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Abstract Community Discovery in complex networks is the problem of de-
tecting, for each node of the network, its membership to one of more groups of
nodes, the communities, that are densely connected, or highly interactive, or,
more in general, similar, according to a similarity function. So far, the prob-
lem has been widely studied in monodimensional networks, i.e. networks where
only one connection between two entities may exist. However, real networks are
often multidimensional, i.e., multiple connections between any two nodes may
exist, either reflecting different kinds of relationships, or representing different
values of the same type of tie. In this context, the problem of Community Dis-
covery has to be redefined, taking into account multidimensional structure of
the graph. We define a new concept of community that groups together nodes
sharing memberships to the same monodimensional communities in the differ-
ent single dimensions. As we show, such communities are meaningful and able
to group nodes even if they might not be connected in any of the monodimen-
sional networks. We devise ABACUS (frequent pAttern mining-BAsed Com-
munity discoverer in mUltidimensional networkS), an algorithm that is able
to extract multidimensional communities based on the extraction of frequent
closed itemsets from monodimensional community memberships. Experiments
on two different real multidimensional networks confirm the meaningfulness of
the introduced concepts, and open the way for a new class of algorithms for
community discovery that do not rely on the dense connections among nodes.

M. Berlingerio
IBM Research, Dublin, Ireland
E-mail: mberling [at) ie.ibm.com

F. Pinelli
IBM Research, Dublin, Ireland
E-mail: fabiopin [at) ie.ibm.com

F. Calabrese
IBM Research, Dublin, Ireland
E-mail: fcalabre [at) ie.ibm.com

http://arxiv.org/abs/1303.2025v2


2 Michele Berlingerio et al.

Keywords Community discovery · Multidimensional Networks · Social
Network Analysis

1 Introduction

Inspired by real-world scenarios such as social networks, technology networks,
the Web, biological networks, and so on, in the last years, wide, multidis-
ciplinary, and extensive research has been devoted to the extraction of non
trivial knowledge from networks. Predicting future links among the nodes or
actors of a network ([13]), detecting and studying the diffusion of informa-
tion among them ([23,29]), mining frequent patterns of nodes’ behaviors ([4,
47,20]), are only a few examples of tasks in the field of Complex Network
Analysis, that includes, among all, physicians, mathematicians, computer sci-
entists, sociologists, economists and biologists. The data at the basis of this
field of research is huge, heterogeneous, and semantically rich, and this allows
to identify many properties and behaviors of the actors involved in a network.
One crucial task at the basis of Complex Network Analysis is Community
Discovery, i.e., the discovery of a group of nodes densely connected, or highly
related. Many techniques have been proposed to identify communities in net-
works ([28,21]), allowing the detection of hierarchical connections, influential
nodes in communities, or just groups of nodes that share some properties or
behaviors. In order to do so, the connections among the nodes of a network
were so far posed at the center of investigation, since they play a key role in
the study of the network structure, evolution, and behavior.

Nowadays, most of the work done in the literature is limited to a very
simplified perspective of such relations, focusing only on whether two nodes
are connected or not, and possibly assigning a strength to this connection.
In the real world, however, this is not always enough to model all the avail-
able information about the interactions between actors, including their multi-
ple preferences, their multifaceted behaviors, and their complex interactions.
While multiple types of connections among actors could still be represented
into a monodimensional network, by collapsing all connections to one type and
potentially affecting a measure of tie strength, a more sophisticated analysis of
the network structure, which could maintain information on the semantic dif-
ferences in how actors are connected, would help all the techniques to provide
more meaningful communities.

To this aim, in this paper we deal with multidimensional networks, i.e.
networks in which multiple connections may exist between a pair of nodes, re-
flecting various interactions (i.e., dimensions) between them. Multidimension-
ality in real networks may be expressed by either different types of connections
(two persons may be connected because they are friends, colleagues, they play
together in a team, and so on), or different quantitative values of one specific
relationship (co-authorship between two authors may occur in several different
years, for example).
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Fig. 1 Example of multidimensional networks

This distinction is reported in Figure 1, where on the left we have different
types of links, while on the right we have different values (conferences) for one
relationship (for example, co-authorship). We can also distinguish between
explicit or implicit dimensions, the former being relationships explicitly set
by the nodes (friendship, for example), while the latter being relationships
inferred by the analyst, that may link two nodes according to their similarity
or other principles (two users may be passively linked if they wrote a post on
the same topic).

In this scenario, we deal with the problem of Multidimensional Community

Discovery, i.e. the problem of detecting communities of actors in a multidi-
mensional network. We define a new concept of multidimensional community
that groups nodes sharing their membership to the same monodimensional
communities in the same single dimensions. This concept gives us the possibil-
ity to leverage traditional monodimensional community discovery algorithms.
It then allows us to define the lattice of multidimensional communities as
function of the subset of dimensions for which the monodimensional commu-
nity memberships of nodes are shared. Each multidimensional community can
then be represented by the associated subset of dimensions, providing a se-
mantic meaning to the community. Note that while the problem of finding
cross-dimensional or cross-network structures is not new [15,5,46], our defi-
nition of multidimensional community differs from the previous ones. In fact,
using this definition, a multidimensional community could be unconnected, i.e.
composed of nodes which are not directly connected in any of the dimensions.
This represents a complex phenomenon that can be seen in the real world: not
all the people in a social community are necessarily connected directly, and, if
they share their memberships in more than one dimension, they can be seen
as a (potentially unconnected) group of highly related (both positively and
negatively) people.

We devise ABACUS (frequent pAttern mining-BAsed Community discov-
erer in mUltidimensional networkS), an algorithm that extracts multidimen-
sional communities such as the one in Figure 2 working in four steps:

1. Each dimension is treated separately and monodimensional communities
are extracted
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Fig. 2 An example of a real multidimensional community found in DBLP by our algo-
rithm ABACUS, that other methods are not able to detect. Nodes in the community: Amit
Agarwal, Qikai Chen, Swaroop Ghosh, Patrick Ndai, Kaushik Roy.

