed closer together than
in a layout without grouping regularization. Notice also that we do not require
knowledge of the group membership of every node. Nodes with unknown group
memberships correspond to all-zero rows in C and are not subject to any grouping
penalty.

We introduce temporal regularization on nodes present at both time steps t
and t − 1 by discouraging node positions from deviating significantly from their
previous positions. This idea is often referred to in the graph drawing literature as
maintaining dynamic stability of the layouts and is often used to achieve the goal
of preserving the mental map. Define the diagonal matrix E by

eii =

{
1 node i was present at time step t− 1,
0 otherwise.

The proposed temporal cost is then given by

Ctemporal(X,X[t− 1]) =
n∑

i=1

eii‖x(i) − x(i)[t− 1]‖2. (14)

The temporal cost is decreased by moving x(i) towards x(i)[t−1], but unlike in the
grouping cost, x(i)[t− 1] is fixed because it was assigned at the previous time step.
Thus the previous node position acts as an anchor for the current node position.

We note that the temporal cost measures only the stability of the layouts over
time and is not necessarily a measure of goodness-of-fit with regard to the dynamic
network. For example, if there is a sudden change in the network topology, an
extremely low temporal cost may be undesirable because it could prevent the layout
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from adequately adapting to reflect this change. Thus one must consider the trade-
off of adaptation rate versus stability when choosing the temporal regularization
parameter.

Next we demonstrate how the grouping and temporal penalties can be intro-
duced into MDS and GLL as examples of the proposed regularization framework.

3.2 Dynamic multidimensional scaling

The dynamic multidimensional scaling (DMDS) modified cost is given by the mod-
ified stress function

MStress(X,Y ) =
1

2

n∑
i=1

n∑
j=1

vij
(
δij − ‖x(i) − x(j)‖

)2
+ α

k∑
l=1

n∑
i=1

cil‖x(i) − y(k)‖2 + β
n∑

i=1

eii‖x(i) − x(i)[t− 1]‖2.

(15)

The first term of (15) is the usual MDS stress function, while the second term
corresponds to the grouping penalty, and the third term corresponds to the tempo-
ral penalty. The constants α and β are the grouping and temporal regularization
parameters, respectively.

To optimize (15), we begin by re-writing the first two terms into a single term.
Define the augmented MDS weight matrix by

Ṽ =

[
V αC
αCT 0

]
, (16)

where the zero corresponds to an appropriately sized all-zero matrix. Similarly,
define the (n + k) × (n + k) augmented desired distance matrix ∆̃ by filling the
added rows and columns with zeros, i.e.

∆̃ =

[
∆ 0
0 0

]
(17)

Let

X̃ =

[
X
Y

]
(18)

denote the positions of the both the nodes and the group representatives. Then, the
first two terms of (15) can be written as

1

2

n+k∑
i=1

n+k∑
j=1

ṽij

(
δ̃ij − ‖x̃(i) − x̃(j)‖

)2
,

10



which has the same form as the usual stress defined in (1). The third term in (15)
can be written as a quadratic function of X̃ , namely

β
[
tr
(
X̃T ẼX̃

)
− 2 tr

(
X̃T ẼX̃[t− 1]

)
+ tr

(
X̃T [t− 1]ẼX̃[t− 1]

)]
,

where the (n + k) × (n + k) matrix Ẽ and the (n + k) × s matrix X̃[t − 1] are
constructed by zero-filling as in the definition of ∆̃.

Following the derivation in Section 2.1, for any (n+ k)× s matrix Z, (15) can
be majorized by

1

2

n+k∑
i=1

n+k∑
j=1

ṽij δ̃
2
ij + tr(X̃T R̃X̃)− 2 tr(X̃T S̃(Z)Z) + β

[
tr(X̃T ẼX̃)

− 2 tr(X̃T ẼX̃[t− 1]) + tr(X̃T [t− 1]ẼX̃[t− 1])
]
,

(19)

where R̃ and S̃ are defined by substituting the augmented matrices Ṽ and ∆̃ for V
and ∆, respectively, in (3) and (4). (19) is quadratic and convex in X so the min-
imizer of the upper bound is found by setting the derivative of (19) to 0, resulting
in the equation (

R̃+ βẼ
)
X̃ = S̃

(
Z
)
Z + βẼX̃[t− 1].

This can again be solved sequentially over each dimension. As in Section 2.1, we
solve this iteratively using the previous iteration as the majorizer, i.e. at iteration
h, solve (

R̃+ βẼ
)
x̃(h)
a = S̃

(
X̃(h−1)

)
x̃(h−1)
a + βẼx̃a[t− 1]. (20)

for x̃(h)
a for each a = 1, . . . , s. The process is iterated until the convergence crite-

rion (7) is attained. The first iterate can be taken to be simply the previous layout
x̃a[t − 1]. Unlike in ordinary MDS, the system of linear equations in (20) has a
unique solution provided that at least a single node was present at time step t− 1,
because R̃+ βẼ has full rank in this case.

Pseudocode for the DMDS algorithm for t = 1, 2, . . . is shown in Fig. 1. (20)
can be solved by performing a Cholesky factorization on (R̃ + βẼ) followed by
back substitution. At the initial time step (t = 0), there are no previous node
positions to initialize with, so a random initialization is used. Also, the position
of one node should be fixed before solving (20) due to the translation-invariance
discussed in Section 2.1. The time complexity of the algorithm at all subsequent
time steps is dominated by the O(n3) complexity of the Cholesky factorization,
assuming k � n, but the factorization only needs to be computed at the initial
iteration (h = 1). All subsequent iterations require only matrix-vector products
and back substitution and thus have O(n2) complexity.
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1: for t = 1, 2, . . . do
2: ∆← shortest paths(W )
3: V ← MDS weights(∆)
4: Construct Ṽ and ∆̃ using (16) and (17), respectively
5: Construct R̃ by substituting Ṽ for V in (3)
6: h← 0
7: X̃(0) ← X̃[t− 1]
8: repeat
9: h← h+ 1

10: Construct S̃
(
X̃(h−1)) by substituting Ṽ , ∆̃, and X̃(h−1) for V , ∆, and Z,

respectively, in (4)
11: for a = 1, . . . , s do
12: Solve

(
R̃+ βẼ

)
x̃
(h)
a = S̃

(
X̃(h−1))x̃(h−1)

a + βẼx̃a[t− 1] for x̃(h)
a

13: end for
14: until

[
MStress

(
X̃(h−1))−MStress

(
X̃(h)

)]
/MStress

(
X̃(h−1)) < ε

15: X̃ ← X̃(h)

16: end for

Figure 1: Pseudocode for the DMDS algorithm. The function shortest paths(·)
computes the matrix of shortest paths between all pairs of nodes, and
MDS weights(·) computes the MDS weight matrix.

