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Abstract

In this paper, we focus on finding clusters in partially categorized data
sets. We propose a semi-supervised version of Gaussian mixture model, called
C3L, which retrieves natural subgroups of given categories. In contrast to
other semi-supervised models, C3L is parametrized by user-defined leakage
level, which controls maximal inconsistency between initial categorization and
resulting clustering. Our method can be implemented as a module in practical
expert systems to detect clusters, which combine expert knowledge with true
distribution of data. Moreover, it can be used for improving the results of less
flexible clustering techniques, such as projection pursuit clustering. The paper
presents extensive theoretical analysis of the model and fast algorithm for its
efficient optimization. Experimental results show that C3L finds high quality
clustering model, which can be applied in discovering meaningful groups in
partially classified data.

1 Introduction

Model-based clustering aims at finding a mixture of probability models, which op-
timally estimates true probability distribution on data space. Contrary to other
clustering techniques, it does not only recover meaningful groups, but also gives
a rule (probability model) for generating elements from clusters. Therefore, it is
commonly used in various areas of machine learning and data analysis [28,34,40].

Although clustering is an unsupervised technique, one can introduce additional
information to guide the algorithm what is the expected structure of clusters. Semi-
supervised learning methods usually use partial labeling [16] or pairwise constraints
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[20] to transfer expert knowledge into clustering process, while consensus and alter-
native clustering gather information from several partitions of data into one general
view [9, 22]. In this paper, we assume that we have the knowledge about division
of data set into two categories and focus on the following problem: How to find the
best model of clusters that preserves a fixed amount of information about existing
categories? In other words, we focus on finding interesting clusters, which are very
likely to belong to one category.

To explain a basic motivation behind our model, let us consider an expert system
used for automatic text translation. It is a common practice to construct several
translation models, each designed for one cluster retrieved from a data set [1]. Alter-
natively, since texts are often categorized into specific domains, e.g. sport, politics,
etc., then each translator can be fitted to one of these categories. To consider to-
gether both options, we could implement a separate module responsible for finding
clusters, which (a) are described by compact models (e.g. Gaussians) and (b) are
related with predefined topics. Observe that optimization of these two conflicting
goals simultaneously is non-trivial. We cannot cluster elements from each category
individually, because this strategy does not lead to optimal solution for the entire
data set (in terms of likelihood). Moreover, existing categorization might be inac-
curate as well as the interesting groups can cross the boundary between predefined
domains. Therefore, a better approach is to incorporate the constraint to the clus-
tering process and always work with the entire data set.

Our method can also be applied to strictly unsupervised situations, where no
initial categorization is given. Let us recall that one way to analyze clusters in
complex data spaces relies on finding projections onto one dimensional subspaces,
where groups can be easily identified. Projection pursuit focuses on choosing such a
direction, which optimizes selected statistical index such as kurtosis [26] or skewness
[17]. Since one dimensional views generate linear decision boundaries in original data
space, it is not possible to find flexible cluster structures. However, we can input
such a linear boundary to our model in order to improve existing clusters. Our
method directly uses the information from initial splitting, but can extend linear
decision surfaces to nonlinear ones generated by probabilistic mixture models.

Following the above motivation, we propose a semi-supervised clustering with
controlled clusters leakage model (C3L), which integrates a distribution of data
with a fixed division of the space into two categories. C3L focuses on finding a type
of Gaussian mixture model (GMM) [21], which maximizes the likelihood function
and preserves the information contained in the initial splitting with a predefined
probability (leakage level). Intuitively, we allow for the flow of clusters densities
over decision surface, but with a full control of total probability assigned to the
opposite category, which is defined as the leakage level α ∈ (0, 1) (see Figure 1).
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(a) α = 0.159 (b) α = 0.043 (c) α = 0.001

Figure 1: The effects of C3L for different values of the leakage level α.

This general idea is formulated as a constrained optimization problem (Section 3).
The advantages of C3L can be summarized as follows:

1. It has a closed form solution in a special case of cross-entropy clustering (a
type of GMM) [35].

2. It can be efficiently implemented and optimized by a modified on-line Hartigan
algorithm (Section 4).

3. The user can directly parametrize C3L by a maximal inconsistency level be-
tween initial categorization and final clustering model (leakage level).

4. The selection of the leakage level α allows to move from a strictly unsupervised
GMM for α = 0.5, where decision boundary has no effect on clustering, to the
limiting case of α → 0, where every group is fully condensed in one category
(Section 5).

Experimental studies confirm that the proposed approach builds a high qual-
ity model under a given constraint in terms of inner clustering measures, such as
Bayesian Information Criterion (Section 6.1). It can be successfully used to discover
meaningful groups in partially classified data (Section 6.2) as well as to improve ex-
isting clusters obtained by applying projection techniques (Section 6.3). We present
a real-life case study, in which the use of C3L allows to detect subgroups of chemical
space given their division into active and inactive classes (Section 6.4).

2 Related work

Semi-supervised clustering incorporates the knowledge about class labels to parti-
tioning process [5]. This information can be presented as partial labeling, which
gives a division of a small portion of data into categories, or as pairwise constraints,
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which indicate whether two data points originate from the same (must-links) or dis-
tinct classes (cannot-links). Although pairwise constraints provide less amount of
information than partial labeling, it is easier to assess whether two instances come
from the same group than assign them to particular classes.

Clustering with pairwise constraints was introduced by Wagstaff et al. [37], who
created a variant of k-means, which focuses on preserving all constraints. Shental
et al. [29] constructed a version of Gaussian mixture model, which gathers data
points into equivalence classes (called chunklets) using must-link relation and then
applied EM algorithm on such generalized data set of chunklets. This approach was
later modified to multi-modal clustering models [32]. The aforementioned methods
work well with noiseless side information, but deteriorate the results when some
constraints are mislabeled. To overcome this problem, the authors of [6,19] applied
hidden Markov random fields (HMRF) to construct more sophisticated dependencies
between linked points. However, the use of HMRF leads to complex solutions, which
are difficult to optimize. In recent years, Asafi and Cohen-Or. [4] suggested reducing
distances between data points with a must-link constraint and adding a dimension
for each cannot-link constraint. After updating all other distances to, e.g., satisfy
the triangle inequality, the thus obtained pairwise distance matrix can be used for
unsupervised learning. Wang and Davidson [38] proposed a version of spectral
clustering, which relies on solving a generalized eigenvalue problem.