2. Each node is labeled with a list of pairs (dimension, community the node
belongs to in that dimension)

3. Each pair is treated as an item and a frequent closed itemset mining algo-
rithm is applied

4. Frequent closed itemsets represent multidimensional communities described
by the itemsets

ABACUS is based on existing monodimensional algorithms for community dis-
covery (used as a parameter), and on the extraction of frequent closed item-
sets, that, in our scenario, represent the multidimensional description of the
communities.

Our main contribution can be then summarized as follows: we introduce the
new concept of multidimensional communities, and the ABACUS algorithm to
extract them (Section 4); we show the applicability of ABACUS to real world
multidimensional networks (Section 5), together with a comparison with pre-
vious approaches to the problem of community discovery in multidimensional
network.

2 Related work

Detecting communities in networks has been studied from many angles. Two
comprehensive surveys on the topic can be found in [21,28]. From one side,
a community has been defined as a set of nodes with a high density of links
among them, and sparse connections with nodes outside the community. The
papers working with this quantitative definition rely on information theory
principles [35] or on the notion of modularity [19], which is a function de-
fined to detect the ratio between intra- and inter-community number of edges.
Modularity is widely used in many works, and several algorithms have been
proposed to extract high modularity partitioning of a network: one of them is
a greedy optimization able to scale up to networks with billions of edges [9].



Title Suppressed Due to Excessive Length 5

From another side, communities have been approached looking at the statisti-
cal properties of the graph. In [24], a framework for the detection of overlap-
ping communities, i.e. communities allowing the vertices to be in more than
one community, is presented. The framework is based on the “split between-
ness” concept: vertices and edges are ranked by their betweenness centrality
(the portion of shortest path in which they appear) and then split in order
to form a transformed network, where classical algorithms can be used to de-
tect communities. The resulting communities are then merged in order to find
overlaps. Another class of approaches relies on the propagation in the network
of a label [39] or a particular definition of structure (usually a clique [34]). The
first approach is known for being a quasi linear solution for the problem, the
second one allows to find overlapping communities. One algorithm that max-
imizes quality and quantity measures on its results is InfoMap [41], a random
walk-based algorithm. An emerging novel problem definition can be found in
[1], in which the authors state that community discovery algorithms should
not group nodes but edges, emphasizing the role of the relation residing in a
community. Previously described methods have focused on both unweighted
or weighted graphs, but still considering the network as a monodimensional
entity. Only since recently, multidimensionality has started to be taken into
account in network analysis. A few examples of studies are: link prediction
in networks with positive and negative links [27] or in multidimensional net-
works [40]; a statistical analysis over different kinds of relations in the same
network in an online game community [43]; analysis of structural properties of
multidimensional networks [6,8] and its applications to multidimensional hub
analysis [7].

From a community discovery point of view, to the best of our knowledge,
the main approaches to take into account multiple dimensions are three. In
[31] the authors extend the definition of modularity to fit the multidimen-
sional case, which they call “multislice”. However, no definition of “multidi-
mensional community” is provided, nor the approach characterizes and ana-
lyzes the communities found. Instead, the authors use the multidimensional
information to extract monodimensional communities. In [44] the authors cre-
ate a machine learning procedure which detects the possible different latent
dimensions among the entities in the network and uses them as features for the
node classification algorithm. In other words, they use the multidimensional
labels of some nodes to infer labels for other nodes, by means of edge cluster-
ing. Hence, multidimensionality is only present here in terms of node labels,
but the input network is not multidimensional according to our definition (see
Section 3), and the output is not in the form of multidimensional communities.
In [5], a possible formulation of community discovery and characterization in
multidimensional networks was given. A new measure was introduced to cap-
ture the interplay among the dimensions, that makes multidimensional com-
munities emerge even where the connections among nodes reside in different
dimensions. In this paper, we approach the problem from a similar angle, but
focus on extracting communities using frequent itemset mining, and giving
a semantic description to each multidimensional community as the subset of
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dimensions used to characterize it. Resulting multidimensional communities
may be different from the ones extracted in [5] and are navigable using the
lattice extracted in the frequent itemset mining process.

Another work that deals with networks containing heterogenous informa-
tion, but not multiple dimensions, is presented in [42], where the authors pro-
pose a method to generate net-clusters using links across multi-typed objects.
This approach works on heterogeneous networks, i.e. networks where nodes
may have different types (e.g. papers or authors), and does not deal with mul-
tidimensional networks, i.e. networks where edges may be of different types
and two nodes may be connected by multiple edges.

The authors of [15] studied the problem of community mining in multi-
relational networks. The problem setting, however, is different: the authors
exploit the multi-relational links to evaluate the importance of the relations
based on labeled examples, provided by a user as queries. Hence, they do
not perform community detection, but rather extract the importance of each
dimension for a given node, in the form of a weight.

The idea of applying closed frequent pattern mining to multi-relational data
is not new. In [17], the authors extract all closed n-sets satisfying given piece-
wise (anti-)monotonic constraints, from n-ary relations. In [33], the authors
presented a framework for constraint-based pattern mining in multi-relational
databases, finding patterns not under (anti-)monotonic and closedness con-
straints, expressed over complex aggregates over multiple relations. However,
both the works solve the technical problem of finding the frequent closed pat-
terns, but do not apply this technique to the setting of multidimensional net-
work analysis.

There are other works in the literature that deal with the extraction of
knowledge across networks. In [46] and [48], for example, the authors deal with
the problem of finding cross-graph quasi-cliques. This problem can be seen as
a sub-problem of the one we deal with in this paper. However, our concept
of community is independent from the density of the connections among the
nodes. Other two papers [18,30] deal with the extraction of cliques with par-
ticular constraints: in the first work, the authors search cliques that remain
cliques over time; in the second, cliques with homogeneous node attributes are
found. They however do not deal with the community discovery problem.

Based on all the above, we believe that two approaches may be considered
really related to our problem formulation, namely [31] and [5], thus we use
these as baselines for comparison in Section 5.

3 Multidimensional networks

In the world as we know it we can see a large number of interactions and
connections among information sources, events, people, or items, giving birth
to complex networks. Enumerating all the possible networks detectable within
our world, or their properties, would be difficult due to their number and het-
erogeneity, and it is not the scope of this paper. An excellent survey on complex
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networks can be found in [32], where the author gives a good classification of
networks into social (where, for example, we find on-line social network such as
Facebook), information (such as for example citation networks), technological
(among which we mention the power grid, the train routes, or the Internet),
and biological (e.g., protein interaction networks) networks.