3.3 Dynamic graph Laplacian layout

The dynamic graph Laplacian layout (DGLL) modified cost is given by the modi-
fied energy function

MEnergy(X,Y ) =
1

2

n∑
i=1

n∑
j=1

wij‖x(i) − x(j)‖2

+ α

k∑
l=1

n∑
i=1

cil‖x(i) − y(l)‖2 + β

n∑
i=1

eii‖x(i) − x(i)[t− 1]‖2.

(21)

Like with DMDS, the first term of (21) is the usual GLL energy function, while the
second term corresponds to the grouping penalty, and the third term corresponds
to the temporal penalty. Again, the parameters α and β correspond to the grouping
and temporal regularization parameters, respectively.

We first re-write (21) in a more compact form using the graph Laplacian. De-
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fine the augmented adjacency matrix by

W̃ =

[
W αC
αCT 0

]
. (22)

Notice that the group representatives have been added as nodes to the graph, with
edges between each node and its associated representative of weight α. Define
the augmented degree matrix by D̃ by d̃ii =

∑n+k
j=1 w̃ij , and the augmented graph

Laplacian by L̃ = D̃ − W̃ . The first two terms of (21) can thus be written as
tr(X̃T L̃X̃), where X̃ is as defined in (18). The third term of (21) can be written
as

β
[
tr(X̃T ẼX̃)− 2 tr(X̃T ẼX̃[t− 1]) + tr(X̃T [t− 1]ẼX̃[t− 1])

]
, (23)

where Ẽ is zero-filled as described in Section 3.2. The final term in (23) is inde-
pendent of X̃ and is henceforth dropped from the modified cost.

We now consider the constraints, which differ depending on whether the lay-
out is degree-normalized, as discussed in Section 2.2. We derive the constraints
for the degree-normalized layout; the equivalent constraints for the unnormalized
layout can simply be obtained by replacing D̃ with the identity matrix in the deriva-
tion. First we note that, due to the temporal regularization, the optimal layout is no
longer translation-invariant, so we can remove the zero-mean constraint. As a re-
sult, the variance and orthogonality constraints become more complicated because
we need to subtract the mean. Denote the degree-weighted mean in dimension a
by

µ̃a =
1∑n+k

i=1 d̃ii

n+k∑
i=1

d̃iix̃ia.

Then the degree-weighted covariance between the ath and bth dimensions is given
by

cov(x̃a, x̃b) =
1∑n+k

i=1 d̃ii

n+k∑
i=1

d̃ii(x̃ia − µ̃a)(x̃ib − µ̃b)

=
1∑n+k

i=1 d̃ii

n+k∑
i=1

d̃iix̃iax̃ib −
1(∑n+k

i=1 d̃ii

)2
(

n+k∑
i=1

d̃iix̃ia

)(
n+k∑
i=1

d̃iix̃ib

)

=
x̃T
aM x̃b

tr(D̃)
,
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1: for t = 1, 2, . . . do
2: Construct W̃ using (22) and its corresponding Laplacian L̃ = D̃ − W̃
3: Construct the centering matrix M using (24)
4: X̃(0) ← X̃[t− 1]
5: Solve (25) using the forms for∇f , g, H , and J in Appendix A
6: for r = 1→ max restarts do {if multiple random restarts are necessary}
7: Randomly assign X̃(0)

8: Solve (25) using the forms for∇f , g, H , and J in Appendix A
9: end for

10: X̃ ← best solution to (25) over all initializations
11: end for

Figure 2: Pseudocode for the DGLL algorithm.

where M is the centering matrix defined by

M = D̃ − D̃11T D̃

tr(D̃)
. (24)

Combining the modified cost function with the modified constraints, the nor-
malized DGLL problem is as follows:

min
X̃

tr(X̃T L̃X̃) + β
[
tr(X̃T ẼX̃)− 2X̃T ẼX̃[t− 1])

]
(25)

subject to tr(X̃TMX̃) = tr(D̃)I. (26)

Again, the unnormalized problem can be obtained by replacing D̃ with the identity
matrix in (24) and (26). Note that (25) contains a linear term in X̃ . Hence the
optimal solution cannot be obtained using scaled generalized eigenvectors as in the
static GLL problem. (25) can be solved using standard algorithms for constrained
nonlinear optimization (Bazaraa et al., 2006). The cost function and constraints
consist only of linear and quadratic terms, so the gradient and Hessian are eas-
ily computed in closed form (see Appendix A). Unfortunately, the problem is not
convex due to the equality constraints; thus a good initialization is important. The
natural choice is to initialize using the previous layout X̃(0) = X̃[t− 1]. To avoid
getting stuck in poor local minima, one could use multiple restarts with random
initialization.