Partial labeling is used in clustering to define sample data points from partic-
ular classes. Liu and Fu [16] added additional attributes to feature vectors and
proposed modified k-means algorithm. There is also a semi-supervised version of
fuzzy c-means [24, 25], where the authors supplied the cost function with a regu-
larization term that penalizes fuzzy partitions that are inconsistent with the side
information. GMMs can be adapted to make use of class labels by combining the
classical unsupervised GMM with a supervised one [2, 41].

Since assigning data points to classes or labeling pairwise constraints requires
extensive domain knowledge, then many clustering methods were adapted to use
additional information about data, which does not require human intervention. One
example is consensus clustering, which considers gathering information coming from
different domains [22]. On the other hand, complementary (alternative) clustering
aims at finding groups which provide a perspective on the data that expands on
what can be inferred from previous partitions [9].

C3L is a version of Gaussian mixture model, which uses side information given
by class labels or more generally by a decision boundary between classes. In contrast
to classical methods applying partial labeling, it focuses on finding subgroups of orig-
inal classes. This goal is similar to information bottleneck method [7, 36]. Roughly
speaking, this approach tries to construct compact clusters (compressed represen-
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tation), which contain high amount of information about existing classes (auxiliary
variable). While information-theoretic approaches use mutual information (or con-
ditional entropy) to preserve the consistency with an initial categorization, C3L
explicitly defines maximal probability of inconsistency (leakage level). The leak-
age level can be understood as Bayes error in classification or significance level in
hypothesis testing and restricts every cluster model to be assigned to one of two
initial classes with a predefined probability. Subgroups could also be detected by
using cannot-link constraints, clustering with pairwise constraints does not allow
to input maximal level of error. Moreover, computational complexity of applying
cannot-link constraints to GMM is usually high, while C3L works in a comparable
time to classical unsupervised mixture models.

C3L can be naturally combined with projection pursuit approach, which focuses
on selecting low dimensional projections of data for finding clusters (or other mean-
ingful characteristics of data). Such a projection can be determined by optimizing
selected statistical coefficients e.g. kurtosis [11,26] or skewness [17,18]. Since every
one dimensional view induces linear decision boundary in the original space, this
technique may not be sufficient to detect complex data patters. C3L allows to
take such a rough linear splitting of data and correct simple decision boundaries to
nonlinear ones.

3 Theoretical model

In this section, we introduce our model and discuss its possible extensions and
applications.

Let a data space RN be divided by a codimension one hyperplane1 H given by:

H = {x ∈ RN : hTx = a},

for fixed h ∈ RN and a ∈ R. The hyperplane H induces hard classification rule: the
class label of each point x ∈ RN is determined by

classH(x) = sign(hTx− a). (1)

This splits a dataset X ⊂ RN into two groups X+, X− given by

X± = {x ∈ X : classH(x) = ±1}. (2)

Alternatively, we can consider the initial classification of entire space RN as

H± = {x ∈ RN : classH(x) = ±1},
1(N − 1)-dimensional hyperplane
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and put X± = X ∩H±. Note that the uncertainty of class label is usually higher for
elements localized closer to the barrier than for those with larger distance from H.

In a model-based clustering we focus on estimating a density of data space with
a use of mixture of k densities, g =

∑k
i=1 pigi, where every gi belongs to a given

parametric family of densities (usually Gaussian) and pi are prior probabilities [21].
This goal can be practically realized by maximizing the likelihood function. Let us
define the inconsistency between a cluster density gi and the initial classification:

αi = min{
∫
H−

gi(x)dx,

∫
H+

gi(x)dx}.

The above formula gives the amount of probability that is spread to opposite class
and it is related with Bayes error of Gaussian model assuming that H predicts the
class membership correctly.

Our question is: how to find a clustering model that optimizes a likelihood
function and provides high consistency with initial classification? If we knew that H
gives a perfect classification rule, then we could try to keep every model gi maximally
consistent with H, i.e. perform a separate clustering of every category. However,
this is usually not the case and this strategy does not guarantee to obtain optimal
solution (in terms of likelihood) for the entire data set. Moreover, some interesting
groups can cross the decision boundary. Therefore, we should allow for the flow
of corresponding densities over a decision surface, but with the full control of the
total probability assigned to the opposite class. In our approach, we formulate a
constrained optimization problem, where we aim at finding such a mixture model g
that maximizes the quality of density estimation and preserves a fixed inconsistency
level α, i.e. every component gi has to satisfy αi ≤ α.

One could probably try to realize the above goal by a classical GMM approach,
however, at very high numerical and theoretical cost. It would be impossible to
get a closed form solution and complex non-linear optimization would be needed.
Therefore, in this paper we have decided to use cross-entropy clustering (CEC) [30,
33,35], which similarly to GMM divides data with respect to Gaussian distributions.
Contrary to GMM, in CEC the clusters do not “cooperate” one with another to build
the global cost function2 and consequently it is enough to calculate the cost function
for each cluster individually.

CEC is based on Minimum Description Length Principle (MDLP) [27] and fo-
cuses on minimizing the generalized cross-entropy function, by selecting optimal
Gaussian probability distribution for each cluster3. Given a single cluster X and

2Instead of optimizing a density pig1 + . . . + pkgk, CEC finds optimal subdensity
max{pig1, . . . , pkgk}, i.e. every point x is linked with exactly one model gi.

3The minimization of cross-entropy is equivalent to the maximization of likelihood function.
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corresponding density g, the empirical cross-entropy function equals:

h×(X‖g) = − 1

|X|
∑
x∈X

ln(g(x)).

In the case of Gaussian densities, g = N (m,Σ), the above formula can be reduced
to its closed form:

h×(X‖N (m,Σ)) =
N
2

ln(2π) + 1
2
‖m̂X −m‖Σ + 1

2
tr(Σ−1Σ̂X) + 1

2
lndet(Σ),

(3)

where
m̂X := 1

|X|
∑
x∈X

x,

Σ̂X := 1
|X|
∑
x∈X

(x− m̂X)(x− m̂X)T ,
(4)

denote the sample mean and covariance of X and

‖x‖Σ := xTΣ−1x

is the Mahalanobis norm. Given k clusters X1, . . . , Xk the overall cross-entropy
function equals ∑

i

pi(−lnpi) + pih
×(Xi‖gi), (5)

where gi is a Gaussian density with parameters given by (4) for Xi and pi = |Xi|
|X| .