While all the example networks presented in [32] are monodimensional, in
the real world it is possible to find many multidimensional networks: trans-
portation networks (transport means are different dimensions), social networks
(different online services may be seen as different dimensions connecting the
same users), co-authorship networks (different venues as dimensions), consti-
tute a short, non-exhaustive list of possible real-world examples.

3.1 A model for multidimensional networks

In its classical definition, a network is defined as a structure that is made
up of a set of entities and connections among them. We want to extend this
definition by allowing connections of different kinds, that we call dimensions.

We use a multigraph to model a multidimensional network and its prop-
erties. For the sake of simplicity, in our model we only consider undirected
multigraphs and since we do not consider node labels, hereafter we use edge-

labeled undirected multigraphs, denoted by a triple G = (V,E, L) where: V is
a set of nodes; L is a set of labels; E is a set of labeled edges, i.e. the set of
triples (u, v, d) where u, v ∈ V are nodes and d ∈ L is a label. Also, we use the
term dimension to indicate label, and we say that a node belongs to or appears
in a given dimension d if there is at least one edge labeled with d adjacent to
it. We also say that an edge belongs to or appears in a dimension d if its label
is d. We assume that given a pair of nodes u, v ∈ V and a label d ∈ L only
one edge (u, v, d) may exist. Thus, each pair of nodes in G can be connected
by at most |L| possible edges.

3.2 Real world dataset

We created two multidimensional networks from the well known digital bibli-
ography database DBLP1 and from a search engine query log2.

– DBLP We extracted author-author relationships if two authors collabo-
rated in writing at least one paper. The dimensions of this network are
defined as the venues in which the paper was published, resulting in 2,536
conferences that took place in years 2000-2010 (all the editions of a con-
ference are considered as one dimension). As the network was created in
year 2012, we consider our temporal subset to be complete for years 2000-
2010. We weighted each edge by the number of papers published by the

1 http://dblp.uni-trier.de/xml
2 http://www.gregsadetsky.com/aol-data
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Fig. 3 Small extracts from the multidimensional DBLP and Query Log networks. Edge
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binned ranks for Query Log.

two connected authors in the same conference (dimension). The final net-
work consisted of 558,800 nodes, connected by 2,668,497 edges in 2,536
dimensions. A small extract of this network is represented in Figure 3(a).
Figure 4(a) reports the distribution of the number of edges per dimension
(the dimensions are sorted by the values of the y axis). High number of
edges corresponds to high number of editions of a conference and/or high
number of published papers and/or high co-authorship number per paper.

– QueryLog. This network was constructed from a query log of approxi-
mately 20 millions web-search queries submitted by 650,000 users, as de-
scribed in [36]. We extracted a word-word network of query terms (nodes),
connecting two words if they appeared together in a query. The dimen-
sions are defined as the rank positions of the clicked results, grouped into
six almost equi-populated bins: “Bin1” for rank 1, “Bin2” for ranks 2-
3, “Bin3” for ranks 4-6, “Bin4” for ranks 7-10, “Bin5” for ranks 11-500.
Hence two words appeared together in a query for which the user clicked
on a resulting url ranked #4 produce a link in dimension “Bin3” between
the two words. We weighted each edge by the number of queries in which
the two connected words appeared together in the same dimension. The
final network consisted of 131,268 nodes, connected by 2,313,224 edges in 5
dimensions. A small extract of this network is represented in Figure 3(b).
Figure 4(b) reports the distribution of the number of edges per dimension.
This network was used in [7] for tasks such as query term disambiguation.
More in general, word-word networks from query logs have been used in
the information retrieval literature to mine the semantics of web search
queries [26,22]

Note that we have weighted the edges of both DBLP and QueryLog to
preserve as much information as possible from the original data. These edge
weights may be taken into account by the monodimensional community dis-
covery algorithms to drive their search in a more meaningful way, as they
reflect the strength of the connections between nodes.
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Following the classification in [32], we took one social and one information
network, with different features (semantic: social vs information network; num-
ber of dimensions: thousands vs five; number of nodes: ∼600,000 vs ∼100,000,
types of dimensions: categorical vs numerical attributes). Although they do
not cover the entire space of possible networks, according to the classification
in [32], our networks partially cover, with their structural characteristics and
semantic, the spaces of social networks, information networks, and technolog-
ical networks.

4 The ABACUS framework

In this section we present the core theoretical concepts of our problem. After
defining the types of communities we are seeking, we show how to map the
problem of finding multidimensional communities to the problem of extract-
ing frequent closed itemsets from community memberships, and then finally
present ABACUS, the algorithm proposed to solve our definition of the prob-
lem.

4.1 A new concept

As said above, most of the existing approaches to the problem of community
discovery rely on a concept of community which is structure-based. That is,
nodes with dense connections (or high interaction) are grouped together (in
some cases, overlapping communities are also discovered). In this paper, we
change this perspective. Let us start with a real-world example. In the WWW
context, nowadays it is very popular to be connected in services like Facebook,
Twitter, Google+ and, possibly, all of them. Each of these services sees differ-
ent communities that can be spotted within their sets of nodes. As today many
of the users have their online identities replicated across the different social
networks, it is very likely that people sharing their membership in community
k in service s, are also sharing their membership in community k′ in service
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s′. Extending this, we can easily imagine that many communities (especially
small ones) would be exactly replicated across different dimensions.

In addition to this, there is another effect that can be detected in the real
world. Even within close circles of friends, it usually happens to see pairs of
people which are not directly connected. There can be many reasons for this:
they can be enemies, or potential friends not yet connected, or there can be
obstacles for their connection to setup (in some example networks, spatial
constraints may inhibit people living too far away from connecting to each
other). Yet, in these cases, two or more persons can share their memberships
to communities in different contexts, or social networks, or, more in general,
dimensions.

