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Abstract Hierarchical clustering of graphs is a useful strategy to mine, explore
and visualize graphs. Popular approaches define ad hoc procedures to decide how
subgraphs are subdivided or nested. The popularity of graph hierarchies certainly
relates to the relevance of multilevel models appearing in the natural and social
sciences. For instance, current models in biology (genomics and/or proteomics)
try to capture the multilevel nature of networks formed by various biological en-
tities; cities and worldwide city systems in geography can also be described as
multilevel networks. In our opinion, a theory supporting these multilevel cluste-
ring approaches is yet to be developed. Indeed, to the best of our knowledge there
are no known optimization multilevel criteria guiding the construction of a hie-
rarchy of clusters: the hierarchy basically is an artefact of an iterative procedure.
The main results of this paper contribute to such a multilevel clustering theory,
by designing and studying a multilevel modularity measure for hierarchically clus-
tered graphs, explicitly taking the nesting structure of clusters into account. The
multilevel modularity we propose generalizes a modularity measure introduced
by Mancoridis et al. in the context of reverse software engineering. The measure
we designed recursively traverses the hierarchy of clusters and computes a one-
variable polynomial encoding the intra and inter-cluster densities appearing at all
levels in a hierarchical clustering. The resulting polynomial reflects how the graph
combines with the hierarchy of clusters and can be used to assess the quality of
a hierarchical clustering. We discuss archetypal examples as proof-of-concept. We
also look at how this multilevel modularity acts on a popular real world example.
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1 Introduction

Identifying community structures and outliers remains a central task when mining
graphs [9]. Numerous graph clustering strategies and algorithms have been deve-
loped, where a majority of them aim at modularity maximisation (see for instance
recent survey papers [8], [7] and [29]). The results in this paper precisely relate
to the situation where optimal modularity is assessed using a quality measure.
Candidate measures have been introduced by several authors. The Newman’s Q
modularity [21] measures the difference between the observed proportion of links
within clusters and its expected value in a random graph with the same degree
sequence [16]. Other clustering quality measures have been studied and used to
benchmark algorithms, such as the average Normalized Cut [28].

Related work : This paper focuses on a clustering quality measure inspired
by Mancoridis et al. [18] (denoted as M Q) defined in terms of intra-cluster den-
sity versus inter-cluster connectivity ratios. In a manner similar to Newman and
Girvan using modularity together with edge betweenness [21], Auber et al. [3] used
Mancoridis’ M@ quality measure combined with an edge statistics in an effort to
identify bridges between communities and obtain multilevel clustering for small
world networks. Examples successfully clustered using MQ are (sub)graphs of the
Internet movie database (IMDB), the worldwide air passenger traffic [1] or the
co-citation network built from the IEEE InfoVis proceedings [11].

Two main strategies are used to produce a hierarchy of clusters (nested sub-
graphs). Divisive approaches usually first produce a clustering of a graph (a set
partition of its vertices), and then iterate over each subgraph until some stopping
condition is met. Agglomerative approaches first consider clusters formed of single
vertices and merge them into larger groups following some criteria or objective
function. After such a hierarchy of clusters is produced, either the hierarchy can
be preserved and manipulated as is, or a “cut” must be decided, based on some
other criteria to find a best possible clustering out of the hierarchy. Deciding of
an optimal cut, or deciding of the optimal depth for the hierarchy is a difficult
question. In our view, the main reason why iterative (divisive or agglomerative)
strategies cannot reasonably guide the overall nesting process is clear. They fail to
evaluate the very hierarchical character of the clustering they produce. This is the
question we address here: find a criteria evaluating the relevance of the hierarchy.
Applying a modularity measure to obtain clusters C7,Cq,... and then indepen-
dently re-apply the measure on each cluster, and so forth, does not explicitly take
the nesting structure into account. That is, even if a best possible clustering is
sought for at each iteration step, the overall quality of the multilevel clustering
needs to be measured or assessed. To the best of our knowledge, although many
authors designed ad hoc algorithms producing hierarchical clusterings of a graph,
none of them provided an accompanying multilevel modularity. There is one ex-
ception however [17], where the authors compute a multilevel classification of con-
cepts into categories based on a numerical evaluation of the resulting hierarchies.
Their approach however does not transfer in the context of multilevel graph clus-
tering.Another interesting approach is due to Pons and Latapy[24]: they propose
an extension of well-known quality measures which includes a scale parameter and
they define a post-processing procedure to retrieve the most relevant cuts from a
dendrogram (binary clustering tree). However this extension can not be used to
compare the qualities of several clustering trees.
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Contribution : Our results can be seen as a contribution to theoretical
foundations for hierarchical graph clustering. A multilevel presentation of informa-
tion through quotient graphs provides a useful abstraction of the initial data. More
importantly, current studies confirm the absolute presence of hierarchies either in
nature itself or in abstract human construction such as language. Current evolu-
tionary models in biology try to capture the multilevel nature of networks formed
by various biological entities [31]. The same holds for cities and city systems in geo-
graphy [25]. Obviously, approaches claiming to unfold such structures in networks
should rely on sound principles and methodology for hierarchical graph clustering.