The term pi(−lnpi) adds a cost for maintaining a cluster. In consequence, the
method tends to keep the model simple and allows for the reduction of redundant
clusters. Therefore, CEC cost function (5) combines the model accuracy with its
complexity.

With this, we are ready to define our C3L model. First, we give a definition of
a linear constraint, which restricts every cluster model to one category with a fixed
probability.

Definition 1. Let H be a codimension one hyperplane on X ⊂ RN and let α > 0.
We say that a density g satisfies a linear constraint (H,α), if

either

∫
H−

g(x)dx ≥ 1− α or

∫
H+

g(x)dx ≥ 1− α. (6)

The number α will be referred as the leakage level.
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The above definition of linear constraint is analogical to linear separability with
power α given in [26, Section 2] in the context of projection pursuit.

If α ≥ 1
2

then an arbitrary density satisfies one of the conditions given by (6).
Therefore, a strict constraint is given by α < 1

2
. Observe that the above constraint

is reminiscent of a typical approach used in hypothesis testing, where we accept a
given hypothesis if it lies within a predefined percentage of density. In our case we
consider only those density cluster models, which lie with a probability (1 − α) on
one side of decision boundary.

We now introduce a linear constraint to CEC framework. First, we define the
criterion function for a single cluster:

Definition 2. (One cluster C3L cost function) Let X ⊂ RN be divided by a codi-
mension one hyperplane H. Given α > 0 and a family G of Gaussian densities,
C3L cost function for X is defined by

Eα
H(X‖G) :=

inf{h×(X‖g) : g ∈ G which satisfies constraint (H,α)}, (7)

where h×(X‖g) is given by (3).

We always assume that a covariance matrix of X is nonsingular, i.e., det(Σ̂X) 6=
0. This prevents from the situation when X lies in the subspace of RN , which might
lead to degenerate solutions.

The overall C3L cost is defined as follows:

Definition 3. (Overall C3L cost function for clustering) Let X ⊂ RN be divided by
a codimension one hyperplane H. Given a splitting of X into clusters X1, . . . , Xk,
a family G of Gaussian densities and α > 0, the total C3L clustering cost equals

Eα
H(X1, . . . , Xk‖G) =∑k
i=1 pi(−lnpi + Eα

H(Xi‖G)), where pi = |Xi|
|X| .

(8)

The optimal clustering is the one, which minimizes the above cost function (the
optimization problem will be the subject of the next section). We emphasize that
C3L accepts arbitrary Gaussian densities as mixture components, which satisfy the
linear constraint. In particular, each Gaussian can have distinct covariance matrix.

Let us observe that introduced model can be applied in the case of any decision
boundary (not only linear hyperplane). If f+ and f− are two decision functions that
quantify the chance of assigning data points to positive and negative classes, then
the label of an instance x ∈ RN is chosen as

class(x) = arg max
j=±

fj(x). (9)

8



Clearly, for two class problem we can define one discriminant f = f+ − f−. In
consequence, the formula (9) can be simplified to:

class(x) = signf(x). (10)

Next, we extend the input space RN to R×RN and embed our data set X into
this space by:

X 3 x→ (f(x), x) ∈ R× RN .

Observe that a hyperplane H = {0}×RN gives the same classification rule in RN+1

to the formula (10) in RN .
Let GN denotes the set of all Gaussian densities on RN and let G1,N be the set of

Gaussian densities, that can be factorized into two independent components, defined
by:

G1,N := {g(x) = g1(x1) · gN(x2:N+1) : g1 ∈ G1, gN ∈ GN}, (11)

where xk:l = (xk, . . . , xl), for x = (x1, . . . , xN+1). If we consider a mixture model
g =

∑
i pigi, where gi = gi1 · giN ∈ G1,N , then the first component gi1 will describe

a distribution of discrimination function f while giN will describe a density in the
original space X. Therefore, the use of G1,N allows to model a distribution of data
and discriminant function individually. We will use the family G1,N in the next
section.

4 Optimization

Without loss of generality, we assume that a decision boundary of X ⊂ RN is given
by a hyperplane4 H = {0} × RN−1. From now on, our attention is restricted to
the class of Gaussian densities G1,N−1 defined by (11), i.e. we assume that every
component g is of the form g = g1 · gN−1, where g1 is 1-dimensional and gN−1 is
(N − 1)-dimensional Gaussian density. This model suits perfectly to the case of
arbitrary decision boundary described at the end of section 3, where we model the
data distribution and the values of decision support function separately.

We are going to show that in the case of G1,N−1 we can compute one cluster cost
function analytically. Let us first observe that the selection of 1-dimensional density
g1 ∈ G1 and (N − 1)-dimensional density gN−1 ∈ GN−1 can be done separately in
C3L clustering. First, we verify that the linear constraint is independent of gN−1,
i.e., ∫

[0,+∞)×RN−1 g(x)dx =
∫ +∞

0
g1(x1)dx1,∫

(−∞,0]×RN−1 g(x)dx =
∫ 0

−∞ g1(x1)dx1.

4Observe that given an arbitrary hyperplane one can always shift the original data and change
the basis of RN in an orthonormal way to obtain this situation.
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Then, observe that the cross-entropy between X and g can be calculated as:

h×(X‖g) = h×(X[1]‖g1) + h×(X[2 : N ]‖gN−1),

where X[k : l] denotes a data set X restricted to the attributes from k to l. This
follows from

h×(X‖g)
=
∑
x∈X
−lng(x) =

∑
x∈X
−ln(g1(x1) · gN−1(x2:N))

=
∑
x∈X

(
− ln(g1(x1))− ln(gN−1(x2:N))

)
=

∑
x1∈X[1]

−ln(g1(x1)) +
∑

xN−1∈X[2:N ]

−ln(gN−1(xN−1))

= h×(X[1]‖g1) + h×(X[2 : N ]‖gN−1).

Since the product densities can be selected individually, the optimization subject
to the constraint is performed in one dimension.

Corollary 1. Let (H,α) be a linear constraint defined on dataset X ⊂ RN , where
H = {0} × RN−1. Then the one cluster C3L cost function of X is given by:

Eα
H(X‖G1,N−1) = Eα

{0}(X[1]‖G1) + h×(X[2 : N ]‖GN−1),

where Eα
{0}((X[1]‖G1) is one cluster C3L cost function (7) calculated in one dimen-

sional situation.

To complete the formula given in Corollary 1, the C3L cost function in one
dimensional case has to be calculated. To facilitate the calculation we first give an
equivalent form of linear constraint.