Pseudocode for the DGLL algorithm for t = 1, 2, . . . is shown in Fig. 2. We
use the interior-point algorithm of Byrd et al. (1999) to solve (25). We find in prac-
tice that random restarts are not necessary unless β is extremely small because the
temporal regularization penalizes solutions that deviate too far from the previous
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layout. For other choices of β, we find that the interior-point algorithm indeed
converges to the global minimum when initialized using the previous layout. The
most time-consuming operation in solving (25) consists of a Cholesky factoriza-
tion, which must be updated at each iteration. At the initial time step (t = 0), there
are no previous node positions, and hence, no linear term in (25), so the layout is
obtained using scaled generalized eigenvectors, as described in Section 2.2. The
time complexity at all subsequent time steps is dominated by theO(n3) complexity
of the Cholesky factorization.

3.4 Discussion

We chose to demonstrate the proposed framework with MDS and GLL; however, it
is also applicable to other graph layout methods, such as the Fruchterman-Reingold
method of force-directed layout (Fruchterman and Reingold, 1991). Since the
static cost functions of MDS and GLL encourage different appearances, the same
is true of DMDS and DGLL. Ultimately, the decision of which type of layout to
use depends on the type of network and user preferences. Kamada-Kawai MDS
layouts are often preferred in 2-D because they discourage nodes from overlapping
due to the large MDS weights assigned to maintaining small desired distances. On
the other hand, if a 1-D layout is desired, so that the entire sequence can be plotted
as a time series, node overlap is a lesser concern. For such applications, DGLL
may be a better choice.

Another decision that needs to be made by the user is the choice of the param-
eters α and β, which can be tuned as desired to create a meaningful animation.
Unlike in supervised learning tasks such as classification, there is no ground truth
in visualization so the selection of parameters in layout methods is typically done
in an ad-hoc fashion. Furthermore, multiple layouts created by differing choices
of parameters could be useful for visualizing different portions of the network or
yielding different insights (Witten and Tibshirani, 2011). This is particularly true
of the grouping regularization parameter α. When a high value of α is used, nodes
belonging to the same group are placed much closer together than nodes belong-
ing to different groups. The resulting visualization emphasizes node movements
between groups (for nodes that change group between time steps) while sacrificing
the quality of the node movements within groups. On the other hand, when a low
value of α is used, node movements within groups are more clearly visible, but
node movements between groups are more difficult to see. We explore the effect of
changing parameters on the resulting animation in several experiments in Section
5.

Finally, we note that the proposed framework is designed for the on-line set-
ting where only past and present graph snapshots are available. Hence the temporal
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cost (14) involves only node positions at times t and t − 1, not t + 1. In the off-
line setting where the entire sequence of snapshots is available in advance, one
can obtain higher quality layout sequences using an off-line method as discussed
in Brandes et al. (2012). The proposed framework could easily be modified for
the off-line setting if desired. The grouping cost (13) would not need any modifi-
cation, and the temporal cost (14) would simply become Ctemporal(X,X[t − 1]) +
Ctemporal(X,X[t+ 1]) to discourage nodes from deviating from both their past and
future positions. Cmodified would then be optimized over all times t simultaneously
rather than snapshot-by-snapshot.

4 Related work

The regularized graph layout framework proposed in this paper utilizes a grouping
penalty that places nodes belonging to the same group together and a temporal
penalty that places nodes near their positions at neighboring time steps. Node
grouping and temporal stability in the context of graph layout have previously been
studied independently of each other. We summarize relevant contributions to both
of these areas.

4.1 Node grouping

Several grouping techniques for static graph layout have been previously been pro-
posed. Given a partition of a graph into groups, Wang and Miyamoto (1995) pro-
pose a modified force-directed layout that considers three types of forces: intra-
forces, inter-forces, and meta-forces. Intra-forces and inter-forces denote forces
between nodes in the same group and nodes in different groups, respectively. Meta-
forces correspond to forces between groups; nodes in the same group are subject to
identical meta-forces. By decreasing the strength of inter-forces and increasing the
strength of meta-forces, nodes belonging to the same group get positioned closer
to each other in the layout.

Eades and Huang (2000) developed a system called DA-TU for visualizing
groups in large static graphs. It also utilizes a modified force-directed layout with
inter- and intra-forces. However, rather than using meta-forces, DA-TU adds a vir-
tual node for each group with a virtual force between each virtual node and each
node in its group. Notice that the virtual nodes are identical to the group represen-
tatives in our proposed framework; however, the use of virtual forces to achieve
grouping regularization differs from the squared Euclidean distance grouping cost
we propose. In addition, DA-TU was designed for visualizing static graphs at many
scales rather than visualizing dynamic graphs, so it does not contain a temporal sta-
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bility penalty.
Grouping techniques have been applied in the field of supervised dimension-

ality reduction, which is very closely related to graph layout. The objective of
dimensionality reduction (DR) is to find a mapping φ : Rp → Rs, p > s from
a high-dimensional space to a lower-dimensional space while preserving many of
the characteristics of the data representation in the high-dimensional space (Lee
and Verleysen, 2007). For example, MDS is a DR method that attempts to preserve
pairwise distances between data points. In the supervised DR setting, one also has
a priori knowledge of the grouping structure of the data. Supervised DR meth-
ods pose the additional constraint that data points within the same group should
be closer together in the low-dimensional space than points in separate groups.
Notice that this is the same grouping constraint we pose in our regularized layout
framework.

Witten and Tibshirani (2011) proposed a supervised version of MDS (SMDS)
that optimizes the following cost function over X:

1

2

n∑
i=1

n∑
j=1

(δij − ‖x(i) − x(j)‖)2 + α
∑

i,j:yj>yi

(yj − yi)
s∑

a=1

(
δij√
s
− (xja − xia)

)2

(27)
where yi is an ordinal value denoting the group membership of data point i. Notice
that the first term in (27) is the ordinary MDS stress with vij = 1 for all i, j,
while the second term provides the grouping regularization. α controls the trade-
off between the two terms. The key difference between the SMDS grouping penalty
and the DMDS grouping penalty proposed in this paper is in the way groups are
treated. SMDS assumes that groups are labeled with an ordinal value that allows
them to be ranked, and the form of the grouping penalty in (27) does indeed tend
to rank groups in Rs by encouraging xja > xia, a = 1, . . . , s for all i, j such that
yj > yi. On the other hand, our proposed grouping penalty treats group labels as
categorical. It does not rank groups in Rs but simply pulls nodes belonging to the
group together.