The multilevel criteria we present and discuss in this paper generalizes a one
level criteria first introduced by Mancoridis et al. [18]. We focused our effort
on Mancoridis’ M@Q modularity measure for several reasons, one being that it
possesses interesting statistical properties [10], the other being that it nicely admits
a multilevel generalization, making it a good candidate quality measure among
others. Our multilevel measure collects values along a traversal of all clusters and
sub-clusters ending into a polynomial whose coefficients reflect how the graph com-
bines with the hierarchy of clusters. We borrowed ideas from standard techniques
in algebraic combinatorics where such polynomials appear when enumerating re-
cursive discrete objects. The idea is to exploit a variable g to keep track of the
intrinsic depth of objects. In most cases, the objects can be described by formal
languages generated by algebraic grammars, generally called attribute grammars
after a counting variable ¢ is introduced [12,19]. A first attempt at defining this
multilevel measure was conjectured by some of the authors of the present paper[10].
This previous work was not theoretically comprehensive and not experimentally
successful.

Section 3 motivates the design this one variable multilevel modularity. The
whole discussion incrementally builds towards the full generalization by going
through a careful examination of M@ and its underlying mechanism. Looking
at archetypal case studies, Section 4 provides a rationale for such an adaptation of
Mancoridis’ original formulation. In Section 5, we look at two real world examples
to assess of the relevance of our multilevel modularity. First, we compare several
algorithms recursively applied to a college football network that has been the fo-
cus of previous work. Secondly, we present a evaluation of a classic hierarchical
clustering procedure applied to a French commuting network. While the data of
the first example are publicly available, the data of the second are unfortunately
not.

2 Mancoridis’ modularity

Mancoridis et al. [18] proposed a modularity measure they called MQ (standing
for Modularity Quality) evaluating the quality of a clustering (of a graph) as a
difference between internal and external connectivity ratios. That is, the ratio
between the number of connections observed in a given module or between two
given modules and the maximum possible number of such edges. Obviously, MQ
applies to any graph and clustering although it was first introduced in the context
of reverse software engineering to cluster graphs induced from references between
source code files.
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Let G = (V, E) be a graph where V and E respectively denote the set of nodes
(also called vertices) and edges of G. Let C = (C1,...,Cy) be a clustering, that is,
the subsets C; C V are pairwise disjoint and cover V = UleCi. Given two clusters
C;,Cj, we define e;; as the number of edges connecting vertices of C; to vertices
of C; (or vice versa). In this context, e;; denotes the number of edges within C;.

The modularity measure MQ we now define slightly extends Mancoridis’ origi-
nal modularity, and involves internal and external connectivity ratios for each clus-
ter C;, respectively denoted as «; and 3;. We also need to specify upper bounds §;
and d;; on the number of edges lying within C; or between C; and C; (depending
on a reference graph model, see forthcoming examples and sections). Moreover,
we assign a weight x; associated with each cluster C; and we set X = Zle zi. In
a sense, the quantity X can be seen as a weight associated with the whole graph
G, or more precisely to the set of vertices V. We furthermore require that these
weights to be additive, meaning that if C; is decomposed into (pairwise disjoint)
sub-clusters Cjq, ..., Cj,, we then have z; = Z’;;1 Tip.

Definition 1 The internal connectivity ratio of the cluster C; € C is defined as the
relative amount of internal edges in cluster C; and equals:
€ii

=5 (1)
Remark 1 A natural upper bound §; for subgraph density is (lcgil) when dealing
with simple graphs (undirected, no loops). This definition implicitly sets the com-
plete graph as a reference model where cluster density is measured against a clique
of comparable node size. However, finding a subset of nodes C; C V maximizing
«; in this case is a NP-hard problem. This has motivated the use of alternate
definitions for edge density [30]. Finally, we do not consider here the particular
case where the § are null. The situation could however arise when computing the
density of a singleton.