Two nodes A and B can then end up being logically connected by their
shared memberships (say, to community 3 in dimension Google+ and to com-
munity 4 in dimension Facebook), but never actually connected in any di-
mensions in which they appear. This concept of logical connection here is
crucial. While in previous community discovery algorithms, monodimensional
approaches have a limited view of the rich set of connections residing within
nodes, disregarding the additional information provided by multiple dimen-
sions would be restrictive. Let us consider a co-authorship graph in DBLP,
where each conference is a different dimension. Two persons in such network
can be easily spotted to have connections in conferences such as KDD, VLDB,
and SDM, while they are not connected, or not even present, in other dimen-
sions such as AAAI, or SIGGRAPH, and so on. This piece of information is
usually lost in traditional algorithms working on monodimensional networks,
and, unfortunately, weights do not help in conveying entirely this additional
knowledge.

On the other hand, if we use the shared memberships as key concept for
connecting people (thus, not necessarily directly connected), we are linking
them logically, using the semantic residing in the dimensions.

4.2 From communities to itemsets

Following the above idea, we can proceed as follows. First, we can split a multi-
dimensional network into several monodimensional ones. We can then perform
any existing technique for monodimensional community discovery, obtaining,
for each node of the original network, a set of memberships to communities in
each single dimension. We are now using the nodes as transactions of items,
where an item is a pair (dimension, community) expressing the membership
of the node in the various dimensions. At this point, applying frequent pattern
mining to find frequent closed itemsets [3] appears to be natural. There is, in
fact, a natural mapping of almost all the concepts in the frequent closed item-
set mining (FCIM) paradigm in our problem: nodes are transactions; mem-
berships are items; multidimensional communities are itemsets; the support
of an itemset is the number of nodes sharing that set of memberships, and so
on. Even the constraint-based paradigm [10] has a role in our problem: one
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can, in fact, use constraints on the itemsets (eg. excluding/including specific
items, computing any monotonic or convertible measure on itemsets, and so
on). For the sake of simplicity, we reserve for future work this part of the
problem, and we focus only on the extraction of frequent closed itemsets. In
this new domain, it is also necessary to define concepts for a common un-
derstanding. With the term support, we intend the number of nodes that are
members of a given multidimensional community. For instance, in the case of
a co-authorship multidimensional network, two is the support of a multidi-
mensional community formed by two authors as members. Moreover, the size

represents the number of different dimensions involved in a multidimensional
community. Again in the multidimensional co-authorship network, two is the
size of a multidimensional community composed of two dimensions such as
two conferences.
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Fig. 5 Run-through example: co-authorship network with two dimensions: KDD and VLDB
(top), monodimensional overlapping communities (bottom)

Let us follow a run-through example of our search strategy. Figure 5 de-
scribes our toy input network (top), consisting of six nodes, connected in three
different dimensions (KDD, VLDB and PKDD). From the top image to the
ones below, we perform two steps: first, we split the multidimensional network
into three monodimensional ones; then, we perform the community discovery
on each of them. The algorithm finds two different communities (highlighted
by different line styles) in the VLDB and KDD dimensions, and one formed
by a single node in the PKDD dimension. Note that, as this is just meant to
provide an example to guide the reader through the steps of our methodology,
we did not run a real community discovery algorithm here, and instead built
the communities such that the resulting output would contain all the features
we want to explain by means of this example. In particular, we imagined to
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TID ITEMS
1 ABC
2 BCE
3 ABCE
4 BE
5 ABCE
6 D

⇒

DCBA E

ABCEABCD

AD AEAC BCAB CD CEBE DEBD

ACD BCDABD ABEABC ADE BDEBCE CDEACE

ABDE ACDE BCDE

ABCDE

Frequent

Infrequent

A = VLDB-1
B = VLDB-2
C = KDD-1
D = PKDD-1
E = KDD-2

Closed frequent 

⇒

ITEMSETS TID
B 1 2 3 4 5
BC 1 2 3 5
BE 2 3 4 5
ABC 1 3 5
BCE 2 3 5
ABCE 3 5

Fig. 6 Run-through example: set of monodimensional communities (items) associated to
each node (transaction), on the left; lattice of multidimensional communities extracted using
an algorithm for mining frequent closed itemsets, in the middle; resulting frequent closed
itemsets (multidimensional communities) and supporting transactions (nodes) on the right.

be running an overlapping monodimensional community discoverer, assigning
communities also to single nodes (node 6). The output of this process is rep-
resented on the left of Figure 6 that shows the list of transactions that it is
possible to build from the memberships of the five nodes. The central part
of Figure 6 shows then how the lattice of multidimensional communities is
created. We see how the community found in the PKDD dimension gets cut
due to a minimum support threshold σ = 2. In bold black we have the fre-
quent itemsets, while with bold dashed line we highlighted the closed frequent
ones. Finally, we see that the closed frequent itemsets clearly summarize the
entire set of frequent itemsets found, so it would be redundant to return also
non-closed items. In the right part of the figure we show the final output. The
first community is found with a single membership to B, i.e. VLDB-2. This is
clearly a monodimensional community, that our algorithm is still able to ex-
tract. The last community, formed by nodes 3 and 5, shows how we are able to
extract communities of nodes that were not necessarily connected in the initial
input. Indeed, nodes 3 and 5 are unconnected in all the dimensions of the ex-
ample. We want to emphasize here that the ability to find such communities is
not given by the type of monodimensional community discoverer, but it is due
to the mapping to the frequent pattern mining paradigm, and the fact that
our concept of multidimensional communities groups together nodes sharing
memberships to the same monodimensional communities in the same dimen-
sions. Nodes 3 and 5, in fact, share their memberships to the communities
VLDB-1, VLDB-2, KDD-1 and KDD-2.
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4.3 The ABACUS algorithm.

Algorithm 1 is the core of our approach. It takes as input three parameters:
the multidimensional network G, a monodimensional algorithm for community
discovery CD, and a minimum support threshold σ. The algorithm works by
building a set of transactions memberships that, for each node n, record a set
of pairs (i, j) representing memberships of node n to community j in dimension
i. Note that if CD is able to find overlapping communities, one node may have
more than one pair associated to a specific dimension. This would result in
more possible combinations, i.e. more different items, thus an higher number of
resulting communities. However, this does not change the type of communities
that ABACUS may find, namely groups of nodes sharing memberships to the
same monodimensional communities in the same dimensions. Thus, for the
sake of simplicity, and without lack of generality, in the rest of the paper
we show experiments conducted with a non-overlapping community discovery
algorithm.