Another related method for supervised DR is classification constrained dimen-
sionality reduction (CCDR) (Costa and Hero III, 2005), which is a supervised ver-
sion of Laplacian eigenmaps (Belkin and Niyogi, 2003). CCDR optimizes the
following cost function over (X,Y ):

1

2

n∑
i=1

n∑
j=1

‖x(i) − x(j)‖2 + α

k∑
l=1

n∑
i=1

cil‖x(i) − y(l)‖2.

Notice that this cost function is simply the sum of the GLL energy and the DGLL
grouping penalty. Indeed, DGLL can be viewed as an extension of CCDR to time-
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varying data. The CCDR solution is given by the matrix of generalized eigenvec-
tors Ũ = [ũ2, . . . , ũs+1] of (L̃, D̃), where L̃ and D̃ are as defined in Section 3.3.
Although the addition of the temporal regularization due to the anchoring presence
of the previous layout X[t− 1] prevents the DGLL problem from being solved us-
ing generalized eigenvectors, it discourages large node movements between time
steps in order to better preserve the mental map.

4.2 Temporal stability

There have been many previous studies on the problem of laying out dynamic net-
works while preserving stability between time snapshots. Moody et al. (2005) pro-
posed to generate dynamic layouts using a static layout method such as Kamada-
Kawai MDS and to initialize at each time step using the layout generated at the
previous time step. The approach of Moody et al. (2005) is implemented in the so-
cial network visualization software SoNIA (Bender-deMoll and McFarland, 2012).
Such an approach, however, does not allow one to explicitly control the stability
of the layout sequence, as noted by Brandes et al. (2012). We also find it to be
insufficient at preventing drastic node movements over time in our experiments in
Section 5.

To enforce stability in layouts at consecutive time steps, Brandes and Wag-
ner (1997) proposed a probabilistic framework for dynamic network layout where
the objective is to choose the layout at a particular time step with maximum pos-
terior probability given the previous layout. Similar to our proposed framework,
the probabilistic framework is applicable to a wide class of graph layout methods.
Brandes and Wagner (1997) proposed several different criteria for temporal sta-
bility. One such criterion is to demand stability of node positions in consecutive
layouts. For this notion of stability, the authors model each node’s current position
by a spherical Gaussian distribution centered at the node’s previous position. Thus
the posterior probability can be written as (up to a normalizing constant)

exp

{
−

(
Cstatic +

∑n
i=1 eii‖x(i) − x(i)[t− 1]‖2

2σ2

)}
, (28)

where σ is a scaling parameter for the amplitude of node movements. Notice that
by taking the logarithm of (28), one obtains the same form as our proposed regular-
ized framework (12), excluding the grouping cost, with β = 1/(2σ2). The layout
that maximizes the logarithm of (28) is the same layout that maximizes posterior
probability; thus, under this notion of stability, there is an equivalence between the
probabilistic framework of Brandes and Wagner (1997) and the temporal regular-
ization framework proposed in this paper.
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Other methods for preserving temporal stability in dynamic layouts tend to
be specific to a particular layout method. Baur and Schank (2008) proposed a
temporally regularized MDS algorithm that uses the following localized update
rule at each iteration h for each node i at each time step t:

x
(h)
ia =

x̃
(h−1)
ia + β(eiixia[t− 1] + fiixia[t+ 1])∑

j 6=i vij + β(eii + fii)
, (29)

where

x̃
(h−1)
ia =

∑
j 6=i

vij

x(h−1)ja + δij
x
(h−1)
ia − x(h−1)ja

‖x(h−1)
(i) − x

(h−1)
(j) ‖

 ,

and F is the diagonal matrix defined by

fii =

{
1 node i is present at time step t+ 1,
0 otherwise.

This algorithm was used in Leydesdorff and Schank (2008) for visualizing similar-
ities in journal content over time. (29) is an off-line update because it uses both the
node positions at time steps t−1 and t+1 to compute the node position at time step
t, whereas the methods we propose, including DMDS, are on-line methods that use
only current and past data. It was shown in Baur and Schank (2008) that the lo-
calized update of (29) optimizes the sum of the MStress function in (15) over all t
with k = 0, i.e. without a grouping penalty. It is one of many possible ways to add
temporal stability to layouts created by stress minimization in the off-line setting.
Brandes and Mader (2011) performed a quantitative comparison of different tem-
poral stability penalties for MDS layouts, mostly for the off-line setting, including
that of Baur and Schank (2008). Several of these penalties are implemented in the
social network analysis and visualization software Visone (Brandes and Wagner,
2004; Visone–WWW). (29) can be modified into an on-line update by removing
the terms involving fii; the on-line modification optimizes the MStress function in
(15) at a single time step with k = 0, i.e. without a grouping penalty2. Hence the
proposed DMDS layout method can be viewed as an on-line modification of the
method of Baur and Schank (2008) with the addition of a grouping penalty.

When it comes to GLL, to the best of our knowledge, there is no prior work
that explicitly enforces temporal stability. Brandes et al. (2007) suggested two
approaches for interpolating between static spectral layouts, where eigenvectors
are calculated using power iteration (Trefethen and Bau III, 1997) initialized with

2This on-line modification is referred to in Brandes and Mader (2011) as the APP (anchor to
previous layout, initialized with previous layout) method.
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the layout at the previous time step, similar to the approach of Moody et al. (2005)
for MDS. The first is to simply linearly interpolate node positions between layouts,
and the second is to compute a spectral layout of a smoothed graph Laplacian
matrix λL[t−1] + (1−λ)L[t]. The second approach utilizes both current and past
graph snapshots and should perform better than the first approach, but it also does
not explicitly constrain the layout at time t from deviating too far from the layout at
time t− 1. We henceforth refer to the second approach as the BFP method and use
it as a baseline for evaluating the performance of our proposed DGLL algorithm.