Definition 2 The external connectivity ratio of the cluster C; € C is defined as a
weighted mean of the relative amount of external edges between C; and the other
clusters and equals:
1 Ijeij
= (2)
X — Z; i 6”-

Remark 2 A natural upper bound d;; for external density subgraph density, which

Bi =

furthermore matches the internal density §; = (lgil) discussed in the previous
remark, is 6;; = |C;| - |C;|. This definition implicitly sets the complete bipartite
graph as a reference model.

Definition 3 Let G be a graph, and C = (C1,...,Cy) be a clustering of G. The
generalized modularity (denoted M Q) is defined as:

k
MQG;C) = ¢ > wilai — i) 3)

The quantity in Eq. (3) should be seen as a weighted average of the ratio
difference (between the quantities defined in Eq. (1) and Eq. (2)). That is, larger
cluster have a higher ratio § and correspondingly have more impact on the final
value computed in Eq. (3).
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Ezample 1 Let us briefly show how Mancoridis’ original definition can be recovered
from Eq. (3). First set uniform weights for all clusters, that is z; = 1, for all
i=1,...,k. We consider directed graphs and allow loops. Take as reference graphs
the (directed) complete graph, and the directed bipartite graph. Accordingly set
8; = |C;|? and §;; = 2|C;||C;|. Eq. (3) then unfolds as the original MQ measure [18]:

k
) o 1 e
Y . 1 i ij 4
QGO =3 |\ Gr " 1T c W
i=1 J#i /
in: 21; =k
out: 19 7

size:37
19

Fig. 1 Flat clustering of a small simple network (n = 96). The three cluster C; are drawn
using convex hulls. The in, out and size quantities are e;;, Zj# e;; and |C;| respectively.

Ezample 2 We now consider simple graphs (undirected, no loops) and use the size
of a cluster C; as its weight (z; = |C;|). Take as reference graphs, the complete
graph and bipartite complete graphs, we have §; = (‘gil) and ¢;; = |C4||C;|. Then:

k
_— . _ l 26“' o ]. B
MOEO) =22\ ar-1~ el 2 ®)
i=1 Ve
additionally assuming |C;| > 2, Vi = 1,. ..k, and where we set n = |V|. Mancoridis’

original definition (as used in [3]) considers clusters to be of equal importance and
simply averages the density of all clusters, while the identity we use here computes
a weighted average again giving more impact to larger clusters (see also [6] who
pointed at this improvement). Looking at the example given in Fig. 1 we have

— 1 (2x213 19 )

MQ(G;C) = =

37—-1 96-37

4L 2x279 16
9%\ 31-1 96-31
7

2x207 11
28— 1 96— 28
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Roughly speaking, MQ (as defined in Eq. (5)) seeks at finding dense subgraphs
assigning a maximum score to cliques (complete subgraphs). As a result, ]\7@ tends
to prefer small cliques to larger but less dense subgraphs. Using the de Moivre-
Laplace theorem, one can show that when G is a random Erdds-Rényi graph [13]
with link probability p, and for a fixed clustering C, the quantity defined in (5) can
be approximated by a Gaussian distribution of zero mean (we also need to assume
¢ > 1). This observation corresponds to the idea that the probability of finding a
clustering of random graph where clusters have a much larger inner connectivity
ratio than external connectivity ratio is rather small.

3 Multilevel Modularity
3.1 Basic idea

The extension of MQ to hierarchical graph clustering relies on a recursive definition
involving a variable q.

Observe first that MQ in Eq. (3) can be computed by going through each
individual edge, testing whether it connects nodes belonging to a same cluster
or to different ones. The terms in Egs. (1) or (2) can then be seen as positive or
negative weights assigned to edges of the graph. Leaving all averaging constants
and edge densities aside these weights end up being +1.

When dealing with multilevel clustering, our goal is to take the depth at which
an edge acts into account. It may occur that an edge remains internal as we drill
down the hierarchy over several levels. The intuition here is that this edge should
be assigned a positive weight 1 + g + --- + ¢" depending on the depth r of the
deepest cluster it resides in. Conversely, an external edge joining two different
clusters should be assigned a negative weight depending on the depth of the two
clusters it connects in the hierarchy. Now, the situation becomes intricate since
an edge might well be internal starting from the root down to some level of the
hierarchy, while it becomes external and connects two distinct lower level clusters.
It is this combinatorial complexity we need to capture here.