Note also that CD may or may not take into account edge weights to drive
the search for communities in a more meaningful way. As we have weighted
our networks presented in Section 3, in our experimental evaluation in Section
5 we use an algorithm that takes into account edge weights.

In line 4 the function φ is called to split the multidimensional network
into a set of monodimensional ones, by replicating each node into each of the
dimensions in which it has at least one edge, and adding to it all of its adjacent
edges in their corresponding dimensions. Each dimension is then processed
as a separate network Gi by CD in a for loop, returning a different set of
communities per dimension. In lines 6 − 8, for each node in each community,
its memberships are updated with the pair (dimension, community), building
a set of transactions (one per node). The function map returns a unique item
code for its argument. Such set is then passed to the frequent closed itemset
miner (FCIM) in line 11, together with a threshold of minimum support,
and the resulting set of frequent closed itemsets are returned, constituting the
multidimensional description of each community. In Section 5 we show how,
by using an implementation of FCIM returning also the transaction ids of
each itemset, we also get the set of nodes contained in each community (i.e.,
the ids of the transactions supporting the frequent closed itemset).

The complexity of ABACUS is directly inherited by the complexity of the
algorithm used for FCIM , and by that of the method for monodimensional
community discovery. The additional complexity introduced by ABACUS, in
fact, resides only in the problem-mapping phase, where we perform a linear
scan of the list of communities found and we prepare the input for FCIM .
We then refer to the corresponding papers for discussion on the complexity,
although in Section 5.3.3 we present an empirical evaluation of the complexity
of ABACUS.
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Algorithm 1 ABACUS

Require: G, CD, σ

1: for all n ∈ nodes(G) do

2: memberships[n] = ∅
3: end for

4: for all Gi ∈ φ(G) do

5: for all cj ∈ CD(Gi) do

6: for all n ∈ nodes(cj) do

7: memberships[n]← memberships[n]∪map((i, j))
8: end for

9: end for

10: end for

11: I ← FCIM(memberships,σ)
12: return I

5 Case study on DBLP and Query Log

5.1 Tools

We have implemented ABACUS in c++, making use of the igraph3 library.
As CD parameter, we use the community discovery algorithm based on

label propagation [39], that takes into account edge weights. This algorithm
is well known to be scalable, and, as a result, our running times to process
the network were considerably low (a few seconds up to the creation of the
transaction file, plus a few minutes to perform frequent closed itemset mining,
see Section 5.3 for running times). In all the experiments we set the minimum
support threshold to 2, in order to capture all the possible connections among
nodes.

We chose an efficient implementation of Eclat [12] as frequent itemset
miner, with options to return both frequent closed itemsets and list of sup-
porting transactions for every itemset.

Note that many other choices are possible for the CD and the frequent
itemset mining steps and that, for the sake of simplicity and presentation, we
only report the results obtained by the above choice. Note also that while the
choice for the frequent closed itemset mining implementation is usually mainly
driven by scalability issues, selecting a different algorithm for community dis-
covery may lead to very different communities. The debate on which algorithm
to choose is however out of scope in this paper, and we refer to Section 2 and to
the surveys on community discovery for driving the reader to the best choice
for this step, which is mainly driven by the final application [21,28]. Moreover,
despite the possibility of returning different types of communities, we want to
emphasize that the ability to return potentially unconnected communities is
given by the mapping of the problem as described in Section 4, and not to the
choice of CD. In fact, as said above, our multidimensional communities repre-
sent nodes that share memberships to the same monodimensional communities
in the same dimensions. This concept is not tied to the fact that the nodes

3 http://igraph.sourceforge.net
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must be directly connected in all the dimensions found in the multidimensional
community.

All the experiments were performed on a laptop equipped with an Intel i7
processor at 2.2GHz, with 4GB of RAM.

5.2 Experiments

We performed our experiments following three questions related to our prob-
lem:

Q1. Quantitative evaluation: given the high number of resulting communities,
how can we easily reduce the patterns to select only a set of meaningful
ones?

Q2. Are there relational dependencies between our concept of communities and
structural properties of them?

Q3. Qualitative evaluation: among the communities found, are there any rele-
vant ones? Can we reason on the multidimensional density of the connec-
tions within the communities?

In order to answer the above questions, we define a simple and easy to
compute measure of connectedness within communities. The Multidimensional
Community Density (MCD) is then the number of edges in a community
normalized by the maximum possible for that community, or, in formula:

#edges

ndim× #nodes×(#nodes−1)
2

(1)

where ndim is the number of different dimensions found in the community.
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Fig. 8 Cumulative distribution of support (top row) and size of the itemsets (bottom row),
for DBLP (left column) and Query Log (right column)

Let us answer Q1. The frequent pattern mining literature reports that the
problem of finding few relevant patterns to be interpreted, among the many re-
turned, is hard [14,25]. We can overcome this problem in three different ways.
First, we can look at the distributions of the MCD (defined above), the sup-
port of the patterns, and the size of the itemsets to focus our search towards
the communities that we consider relevant, depending on the final application.
Figures 7, 8 report the mentioned distributions (we report the cumulative ver-
sions, to be able to use the three measures as straightforward filters). For
better comparison, we reported on the y-axes the percentage of communities
with values of the measures greater than a certain thresholds. However, the
absolute number of communities can be used to choose, depending on the ap-
plication, the best support, size of the itemset, and MCD to select only the
relevant communities. Second, more generally speaking, the entire Constraint-
Based Frequent Pattern Mining literature can be applied in our scenario at
running stage, to drive the search to fewer, more focused, patterns [38,37,
11]. For example, we may want only patterns including or excluding a specific
dimension, or patterns including dimensions with specific properties (e.g., at
least 1000 authors). To this extent, it is worth noting that MCD is neither
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(anti-)monotone, nor convertible, nor loose-antimonotone. We leave for fur-
ther research the definition of meaningful, application-driven constraints, and
their effect to the results. Lastly, the authors of [14] present another method-
ology for selecting few interesting patterns among many, which is not based
on constraints. We believe that this technique may be also used, and we plan
to investigate this opportunity in the future.