Other methods for laying out dynamic networks have also been proposed.
TGRIP (Erten et al., 2004) is a modified force-directed layout method with added
edges between vertices present at multiple time steps. The user-selected weights of
these added edges control the amount of temporal regularization in the layouts. The
method of Frishman and Tal (2008) is also a modified force-directed layout. It is
an on-line method that uses pinning weights to previous node positions to achieve
temporal regularization and a GPU-based implementation to reduce run-time. The
emphasis in both methods is on improving scalability to deal with extremely large
networks by coarsening graphs to compute an initial layout then applying local re-
finements to improve the quality of the layout. As a result, they are applicable to
much larger networks than the O(n3) methods proposed in this paper. However,
these methods do not incorporate any sort of grouping regularization to discourage
nodes from deviating too far from other nodes in the same group.

5 Experiments

We demonstrate the proposed framework by applying DMDS and DGLL on a sim-
ulated data set and two real data sets. Several snapshots of the resulting visual-
izations are presented. The full, animated visualizations over all time steps can be
found on the supporting website (Xu et al., 2012).

In the second experiment, we do not have a priori group knowledge. Hence
we learn the groups using the AFFECT evolutionary spectral clustering algorithm
(Xu et al., 2013), summarized in Appendix B. In the other two experiments, we do
have a priori group knowledge. We compute layouts both using the known groups
and the groups learned by clustering. We also compute layouts using several other
methods as baselines for comparison. Since the proposed framework is designed
for the on-line setting, we use only other on-line methods as baselines. DMDS is
compared to static MDS initialized using the previous layout as in Moody et al.
(2005) and the on-line modification of the method of Baur and Schank (2008) dis-
cussed in Section 4.2, which we denote by “stabilized MDS”. DGLL is compared
to the CCDR method of Costa and Hero III (2005), the BFP method of computing
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the spectral layout of a smoothed graph Laplacian matrix (Brandes et al., 2007),
and the standard spectral GLL solution (Koren, 2005). Note that the proposed
DMDS and DGLL methods are the only ones that utilize both grouping and tem-
poral regularization; the other baselines either use only grouping regularization
(CCDR), only temporal regularization (stabilized MDS), or neither.

Summary statistics from the experiments are presented in Tables 1 and 2 for the
MDS- and GLL-based methods, respectively, and are discussed in Sections 5.1–
5.3. The KK choice of MDS weights is used for all of the MDS-based methods,
and degree-normalized layout is used for all of the GLL-based methods.

We define three measures of layout quality: static cost, centroid cost, and tem-
poral cost. The static cost measures how well the current layout coordinates fit the
current graph snapshot. It is the cost function that would be optimized by the static
graph layout algorithm, either MDS or GLL. The static cost for the MDS-based
methods is taken to be the static MDS stress defined in (1). The static cost for the
GLL-based methods is the GLL energy defined in (8).

The centroid cost is the sum of squared distances between each node and its
group centroid, which is also the cost function of the well-known method of k-
means clustering. It is used to measure how close nodes are to members of their
group3. When prior knowledge of the groups is available, we calculate the cen-
troid cost with respect to the known groups, even for the layouts where groups are
learned by clustering. When prior knowledge is not available, we calculate the
centroid cost with respect to the learned groups.

The temporal cost (14) is the sum of squared distances between node positions
in layouts at consecutive time steps. It is often used to quantify how well the mental
map is preserved over time (Brandes and Wagner, 1997; Branke, 2001; Baur and
Schank, 2008; Frishman and Tal, 2008; Brandes and Mader, 2011; Brandes et al.,
2012). As mentioned in Section 3.1, the temporal cost should only be interpreted
as a measure of stability and not a measure of temporal goodness-of-fit.

The costs displayed are appropriately normalized (either by the number of
nodes or pairs of nodes, depending on the quantity) so they are comparable across
different data sets. For the MDS-based methods, we also compare the number
of iterations required for convergence to a tolerance of ε = 10−4. For the BFP
method, the parameter λ lies on a different scale from the parameters α and β
for the other methods. To ensure a fair comparison, we choose λ to minimize
Cstatic +αCcentroid +βCtemporal, where α and β are chosen to be the same parameters
used for the other methods.

From Tables 1 and 2, one can see that DMDS and DGLL have lower centroid
3Note that we cannot simply use the grouping cost (13) because it is not defined for methods that

do not incorporate grouping regularization.
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and temporal costs than the baseline methods in all but one instance. Since DMDS
and DGLL are the only methods to employ both grouping and temporal regulariza-
tion, the results match up with what one might expect. The BFP method achieves
a slightly lower centroid cost in the Newcomb experiment compared to DGLL but
has a significantly higher temporal cost. The lower centroid and temporal costs for
DMDS and DGLL are achieved by choosing node positions with a higher static
cost. Notice also that DMDS requires significantly less iterations to converge than
static MDS, which employs no regularization at all, and slightly less than stabilized
MDS, which employs only temporal regularization. This is an added benefit of us-
ing both regularizers. The results for each experiment will be discussed in greater
detail in the following.

5.1 Stochastic block model

In this experiment, we generate simulated networks using a stochastic block model
(SBM) (Holland et al., 1983). An SBM creates networks with k groups, where
nodes in a group are stochastically equivalent, i.e. the probability of forming an
edge between nodes i and j is dependent only on the groups to which i and j
belong. An SBM is completely specified by the set of probabilities {pcd; c =
1, . . . , k; d = c, c+ 1, . . . , k}, which represent the probability of forming an edge
between any particular node in group c and any particular node in group d.

We generate 20 independent samples from a 30-node 4-group SBM with pa-
rameters pii = 0.6 and pij = 0.2 for all i 6= j. Each sample corresponds to a graph
snapshot at a single time step. The group memberships are randomly assigned at
the initial time step and remain unchanged up to t = 9. At t = 10, 1/4 of the nodes
are randomly re-assigned to different groups to simulate a change in the network
structure. The group memberships are then held constant until the last time step.
We create layouts of the network using parameters α = β = 1.