3.2 Multilevel recursive definition

Let T be a rooted tree, that is a directed graph where leaf nodes have no successors,
and each node has a unique parent node, except for the root node. Let o(t) denote
the set of all siblings having ¢ as common parent node in T. We denote by h(T)
the height of T, that is the length of a longest path from the root to a leaf node.

A hierarchically clustered graph G = (V,E, T) comes equipped with a cluster
tree T where each node t € T corresponds to a subset V(¢t) C V, subject to
the constraints V(t) = Uy, V() and V(') N V(") = 0 for any two siblings
t',t" € o(t). By definition, all (subsets associated with) siblings C; (i = 1,....k)
having the root node as direct ancestor provide a flat clustering of the graph.
Some of these subsets then refine into hierarchically clustered graphs G(C;) =
(Ci, E(Cy), T(C)), where G(C;) = (C;, E(C;)) denotes the subgraph induced from
C; and T(C;) denotes the hierarchy induced from the subtree rooted at C;. That
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is, G(C;) = (Cy, E(C;), T(Cy)) itself recursively decomposes into a lower level hie-
rarchical clustering. Note that we do not require that the lowest level clusters be
single nodes v € V. For sake of simplicity, we shall write G; and T; to denote G(C;)
and T(C;) respectively. We also identify clusters C; with the subtree T; rooted at
C;.

Definition 4 Let G = (V, E,T) be a hierarchically clustered graph with top level

clusters C1, ..., Cy. For any real number q € [0, 1], its multilevel modularity is defined
as:
]’\/[‘@(G; T; q) — % Z§:1 xn(az - ﬁz) (1 + q%(Gi; T;; Q)) ifk>0 (6)
0 otherwise

Note that when T; is a flat clustering of G, we then have m(Gi;Ti;q) =0
since T; is a leaf node (lowest level cluster) in T. As a consequence, ]\7@ does
coincide with Eq. (3) for flat clustering (a cluster tree of depth one).

The reasons for the bounds on ¢ are obvious. On the one hand, allowing ¢ < 0
would bring a negative contribution from internal edges, while external edges would
contribute positively. On the other hand, choosing ¢ > 1 would lead to an odd
situation where bottom clusters of T may contribute more to m(G;T; q) than
the first level clusters although they represent a refinement of their parent clusters.

3.3 ]\7@ as weighted paths in a tree

Although Def. 4 introduces a recursive pattern to compute Z\?@(G; T; q) as a poly-
nomial in ¢, we can provide a combinatorial formula to directly compute the coef-
ficient of ¢”.

Now, assume sibling nodes in T are labeled using distinct integers 1,2,... Any
path going from the root node to any other node in the tree can then be described
as an integer sequence w = i1 ...%r. We shall call such a sequence a word over the
alphabet {1,2,...}. Fig.2(b) illustrates this construction: the word encoding the
path from the root node is depicted for each node in the tree. Now, given a word
w =11 ...%r, a prefix of w is a word u = 41 ...1s with s < r. Note that prefixes
incrementally build as we traverse the path from the root and visit all intermediate
nodes. We shall write u < w when the word wu is a prefix of the word w. This happens
to be an order relation on words which coincides with the (inverse) set inclusion
order on clusters in the hierarchy, so words w uniquely map to a cluster C in the
hierarchy. We write |w| to denote the length of the integer sequence w (which also
equals the depth of the corresponding cluster in the hierarchy) and Lt to denote
the set of leaf nodes in T.

Using these notations we provide a closed formula for the coefficient of MQ. In
order to access the contribution of a cluster C' in T with depth p + 1, we need to
multiply differences between inner and outer connectivity ratios for each cluster
located on the path to C. The coefficient [m(G, T, q); ¢"] is then then given by
the sum of this quantity over all clusters at depth p + 1, as given in Prop. 1.

Property 1 Let Dp = {w € T, |w| = p+ 1} be the the set of clusters at depth p in
T. We have:

[m(GvT’Q);qP] = % Z Lw H (au — Bu) (7)

weD, u<w
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(a) Hierarchical decomposition of the (b) Tree representation of the hie-
sample graph introduced in Fig. 1. rarchical clustering.

Fig. 2 A labeled tree (right) encoding a hierarchical clustering of a graph (left). All paths
from the root to a cluster C\, are described using words.

A crucial ingredient to Eq. (7) is the identity z; = 251:1 x5, which holds since we
assumed the z;’s are additive.