To answer Q2 we check whether MCD is correlated to other structural
properties of the nodes of the communities. For example, one possible intuition
is that communities with low density may group together nodes that were at
the borders of the monodimensional communities. To study this, we computed
the closeness centrality for each node and for each dimension, and checked the
correlation between the centrality and the density. We did not find any clear
sign of direct correlation. We checked also for correlation with PageRank, the
degree centrality and the betweeness centrality, for which again we did not
have signs of correlation. Based on these results, we believe that MCD is yet
another measure to be used to filter the results towards more focused results.

Lastly, in order to answer Q3, we extracted a few communities either min-
imizing or maximising MCD. In the remainder, we call MCS the number of
nodes in a community. As we have stated above, we can use the distributions
of size, support and MCD to post-process the results to get only the few inter-
esting ones. We have extracted a few (i.e., 200) communities for each network,
and we report in Figure 9 four of them. Besides the first example, that was
found by searching for one of the co-authors of this paper, the other ones
were found by examining the results filtered by means of the above mentioned
three measures. In particular: Figure 9(b) was found within 260 communi-
ties obtained by constraining MCD < 0.1, MCS ≥ 2 and size ≥ 3; Figure
9(c) was found among 287 communities obtained by constraining MCD = 1,
MCS ≥ 3 and size ≥ 2; Figure 9(d) was found within 286 communities ob-
tained by constraining MCD < 0.5, MCS ≥ 4 and size ≥ 4. These thresholds
were obtained by looking at the distributions reported above.

Consider the one in Figure 9(a). We discovered a size-4 community con-
necting FP, FG, MN and DP with dimensions set {KDD,GIS, SAC, SEBD}.
It is interesting to observe that, given its very dense connections, this multi-
dimensional community would have been found also by using the methods
proposed in [5,31].

However the method proposed in this paper has the possibility to dis-
cover more complex interactions between dimensions. Indeed, the lattice can
be used to browse the multidimensional communities by selecting different
dimensions sets. To give an example we extracted a size-3 community com-
posed of authors AA, PN, QC, KR and SG with connections in dimensions set
{IOLTS,DATE, ISLPED}, see Figure 9(b) where the different multidimen-
sional memberships are shown. These authors are part of three monodimen-
sional communities, but have not co-authored papers at these three conferences
(there are no links connecting them). By adding the dimension ICCD (solid
line circle), we are able to extract a size-4 community composed of the first
three authors. This fourth dimension includes a paper co-authored by the three



18 Michele Berlingerio et al.

(a) MCD=1 in DBLP (b) MCD=0.075 in DBLP

(c) MCD=1 in Query Log (d) MCD=0.33 in Query Log

Fig. 9 Four communities with high and low MCD extracted from the two networks. Nodes
in (a): Fosca Giannotti, Mirco Nanni, Dino Pedreschi, Fabio Pinelli. Nodes in (b): Amit
Agarwal, Qikai Chen, Swaroop Ghosh, Patrick Ndai, Kaushik Roy. The dashed ovals repre-
sent the shared memberships to the same community in the corresponding dimensions (see
circle labels). The dashed anonymous nodes in (b) represent several nodes belonging to the
communities in dimensions IOLTS, ISLPED and DATE and are not visualized to simplify
the readability. In (d), we report with a single solid line the point to point connections found
in all the five dimensions.

authors, which resulted in a ICCD-monodimensional community formed by
the three nodes. Interestingly, through this dimension we are able to specialize
the previously discovered 5 authors community. Note that by using the meth-
ods proposed in [5,31] it would not be possible to discover how the ICCD
dimension could specialize the community, and so its semantic meaning. This
is due to the fact that more information is included in the results w.r.t. the
mentioned works.

Similar results can be obtained by applying ABACUS to the Query Log
dataset. Finding a community of words in this network means finding a set of
words typically used together in queries that lead to good or bad results. A
set of words found together only in dimension 1 is a set of words that, used to-
gether in a query, lead to very specific results (users clicked on the first result).
Words found together only in dimension 5, on the other hand, lead to lower
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ranked results. If we find words together in different dimensions, it may mean
that either the concept the users were looking for is only representable by
words used in conjunction, or that they need more terms to be disambiguated.
An example of the first kind is shown in Figure 9(c), where, maximising the
MCD, we were able to detect a highly connected multidimensional commu-
nity where the words Machu, Picchu, and unbelievable are connected in three
different dimensions of the dataset. An example of the second kind, on the
other hand, is shown in Figure 9(d). In this example, we can observe that,
if we consider all the dimensions, we obtain a set of words belonging to the
same multidimensional community with a strong intrinsic semantic correlation
(i.e. Pablo, Picasso, Neruda -besides sharing their first name, there exists an
edition of a book from Neruda with a Picasso painting on the cover), remov-
ing, then, the most specific dimension (Bin 1 – i.e. click on the first returned
result) we include words that make the concept broader. Also in this case,
the methods proposed in [5,31] do not allow to investigate the effect of the
different dimensions on the specialization of the communities and, thus, the
intrinsic semantic correlation among different words.

5.3 Comparison with previous approaches

As reported in Section 2, in [5], the authors proposed another way to extract
multidimensional communities. Their approach is based however on a different
concept of communities: a multidimensional community groups nodes that are
highly multidimensionally connected. How this multidimensional connected-
ness is evaluated is left at the end of the process, by post-processing the re-
sulting communities. Their approach is composed of the following steps: first,
the multidimensional network is collapsed to a monodimensional one (i.e., they
follow exactly the opposite of our first step), by weighing the edges in different
ways; second, monodimensional community discovery is performed on the re-
sulting network; on the resulting communities, multidimensional connections
are restored from the original networks; the communities are then evaluated
by means of multidimensional measures.