In Fig. 3, we plot the variation over time of the static, centroid, and temporal
costs of the MDS-based methods. The costs are averaged over 100 simulation runs.
The static cost is higher for the regularized layouts than for the static MDS layout.
The grouping regularization in DMDS results in lower centroid cost as expected.
When the groups are learned by clustering, the centroid cost is slightly higher than
with the known groups, but still much lower than that of stabilized MDS and static
MDS. Although stabilized MDS has only temporal regularization, notice that it also
has a lower centroid cost than static MDS. This is because the SBM parameters are
held constant from time steps 0 to 9 and from time steps 10 to 19, so that the group
structure can be partially revealed by temporal regularization alone once enough
time samples have been collected. The temporal regularization of both DMDS
and stabilized MDS results in a significantly lower temporal cost than static MDS.
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Figure 3: Costs of MDS-based layouts in the SBM experiment at each time step.
The DMDS layouts have the lowest centroid and temporal costs but also the highest
MDS stress due to the regularizers.

The grouping regularization of DMDS also decreases the temporal cost slightly
compared to stabilized MDS. An added benefit of the regularization in DMDS is
the significant reduction in the number of iterations required for the MDS algorithm
to converge, as shown in Table 1. On average, DMDS required less than half as
many iterations as static MDS, and slightly less than stabilized MDS.

In Fig. 4, we plot the variation over time of the static, centroid, and temporal
costs of the GLL-based methods. Similar to the MDS-based methods, the static
cost is higher for the regularized layouts, but the centroid and temporal costs are
much lower. Only DGLL is able to generate layouts with low temporal cost due
to the temporal regularization. The grouping regularization in CCDR reduces the
centroid cost but only slightly improves the temporal cost. The BFP method, which
combines Laplacian matrices from two time steps, performs better than the stan-
dard spectral method both in centroid and temporal cost, but is worse than DGLL
in both.
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Figure 4: Costs of GLL-based layouts in the SBM experiment at each time step.
The DGLL layouts have the lowest centroid and temporal costs but also the highest
GLL energy due to the regularizers.

Notice from Figs. 3 and 4 that the centroid and temporal costs of DMDS and
DGLL increase at t = 10, reflecting the presence of the change in network struc-
ture. Such an increase is beneficial for two reasons. First, it indicates that the
grouping and temporal penalties are not so strong that they mask changes in net-
work structure, which would be undesirable. Second, it suggests that the centroid
and temporal costs can be used to filter the sequence of networks for important
events, such as change points, which can be useful for exploratory analysis of dy-
namic networks over long periods of time.

We demonstrate the effect of varying the regularization parameters in DMDS
and DGLL, respectively, in Figs. 5 and 6. We generate layouts using 10 choices
each of α and β, uniformly distributed on a logarithmic scale between 0.1 and
10. The observations are similar for both DMDS and DGLL. As expected, the
temporal cost decreases for increasing β. For low values of β, increasing α also
decreases the temporal cost. This is a sensible result because nodes can move
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Figure 6: Mean centroid and temporal costs of DGLL layouts in the SBM experi-
ment as functions of α and β. The behavior of both costs as functions of α and β
is similar to their behavior in DMDS.

significantly over time but must remain close to the group representative, which
lowers the temporal cost. The result is slightly different when it comes to the
centroid cost. As expected, increasing α decreases centroid cost. For low values
of α, increasing β also decreases centroid cost to a point, but a very high β may
actually increase centroid cost, especially in DMDS. This is also a sensible result
because a very high β places too much weight on the initial time step and prevents
nodes from moving towards their group representative at future time steps.

From this experiment we can see that there is a coupled effect between group-
ing and temporal regularization, and that using both regularizers can often result in
both lower centroid and temporal costs. Indeed this is the case in all of the exper-
iments in this paper, as shown in Tables 1 and 2. However, it is important to note
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that this is not always true. For example, if a node changes group between two
time steps, then the two penalties can oppose each other, with the temporal penalty
attempting to pull the node towards its previous position and the grouping penalty
attempting to pull the node towards its current representative, which could be quite
far from the node’s previous position. This is another reason for the increase in
both centroid and temporal costs at t = 10, when the group structure is altered, in
Figs. 3 and 4.

5.2 Newcomb’s fraternity

This data set was collected by Nordlie and Newcomb (Nordlie, 1958; Newcomb,
1961) as part of an experiment on interpersonal relations. It has been examined
in several previous studies including Moody et al. (2005) and Bender-deMoll and
McFarland (2006). 17 incoming male transfer students at the University of Michi-
gan were housed together in fraternity housing. Each week, the participants ranked
their preference of each of the other individuals in the house, in private, from 1 to
16. Data was collected over 15 weeks in a semester, with one week of data missing
during week 9, corresponding to Fall break.

We process the rank data in the same manner as Moody et al. (2005) and
Bender-deMoll and McFarland (2006). Graph snapshots are created by connecting
each participant to his 4 most preferred students with weights from 4 decreasing
to 1 corresponding to the most preferred to the 4th most preferred student. The
graph is converted to an undirected graph by taking the edge weight between i and
j to be the larger of the directed edge weights. The weights are converted into
dissimilarities for the MDS-based methods by dividing each similarity weight by
the maximum similarity of 4. No group information is known a priori, so the group
structure is learned using the AFFECT clustering algorithm.