Given α > 0, let us denote by pα the corresponding quantile:

pα := Φ−1
N (0,1)(1− α), (12)

where ΦN (m,σ)(·) denotes a cumulative distribution function of N (m,σ). Making
use of elementary calculations we get that:

α = ΦN (m,σ)(m− pασ),

for any m ∈ R and σ > 0. Then, one dimensional density N (m,σ) satisfies the
constraint ({0}, α), iff

|m| ≥ pασ, (13)

In other words, the distance between the mean m and the barrier is at least pασ.
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To calculate the optimal one dimensional cost function, we must observe that
the cross-entropy (3) between a distribution of dataset X ⊂ R with mean m̂X and
standard deviation σ̂X and a Gaussian density N (m,σ) equals:

h×(X‖N (m,σ)) = 1
2

(
σ̂2
X+(m−m̂X)2

σ2 + ln(σ2) + ln(2π)
)
. (14)

The optimal parameters of N (m,σ) are obtained by the minimization of the above
function under the restriction (13):

Theorem 1. Let X ⊂ R be a dataset with the mean m̂X 6= 0 and the standard
deviation σ̂X > 0. We assume that ({0}, α) denotes the linear constraint on X, for
α > 0, and pα = Φ−1

N (0,1)(1− α).

If |m̂X | ≥ pασ̂X , then put mα
X := m̂X , σαX := σ̂X , otherwise

mα
X :=

−(pα)2m̂X+sign(m̂X)pα
√

((pα)2+4)m̂2
X+4σ̂2

X

2
,

σαX :=
|m̂αX |
pα

.
(15)

Then, the normal density N (mα
X , σ

α
X) minimizes the value of h×(X‖N (m,σ)),

given by (14), under the restriction |m| ≥ pασX (C3L cost function Eα
{0}(X‖G)).

Proof. Our aim is to find the minimum of the function

h(m,σ) = h×(X‖N (m,σ)) under the condition |m| ≥ pασ. (16)

It is obvious that the above function has the derivative zero only at its global mini-
mum which is given by a pair (mX , σX). Consequently, if m = m̂X , σ = σ̂X satisfies
the constraint |m| ≥ pασ, then we have found the minimum.

In the opposite case, we only need to verify what happens on the boundary of
the constraints (since we do not have any local minimum inside |m| > pασ), that is
when pασ = |m|. Then, by (14), the function (16) simplifies to

h(m) =
1

2

( σ̂2
X + (m− m̂X)2

m2
(pα)2 + ln

m2

(pα)2
+ ln(2π)

)
.

Then

h′(m) = − σ̂
2
X + m̂2

X

m3
(pα)2 +

m̂X

m2
(pα)2 +

1

m
.

Finally, the solution of h′(m) = 0 which minimizes the value of h(m), is given by

m =
−(pα)2m̂X + sign(m̂X)pα

√
((pα)2 + 4)m̂2

X + 4σ̂2
X

2
,

which completes the proof.
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(a) (b) (c)

Figure 2: The influence of the leakage level α on the parameters pα,mα
X and σαX .

The above analysis shows how to calculate the best model of clusters for a given
partition. However, finding an optimal partition is NP-hard problem, where heuris-
tic iterative algorithms are commonly used. One can apply a slight modification
of Hartigan approach to optimize C3L cost function (see A for details). Similar
algorithm is used in optimization of CEC and k-means methods.

5 Theoretical analysis

In this section we present a theoretical analysis of C3L model in its simplified form.
We start with investigating the convergence of cluster parameters with respect to the
leakage level α. Then, we show that under certain assumptions a decision boundary
determined by C3L model with two clusters converges to the initial barrier, when
α approaches to 0.

In order to accommodate the constraint one-dimensional density cluster model
modifies its mean and standard deviation according to Theorem 1. The relation
between mα

X and σαX (given by (15)) is inversely proportional, i.e., the increase of
mα
X results in the decrease of σαX and vice versa (see Figure 2). However, the most

important fact is that |mα
X | does not grow infinitely, but converges to a finite number

dependent on a data set. To prove it formally, let us first consider a one dimensional
case.

Lemma 1. We assume that X ⊂ R is a data set with a mean m̂X 6= 0 and standard
deviation σ̂X > 0. Let gα = N (mα

X , σ
α
X) denote a density minimizing one cluster

C3L cost function under the linear constraint ({0}, α), i.e, mα
X and σαX are given

by Theorem 1.
Then:

mα
X → m̂X +

σ̂2
X

m̂X

σαX → 0
, as α→ 0.

Proof. The proof is included in B.
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Figure 3: The change of α affects only the form of a density model which is orthog-
onal to the barrier. Its mean converges to the limiting value (marked with red dot)
given by Corollary 2 while its standard deviation grows to infinity.

If we combine the above result with the fact that the mean and the covariance
of (N − 1) dimensional density gN−1, for a model g = g1 · gN−1, do not depend on
the linear constraint, but are the maximum likelihood estimators of data, we get the
following corollary:

Corollary 2. We assume that X ⊂ RN is a data set, with a mean m̂X and a
covariance matrix Σ̂X , where m̂X[1] 6= 0 and σ̂2

X[1] = Σ̂X[1]. Let gα = gα1 · gN−1 ∈
G1,N−1 denote a density minimizing one cluster C3L cost function under the linear
constraint ({0} × RN−1, α), i.e., gα1 = N (mα

X[1], σ
α
X[1]) is given by Theorem 1 and

gN−1 = N (mα
X[2:N ],Σ

α
X[2:N ]).

Then:

mα
X[1] → m̂X[1] +

σ̂2
X[1]

m̂X[1]
,

σαX[1] → 0,

mα
X[2:N ] = m̂X[2:N ],

Σα
X[2:N ] = Σ̂X[2:N ],

as α→ 0.

The Figure 3 shows the influence of the change of the parameter α on the form
of resulting density function.

We now discuss the relations between an initial decision boundary defined by
a hyperplane H and a splitting determined by C3L model. For a simplicity, we
consider the case of only two clusters. We assume that the hyperplane H = {0} ×
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(a) α = 0.159 (b) α = 0.043 (c) α = 0.001

Figure 4: Convergence of C3L model for α→ 0.