The approach described in [31] works in a similar way, although it presents
some differences. The approach works in two phases: in the first phase, the
adjacency matrices corresponding to each different dimensions are coupled by
connecting, for each entity, its node representation i in dimension k′ to its
node representation j in k′′. This step is driven by a coupling parameter ω
which controls the weight of this inter-dimension connection. This is basically a
node-centric monodimensional collapsing pre-process on the multidimensional
information, as opposed to edge-centric as done in [5]. In the second phase,
the authors apply a modularity-driven monodimensional community discovery
to extract the communities. There are then two main differences between this
baseline and the one presented in [5]: first, the pre-process step in which the
multidimensional information is collapsed is done at the node level, rather than
on the edges; second, instead of being parametric in the monodimensional
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Net subset Dim. Nodes Edges
2000-2010 2,536 558,800 2,668,497
2001-2010 2,477 544,608 2,585,251
2002-2010 2,401 528,958 2,489,462
2003-2010 2,317 511,178 2,365,979
2004-2010 2,244 489,228 2,216,735
2005-2010 2,126 458,763 2,009,903
2006-2010 1,977 423,755 1,772,646
2007-2010 1,848 379,182 1,496,042
2008-2010 1,707 325,246 1,182,161
2009-2010 1,530 260,248 840,916
2010-2010 1,172 163,374 431,296

Net subset Dim. Nodes Edges
1980-1990 390 37,440 71,535
1981-1990 380 36,735 69,766
1982-1990 376 35,912 67,733
1983-1990 368 34,853 65,048
1984-1990 359 33,688 61,955
1985-1990 344 31,797 57,432
1986-1990 335 29,770 52,271
1987-1990 321 26,506 44,631
1988-1990 303 23,031 36,935
1989-1990 265 18,275 27,065
1990-1990 188 11,780 15,927

(a) Large nets (a) Small nets

Table 1 Statistics of the large and small nets used in the comparisons

community discovery algorithm, the authors apply a strategy that aims at
maximizing a multidimensional version of the modularity function.

We then compared against both these approaches, using a c++ implemen-
tation4 of the method presented in [31], and a c++ implementation of the
method presented in [5].

We wanted to compare the three approaches at different levels. In particular
we wanted to answer the following:

Q4. Quantitative evaluation: how do the sets of returned communities found
compare? Can we measure their intersection and the number of communi-
ties that only our method or a given baseline may find?

Q5. Qualitative evaluation: what do the different concepts of community look
like?

Q6. Scalability: how do the methods perform on networks of different size?

In order to address the above, we ran ABACUS and the two different baselines,
on several subsets of the DBLP dataset. Hereafter, we refer to MD for the
method proposed in [5] and to GL for the method proposed in [31].

We created two additional (w.r.t. the networks presented in Section 3)
sets of networks by taking incrementally large subsets of DBLP, by taking
all the nodes, edges and dimensions contained in different temporal windows.
This was needed to be able to compare against the two different baselines,
which present different scalability in terms of both running times and memory
occupation, as we see in Section 5.3.3 (in particular, we were not able to run
GL on large networks). The first set, called “large nets” hereafter, consists of
11 networks corresponding to the single year 2010, the years 2009 and 2010,
the years between 2008 and 2010, and so on, up to the years from 2000 to
2010. The second set, called “small nets” hereafter, consists of 11 networks
corresponding to the single year 1990, the years 1989 and 1990, and so on, up
to the years from 1980 to 1990. Table 1 reports the basic statistics of the two

4 https://code.launchpad.net/louvain
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sets of networks. As we see, the small nets are much smaller than the large
ones, in terms of nodes, edges and number of dimensions.

5.3.1 Quantitative evaluation

Figure 10(a) reports the number of communities found by ABACUS and MD

in the large networks, while Figure 10(b) reports the number of communities
found by ABACUS, GL with different values of ω andMD in the small networks.

In the large networks, as we see, due to the strategy of collapsing the mul-
tidimensional network to a monodimensional one, the number of communities
found by MD becomes nearly stable after adding four years. In fact, after
the first step, each additional year included into the subset is only changing
the weight of existing edges, instead of creating new ones (and bringing new
nodes). On the other hand, the search space of ABACUS grows consistently
up to the last two or three steps, where the growth slows down. By keeping
the dimensions separated, in fact, each additional year is able to provide a
significant number of new combinations to the previous ones. Although the
number of results returned by ABACUS is high, we have discussed in Q1 how
to deal with it.

In the small networks, the above trend is followed as well, but we can
make further considerations regarding different baselines. First of all, we see
how, due to the definition of the GL approach, setting ω = 0 leads to a larger
number of communities when comparing to other values of ω. This value of
the parameter actually forces each node representing the same entity in differ-
ent dimensions to be grouped separately. In other words, the dimensions are
treated in a disjoint way, i.e. the algorithm performs community discovery in
each dimension separately.
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Fig. 10 Quantitative comparisons between ABACUS and the baselines (each x value cor-
responds to an additional year included in the subset, from 2000 to 2010 in (a), and from
1980 to 1990 in (b)). Number of communities found by ABACUS and MD on the large net
in (a), and by ABACUS and all the baselines on the small net in (b). In these plots, MD is
always the leftmost bar within a stack, and ABACUS is always the rightmost one.

The plots also shows the difference in the number of returned communities
by values of ω greater than zero, although there appear to be no much dif-
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ferences within the experiments ran with values greater than zero. To better
explore the sensitivity of these experiments to the ω parameter we also ran GL

with values up to 10000. Figure 11 shows that there is no substantial difference
in running GL with values larger than zero and up to 10000. Because of this,
and for sake of simplicity, in the following we only show the results obtained
with a few values of ω.

Looking at the plots, a few clear questions arise: are the three methods
finding the same communities? Is one method returning communities found
also by the competitors? Can we identify (classes of) communities that can
be found only by one of the three methods? Figure 12 partially answers these
questions from a quantitative point of view. Calling A the set of communities
found by ABACUS and B the set returned a given baseline, the light gray bar
(always the leftmost bar in a stack) shows |A ∩B|/|A ∪B| -i.e. the portion of
communities found by both, the dark gray bar (always the bar in the middle
of a stack) shows |B \A|/|A ∪B| -i.e. the portion of communities found only
by the baseline-, and the black bar (always the rightmost bar in a stack) shows
|A \B|/|A∪B| -i.e. the portion of communities found only by ABACUS. Note
that in order to compare the communities found we had to remove the mul-
tidimensional information contained in those found by ABACUS. This step is
however correct, i.e. there cannot be two instances of the same set of nodes tied
to two different sets of dimensions (itemsets) as this would violate the theory
behind the closed itemsets. Note also that, in analogy with the majority of the
works on community discovery, and on frequent pattern mining, we perform
exact matching here, thus we are only counting the identical communities in
this comparison.