In Fig. 7, we show a time plot of 1-D layouts created using DGLL, where the
color of a line segment between time steps t and t+ 1 denotes the group member-
ship of the node at time step t, and the location of the endpoints correspond to the
node’s position in the layouts at time steps t and t+ 1. The regularization parame-
ters are chosen to be α = β = 1. While a 1-D layout does a poor job of conveying
the topology of the network, some temporal trends can be seen. For example, two
mostly stable groups form after several weeks, but three students (numbers 10, 14,
and 15) switch from the red to the blue group around Fall break. Student 15 reverts
back to the red group after the break. Students 10 and 15 were found by Moody
et al. (2005) to continuously change their preferences throughout the observation
period. A similar observation can be made from the 1-D DGLL layouts in Fig. 7,
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Figure 7: Time plots of 1-D DGLL layouts of Newcomb’s fraternity, colored by
learned groups. Node positions in the layout are relatively stable over time unless
nodes are changing group.

where students 10 and 15 have the two largest cumulative movements4 of all the
students (4.51 and 2.51, respectively, compared to the mean over all students of
1.16).

In Figs. 8-10, we present a comparison of the first four snapshots from the
layouts created using DMDS, stabilized MDS, and static MDS, respectively. In
both figures, the top row corresponds to the layouts, and the bottom row illustrates
the movement of each node over time. In the plots on the bottom row, each node is
drawn twice: once at its current position at time t and once at its previous position
at time t−1. An edge connects these two positions; the length of the edge indicates
how far a node has moved between time steps t− 1 and t.

At t = 0, the red and green groups are mixed together in the stabilized MDS
and static MDS layouts, while they are easily distinguished in the DMDS layout
due to the grouping regularization. Furthermore, the node movements over time
in the static MDS layouts are much more extreme than in the DMDS layouts. The
excessive node movement is even more visible by comparing the DMDS and static
MDS animations on the supporting website (Xu et al., 2012). The excessive node
movement is reflected in the substantially higher temporal cost of static MDS com-
pared to DMDS, as shown in Table 1, due to the lack of temporal regularization.
DMDS also has lower mean centroid and temporal costs compared to stabilized
MDS, although the improvement in temporal cost is smaller than compared to static
MDS because stabilized MDS also employs temporal regularization. Finally, the

4The cumulative movement of node i is measured by
15∑
t=2

(x(i)[t]− x(i)[t− 1])2.
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Figure 8: Layouts of Newcomb’s fraternity at four time steps (top row) generated
using proposed DMDS algorithm and node movements between layouts (bottom
row). The groups remain well-separated.
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Figure 9: Layouts of Newcomb’s fraternity at four time steps (top row) using sta-
bilized MDS and node movements between layouts (bottom row). The groups are
not as well-separated as in the DMDS layouts.
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Figure 10: Layouts of Newcomb’s fraternity at four time steps (top row) using
static MDS and node movements between layouts (bottom row). There is excessive
node movement, and the groups are not as well-separated as in the DMDS layouts.

mean number of iterations required for the static MDS layout to converge is almost
four times that of DMDS, so DMDS presents significant computational savings in
addition to better preservation of the mental map.

For the GLL-based layouts, which can be found on the supporting website (Xu
et al., 2012), there is not much difference in terms of the centroid cost. Notice from
Table 2, that the mean centroid cost differs by only 4% between the best (BFP) and
worst (spectral). This is not surprising, as the groups are learned using evolutionary
spectral clustering, which is closely related to GLL. However, DGLL achieves
significantly lower temporal cost than the baseline methods due to the temporal
regularization. The temporal smoothing of the Laplacian for BFP helps to lower
the temporal cost slightly compared to the CCDR and static spectral layouts, but it
does not explicitly encourage stability like the temporal regularization in DGLL.

5.3 MIT Reality Mining

The MIT Reality Mining data set (Eagle et al., 2009) was collected as part of an
experiment on inferring social networks by using cell phones as sensors. 94 stu-
dents and staff at MIT were given access to smart phones that were monitored
over two semesters. The phones were equipped with Bluetooth sensors, and each
phone recorded the Media Access Control addresses of nearby Bluetooth devices at
five-minute intervals. Using this proximity data, we construct a sequence of graph
snapshots where each participant is connected to the 5 participants he or she was
in highest proximity to during a time step. We divide the data into time steps of
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Figure 11: DMDS layouts of MIT Reality Mining data at four time steps using
the known groups (top row) and node movements between layouts (bottom row).
Blue nodes denote colleagues working in the same building, and red nodes denote
incoming students. The incoming students separate from the others after the first
week of classes (t = 5).

one week, resulting in 46 time steps between August 2004 and June 2005. From
the MIT academic calendar (MIT–WWW), we know the dates of important events
such as the beginning and end of school terms. We also know that 26 of the par-
ticipants were incoming students at the university’s business school, while the rest
were colleagues working in the same building. These affiliations are used as the
known groups.

The DMDS layouts at three time steps computed using the using the known
groups with α = 1, β = 3 are shown in Fig. 11. A higher value of β is chosen
compared to the previous experiments in order to create more stable layouts due to
the higher number of nodes. Node labels are not displayed to reduce clutter in the
figure. We encourage readers to view the animation on the supporting website (Xu
et al., 2012) to get a better idea of the temporal evolution of this network. t = 5
corresponds to the first week of classes. Notice that the two groups are slightly
overlapped at this time step. As time progresses, the group of incoming students
separates quite clearly from the colleagues working in the same building. This
result suggests that the incoming students are spending more time in proximity
with each other than with the remaining participants, which one would expect as

32



t = 5 t = 6 t = 7

MDS stress:

Centroid cost:

Temporal cost:

0.165

1.357

0.215

1.024

0.169

0.208

0.809

0.118

Figure 12: DMDS layouts of MIT Reality Mining data at four time steps with
α = 5, β = 3 using groups learned by clustering (top row) and node movements
between layouts (bottom row). Colors correspond to learned groups. There is a
lot of node movement between groups but very little movement within groups,
resulting in high MDS stress.