RN−1 defines the classification rule (1):

classH(x) := sign(x1), for x ∈ RN ,

which splits a data set X ⊂ RN into two subsets X± (2).
Let the leakage level α be fixed. In a simplified form of C3L model with only

two clusters, we assume that density models p±g
α
± are chosen so that to maximize

one cluster cost functions of X±, respectively (not the overall cost of clustering). In
the other words, a class density is selected ignoring the influence of objects which
belong to the opposite class. Then any incoming object x ∈ X can be classified to
one of two clusters by calculating

classα(x) := sign(p+g
α
+(x)− p−gα−(x)) = ±1,

We will show that a decision boundary determined by such model converges to H,
as the leakage level α approaches to 0, i.e.,

classα(x)
α→0−−→ classH(x),

which is illustrated in Figure 4:

Theorem 2. We assume that X ⊂ RN is a data set and H = {0} × RN−1 defines
a hyperplane in RN dividing X into two classes X−, X+, where X± 6= ∅. Let gα± ∈
G1,N−1 denote two densities minimizing one cluster C3L functions of X± under the
constraint (H,α), respectively.

Then, there exists a constant C > 0 such that

classα(x)→ classH(x), as α→ 0,

for every x ∈ RN satisfying dist(x,H) ≤ C.

The above convergence holds only for instances, which are localized within the
margin of size C around the barrier H. This is a natural situation occurring in
every Gaussian discrimination. To prove the above theorem we first consider one
dimensional situation, where an exact value of constant C will be given.

14



Lemma 2. We assume that X± ⊂ R± are two non empty sets with means m̂± and
standard deviations σ̂±. Let gα± ∈ G1 denote two densities minimizing one cluster
C3L cost functions of X± under the linear constraint ({0}, α), respectively.

Then,
lngα+(x)− lngα−(x)→ +∞, as α→∞,

for every 0 < x ≤ 2
(
m̂+ +

σ̂2
+

m̂+

)
.

Proof. The proof is included in C.

In one dimensional case the constant C from Theorem 2 equals C = 2
(
m̂+ +

σ̂2
+

m̂+

)
.

Below we complete the proof of our main result:

Proof. (of Theorem 2) Let x ∈ RN be such that 0 < x1 < 2
(
m̂+ +

σ̂2
+

m̂+

)
, where

m̂+, σ̂+ are the mean and standard deviation of X+[1]. In other words, we assume
that x lies at the right side of a decision boundary. We assume that the optimal
C3L densities gα± ∈ G1,N−1 for X± equal

gα± = (gα±)1 · (gα±)N−1

with the priors p±. We will show that

lnp+g
α
+(x) > lnp−g

α
−(x), (17)

for sufficiently small α > 0.
Since

lngα±(x) = ln(gα±)1(x1) + ln(gα±)N−1(x2:N) + lnp±,

the formula (17) can be rewritten as

ln(gα+)1(x1)− ln(gα−)1(x1) + ln(gα+)N−1(x2:N)
−ln(gα−)N−1(x2:N) + lnp+ − lnp− > 0.

(18)

Making use of Lemma 2, we have

ln(gα+)1(x1)− ln(gα−)1(x1)→ +∞, as α→ 0.

Because
|ln(gα+)N−1(x2:N)− ln(gα−)N−1(x2:N) + lnp+ − lnp−| <∞,

the LHS of (18) can be arbitrary large, when α→ 0, which completes the proof.
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Table 1: Regression UCI data sets and median number of clusters returned by C3L.
Airfoil Forest Music+ Stock

# Instances 1502 517 1059 536

# Features 5 12 5 7

# Clusters 5 3 5 7
+ PCA was used to reduce a dimension of data

6 Experiments

We tested our method on sample examples retrieved from UCI repository [15] and
one real data set of chemical compounds [39]. We verified the quality of the clustering
model and demonstrated that C3L can be useful in discovering natural subgroups
given a partial knowledge about two class division. We also used C3L to extend
linear boundary between clusters obtained by projection pursuit technique to non-
linear one. We also show its application on real data set of chemical compounds.
We compared its performance with related model-based clustering techniques.

6.1 Quality of the model

In this experiment we consider a scenario, where every instance is assigned to one
of two classes based on the value of a fixed decision support function. C3L builds
a clustering model which preserves the information of class membership in a sense
that every cluster density belongs to one of two classes with a probability greater
than (1− α) (6). We want to verify the quality of such model and compare it with
the results produced by related model-based clustering techniques, which however
do not allow for a direct specification of the leakage level.

To compare the quality of clustering models we applied Bayesian Information
Criterion (BIC), which is a standard criterion for model selection [8]. The lower the
BIC is the better the model is.

We used four regression UCI examples, which are summarized in Table 1. A
dependent (output) variable was treated as a decision support function, which de-
termines a decision boundary H. More precisely, if X × Y is a data set, where
X ⊂ RN contains explanatory variables and Y ⊂ R includes dependent variable,
then a decision boundary H is defined by H = X×{median(Y )}, where median(Y )
is the median of attribute Y .

The effects of C3L were compared with those obtained by classical GMM method,
which ignores the presence of existing decision boundary. To introduce a decision
boundary to the model, we also considered the second variant of GMM (which is
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(a) Airfoil (b) Forest

(c) Music (d) Stock

Figure 5: Quality of the clustering models measured by Bayesian Information Cri-
terion (BIC).

referred to as GMMH): given a linear hyperplane H, which divides a data set X
into two regions X−, X+ (see (2)), GMMH is defined as follows:

• GMM is applied to X− and X+ separately, which give two models g± = p±1 g
±
1 +

. . .+ p±k g
±
k .

• These models are combined into a single one by g = |X−|
|X| g− + |X+|

|X| g+.

• Finally, every point x ∈ X is assigned to the most probable cluster by calcu-
lating |X±|

|X| p
±
i g
±
i (x).

Analogical strategies were also applied to CEC. Both variants of GMM use general
Gaussian densities to model clusters distributions, while CEC-based methods use
the same densities as C3L method, i.e. densities from the family G1,N−1.

We ran each method on X × Y with a decision boundary H. To investigate the
influence of the leakage level on the clustering effects of C3L, six leakage levels were
considered, α ∈ {0.01, 0.05, 0.15, 0.25, 0.35, 0.5}. Since C3L and CECH internally
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Table 2: UCI data sets used in subgroups detection experiment. Last two rows show
which reference groups were used for creating classes Y− and Y+.

Balance Segmentation+ User Wine

# Instances 625 210 258 178

# Features 4 5 5 13

# Clusters 3 7 4 3

Y− {1,2} {1,3,4,5,7} {1,2} {1,2}
Y+ {3} {2,6} {3,4} {3}
+ PCA was used to reduce a dimension of data

find the final number of clusters, we ran them with 10 groups, while other methods
used the median number of groups returned by C3L calculated over these six leakage
levels.