Eq. (7) provides an alternative way to compute Z\?@(G,T,q). Assuming all
quantities (cu, Bu)yeT are given, the time complexity for computing MQ(G, T, q)
is however O(nlog(n)?) (where n = |V| denotes the number of vertices in G). This
is to be compared against a O(nlog(n)) time complexity when using recursion as
in Eq. (6).

3.4 Interpreting values of MQ

Observe that ]\7@(G;T; q) achieves our goal since internal edges will be visited
several times, once as edges in G(C;), then as edges in G(Cj;) and so forth, each
time collecting a different power of ¢ as the recursion goes down the hierarchy. The
same type of “depth dependent weight” is achieved for external edges. The case
where ¢ is close to 1 corresponds to the extreme situation where the weight of an
(internal) edge equals its depth in the hierarchy. On the other hand, a value of ¢
close to 0 corresponds to the one-level ]\7@ value (Eq. 3) applied on the first level
of T. As we shall see (in Section 4), the value assigned to ¢ actually plays a role
in determining whether one should favor a clustering extending to more or less
levels. Roughly speaking, a denser cluster may have a smaller contribution than a
cluster sitting at a lower level while being less dense, depending on the value of ¢
(and the depth of the cluster).

Given a hierarchically clustered graph (G, T), and g being considered as a
variable, the expression ]\7@(6‘; T; q) can be seen as a polynomial in g. Obviously,
two different clustering trees T, T’ of a same graph return different polynomials,
that may only slightly differ when these two clusterings are “close”. Similarly,
we expect a larger graph G’ equipped with a hierarchical clustering structurally
similar to that for G to return a similar polynomial. That is, when plotted as curves
over [0, 1], the two polynomials should correspond to similar and close curves. Note
that this is more likely to happen when T and T’ share the same (non labeled) tree
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structure, so the polynomials will only vary in their coefficients but will involve
the same recursive expansions and powers of q.

Comparing two hierarchical clusterings based on polynomial expressions may
be unsatisfactory or insufficient to take decisions. While there is no obvious way
to determine the right value for ¢ to run such a comparison, a heuristic is to take
the average of m(G;T;q) over g € [0,1]. This can easily be accomplished by
computing MQ(G; T) as an integral using Eq. (7):

MQ(G;T) = /01 MQ(G;'T;q)dg (8)

h(T)—1

1 1
=5 pzz;) m Z Ty H(Ozu—ﬂu)

v€ED, u<v

4 Proof of concept: archetypal case studies

We now look at special and simple cases in order to understand how ]\7@(6’, T;q)
actually works. We shall also look at more complex examples later on. We will
only consider simple graphs (undirected, no self-loops). We shall use the complete
and bipartite complete graphs as reference graphs (cf. Section 2, Ex.2). Recall
that we use the size of a cluster C; as its weight (z; = |C;]). These examples are
constructed in order to be convinced of the accuracy of our measure. In [10] the
measure proposed by the authors did not fit with what one can expect on such
examples. This is why the new formula (Eq. (6)) was given.

4.1 A simple case study

Our multilevel modularity can be used to decide whether to further subdivide a
cluster or not. Observe that two trees sharing the same structure on nodes of depth
< p will have equal coefficients [1\7@, q"] with r < p. Hence, these cluster trees may
only be compared based on local criterion.

A simple example will illustrate this idea. Assume G is a graph formed of
three distinct cliques Cq,C2,C3 (taken as the archetype of a cluster) of size n.
Assume also there are bn? edges (0 < b < 1) connecting Cy to Ca, but that there
are no edges between Cs and either Cy or C2. This example allow us to compare
analytically the different configurations according to simple MQ expressions.

Write cluster trees as parenthesized expressions, and consider cluster trees
T = [C1u2,Cs] and T = [[C1,C2], C3] (see Fig.3). That is, T is a flat clustering
with a first cluster containing the union of C; and Cs, while TV further divides
this cluster into sub-clusters [C1, Ca].

Since both trees coincide on the first level, comparing their modularity amounts
to decide whether there is any benefit to further divide Ciu2 into [C1, C2]. Now,
the internal connectivity ratio for Ciuz is (see Eq. (1)):

2n(1+b) — 2

a1y2 — om—1
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(a) T (b) T’

Fig. 3 Two different hierarchical clusterings of a graph built from three cliques.