the students gain familiarity with each other as the semester unfolds.
The same observation can be made from the DMDS layouts computed using

the groups learned by the AFFECT clustering algorithm. Initially at t = 5, the
separation between groups is not clear so many nodes are not correctly classified,
but at subsequent time steps when the separation is clearer, almost all of the nodes
are correctly classified. Between time steps 5 and 6 many nodes switch groups.
This can be seen in Fig. 12, where the colors correspond to the learned groups
rather than the known groups. These layouts are created using α = 5, β = 3; the
high value of α emphasizes the node movements between groups while sacrificing
the quality of movements within groups, as discussed in Section 3.4. Notice that
the groups are very compact and well-separated, so that nodes switching from one
group to another have large movements between layouts. Compare these layouts
to those shown in Fig. 13, which are created using α = 1/5, β = 3. The lower
value of α better shows movements within groups, but the large changes in groups
between time steps 5 and 6 are not as obvious as in Fig. 12. Both layouts are useful
and provide different insights into the network dynamics; however, the observation
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Figure 13: DMDS layouts of MIT Reality Mining data at four time steps with
α = 1/5, β = 3 using groups learned by clustering (top row) and node movements
between layouts (bottom row). Colors correspond to learned groups. There is more
movement within groups, resulting in lower MDS stress, but it is more difficult to
identify movement between groups.

of the incoming students separating from the other participants is evident in both
visualizations.

The benefits of using both regularizers can be seen once again from the statis-
tics in Tables 1 and 2. With known groups, the DMDS and DGLL layouts have
lower mean centroid and temporal costs compared to all baseline layouts. The
DMDS and DGLL layouts using groups learned by clustering still have lower
temporal cost than the baseline methods, and only CCDR, which uses the known
groups, achieves lower centroid cost than DGLL with learned groups. The DMDS
algorithms also converge more quickly than both stabilized MDS and static MDS.

6 Conclusions

In this paper we proposed a regularized graph layout framework for dynamic net-
work visualization. The proposed framework incorporates both grouping and tem-
poral regularization into graph layout in order to discourage nodes from deviating
too far from other nodes in the same group and from their previous position, respec-
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tively. The layouts are generated in an on-line manner using only present and past
data. We introduced two dynamic layout algorithms, DMDS and DGLL, which are
regularized versions of their static counterparts. Multiple experiments demonstrate
that the regularizers do indeed have the intended effects of lowering the centroid
and temporal costs to better preserve the mental map.

An important area for future work concerns visualization of extremely large
dynamic networks containing upwards of thousands of nodes. One issue is related
to scalability; both DMDS and DGLL require O(n3) computational time and thus
may not be applicable to extremely large networks. An even more significant issue
involves the interpretation of visualizations of such large networks. Even when
equipped with grouping and temporal regularization, layouts of extremely large
networks may be confusing for a human to interpret so additional techniques may
be necessary to deal with this challenge.

Appendix A DGLL solution in 2-D

We derive the expressions for ∇f , g, H , and J in 2-D. These vectors and ma-
trices are computed at each iteration in the DGLL algorithm to solve (25) using
the interior-point algorithm (Byrd et al., 1999) as discussed in Section 3.3. The
constraints can be written as g(X̃) = 0 where

g(X̃) =

x̃T
1M x̃1 − tr(D̃)

x̃T
2M x̃2 − tr(D̃)

x̃T
2M x̃1

 .
The gradient of the objective function is given by

∇f(X̃) =

[
(2L̃+ 2βẼ)x̃1 − 2βẼx̃1[t− 1]

(2L̃+ 2βẼ)x̃2 − 2βẼx̃2[t− 1]

]
.

The Jacobian of the constraints is given by

J(X̃) =

2x̃T
1M 0
0 2x̃T

2M
x̃T
2M x̃T

1M

 .
Finally, the Hessian is obtained by

H(X̃,µ) = ∇2f(X̃) + µ1∇2g1(X̃) + µ2∇2g2(X̃) + µ3∇2g3(X̃)

=

[
2L̃+ 2βẼ + 2µ1M µ3M

µ3M 2L̃+ 2βẼ + 2µ2M

]
.
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Appendix B AFFECT evolutionary clustering algorithm

Evolutionary clustering algorithms are designed to cluster dynamic data where a
set of objects is observed over multiple time steps. In the dynamic network setting,
objects correspond to nodes, and observations correspond to graph adjacency ma-
trices W [t]. The AFFECT (adaptive forgetting factor for evolutionary clustering
and tracking) framework (Xu et al., 2013) involves creating a smoothed adjacency
matrix at each time step and then performing ordinary static clustering on this ma-
trix. The smoothed adjacency matrix is given by

Ψ̂[t] = α[t]Ψ̂[t− 1] + (1− α[t])W [t],

where α[t] is a forgetting factor that controls how quickly previous adjacency ma-
trices are forgotten. We drop the time index for quantities at time t for simplicity.
The AFFECT framework adaptively estimates the optimal amount of smoothing to
apply at each time step in order to minimize mean-squared error (MSE) in terms of
the Frobenius norm E[‖Ψ̂ − Ψ‖2F ], where Ψ denotes the expected adjacency ma-
trix E[W ], which can be viewed as a matrix of unknown states characterizing the
network structure at time t. It is shown in Xu et al. (2013) that the optimal choice
of α is given by

α∗ =

∑n
i=1

∑n
j=1 var (wij)∑n

i=1

∑n
j=1

{(
ψ̂ij [t− 1]− ψij

)2
+ var (wij)

} .
For real networks, ψij and var(wij) are unknown so α∗ cannot be computed.

The AFFECT framework iteratively estimates the optimal forgetting factor and
clusters nodes using a two-step procedure. Begin by initializing the clusters, for
example, by using the clusters at the previous time step. α∗ is estimated by replac-
ing the unknown means and variances with sample means and variances computed
over the clusters. Static clustering is then performed on the smoothed adjacency
matrix Ψ̂ to obtain cluster memberships. The estimate of α∗ and the cluster mem-
berships are then refined by iterating the two steps. In this paper, we use normalized
cut spectral clustering (Ng et al., 2001) as the static clustering algorithm. We refer
interested readers to Xu et al. (2013) for additional details.
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