The results presented in the Figure 5 prove that the quality of C3L model im-
proves as the leakage level is increased. This is a natural behavior, because lower
values of α indicate higher restrictions on the clusters models. Since other meth-
ods do not control the inconsistency with classification, we measured their resulting
leakage levels and marked returned BIC values. One can observe that in most cases
CECH and GMMH gave worse BIC than C3L method for corresponding leakage lev-
els. It follows from the fact that C3L optimizes the model on the entire data, while
CECH and GMMH search for the optimal solutions in each half space individually.
Most importantly, since we are not able to directly control the inconsistency level
of these methods, they might lead to high inconsistency with initial classification,
even if each model is optimized on a separate class (see Forest and Stock data sets).
Similar argument holds for classical GMM – although it should allow for optimal fit
to the data, it does not take into account the decision boundary between classes.

6.2 Subgroups detection

Decision boundary usually delivers some meaningful information about true struc-
ture of clusters. For example, the User Knowledge Modeling data set [13] distin-
guishes users with very low, low, middle and high knowledge about a given subject.
If we knew a coarse separation of the users into two basic classes, {very low, low}
and {middle, high}, it should be easier to detect their exact level of knowledge.
In this experiment, we want to verify how the information of binary classification
influences the clustering results.

To simulate the above scenario, where a decision boundary is closely related with
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Table 3: Normalized mutual information for UCI datasets.

Method Balance Segmentation User Wine

C3L0.01 0.50 0.62 0.53 0.50

C3L0.05 0.44 0.60 0.49 0.51

CECH 0.48 0.59 0.47 0.34

CEC 0.03 0.58 0.25 0.46

c-GMM 0.20 0.54 0.56 0.47

GMMH 0.49 0.56 0.66 0.40

GMM 0.07 0.58 0.36 0.45

the expected clustering structure, we considered four UCI data sets. For each one
we applied the following procedure:

• Given k reference groups Y1, . . . , Yk of a data set X ⊂ RN we created two
classes Y−, Y+ by merging selected groups together.

• We trained SVM classifier on 15% elements drawn randomly from Y− and Y+,
which induced a linear decision boundary H dividing X into two classes X−
and X+.

The goal is to discover the reference grouping Y1, . . . , Yk. Table 2 contains detailed
information about data sets and classes Y−, Y+.

Given such prepared data sets, we ran all the methods applied in previous exper-
iment. Additionally, we used a version of GMM enhanced with pairwise cannot-link
constraints, which is referred as c-GMM [29]. Cannot-link constraints specify the
pairs of elements that should not be included into the same group, which suits per-
fectly to this clustering task5. To generate a set of pairwise constraints containing
similar knowledge to the decision boundary H, we went over all pairs of labeled data
points and generated a cannot-link constraint, if one element belonged to Y− and
the second belonged to Y+.

To compare C3L with other methods we used only two leakage levels α = 0.01
and α = 0.05. This choice was motivated by a typical approach used in hypothesis
testing, where the significance level is commonly set to 0.01 or 0.05. C3L, CEC
and CECH were initialized with twice the correct number of clusters (and they
were allowed to reduce redundant groups). GMM-based methods were run with the
correct numbers of clusters and can thus be expected to perform better than C3L,
especially that GMMs describe the clusters by arbitrary Gaussian distributions. The

5The introduction of must-link constraints is not suitable in this case.
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Table 4: Correlation between the accuracy of decision boundary and clustering
results.

Method Balance Segmentation User Wine

C3L0.01 0.95 0.64 0.98 0.45

C3L0.05 0.90 0.34 0.94 0.36

CECH 0.99 0.68 0.96 0.76

GMMH 0.99 0.98 0.88 0.80

similarity between the obtained clusterings and the ground truth partition Y1, . . . , Yk
was evaluated using Normalized Mutual Information (NMI) [3]. NMI is bounded
from the above by the value 1, which is attained for identical partitions.

The results presented in Table 3 show that C3L performed better than other
methods except the User Knowledge Modeling data set, where GMMH gave very
good result. This confirms that working with the entire data set is usually more
profitable than finding subgroups in each half space individually (as GMMH and
CECH do). Moreover, lower leakage level α = 0.01 usually led to higher NMI than
α = 0.05. It might follow from the fact that a decision boundary was constructed
based on correctly labeled data and, therefore, it was very accurate.

To investigate the influence of the accuracy of decision boundary on the clustering
results, we used 15% of data drawn from Y−, Y+ and assigned incorrect labels to a
fixed percentage of them (we considered 0%, 10%, 20% and 30% of erroneous labels).
The more labels were misspecified the worse a decision boundary should be.

Table 4 presents the correlation between the accuracy of decision boundary and
the normalized mutual information of clustering. One can observe that CECH and
GMMH are more sensitive to incorrect decision boundary than both parameteriza-
tions of C3L. In consequence, these methods should not be used if there is a risk of
unreliable information of class labels. Higher robustness of C3L could be explained
by the fact that this model has an access to the entire data set, not only to its part
(as GMMH and CECH).

6.3 Improving clusters boundaries

Projection pursuit (PP) is a technique used for analyzing multivariate data by find-
ing its interesting low dimensional views. One dimensional projection is a common
choice, which was widely analyzed in the literature [11, 18]. Projections are usually
determined by maximizing non-gaussianity. Pena and Prieto [26] showed that mini-
mizing the kurtosis coefficient implies maximizing the bimodality of the projections,
which in consequence is useful for detecting clusters. Since clustering in one dimen-
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Figure 6: C3L with a decision boundary obtained by projection pursuit. Density
estimated from true classes in one-dimensional subspace minimizing kurtosis coeffi-
cient 6(a). Clusters detected by GMM in projected space 6(b). C3L clustering with
decision boundary found by one-dimensional GMM 6(c).

sional subspaces can only generate linear decision boundaries between clusters, PP
cannot discover complex data patterns. We will show that given linear separation
of data obtained by PP, the use of C3L allows to detect more accurate shapes of
clusters.

We considered Statlog data set retrieved from UCI repository concerning credit
card applications [15]. Each example is represented by 14 attributes and belongs to
one of two classes. First class contains 307 instances, while the second one has 383
objects.