As we see, since the bars report relative numbers, the ratio of communities
that can be found only by the baselines decreases as the subset of years grows.
Put in other words, even if we know that ABACUS is meant to find communities
of a different type than the ones found by the baselines, we see how, for large
datasets, the set of communities found only by one of the baselines becomes
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Fig. 12 Comparison between sets of communities found. Each plot compares ABACUS

against a different baseline or net: large nets and MD in (a), small nets and MD in (b), small
nets and GL with ω = 0.0 in (c), small net and GL with ω = 0.6 in (d). For each pair of sets
of communities A (for ABACUS) and B (for baseline), we show, for each interval of years:
|A ∩ B|/|A ∪ B| -i.e. the portion of communities found by both ABACUS and the baseline
with the light gray bar; |A \B|/|A ∪ B| -i.e. the portion of communities found only by the
ABACUS- with the black bar; |B \ A|/|A ∪ B| -i.e. the portion of communities found only
by the baseline- with the dark gray bar. In these plots, MD or GL are always the leftmost
bar within a stack, and ABACUS is always the rightmost one.

smaller. Moreover, the number of communities that is found only by ABACUS

increases accordingly. This is clearly related to the type of communities that
only ABACUS can find, i.e. the communities of unconnected nodes, or, more
formally, communities formed by more than one connected component. In the
following, we answer the above questions also from a qualitative perspective.

5.3.2 Qualitative evaluation

The two concepts of communities found by ABACUS and the baselines are
different, without a clear winner (i.e., they just reflect different types of in-
teractions among nodes). This situation can be also detected by the different
classes of communities that only one of the two methods can find. Consider
Figure 3: if that was the entire input, MD would collapse the network into
a monodimensional one and possibly find only one community containing all
the four nodes. GL would also collapse the multidimensional connectivity ac-
cording to the parameter ω. This cannot happen in ABACUS, as the principle
for which the nodes are found in the same multidimensional community is to
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(a) community found (b)community found
only by ABACUS only by the baselines

Fig. 13 Examples of communities found by (a) only ABACUS and (b) only the baselines.
Nodes in (a): Deepak Agarwal, Zhiyuan Chen, Nitin Gupta. Nodes in (b): Anika Awwal,
Matthew Jin, Gul N. Khan, Anita TinoIn. In (b) we also depicted the other outgoing edges
from each nodes that were present in the input data. For the nature of the approaches, (a)
could not be find by the baselines and (b) could not be found by ABACUS, as different nodes
exist in different dimensions.

share memberships to monodimensional communities. That is, if Figure 3(a)
was the entire input, ABACUS would find Jon Doe and John Smith in a mul-
tidimensional community, but not the entire set of nodes, as the remaining
two do not share all the memberships to the other nodes (they do not exist
in dimensions ICDM, CIKM and SIGMOD). Figure 13 shows two communi-
ties found during our comparison: (a) was found only by ABACUS, and (b)
was found only by both the baselines. Note that we depict all the edges in
the original input, if there were any, and we reported in (b) also the outgoing
edges. While it is clear that (a) cannot be found by the baselines (as they rely
on connectedness, but there are no edges among those nodes in the input), in
order to confirm that (b) could not be found by ABACUS we had to investigate
whether the four nodes were sharing memberships to the same communities
in the depicted dimensions. That is, even if the image is showing a community
that could not be detected by ABACUS if the depicted edges were the entire
input data, there might be in the data other edges (and paths) connecting the
nodes. After post-processing the data, we found that this was not the case for
(b), as different nodes are connected in different dimensions (see also outgoing
edges).

5.3.3 Scalability

The last part of our comparison regards scalability. Consider Figure 14, re-
porting the running time (in seconds) of ABACUS and MD on the large nets
on the left, and ABACUS, MD and GL on the small nets on the right. As we
see, even though by adding years we implicitly add also dimensions (not all the
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conferences take place in all the years, see Table 1), this has a very low impact
on the running time of ABACUS, and a very high impact for the baselines.

Note that here we report only the running times obtained with a minimum
support of two. That is, we do not test the sensitivity to the minimum support
parameter, as we already give the worst case. In reality, if looking for larger
communities (depending on the application), the running times may be even
lower.

To conclude, ABACUS is scalable, and able to process our data in 32 to
1200 seconds (20 minutes) on the large nets, while MD needed 380 (6 minutes)
to 13500 seconds (225 minutes, i.e. almost 4 hours), and in less than a second
to 2.5 seconds on the small nets, while MD needed up to 7.5 seconds and GL

needed up to 86 seconds.
We also report that we were not able to run GL on networks larger than

the small networks we used because of its memory occupation, that exceeded
4GB to process the large nets.

6 Conclusions and future work

In this paper, we have addressed the problem of multidimensional community
discovery. We have given a definition of multidimensional community for which
nodes sharing memberships to the same monodimensional communities in the
different single dimensions are grouped together. This leads us to define a
community extractor combining the use of

– A given monodimensional community discovery algorithm (that could also
allow for overlapping communities)

– Frequent itemset pattern mining to allow merging discovered monodimen-
sional communities into multidimensional ones

By browsing over the lattice generated by the frequent closed itemset mining
algorithm, it is possible to extract multidimensional communities of different
sizes (pattern lengths) and so navigate the complex multidimensional structure
of a network, in a way that previous methods could not permit.
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The proposed method could lead to the development of analytical tools
to characterize the redundancy in the dimensions, the impact of new dimen-
sions on the network structure, and more in general to evaluate the interplay
between dimensions. For these reasons, we see potential applications in real
world problems including characterizing the interplay between mobility and
communication dimensions in a place-to-place network [16], the similarity be-
tween users in a user-mobility profile network [45], or in the analysis spreading
of infectious diseases [2]. We leave for future research the analysis of potential
applications of ABACUS.
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