Since the tree T is flat, its modularity MQ is constant (as a polynomial in
q). We can furthermore evaluate this situation by letting n increases toward co to
obtain expression solely depending on b:

MQ(G:Tiq) = 2 +

[ = wl

b
3
MQ(GiT'q) = 5 (1+ (1 +)[1+4(1 - b))

Note that we indeed have ]\7@(6‘; T;0) = ]\7@(6‘; T’;0), as expected. The com-
parison of these two clusterings relies on the value of

_a1—v%)

[MQ(G;T;9), 4] 3

This positive quantity is a decreasing function of b, which confirms an obvious
phenomenon: as long as C1 and C2 are not too densely interconnected, it makes
sense to divide Cju2 into two sub-clusters, while they should be kept as a single
cluster when their inter-connectivity ratio approaches higher values.

We can also compare the two previous trees with the following configuration
T = [01,02,03]. We have

b

MQ(G;T";q) =1~ 5

which is obviously a decreasing function of b. If b = 0.5, T and T have equal MQ
values. Note that T/ and T” quality values overlap in the range b € [0,0.5]. In this
case, a high value of ¢ tends to promote the hierarchical clustering. Actually we

have
2b—1

b2 —1
which has a nearly linear decreasing behaviour. It means that the more b is high
the less we need to promote hierarchy to rank the T’ configuration as best.

As said in Section 3.4, if we have no preference about the value of ¢ to use, a
simple solution is to consider as the best the configuration which is above the other
for the longest range of g or equivalently compare the average of MQ as defined
in Eq. (8). In this case the clustering trees T/ and T” have an equal quality for
b ~ 0.25. It is reasonable to assume that the tree T will be preferred to the flat
clustering T” before T because its leaves correspond to the three cliques.

Vb € [0,0.5], MQ(G;T';q) = MQ(G;T";q) & g =
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4.2 More complex cluster trees

We now consider cluster trees built from four different clusters and show how ]\7@
helps predict which is the most relevant hierarchical clustering, depending on the
inter-cluster connectivity ratios.

We will here compare four different cluster trees: the flat tree, the 3-2 tree, the
complete tree and the linear tree (see Fig.4). Comparing the modularity of these
hierarchical clusterings should help to decide on the appropriate tree structure,
since all of these trees have the same leaf clusters. We assume all bottom clus-
ters C1,C2,C3,Cy to be cliques of equal size n, and we write b;; for the external
connectivity ratio between C; and C;j. We consider four different cases (see Fig.5)
and always assume b4 = 0 = bag = 0 (cluster Cy4 never connects with clusters Cq

(a) Flat Complete

(d) Linear

Fig. 4 Different clusterings of size 4.

Fig. 5 shows the curves of the four polynomials we get. Note that the polynomial
of the flat tree is constant, while the 3-2 and complete tree have degree one ]\7@
polynomials. The measure for the linear tree is a quadratic curve. The following
conclusions can be made:

— Case 1 : When b12 is much greater than all others b;;, the modularity ]\7@
ranks the 3-2 tree as the best option. This obviously is the best possible case
between all considered trees.

— Case 2 : When b2 and b3y are much greater than all others b;;, then the
complete tree is the best available option.

— Case 3 : The linear tree becomes the best candidate when the connectivity
ratios verify b1z > b13 ~ bag >> others b;;.
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00 02 04 05 08 10

(d) Case 4

Fig. 5 For each case a quotient graph representation of the flat clustering is provided (left).
The edge label indicates the connectivity ratio between the two cluster it connects (0 when

there are no edges). The MQ curves for flat (Blue), 3-2 tree (Green), Complete (Black) and
Linear (Red) cluster trees are also given (right).

The Case 4 reveals overlaps between the curves. As a matter of fact this case
illustrates a situation where the best clustering option is not that obvious. The
variable ¢ is used to favor (when close to 1) or restrain (when close to 0) a deep
hierarchical clustering. On one hand take a small ¢ value leads to rank the flat
clustering as best. On the other hand a value close to 1 ranks the complete tree
as the best choice. Using the averaged modularity criterion (see Eq. (8)), the flat
clustering is however the best solution.

5 Application on real world examples

In this section we show how multilevel modularity ]\/J\@ can be used to compare
hierarchical clusterings of real world networks.

5.1 College football network

We consider an example borrowed from [15] describing the organization of the
American College Football season schedule of Division TA Nodes of this graph
represent teams and edges connect teams that played together along the season.
This graph comes with an obvious clustering criteria since the teams are divided
up into 11 conferences!. Actually three of them (Big Twelve, South Eastern and

1 Actually, the groups of teams provided by the authors correspond to the 2001 conferences.
Thanks to T.S. Evans, we use here the correct conferences of the 2000 season.
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Mid-American) are subdivided into two clusters which leads to a multilevel de-
composition of the network.