We used R package REPPlab6, which implements several indices for projecting
the data on the associated one-dimensional directions. Since we aim at finding clus-
ters, we chose such a direction, which minimizes the kurtosis coefficient of projection.
Figure 6(a) presents density estimated from two underlying classes in an optimal
one-dimensional subspace. Let us observe that these classes cannot be separated in
the reduced space. Given one-dimensional view we applied classical GMM to detect
two clusters (see Figure 6(b)). The agreement between true classification and GMM
clustering was measured by NMI, which gave the score of 0.24.

GMM clustering in one dimensional space generated linear decision boundary
H. In order to improve this clustering, we passed H to C3L, which was run with
two clusters for four different leakage levels α ∈ {0.01, 0.05, 0.25, 0.5}.

The results presented in Figure 6(c) show that applying C3L with low leakage
levels led to the improvement of linear decision boundary produced by GMM in
projected space. High values of NMI for α ∈ {0.01, 0.05} and its low values for
α ∈ {0.25, 0.5} prove that the information retrieved by applying PP was meaningful.
In other words, strictly unsupervised model-based clustering could not find true
structure of classes, while combining one-dimensional projection with constrained

6https://github.com/cran/REPPlab/
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(a) (b)

Figure 7: Results for chemical data set.

clustering gave significantly better results.

6.4 Detection of chemical classes

Finally, we considered a real data set of 2497 chemical compounds which was man-
ually clustered into four categories by the experts in the field [39]. Each compound
was characterized by its structural features using Klekota-Roth fingerprint (4860
attributes) [14, 31]. To reduce a dimensionality of the space, PCA was applied to
attribute vectors and only five principle components were used.

Additionally, every compound was assigned to active or inactive class based on
its binding constant Ki ≥ 0 measured for 5-HT1A receptor, one of the proteins
responsible for the regulation of central nervous system: compounds with Ki < 50
were considered active while those with Ki ≥ 50 were treated as inactives [23].
Summarizing, this data set is contained in R × R5 space and a decision boundary
is given by H = {50} × R5. We investigate whether the information of compounds
activity allows to obtain a partition which is more similar to the expert reference
grouping with four chemical categories. Observe that this case study represents
more realistic scenario than previously prepared experiments.

Figures 7(a) and 7(b) show that C3L gave the second best model in terms of
BIC (worse than GMM). Moreover, the partition obtained by C3L was the most
similar to the reference grouping. Observe that high NMI values coincide with the
stabilization of BIC (compare Figure 7(a) with Figure 7(b)). The highest similarity
was achieved for α = 0.15. C3L with lower leakage levels as well as CECH and
GMMH gave worse results, because the binding constant does not reflect exactly
the chemical classes (as it was prepared in previous experiment). Since the activity
barrier represents a kind of noisy decision boundary it should be taken into account
with lower confidence level (higher leakage). This case study demonstrated that
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C3L can be successfully applied in natural machine learning problems.

6.5 Summary of the experiments

Experimental study showed that C3L can be successfully applied in a wide range of
problems. If we have a coarse categorization of data into two basic classes, C3L can
be used to construct clusters, which agree with both expert categorization and true
data distribution. In other words, C3L is capable of detecting interesting subgroups,
which belong to one of two classes with a fixed probability of error. The quality
of such model was verified by applying internal clustering measures such as BIC
(Section 6.1) as well as by comparing the results with reference grouping created by
a domain expert on various examples of data (Section 6.2).

In the case of partial labeling, where only a small sample of data is categorized, we
can first apply any binary classifier to construct approximated decision boundary
on the entire data space (Section 6.2). If constructed classification is meaningful
(accurate), then subgroups can be found by applying C3L with low leakage levels,
while in more uncertain situations the leakage levels should be higher. In particular,
we showed that compounds activity delivers small amount of information about
structural division of chemical space (Section 6.4).

Finally, we demonstrated that C3L can also be used in strictly unsupervised
cases. C3L can improve the results of simpler clustering techniques by introducing
nonlinearities in clusters descriptions. In particular, we showed that combining C3L
with projection pursuit allows to construct better clustering structure than using
projection pursuit or model-based clustering individually (Section 6.3).

7 Conclusion and future work

The paper presented a clustering model, C3L, which integrates information coming
from the initial classification with the true structure of data. The idea is based on
retrieving Gaussian-like clusters which are contained in one of initial classes within a
predefined confidence level. Experimental results prove that our algorithm provides
high quality model, which can be used for discovering natural subgroups in partially
classified data spaces. In the optimization procedure we restricted the problem to
special type of Gaussian densities, which is the main limitation of our model. It is
worth to eliminate this assumption in future and extend C3L to arbitrary Gaus-
sian distributions using either analytical calculations or by applying some numerical
procedures.

We also plan to examine its practical usefulness in real-life problems. In par-
ticular, we will focus on applying C3L in text translation systems to find clusters,
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which combine domain knowledge with a distribution of data (see introduction for
details). Since Gaussian mixture model does not fit well to high dimensional data,
such as text, it might be needed to extend the model to other probability models
or to use projections to lower dimensional spaces. In our opinion, combining C3L
with projection pursuit is an approach of great practical potential, which needs fur-
ther studies. While projection pursuit allows to select optimal low dimensional view
of data for finding general clusters regions, C3L is able to use this knowledge to
discover detailed clusters description.

A Algorithm

Given a density model G1,N−1 and a linear constraint (H,α), where H = {0}×RN−1,
the one cluster C3L cost function can be evaluated, as a sum of partial costs (see
Corollary 1):

Eα
H(X‖G1,N−1) = Eα

{0}(X[1]‖G1) + h×(X[2 : N ]‖GN−1).

The optimization of (N −1)-dimensional density gN−1 ∈ GN−1 is independent of the
constraint. Its optimal parameters are the maximum likelihood estimators (MLE)
of a mean and covariance of a cluster, i.e.,

gN−1 = N (m̂X[2:N ], Σ̂X[2:N ]). (19)

The constraint only affects the form of remaining one dimensional density g1 ∈ G1.
Making use of the results and the notations of Theorem 1 it is calculated as:

g1 = N (mα
X[1], σ

α
X[1]). (20)

The one cluster cost functions of every group are plugged into the expression
(8) and determine the overall C3L cost. Its minimization can be performed in an
iterative procedure which is a modified online Hartigan algorithm employed in k-
means method [10]. Basically, the procedure consists of two steps: initialization and
iteration. In the initialization stage, k ≥ 2 nonempty groups are formed randomly.
Then the elements are reassigned between clusters in order to minimize the criterion
function. Presented clustering procedure is non-deterministic and one of the local
minima is found [12]. To provide more stable and accurate results, the algorithm has
to be run a couple of times and a partition with a minimal cost should be chosen.
A pseudocode of C3L is given below:

1: INPUT:
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2: X ⊂ RN

3: k - number of clusters
4: (H,α) - linear constraint
5: OUTPUT:
6: Final partition Y of X
7: INITIALIZATION:
8: X = TH(X) // data transformation such that H

// is mapped into ({0} × RN−1)
9: Y ← random partition of X into k groups

10: for all Y ∈ Y do
11: gYN−1 ←MLE(Y [2 : N ]‖GN−1) // use standard MLE to find optimal density

(19)
12: gY1 ← ConstrMLE(Y [1]‖G1 s.t. ({0} × RN−1, α)) // use Theorem 1 for

density estimation (20)
13: gY ← gY1 · gYN−1

14: end for
15: ITERATION:
16: while NOT Done do
17: Done← True
18: for all x ∈ X do
19: Ynew ← argmax

Y ∈Y
∆Eα

{0}×RN−1(x, Y ) // find a membership of x maximizing

the decrease of cost
20: if Ynew 6= x.cluster then
21: Done← False
22: Reassign(x, Ynew, Yold) // reassign x from Yold to Ynew
23: Update((Ynew, g

new), (Yold, g
old), x, α) // recalculate clusters parameters

after the change
24: end if
25: end for
26: end while

B Proof of Lemma 1

We consider the limiting case of α → 0. Therefore, without loss of generality we
may assume that there exists α0 > 0 such mα

X and σαX , for α < α0, are given by
(15), i.e.,

mα
X :=

−(pα)2m̂X+sign(m̂X)pα
√

((pα)2+4)m̂2
X+4σ̂2

X

2
,

σαX :=
|m̂αX |
pα

,
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where
pα = Φ−1

N (0,1)(1− α).

Let us calculate the limiting value of mα
X :

2mα
X =

−(pα)2m̂X + sign(m̂X)pα
√

((pα)2 + 4)m̂2
X + 4σ̂2

X =

−(pα)2m̂X + (pα)2|m̂X |sign(m̂X)
√

1 + 4
(pα)2

+
4σ̂2
X

(pα)2m̂2
X

=

−(pα)2m̂X + (pα)2m̂X

√
1 + 4

(pα)2

(
1 +

σ̂2
X

m̂2
X

)
.

Making use of Taylor expansion we have

√
1 + x = 1 +

x

2
+ εx , for εx = −1

8
(1 + ξx)

− 3
2 ξ2
x,

where ξx ∈ (0, x). Consequently, in our situation there exists ξα ∈ (0, 4
(pα)2

(1 +
σ̂2
X

m̂2
X

))

such that for εα = −1
8
(1 + ξα)−

3
2 ξ2
α we get

2mα
X =

−(pα)2m̂X + (pα)2m̂X

√
1 + 4

(pα)2
(1 +

σ̂2
X

m̂2
X

) =

−(pα)2m̂X + (pα)2m̂X

(
1 + 1

2
4

(pα)2

(
1 +

σ̂2
X

m̂2
X

)
+ εα

)
=

(pα)2m̂X
2

(pα)2

(
1 +

σ̂2
X

m̂2
X

)
︸ ︷︷ ︸

(I)

+ (pα)2m̂Xεα︸ ︷︷ ︸
(II)

,

Clearly, (I) converges to 2(m̂X +
σ̂2
X

m̂X
), as α→ 0. We consider the term (II). Observe

that for sufficiently small α > 0, we have:

|(pα)2m̂Xεα| = 1
8
(pα)2|m̂X |(1 + ξα)−

3
2 ξ2
α

≤ 1
8
(pα)2|m̂X | · 1 · 16

(pα)4
(1 +

σ̂2
X

m̂2
X

)2

≤ 2|m̂X | 1
(pα)2

(1 +
σ̂2
X

m̂2
X

)2 α→0−−→ 0.

Concluding mα
X → m̂X +

σ̂2
X

m̂X
, as α→ 0.

From the above calculation we directly get,

σαX =
mα
X

pα
α→0−−→ 0,

which completes the proof.
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C Proof of Lemma 2

Let α > 0. The violation of the linear constraint ({0}, α) by a density N (m,σ) is
verified by the condition:

|m| ≥ pασ, where pα = Φ−1
N (0,1)(1− α).

Theorem 1 states that the parameters of optimal one dimensional Gaussian den-
sity are calculated as MLE within the cluster if only it does not violate the linear
constraint. However, in the limiting case there exists α0 such that for all α < α0 the
constraint is violated and consequently the formulas (15) for mα

±, σ
α
± give optimal

solutions.
Let x > 0. For normal distributions gα± = N (mα

±, σ
α
±) we have

lngα±(x) =

−1
2
ln(2π)− ln(σα±)− (x−mα±)2

2(σα±)2
=

− x2

2(σα±)2
+

2xmα±
2(σα±)2

− (mα±)2

2(σα±)2
− ln(σα±)− 1

2
ln(2π).

Making use of equality σ2
± =

m2
±

(pα)2
we get

lngα±(x) =
1
2

(
− (pα)2

(mα±)2
x2 + 2(pα)2

mα±
x− (pα)2 − ln

(mα±)2

(pα)2
− ln(2π)

)
,

and consequently
lngα+(x)− lngα−(x) =

(pα)2x
(mα+)2(mα−)2

(
−x(mα

−)2 + x(mα
+)2+

2mα
+(mα

−)2 − 2(mα
+)2mα

−
)
− ln

(mα+)2

(mα−)2
.

Since mα
± → m̂± +

σ̂2
±

m̂±
, as α→∞ (see Theorem 2) then

0 <
x

(mα
+)2(mα

−)2
<∞ and 0 <

∣∣∣∣ln(mα
+)2

(mα
−)2

∣∣∣∣ <∞, as α→ 0.

Therefore,
lngα+(x)− lngα−(x)→ +∞,

iff
− x(mα

−)2 + x(mα
+)2 + 2mα

+(mα
−)2 − 2(mα

+)2mα
− > 0, as α→ 0. (21)
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The inequality (21) holds iff

either: x > 2mα
+ and mα

− >
mα+x

2mα+−x
or: x ≤ 2mα

+.

In the limiting case the last inequality expands to:

x ≤ 2mα
+

α→0−−→ 2

(
m̂+ +

σ̂2
+

m̂+

)
,

which completes the proof.
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