The graph is of limited size and contains 115 vertices and 613 edges with a
mean degree of 10.66 and an average clustering coefficient of 0.4. This last statistics
suggests that communities exist in this sparse network. Although games are more
likely to occur within a conference, they also seem to depend on the geographical
proximity of the teams’ hometowns.

We present here an application of our multilevel criteria to evaluate the re-
cursive application of clustering algorithms. This way of producing a hierarchical
decomposition is intuitive but not so much studied. It is based on the assumption
that similar connectivity pattern can be found at different scale.

The College Football graph has been clustered using three different algorithms.
Two of them actually produce flat clusterings and have been iterated over clusters
in order to obtain multilevel clusterings. The first is the Hierarchical Clustering[14]
with the Jaccard index as similarity metric and the one level MQ quality measure
to select the best threshold value. The second is the MLR-MCL algorithm [28].
We also used the Louvain algorithm [4] that actually produces a hierarchical clus-
tering. We directly used the source code provided by the respective authors, then
ran the algorithm and visualized the results using the Graph Visualization frame-
work Tulip [2]. All of these procedure are unsupervised and do not require any
parametrization.

The complete and bipartite complete graphs were used as reference graphs for
inter and intra connectivity ratios. Our goal was to compare the grouping of teams
into conferences with the different hierarchical clusterings output by the different
algorithms. As far as the clustering into conferences is concerned, it made sense to
set all clusters to have equal weights x; = 1, and be considered equally important
whatever their size (number of teams in a conference). As a consequence, weights
of leaf clusters in all other hierarchical clusterings were also set to z; = 1. Because
we need to insure additivity of these weights, we had to set

I lifwel
Y7 1 |Lw| otherwise

where L, is the set of T leaves having w as ancestor node.

A visualisation of the results is provided in Fig. 6 using nested graphs. As one
could expect, the four hierarchical clusterings agree on a majority of groups, which
can be easily explained by the fact that teams of a same conference play together
more often.

Louvain (Fig.6(c)) algorithm tends to group conferences located in a same
region. For example Mountain West and Big West conference are merged at the
first level. The Hierarchical clustering algorithm (Fig.6(d)) results in many dense
groups which most of the time correspond with conference or the subdivision of
some conferences. The MLR-MCL (Fig.6(b)) algorithm actually produce a hie-
rarchy that is really close to the division into conferences (Fig. 6(a)). Both refine
some of the biggest conferences into denser sub-clusters which makes sense geo-
graphically, although independent teams are affected to different conference in the
case of the MLR-MCL algorithm. These four hierarchies can be compared using
MQ.
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Fig. 6 Nested graph representations of the College Football conferences using several clus-
tering algorithms.

Algorithm MQ(G, T, q) MQ(G, T)
MLR-MCL | 0.782064 + 0.143891q 0, 8540095
Conferences | 0.774255 + 0.148196g 0, 848353

Louvain 0.688232 + 0.131802¢q 0,754133
0.719687 0.719687

Table 1 Polynomials and averaged modularities for the five clusterings of the Football net-
work.

The Fig. 7 reports the resulting polynomials. In Table 1 we rank the algorithms
using the averaged modularities as defined in Eq. 8. Several conclusions can be
made:

— As said before the MLR-MCL clustering result is very close to the multilevel
partition into conference and division. We can see that their respective ]\7@
curves are very close. Still MLR-MCL produces a better clustering (mostly due
to the splitting of the independent teams).

— The lowest level clusters of the Louvain hierarchy 6(c) match the division
into conferences. But merging close conferences does not seem to be a good
strategy, even if we do not need to promote hierarchy (with a high ¢) to prefer
the Louvain algorithm over the Hierarchical clustering.
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Fig. 7 J\//I\CJQ curves for Conferences partition (Blue), Hierarchical clustering (Green), MLR~
MCL clustering (Violet) and Louvain clustering (Red).

5.2 French commuting network

We now look at a larger example which is the commuters’ flows occurring in
the French administrative region Pays-de-la-Loire using the results of the 1999
French national census (source : INSEE). The data are unfortunately not publicly
available.

Commuting is defined as the regular travel between the place of living and the
place of work[27], these flows are interesting in the study of polycentrism in urban
system. Graphs based methods have been used in this context[22,23]. The graph we
use here (Fig. 8) is simple and contains 1502 nodes (cities) which are geolocalized
and about 24K edges weighted by the amount of commuters traveling between
the cities they connect. There is 162K commuters in this region which represent
about 12% of the total labour force. The French national institute of statistics and
economical studies (INSEE) provides a two level clustering of French cities using
commuters’ flows: cities are grouped into metropolitan areas which are grouped into
metropolitan regions (see [26] for more details about this network).

We use for this example a well-known approach which is the Hierarchical cluste-
ring[14]. In order to extract dense activity regions, we compute a similarity metric
on each edges taking the amount of commuters into account [26]. Then the edges
valuated below a given threshold value are filtered out. Finally we consider two
nodes as being part of the same cluster if they are still in the same connected com-
ponent. This procedure can thus provide a hierarchical clustering because choosing
multiple threshold values may lead to a multi-scale decomposition of the network.

A clustering quality measure is most of the time use to determine the best
threshold value to use. However we can enforce our multilevel modularity qua-
lity to find the best hierarchical clustering by evaluating combination of different
threshold values. More specifically we are looking for the best two-level clustering
to match with the INSEE decomposition.

We compute the hierarchical clusterings for each ordered pair of threshold
values {(t1,t2) € [0, 1]2, t1 < t2} and we evaluate their quality using ]\7@ We take
the complete and bipartite complete graphs as reference graphs and the size of
clusters as the x weight.
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Fig. 9 [Illustration of the evolution of the quality on the commuting network. The best couple
of threshold values is located using a blue triangle (left). These values are reported using blue
vertical lines on the right subfigure.

The results are shown in Fig. 9. We can see that choosing two levels has not
a strong impact on the quality value: in the matrix representation vertical lines
have most of the time the same color. This can explained by the fact that quali-
ties are relatively low: the maximum for a one level clustering is 0.107. The best
two-level clustering have an MQ of 0.11 which is still better. Observe however that
the matrix in Fig. 9(a) contains multiple areas having relatively strong M Q values
(above 0.1). They may correspond to potential candidates for alternative hierar-
chical clusterings. It is also interesting to note that the chosen pair of threshold
values also corresponds to local maxima in the evolution of m according to a
single threshold (see Fig. 9(b)).

The Fig. 10 shows the two-level clustering we get for this network. We can
see that bottom clusters correspond to the commuter belt of big cities. The top
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Fig. 10 Hierarchical clustering of the commuting network using the threshold values chosen
in Fig. 9(a). Only the groups of cities which gather more than five thousand worker are kept.
The clusters are drawn using nested concave hulls. The blue hulls correspond to the first level
clustering while the brown one correspond to the second level clustering. Labels indicates the
name of several biggest cities in this region.

level clustering merges some close urban cores into larger groups. Our experience
working with geographers validates this two level clustering as being relevant, and
in a sense as being better than the flat clustering one could consider either by
taking only lowest level and smaller clusters, or larger top level clusters. Indeed
road and rail infrastructure is very developed in this region: this situation can
explained the presence of these large groups.

6 Conclusion and future work

We introduced a multilevel modularity in order to assess the relevancy of a hie-
rarchical clustering of a graph. The measure we defined explicitly takes the hie-
rarchical structure into account and computes a polynomial expression whose de-
gree reflects the depth of the hierarchy. This multilevel modularity naturally ex-
tends a clustering quality measure that was previously defined and used to cluster
graphs [18]. Coeflicients of the polynomial associated with a hierarchy can alterna-
tively be described and computed in terms of weighted paths in a tree representing
this hierarchy.

Archetypal case studies provide arguments to validate the concept of a multi-
level modularity. Simple case studies can be used to reveal how the measure is
influenced by connectivity ratios acting at different levels in the hierarchy. Limited
cases reveal the relative sensibility of the measure and compares it to traditional
plain clustering modularity.

Other modularity measures could allow multilevel extensions by using a depth-
based variable g to keep track of how edges interact with the hierarchy. Because of
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their combinatorial properties, Newman’s modularity [20], the average Normalized
Cut [28] or edge density criterion (see [5], for instance) are potential candidates
we plan to look at.

We also present several procedures to extract a hierarchical clustering in real
world networks. There might however be more complex computing patterns to
follow in order to optimize the ]\7@ value. In this context, the variable ¢ can be
tuned to promote or to restrain deeper hierarchical clustering. These are obvious
issues we need to address.
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